

Regular Expressions
in APLX

 1

Copyright © 2007 MicroAPL Ltd. All rights reserved worldwide.

APLX, APL.68000 and MicroAPL are trademarks of MicroAPL Ltd. All other trademarks
acknowledged.

APLX is a proprietary product of MicroAPL Ltd, and its use is subject to the license
agreement in force. Unauthorized copying or use of APLX is illegal.

MicroAPL Ltd makes no warranties in respect of the suitability of APLX for any particular
purpose, and accepts no liability for any loss arising out of the use of APLX or arising from
the information contained in this manual.

MicroAPL welcomes your comments and suggestions.
Please visit our website: http://www.microapl.co.uk/apl

APLX Version 4.0.0 December 2007

 2

 3

Regular Expressions in APLX

APLX includes facilities for string search using regular expressions, based on version 7.1 of
Perl Compatible Regular Expressions (PCRE), an open-source product written by Philip
Hazel of the University of Cambridge. Regular expressions can be used in the Find/Change
dialog in an editor or session window, in the Search Workspace dialog, and in your APL code
using the ŒSS String Search/Replace system function.

For an introduction to Regular Expressions, please consult one of the many books or web-
sites on the subject, for example www.regular-expressions.info

The remainder of this section, which is an excerpt from the full PCRE documentation
(Copyright © Philip Hazel), describes the syntax of regular-expression searches in PCRE,
and thus in APLX. Some features which are not relevant to the use of PCRE in APLX have
been edited out for clarity.

• PCRE REGULAR EXPRESSION DETAILS
• CHARACTERS AND METACHARACTERS
• BACKSLASH
• CIRCUMFLEX AND DOLLAR
• FULL STOP (PERIOD, DOT)
• MATCHING A SINGLE BYTE
• SQUARE BRACKETS AND CHARACTER CLASSES
• POSIX CHARACTER CLASSES
• VERTICAL BAR
• INTERNAL OPTION SETTING
• SUBPATTERNS
• NAMED SUBPATTERNS
• REPETITION
• ATOMIC GROUPING AND POSSESSIVE QUANTIFIERS
• BACK REFERENCES
• ASSERTIONS
• CONDITIONAL SUBPATTERNS
• COMMENTS
• RECURSIVE PATTERNS
• SUBPATTERNS AS SUBROUTINES
• AUTHOR
• REVISION

PCRE REGULAR EXPRESSION DETAILS

The syntax and semantics of the regular expressions supported by PCRE are described below.
Regular expressions are also described in the Perl documentation and in a number of books,
some of which have copious examples. Jeffrey Friedl's "Mastering Regular Expressions",

http://www.pcre.org/
http://www.regular-expressions.info/

 4

published by O'Reilly, covers regular expressions in great detail. This description of PCRE's
regular expressions is intended as reference material.

CHARACTERS AND METACHARACTERS

A regular expression is a pattern that is matched against a subject string from left to right.
Most characters stand for themselves in a pattern, and match the corresponding characters in
the subject. As a trivial example, the pattern

 The quick brown fox

matches a portion of a subject string that is identical to itself. When caseless
matching is specified, letters are matched independently of case.

The power of regular expressions comes from the ability to include alternatives and
repetitions in the pattern. These are encoded in the pattern by the use of metacharacters,
which do not stand for themselves but instead are interpreted in some special way.

There are two different sets of metacharacters: those that are recognized anywhere in the
pattern except within square brackets, and those that are recognized within square brackets.
Outside square brackets, the metacharacters are as follows:

 \ general escape character with several uses
 ^ assert start of string (or line, in multiline mode)
 $ assert end of string (or line, in multiline mode)
 . match any character except newline (by default)
 [start character class definition
 | start of alternative branch
 (start subpattern
) end subpattern
 ? extends the meaning of (
 also 0 or 1 quantifier
 also quantifier minimizer
 * 0 or more quantifier
 + 1 or more quantifier
 also "possessive quantifier"
 { start min/max quantifier

Part of a pattern that is in square brackets is called a "character class". In a
character class the only metacharacters are:

 \ general escape character
 ^ negate the class, but only if the first character
 - indicates character range
 [POSIX character class (only if followed by POSIX syntax)
] terminates the character class

The following sections describe the use of each of the metacharacters.

 5

BACKSLASH

The backslash character has several uses. Firstly, if it is followed by a non-alphanumeric
character, it takes away any special meaning that character may have. This use of backslash
as an escape character applies both inside and outside character classes.

For example, if you want to match a * character, you write * in the pattern. This escaping
action applies whether or not the following character would otherwise be interpreted as a
metacharacter, so it is always safe to precede a non-alphanumeric with backslash to specify
that it stands for itself. In particular, if you want to match a backslash, you write \\.

If you want to remove the special meaning from a sequence of characters, you can do so by
putting them between \Q and \E. This is different from Perl in that $ and @ are handled as
literals in \Q...\E sequences in PCRE, whereas in Perl, $ and @ cause variable interpolation.
Note the following examples:

 Pattern PCRE matches Perl matches

 \Qabc$xyz\E abc$xyz abc followed by the contents of $xyz
 \Qabc\$xyz\E abc\$xyz abc\$xyz
 \Qabc\E\$\Qxyz\E abc$xyz abc$xyz

The \Q...\E sequence is recognized both inside and outside character classes.

Non-printing characters

A second use of backslash provides a way of encoding non-printing characters in patterns in a
visible manner. There is no restriction on the appearance of non-printing characters, apart
from the binary zero that terminates a pattern, but when a pattern is being prepared by text
editing, it is usually easier to use one of the following escape sequences than the binary
character it represents:

 \a alarm, that is, the BEL character (hex 07)
 \cx "control-x", where x is any character
 \e escape (hex 1B)
 \f formfeed (hex 0C)
 \n newline (hex 0A)
 \r carriage return (hex 0D)
 \t tab (hex 09)
 \ddd character with octal code ddd, or backreference
 \xhh character with hex code hh
 \x{hhh..} character with hex code hhh..

The precise effect of \cx is as follows: if x is a lower case letter, it is converted to
upper case. Then bit 6 of the character (hex 40) is inverted. Thus \cz becomes hex
1A, but \c{ becomes hex 3B, while \c; becomes hex 7B.

After \x, from zero to two hexadecimal digits are read (letters can be in upper or lower case).
Any number of hexadecimal digits may appear between \x{ and }, but the value of the
character code must be less than 256 in non-UTF-8 mode, and less than 2**31 in UTF-8
mode (that is, the maximum hexadecimal value is 7FFFFFFF). If characters other than
hexadecimal digits appear between \x{ and }, or if there is no terminating }, this form of

 6

escape is not recognized. Instead, the initial \x will be interpreted as a basic hexadecimal
escape, with no following digits, giving a character whose value is zero.

Characters whose value is less than 256 can be defined by either of the two syntaxes for \x.
There is no difference in the way they are handled. For example, \xdc is exactly the same as
\x{dc}.

After \0 up to two further octal digits are read. If there are fewer than two digits, just those
that are present are used. Thus the sequence \0\x\07 specifies two binary zeros followed by a
BEL character (code value 7). Make sure you supply two digits after the initial zero if the
pattern character that follows is itself an octal digit.

The handling of a backslash followed by a digit other than 0 is complicated. Outside a
character class, PCRE reads it and any following digits as a decimal number. If the number is
less than 10, or if there have been at least that many previous capturing left parentheses in the
expression, the entire sequence is taken as a back reference. A description of how this works
is given later, following the discussion of parenthesized subpatterns.

Inside a character class, or if the decimal number is greater than 9 and there have not been
that many capturing subpatterns, PCRE re-reads up to three octal digits following the
backslash, and uses them to generate a data character. Any subsequent digits stand for
themselves. In non-UTF-8 mode, the value of a character specified in octal must be less than
\400. In UTF-8 mode, values up to \777 are permitted. For example:

 \040 is another way of writing a space
 \40 is the same, provided there are fewer than 40
 previous capturing subpatterns
 \7 is always a back reference
 \11 might be a back reference, or another way of writing a tab
 \011 is always a tab
 \0113 is a tab followed by the character "3"
 \113 might be a back reference, otherwise the character with
 octal code 113
 \377 might be a back reference, otherwise the byte consisting
 entirely of 1 bits
 \81 is either a back reference, or a binary zero followed by
 the two characters "8" and "1"

Note that octal values of 100 or greater must not be introduced by a leading zero,
because no more than three octal digits are ever read.

All the sequences that define a single character value can be used both inside and outside
character classes. In addition, inside a character class, the sequence \b is interpreted as the
backspace character (hex 08), and the sequences \R and \X are interpreted as the characters
"R" and "X", respectively. Outside a character class, these sequences have different meanings
(see below).

 7

Absolute and relative back references

The sequence \g followed by a positive or negative number, optionally enclosed in braces, is
an absolute or relative back reference. Back references are discussed later, following the
discussion of parenthesized subpatterns.

Generic character types

Another use of backslash is for specifying generic character types. The following are always
recognized:

 \d any decimal digit
 \D any character that is not a decimal digit
 \s any whitespace character
 \S any character that is not a whitespace character
 \w any "word" character
 \W any "non-word" character

Each pair of escape sequences partitions the complete set of characters into two
disjoint sets. Any given character matches one, and only one, of each pair.

These character type sequences can appear both inside and outside character classes. They
each match one character of the appropriate type. If the current matching point is at the end of
the subject string, all of them fail, since there is no character to match.

For compatibility with Perl, \s does not match the VT character (code 11). This makes it
different from the the POSIX "space" class. The \s characters are HT (9), LF (10), FF (12),
CR (13), and space (32). (If "use locale;" is included in a Perl script, \s may match the VT
character. In PCRE, it never does.)

A "word" character is an underscore or any character that is a letter or digit.

Newline sequences

Outside a character class, the escape sequence \R matches any newline sequence. This is an
extension to Perl. \R is equivalent to the following:

 (?>\r\n|\n|\x0b|\f|\r)

This is an example of an "atomic group", details of which are given below. This
particular group matches either the two-character sequence CR followed by LF, or
one of the single characters LF (linefeed, U+000A), VT (vertical tab, U+000B), FF
(formfeed, U+000C), CR (carriage return, U+000D). The two-character sequence is
treated as a single unit that cannot be split.

Inside a character class, \R matches the letter "R".

 8

Simple assertions

The final use of backslash is for certain simple assertions. An assertion specifies a condition
that has to be met at a particular point in a match, without consuming any characters from the
subject string. The use of subpatterns for more complicated assertions is described below.
The backslashed assertions are:

 \b matches at a word boundary
 \B matches when not at a word boundary
 \A matches at the start of the subject
 \Z matches at the end of the subject
 also matches before a newline at the end of the subject
 \z matches only at the end of the subject
These assertions may not appear in character classes (but note that \b has a
different meaning, namely the backspace character, inside a character class).

A word boundary is a position in the subject string where the current character and the
previous character do not both match \w or \W (i.e. one matches \w and the other matches
\W), or the start or end of the string if the first or last character matches \w, respectively.

The \A, \Z, and \z assertions differ from the traditional circumflex and dollar (described in the
next section) in that they only ever match at the very start and end of the subject string,
whatever options are set. Thus, they are independent of multiline mode. The difference
between \Z and \z is that \Z matches before a newline at the end of the string as well as at the
very end, whereas \z matches only at the end.

CIRCUMFLEX AND DOLLAR

Outside a character class, in the default matching mode, the circumflex character is an
assertion that is true only if the current matching point is at the start of the subject string.
Inside a character class, circumflex has an entirely different meaning (see below).

Circumflex need not be the first character of the pattern if a number of alternatives are
involved, but it should be the first thing in each alternative in which it appears if the pattern is
ever to match that branch. If all possible alternatives start with a circumflex, that is, if the
pattern is constrained to match only at the start of the subject, it is said to be an "anchored"
pattern. (There are also other constructs that can cause a pattern to be anchored.)

A dollar character is an assertion that is true only if the current matching point is at the end of
the subject string, or immediately before a newline at the end of the string (by default). Dollar
need not be the last character of the pattern if a number of alternatives are involved, but it
should be the last item in any branch in which it appears. Dollar has no special meaning in a
character class.

The meanings of the circumflex and dollar characters are changed if the multi-line search
option is set. When this is the case, a circumflex matches immediately after internal newlines
as well as at the start of the subject string. It does not match after a newline that ends the
string. A dollar matches before any newlines in the string, as well as at the very end, when

 9

multi-line search is set. When newline is specified as the two-character sequence CRLF,
isolated CR and LF characters do not indicate newlines.

For example, the pattern /^abc$/ matches the subject string "def\nabc" (where \n represents a
newline) in multiline mode, but not otherwise. Consequently, patterns that are anchored in
single line mode because all branches start with ^ are not anchored in multiline mode.

Note that the sequences \A, \Z, and \z can be used to match the start and end of the subject in
both modes, and if all branches of a pattern start with \A it is always anchored, whether or not
multi-line search is set.

FULL STOP (PERIOD, DOT)

Outside a character class, a dot in the pattern matches any one character in the subject string
except (by default) a character that signifies the end of a line.

When a line ending is defined as a single character, dot never matches that character; when
the two-character sequence CRLF is used, dot does not match CR if it is immediately
followed by LF, but otherwise it matches all characters (including isolated CRs and LFs).

The behaviour of dot with regard to newlines can be changed. If the PCRE_DOTALL option
is set, a dot matches any one character, without exception. If the two-character sequence
CRLF is present in the subject string, it takes two dots to match it.

The handling of dot is entirely independent of the handling of circumflex and dollar, the only
relationship being that they both involve newlines. Dot has no special meaning in a character
class.

MATCHING A SINGLE BYTE

Outside a character class, the escape sequence \C matches any one byte. Unlike a dot, it
always matches any line-ending characters.

SQUARE BRACKETS AND CHARACTER CLASSES

An opening square bracket introduces a character class, terminated by a closing square
bracket. A closing square bracket on its own is not special. If a closing square bracket is
required as a member of the class, it should be the first data character in the class (after an
initial circumflex, if present) or escaped with a backslash.

A character class matches a single character in the subject. A matched character must be in
the set of characters defined by the class, unless the first character in the class definition is a
circumflex, in which case the subject character must not be in the set defined by the class. If a
circumflex is actually required as a member of the class, ensure it is not the first character, or
escape it with a backslash.

 10

For example, the character class [aeiou] matches any lower case vowel, while [^aeiou]
matches any character that is not a lower case vowel. Note that a circumflex is just a
convenient notation for specifying the characters that are in the class by enumerating those
that are not. A class that starts with a circumflex is not an assertion: it still consumes a
character from the subject string, and therefore it fails if the current pointer is at the end of
the string.

When caseless matching is set, any letters in a class represent both their upper case and lower
case versions, so for example, a caseless [aeiou] matches "A" as well as "a", and a caseless
[^aeiou] does not match "A", whereas a caseful version would.

Characters that might indicate line breaks are never treated in any special way when matching
character classes, whatever line-ending sequence is in use. A class such as [^a] always
matches one of these characters.

The minus (hyphen) character can be used to specify a range of characters in a character
class. For example, [d-m] matches any letter between d and m, inclusive. If a minus character
is required in a class, it must be escaped with a backslash or appear in a position where it
cannot be interpreted as indicating a range, typically as the first or last character in the class.

It is not possible to have the literal character "]" as the end character of a range. A pattern
such as [W-]46] is interpreted as a class of two characters ("W" and "-") followed by a literal
string "46]", so it would match "W46]" or "-46]". However, if the "]" is escaped with a
backslash it is interpreted as the end of range, so [W-\]46] is interpreted as a class containing
a range followed by two other characters. The octal or hexadecimal representation of "]" can
also be used to end a range.

Ranges operate in the collating sequence of character values. They can also be used for
characters specified numerically, for example [\000-\037].

If a range that includes letters is used when caseless matching is set, it matches the letters in
either case. For example, [W-c] is equivalent to [][\\^_`wxyzabc], matched caselessly, and
[\xc8-\xcb] matches accented E characters in both cases.

The character types \d, \D, \p, \P, \s, \S, \w, and \W may also appear in a character class, and
add the characters that they match to the class. For example, [\dABCDEF] matches any
hexadecimal digit. A circumflex can conveniently be used with the upper case character types
to specify a more restricted set of characters than the matching lower case type. For example,
the class [^\W_] matches any letter or digit, but not underscore.

The only metacharacters that are recognized in character classes are backslash, hyphen (only
where it can be interpreted as specifying a range), circumflex (only at the start), opening
square bracket (only when it can be interpreted as introducing a POSIX class name - see the
next section), and the terminating closing square bracket. However, escaping other non-
alphanumeric characters does no harm.

 11

POSIX CHARACTER CLASSES

Perl supports the POSIX notation for character classes. This uses names enclosed by [: and :]
within the enclosing square brackets. PCRE also supports this notation. For example,

 [01[:alpha:]%]

matches "0", "1", any alphabetic character, or "%". The supported class names are

 alnum letters and digits
 alpha letters
 ascii character codes 0 - 127
 blank space or tab only
 cntrl control characters
 digit decimal digits (same as \d)
 graph printing characters, excluding space
 lower lower case letters
 print printing characters, including space
 punct printing characters, excluding letters and digits
 space white space (not quite the same as \s)
 upper upper case letters
 word "word" characters (same as \w)
 xdigit hexadecimal digits

The "space" characters are HT (9), LF (10), VT (11), FF (12), CR (13), and space (32).
Notice that this list includes the VT character (code 11). This makes "space" different
to \s, which does not include VT (for Perl compatibility).

The name "word" is a Perl extension, and "blank" is a GNU extension from Perl 5.8. Another
Perl extension is negation, which is indicated by a ^ character after the colon. For example,

 [12[:^digit:]]

matches "1", "2", or any non-digit. PCRE (and Perl) also recognize the POSIX syntax
[.ch.] and [=ch=] where "ch" is a "collating element", but these are not supported,
and an error is given if they are encountered.

VERTICAL BAR

Vertical bar characters are used to separate alternative patterns. For example, the pattern

 gilbert|Sullivan

matches either "gilbert" or "sullivan". Any number of alternatives may appear, and an
empty alternative is permitted (matching the empty string). The matching process
tries each alternative in turn, from left to right, and the first one that succeeds is used.
If the alternatives are within a subpattern (defined below), "succeeds" means
matching the rest of the main pattern as well as the alternative in the subpattern.

INTERNAL OPTION SETTING

The settings of the PCRE_CASELESS, PCRE_MULTILINE, PCRE_DOTALL, and
PCRE_EXTENDED options can be changed from within the pattern by a sequence of Perl
option letters enclosed between "(?" and ")". The option letters are

 12

 i for PCRE_CASELESS
 m for PCRE_MULTILINE
 s for PCRE_DOTALL
 x for PCRE_EXTENDED

For example, (?im) sets caseless, multiline matching. It is also possible to unset these
options by preceding the letter with a hyphen, and a combined setting and
unsetting such as (?im-sx), which sets PCRE_CASELESS and PCRE_MULTILINE while
unsetting PCRE_DOTALL and PCRE_EXTENDED, is also permitted. If a letter appears
both before and after the hyphen, the option is unset.

When an option change occurs at top level (that is, not inside subpattern parentheses), the
change applies to the remainder of the pattern that follows. If the change is placed right at the
start of a pattern, PCRE extracts it into the global options (and it will therefore show up in
data extracted by the pcre_fullinfo() function).

An option change within a subpattern (see below for a description of subpatterns) affects only
that part of the current pattern that follows it, so

 (a(?i)b)c

matches abc and aBc and no other strings (assuming PCRE_CASELESS is not used).
By this means, options can be made to have different settings in different parts of
the pattern. Any changes made in one alternative do carry on into subsequent
branches within the same subpattern. For example,

 (a(?i)b|c)

matches "ab", "aB", "c", and "C", even though when matching "C" the first branch is
abandoned before the option setting. This is because the effects of option settings
happen at compile time. There would be some very weird behaviour otherwise.

The PCRE-specific options PCRE_DUPNAMES, PCRE_UNGREEDY, and PCRE_EXTRA
can be changed in the same way as the Perl-compatible options by using the characters J, U
and X respectively.

SUBPATTERNS

Subpatterns are delimited by parentheses (round brackets), which can be nested. Turning part
of a pattern into a subpattern does two things:

1. It localizes a set of alternatives. For example, the pattern

 cat(aract|erpillar|)

matches one of the words "cat", "cataract", or "caterpillar". Without the parentheses,
it would match "cataract", "erpillar" or an empty string.

2. It sets up the subpattern as a capturing subpattern. This means that, when the
whole pattern matches, that portion of the subject string that matched the

 13

subpattern is available as \1, \2 etc. Opening parentheses are counted from left to
right (starting from 1) to obtain numbers for the capturing subpatterns.

For example, if the string "the red king" is matched against the pattern

 the ((red|white) (king|queen))

the captured substrings are "red king", "red", and "king", and are numbered 1, 2, and
3, respectively.

The fact that plain parentheses fulfil two functions is not always helpful. There are often
times when a grouping subpattern is required without a capturing requirement. If an opening
parenthesis is followed by a question mark and a colon, the subpattern does not do any
capturing, and is not counted when computing the number of any subsequent capturing
subpatterns. For example, if the string "the white queen" is matched against the pattern

 the ((?:red|white) (king|queen))

the captured substrings are "white queen" and "queen", and are numbered 1 and 2.
The maximum number of capturing subpatterns is 65535.

As a convenient shorthand, if any option settings are required at the start of a non-capturing
subpattern, the option letters may appear between the "?" and the ":". Thus the two patterns

 (?i:saturday|sunday)
 (?:(?i)saturday|sunday)

match exactly the same set of strings. Because alternative branches are tried from
left to right, and options are not reset until the end of the subpattern is reached, an
option setting in one branch does affect subsequent branches, so the above
patterns match "SUNDAY" as well as "Saturday".

NAMED SUBPATTERNS

Identifying capturing parentheses by number is simple, but it can be very hard to keep track
of the numbers in complicated regular expressions. Furthermore, if an expression is modified,
the numbers may change. To help with this difficulty, PCRE supports the naming of
subpatterns. This feature was not added to Perl until release 5.10. Python had the feature
earlier, and PCRE introduced it at release 4.0, using the Python syntax. PCRE now supports
both the Perl and the Python syntax.

In PCRE, a subpattern can be named in one of three ways: (?<name>...) or (?'name'...) as in
Perl, or (?P<name>...) as in Python. References to capturing parentheses from other parts of
the pattern, such as backreferences, recursion, and conditions, can be made by name as well
as by number.

Names consist of up to 32 alphanumeric characters and underscores. Named capturing
parentheses are still allocated numbers as well as names, exactly as if the names were not
present.

REPETITION

 14

Repetition is specified by quantifiers, which can follow any of the following items:

 a literal data character
 the dot metacharacter
 the \C escape sequence
 the \R escape sequence
 an escape such as \d that matches a single character
 a character class
 a back reference (see next section)
 a parenthesized subpattern (unless it is an assertion)

The general repetition quantifier specifies a minimum and maximum number of
permitted matches, by giving the two numbers in curly brackets (braces), separated
by a comma. The numbers must be less than 65536, and the first must be less than or
equal to the second. For example:

 z{2,4}

matches "zz", "zzz", or "zzzz". A closing brace on its own is not a special character. If
the second number is omitted, but the comma is present, there is no upper limit; if
the second number and the comma are both omitted, the quantifier specifies an
exact number of required matches. Thus

 [aeiou]{3,}
matches at least 3 successive vowels, but may match many more, while

 \d{8}

matches exactly 8 digits. An opening curly bracket that appears in a position where
a quantifier is not allowed, or one that does not match the syntax of a quantifier, is
taken as a literal character. For example, {,6} is not a quantifier, but a literal string of
four characters.

The quantifier {0} is permitted, causing the expression to behave as if the previous item and
the quantifier were not present.

For convenience, the three most common quantifiers have single-character abbreviations:

 * is equivalent to {0,}
 + is equivalent to {1,}
 ? is equivalent to {0,1}

It is possible to construct infinite loops by following a subpattern that can match no
characters with a quantifier that has no upper limit, for example:

 (a?)*

Earlier versions of Perl and PCRE used to give an error at compile time for such
patterns. However, because there are cases where this can be useful, such patterns
are now accepted, but if any repetition of the subpattern does in fact match no
characters, the loop is forcibly broken.

By default, the quantifiers are "greedy", that is, they match as much as possible (up to the
maximum number of permitted times), without causing the rest of the pattern to fail. The
classic example of where this gives problems is in trying to match comments in C programs.

 15

These appear between /* and */ and within the comment, individual * and / characters may
appear. An attempt to match C comments by applying the pattern

 /*.**/

to the string

 /* first comment */ not comment /* second comment */

fails, because it matches the entire string owing to the greediness of the .* item.

However, if a quantifier is followed by a question mark, it ceases to be greedy, and instead
matches the minimum number of times possible, so the pattern

 /*.*?*/

does the right thing with the C comments. The meaning of the various quantifiers is
not otherwise changed, just the preferred number of matches. Do not confuse this
use of question mark with its use as a quantifier in its own right. Because it has two
uses, it can sometimes appear doubled, as in

 \d??\d

which matches one digit by preference, but can match two if that is the only way
the rest of the pattern matches.

If the PCRE_UNGREEDY option is set (an option that is not available in Perl), the
quantifiers are not greedy by default, but individual ones can be made greedy by following
them with a question mark. In other words, it inverts the default behaviour.

When a parenthesized subpattern is quantified with a minimum repeat count that is greater
than 1 or with a limited maximum, more memory is required for the compiled pattern, in
proportion to the size of the minimum or maximum.

If a pattern starts with .* or .{0,} and the PCRE_DOTALL option (equivalent to Perl's /s) is
set, thus allowing the dot to match newlines, the pattern is implicitly anchored, because
whatever follows will be tried against every character position in the subject string, so there is
no point in retrying the overall match at any position after the first. PCRE normally treats
such a pattern as though it were preceded by \A.

In cases where it is known that the subject string contains no newlines, it is worth setting
PCRE_DOTALL in order to obtain this optimization, or alternatively using ^ to indicate
anchoring explicitly.

However, there is one situation where the optimization cannot be used. When .* is inside
capturing parentheses that are the subject of a backreference elsewhere in the pattern, a match
at the start may fail where a later one succeeds. Consider, for example:

 (.*)abc\1

If the subject is "xyz123abc123" the match point is the fourth character. For this
reason, such a pattern is not implicitly anchored.

 16

When a capturing subpattern is repeated, the value captured is the substring that matched the
final iteration. For example, after

 (tweedle[dume]{3}\s*)+

has matched "tweedledum tweedledee" the value of the captured substring is
"tweedledee". However, if there are nested capturing subpatterns, the
corresponding captured values may have been set in previous iterations. For
example, after

 /(a|(b))+/

matches "aba" the value of the second captured substring is "b".

ATOMIC GROUPING AND POSSESSIVE QUANTIFIERS

With both maximizing ("greedy") and minimizing ("ungreedy" or "lazy") repetition, failure of
what follows normally causes the repeated item to be re-evaluated to see if a different number
of repeats allows the rest of the pattern to match. Sometimes it is useful to prevent this, either
to change the nature of the match, or to cause it fail earlier than it otherwise might, when the
author of the pattern knows there is no point in carrying on.

Consider, for example, the pattern \d+foo when applied to the subject line

 123456bar
After matching all 6 digits and then failing to match "foo", the normal action of the
matcher is to try again with only 5 digits matching the \d+ item, and then with 4,
and so on, before ultimately failing. "Atomic grouping" (a term taken from Jeffrey
Friedl's book) provides the means for specifying that once a subpattern has
matched, it is not to be re-evaluated in this way.

If we use atomic grouping for the previous example, the matcher gives up immediately on
failing to match "foo" the first time. The notation is a kind of special parenthesis, starting
with (?> as in this example:

 (?>\d+)foo

This kind of parenthesis "locks up" the part of the pattern it contains once it has
matched, and a failure further into the pattern is prevented from backtracking into
it. Backtracking past it to previous items, however, works as normal.

An alternative description is that a subpattern of this type matches the string of characters that
an identical standalone pattern would match, if anchored at the current point in the subject
string.

Atomic grouping subpatterns are not capturing subpatterns. Simple cases such as the above
example can be thought of as a maximizing repeat that must swallow everything it can. So,
while both \d+ and \d+? are prepared to adjust the number of digits they match in order to
make the rest of the pattern match, (?>\d+) can only match an entire sequence of digits.

Atomic groups in general can of course contain arbitrarily complicated subpatterns, and can
be nested. However, when the subpattern for an atomic group is just a single repeated item, as

 17

in the example above, a simpler notation, called a "possessive quantifier" can be used. This
consists of an additional + character following a quantifier. Using this notation, the previous
example can be rewritten as

 \d++foo

Possessive quantifiers are always greedy. They are a convenient notation for the
simpler forms of atomic group. However, there is no difference in the meaning of a
possessive quantifier and the equivalent atomic group, though there may be a
performance difference; possessive quantifiers should be slightly faster.

The possessive quantifier syntax is an extension to the Perl 5.8 syntax. Jeffrey Friedl
originated the idea (and the name) in the first edition of his book. Mike McCloskey liked it,
so implemented it when he built Sun's Java package, and PCRE copied it from there. It
ultimately found its way into Perl at release 5.10.

PCRE has an optimization that automatically "possessifies" certain simple pattern constructs.
For example, the sequence A+B is treated as A++B because there is no point in backtracking
into a sequence of A's when B must follow.

When a pattern contains an unlimited repeat inside a subpattern that can itself be repeated an
unlimited number of times, the use of an atomic group is the only way to avoid some failing
matches taking a very long time indeed. The pattern

 (\D+|<\d+>)*[!?]

matches an unlimited number of substrings that either consist of non-digits, or digits
enclosed in <>, followed by either ! or ?. When it matches, it runs quickly. However, if
it is applied to

 aa

it takes a long time before reporting failure. This is because the string can be divided
between the internal \D+ repeat and the external * repeat in a large number of
ways, and all have to be tried. (The example uses [!?] rather than a single character
at the end, because both PCRE and Perl have an optimization that allows for fast
failure when a single character is used. They remember the last single character that
is required for a match, and fail early if it is not present in the string.) If the pattern is
changed so that it uses an atomic group, like this:

 ((?>\D+)|<\d+>)*[!?]

sequences of non-digits cannot be broken, and failure happens quickly.

BACK REFERENCES

Outside a character class, a backslash followed by a digit greater than 0 (and possibly further
digits) is a back reference to a capturing subpattern earlier (that is, to its left) in the pattern,
provided there have been that many previous capturing left parentheses.

 18

However, if the decimal number following the backslash is less than 10, it is always taken as
a back reference, and causes an error only if there are not that many capturing left
parentheses in the entire pattern. In other words, the parentheses that are referenced need not
be to the left of the reference for numbers less than 10. A "forward back reference" of this
type can make sense when a repetition is involved and the subpattern to the right has
participated in an earlier iteration.

It is not possible to have a numerical "forward back reference" to a subpattern whose number
is 10 or more using this syntax because a sequence such as \50 is interpreted as a character
defined in octal. See the subsection entitled "Non-printing characters" above for further
details of the handling of digits following a backslash. There is no such problem when named
parentheses are used. A back reference to any subpattern is possible using named parentheses
(see below).

Another way of avoiding the ambiguity inherent in the use of digits following a backslash is
to use the \g escape sequence, which is a feature introduced in Perl 5.10. This escape must be
followed by a positive or a negative number, optionally enclosed in braces. These examples
are all identical:

 (ring), \1
 (ring), \g1
 (ring), \g{1}

A positive number specifies an absolute reference without the ambiguity that is
present in the older syntax. It is also useful when literal digits follow the reference. A
negative number is a relative reference. Consider this example:

 (abc(def)ghi)\g{-1}
The sequence \g{-1} is a reference to the most recently started capturing
subpattern before \g, that is, is it equivalent to \2. Similarly, \g{-2} would be
equivalent to \1. The use of relative references can be helpful in long patterns, and
also in patterns that are created by joining together fragments that contain
references within themselves.

A back reference matches whatever actually matched the capturing subpattern in the current
subject string, rather than anything matching the subpattern itself (see "Subpatterns as
subroutines" below for a way of doing that). So the pattern

 (sens|respons)e and \1ibility

matches "sense and sensibility" and "response and responsibility", but not "sense and
responsibility". If caseful matching is in force at the time of the back reference, the
case of letters is relevant. For example,

 ((?i)rah)\s+\1

matches "rah rah" and "RAH RAH", but not "RAH rah", even though the original
capturing subpattern is matched caselessly.

Back references to named subpatterns use the Perl syntax \k<name> or \k'name' or the Python
syntax (?P=name). We could rewrite the above example in either of the following ways:

 19

 (?<p1>(?i)rah)\s+\k<p1>
 (?P<p1>(?i)rah)\s+(?P=p1)

A subpattern that is referenced by name may appear in the pattern before or after
the reference.

There may be more than one back reference to the same subpattern. If a subpattern has not
actually been used in a particular match, any back references to it always fail. For example,
the pattern

 (a|(bc))\2

always fails if it starts to match "a" rather than "bc". Because there may be many
capturing parentheses in a pattern, all digits following the backslash are taken as
part of a potential back reference number. If the pattern continues with a digit
character, some delimiter must be used to terminate the back reference. If the
PCRE_EXTENDED option is set, this can be whitespace. Otherwise an empty
comment (see "Comments" below) can be used.

A back reference that occurs inside the parentheses to which it refers fails when the
subpattern is first used, so, for example, (a\1) never matches. However, such references can
be useful inside repeated subpatterns. For example, the pattern

 (a|b\1)+

matches any number of "a"s and also "aba", "ababbaa" etc. At each iteration of the
subpattern, the back reference matches the character string corresponding to the
previous iteration. In order for this to work, the pattern must be such that the first
iteration does not need to match the back reference. This can be done using
alternation, as in the example above, or by a quantifier with a minimum of zero.

ASSERTIONS

An assertion is a test on the characters following or preceding the current matching point that
does not actually consume any characters. The simple assertions coded as \b, \B, \A, \G, \Z,
\z, ^ and $ are described above.

More complicated assertions are coded as subpatterns. There are two kinds: those that look
ahead of the current position in the subject string, and those that look behind it. An assertion
subpattern is matched in the normal way, except that it does not cause the current matching
position to be changed.

Assertion subpatterns are not capturing subpatterns, and may not be repeated, because it
makes no sense to assert the same thing several times. If any kind of assertion contains
capturing subpatterns within it, these are counted for the purposes of numbering the capturing
subpatterns in the whole pattern. However, substring capturing is carried out only for positive
assertions, because it does not make sense for negative assertions.

 20

Lookahead assertions

Lookahead assertions start with (?= for positive assertions and (?! for negative assertions. For
example,

 \w+(?=;)

matches a word followed by a semicolon, but does not include the semicolon in the
match, and

 foo(?!bar)

matches any occurrence of "foo" that is not followed by "bar". Note that the
apparently similar pattern

 (?!foo)bar

does not find an occurrence of "bar" that is preceded by something other than
"foo"; it finds any occurrence of "bar" whatsoever, because the assertion (?!foo) is
always true when the next three characters are "bar". A lookbehind assertion is
needed to achieve the other effect.

If you want to force a matching failure at some point in a pattern, the most convenient way to
do it is with (?!) because an empty string always matches, so an assertion that requires there
not to be an empty string must always fail.

Lookbehind assertions

Lookbehind assertions start with (?<= for positive assertions and (?<! for negative assertions.
For example,

 (?<!foo)bar

does find an occurrence of "bar" that is not preceded by "foo". The contents of a
lookbehind assertion are restricted such that all the strings it matches must have a
fixed length. However, if there are several top-level alternatives, they do not all have
to have the same fixed length. Thus

 (?<=bullock|donkey)

is permitted, but

 (?<!dogs?|cats?)

causes an error at compile time. Branches that match different length strings are
permitted only at the top level of a lookbehind assertion. This is an extension
compared with Perl (at least for 5.8), which requires all branches to match the same
length of string. An assertion such as

 (?<=ab(c|de))

 21

is not permitted, because its single top-level branch can match two different
lengths, but it is acceptable if rewritten to use two top-level branches:

 (?<=abc|abde)

The implementation of lookbehind assertions is, for each alternative, to temporarily
move the current position back by the fixed length and then try to match. If there
are insufficient characters before the current position, the assertion fails.

PCRE does not allow the \C escape (which matches a single byte in UTF-8 mode) to appear
in lookbehind assertions, because it makes it impossible to calculate the length of the
lookbehind. The \X and \R escapes, which can match different numbers of bytes, are also not
permitted.

Possessive quantifiers can be used in conjunction with lookbehind assertions to specify
efficient matching at the end of the subject string. Consider a simple pattern such as

 abcd$

when applied to a long string that does not match. Because matching proceeds
from left to right, PCRE will look for each "a" in the subject and then see if what
follows matches the rest of the pattern. If the pattern is specified as

 ^.*abcd$

the initial .* matches the entire string at first, but when this fails (because there is no
following "a"), it backtracks to match all but the last character, then all but the last
two characters, and so on. Once again the search for "a" covers the entire string,
from right to left, so we are no better off. However, if the pattern is written as

 ^.*+(?<=abcd)

there can be no backtracking for the .*+ item; it can match only the entire string.
The subsequent lookbehind assertion does a single test on the last four characters. If
it fails, the match fails immediately. For long strings, this approach makes a
significant difference to the processing time.

Using multiple assertions

Several assertions (of any sort) may occur in succession. For example,

 (?<=\d{3})(?<!999)foo
matches "foo" preceded by three digits that are not "999". Notice that each of the
assertions is applied independently at the same point in the subject string. First there
is a check that the previous three characters are all digits, and then there is a check
that the same three characters are not "999". This pattern does not match "foo"
preceded by six characters, the first of which are digits and the last three of which
are not "999". For example, it doesn't match "123abcfoo". A pattern to do that is

 (?<=\d{3}...)(?<!999)foo

 22

This time the first assertion looks at the preceding six characters, checking that the
first three are digits, and then the second assertion checks that the preceding three
characters are not "999".

Assertions can be nested in any combination. For example,

 (?<=(?<!foo)bar)baz

matches an occurrence of "baz" that is preceded by "bar" which in turn is not
preceded by "foo", while

 (?<=\d{3}(?!999)...)foo

is another pattern that matches "foo" preceded by three digits and any three
characters that are not "999".

CONDITIONAL SUBPATTERNS

It is possible to cause the matching process to obey a subpattern conditionally or to choose
between two alternative subpatterns, depending on the result of an assertion, or whether a
previous capturing subpattern matched or not. The two possible forms of conditional
subpattern are

 (?(condition)yes-pattern)
 (?(condition)yes-pattern|no-pattern)

If the condition is satisfied, the yes-pattern is used; otherwise the no-pattern (if
present) is used. If there are more than two alternatives in the subpattern, a compile-
time error occurs.

There are four kinds of condition: references to subpatterns, references to recursion, a
pseudo-condition called DEFINE, and assertions.

Checking for a used subpattern by number

If the text between the parentheses consists of a sequence of digits, the condition is true if the
capturing subpattern of that number has previously matched.

Consider the following pattern, which contains non-significant white space to make it more
readable (assume the PCRE_EXTENDED option) and to divide it into three parts for ease of
discussion:

 (\()? [^()]+ (?(1) \))
The first part matches an optional opening parenthesis, and if that character is
present, sets it as the first captured substring. The second part matches one or more
characters that are not parentheses. The third part is a conditional subpattern that
tests whether the first set of parentheses matched or not. If they did, that is, if subject
started with an opening parenthesis, the condition is true, and so the yes-pattern is
executed and a closing parenthesis is required. Otherwise, since no-pattern is not

 23

present, the subpattern matches nothing. In other words, this pattern matches a
sequence of non-parentheses, optionally enclosed in parentheses.

Checking for a used subpattern by name

Perl uses the syntax (?(<name>)...) or (?('name')...) to test for a used subpattern by name. For
compatibility with earlier versions of PCRE, which had this facility before Perl, the syntax
(?(name)...) is also recognized. However, there is a possible ambiguity with this syntax,
because subpattern names may consist entirely of digits. PCRE looks first for a named
subpattern; if it cannot find one and the name consists entirely of digits, PCRE looks for a
subpattern of that number, which must be greater than zero. Using subpattern names that
consist entirely of digits is not recommended.

Rewriting the above example to use a named subpattern gives this:

 (?<OPEN> \()? [^()]+ (?(<OPEN>) \))

Checking for pattern recursion

If the condition is the string (R), and there is no subpattern with the name R, the condition is
true if a recursive call to the whole pattern or any subpattern has been made. If digits or a
name preceded by ampersand follow the letter R, for example:

 (?(R3)...) or (?(R&name)...)

the condition is true if the most recent recursion is into the subpattern whose number
or name is given. This condition does not check the entire recursion stack.

At "top level", all these recursion test conditions are false. Recursive patterns are described
below.

Defining subpatterns for use by reference only

If the condition is the string (DEFINE), and there is no subpattern with the name DEFINE,
the condition is always false. In this case, there may be only one alternative in the subpattern.
It is always skipped if control reaches this point in the pattern; the idea of DEFINE is that it
can be used to define "subroutines" that can be referenced from elsewhere. (The use of
"subroutines" is described below.) For example, a pattern to match an IPv4 address could be
written like this (ignore whitespace and line breaks):

 (?(DEFINE) (?<byte> 2[0-4]\d | 25[0-5] | 1\d\d | [1-9]?\d))
 \b (?&byte) (\.(?&byte)){3} \b
The first part of the pattern is a DEFINE group inside which a another group named
"byte" is defined. This matches an individual component of an IPv4 address (a
number less than 256). When matching takes place, this part of the pattern is
skipped because DEFINE acts like a false condition.

The rest of the pattern uses references to the named group to match the four dot-separated
components of an IPv4 address, insisting on a word boundary at each end.

 24

Assertion conditions

If the condition is not in any of the above formats, it must be an assertion. This may be a
positive or negative lookahead or lookbehind assertion. Consider this pattern, again
containing non-significant white space, and with the two alternatives on the second line:

 (?(?=[^a-z]*[a-z])
 \d{2}-[a-z]{3}-\d{2} | \d{2}-\d{2}-\d{2})

The condition is a positive lookahead assertion that matches an optional sequence
of non-letters followed by a letter. In other words, it tests for the presence of at least
one letter in the subject. If a letter is found, the subject is matched against the first
alternative; otherwise it is matched against the second. This pattern matches strings
in one of the two forms dd-aaa-dd or dd-dd-dd, where aaa are letters and dd are
digits.

COMMENTS

The sequence (?# marks the start of a comment that continues up to the next closing
parenthesis. Nested parentheses are not permitted. The characters that make up a comment
play no part in the pattern matching at all.

If the PCRE_EXTENDED option is set, an unescaped # character outside a character class
introduces a comment that continues to immediately after the next newline in the pattern.

RECURSIVE PATTERNS

Consider the problem of matching a string in parentheses, allowing for unlimited nested
parentheses. Without the use of recursion, the best that can be done is to use a pattern that
matches up to some fixed depth of nesting. It is not possible to handle an arbitrary nesting
depth.

For some time, Perl has provided a facility that allows regular expressions to recurse
(amongst other things). It does this by interpolating Perl code in the expression at run time,
and the code can refer to the expression itself. A Perl pattern using code interpolation to solve
the parentheses problem can be created like this:

 $re = qr{\((?: (?>[^()]+) | (?p{$re}))* \)}x;

The (?p{...}) item interpolates Perl code at run time, and in this case refers recursively
to the pattern in which it appears.

Obviously, PCRE cannot support the interpolation of Perl code. Instead, it supports special
syntax for recursion of the entire pattern, and also for individual subpattern recursion. After
its introduction in PCRE and Python, this kind of recursion was introduced into Perl at
release 5.10.

 25

A special item that consists of (? followed by a number greater than zero and a closing
parenthesis is a recursive call of the subpattern of the given number, provided that it occurs
inside that subpattern. (If not, it is a "subroutine" call, which is described in the next section.)
The special item (?R) or (?0) is a recursive call of the entire regular expression.

In PCRE (like Python, but unlike Perl), a recursive subpattern call is always treated as an
atomic group. That is, once it has matched some of the subject string, it is never re-entered,
even if it contains untried alternatives and there is a subsequent matching failure.

This PCRE pattern solves the nested parentheses problem (assume the PCRE_EXTENDED
option is set so that white space is ignored):

 \(((?>[^()]+) | (?R))* \)

First it matches an opening parenthesis. Then it matches any number of substrings
which can either be a sequence of non-parentheses, or a recursive match of the
pattern itself (that is, a correctly parenthesized substring). Finally there is a closing
parenthesis.

If this were part of a larger pattern, you would not want to recurse the entire pattern, so
instead you could use this:

 (\(((?>[^()]+) | (?1))* \))

We have put the pattern into parentheses, and caused the recursion to refer to
them instead of the whole pattern. In a larger pattern, keeping track of parenthesis
numbers can be tricky. It may be more convenient to use named parentheses
instead. The Perl syntax for this is (?&name); PCRE's earlier syntax (?P>name) is also
supported. We could rewrite the above example as follows:

 (?<pn> \(((?>[^()]+) | (?&pn))* \))

If there is more than one subpattern with the same name, the earliest one is used.
This particular example pattern contains nested unlimited repeats, and so the use of
atomic grouping for matching strings of non-parentheses is important when applying
the pattern to strings that do not match. For example, when this pattern is applied to

 (aaa()

it yields "no match" quickly. However, if atomic grouping is not used, the match runs
for a very long time indeed because there are so many different ways the + and *
repeats can carve up the subject, and all have to be tested before failure can be
reported.

At the end of a match, the values set for any capturing subpatterns are those from the
outermost level of the recursion at which the subpattern value is set. If the pattern above is
matched against

 (ab(cd)ef)
the value for the capturing parentheses is "ef", which is the last value taken on at the
top level. If additional parentheses are added, giving

 26

 \((((?>[^()]+) | (?R))*) \)
 ^ ^
 ^ ^

the string they capture is "ab(cd)ef", the contents of the top level parentheses. If
there are more than 15 capturing parentheses in a pattern, PCRE has to obtain extra
memory to store data during a recursion. If no memory can be obtained, the match
fails with the PCRE_ERROR_NOMEMORY error.

Do not confuse the (?R) item with the condition (R), which tests for recursion. Consider this
pattern, which matches text in angle brackets, allowing for arbitrary nesting. Only digits are
allowed in nested brackets (that is, when recursing), whereas any characters are permitted at
the outer level.

 < (?: (?(R) \d++ | [^<>]*+) | (?R)) * >

In this pattern, (?(R) is the start of a conditional subpattern, with two different
alternatives for the recursive and non-recursive cases. The (?R) item is the actual
recursive call.

SUBPATTERNS AS SUBROUTINES

If the syntax for a recursive subpattern reference (either by number or by name) is used
outside the parentheses to which it refers, it operates like a subroutine in a programming
language. The "called" subpattern may be defined before or after the reference. An earlier
example pointed out that the pattern

 (sens|respons)e and \1ibility

matches "sense and sensibility" and "response and responsibility", but not "sense and
responsibility". If instead the pattern

 (sens|respons)e and (?1)ibility

is used, it does match "sense and responsibility" as well as the other two strings.
Another example is given in the discussion of DEFINE above.

Like recursive subpatterns, a "subroutine" call is always treated as an atomic group. That is,
once it has matched some of the subject string, it is never re-entered, even if it contains
untried alternatives and there is a subsequent matching failure.

When a subpattern is used as a subroutine, processing options such as case-independence are
fixed when the subpattern is defined. They cannot be changed for different calls. For
example, consider this pattern:

 (abc)(?i:(?1))

It matches "abcabc". It does not match "abcABC" because the change of
processing option does not affect the called subpattern.

 27

AUTHOR

Philip Hazel
University Computing Service
Cambridge CB2 3QH, England.

REVISION

Last updated: 06 March 2007
Copyright © 1997-2007 University of Cambridge.

 28

Copyright and Licence Details

The following legal notice applies to the PCRE code used in APLX:

PCRE is a library of functions to support regular expressions whose syntax
and semantics are as close as possible to those of the Perl 5 language.

 Written by Philip Hazel
 Copyright (c) 1997-2007 University of Cambridge

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

 * Redistributions of source code must retain the above copyright notice,
 this list of conditions and the following disclaimer.

 * Redistributions in binary form must reproduce the above copyright
 notice, this list of conditions and the following disclaimer in the
 documentation and/or other materials provided with the distribution.

 * Neither the name of the University of Cambridge nor the names of its
 contributors may be used to endorse or promote products derived from
 this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

	Regular Expressions in APLX
	
	Copyright and Licence Details

