

APLX System Classes
and

User-Interface Programming

Version 5.0

APLX

APLX System Classes & User-Interface Programming 2

APLX System Classes & User-Interface Programming 3

Copyright © 1985-2009 MicroAPL Ltd. All rights reserved worldwide.

APLX, APL.68000 and MicroAPL are trademarks of MicroAPL Ltd. All other trademarks

acknowledged.

APLX is a proprietary product of MicroAPL Ltd, and its use is subject to the license agreement in

force. Unauthorized copying or use of APLX is illegal.

MicroAPL Ltd makes no warranties in respect of the suitability of APLX for any particular purpose,

and accepts no liability for any loss arising out of the use of APLX or arising from the information

contained in this manual.

MicroAPL welcomes your comments and suggestions.

Please visit our website: http://www.microapl.co.uk/apl

Version 5.0 July 2009

APLX System Classes & User-Interface Programming 5

Contents

Section 1. Introduction to APLX System Classes 15

Introduction to System Classes 17

System Classes by category 24

Positioning controls in windows 27

Events and Callbacks 30

Modal Dialogs 32

Section 2. List of APLX System Classes 35

APL (Child task) Object 37

Arc 38

Bevel 40

Browser 42

Button 45

Chart 47

Check 49

ChooseColor 51

ChooseDir 53

ChooseFont 54

Combo 56

Dialog 58

Document 59

Edit 60

Form 62

Frame 66

GetMail 68

Grid 74

Icon 84

HTTPClient 85

Image 90

ImageList 97

Label 102

Line 104

List 106

Menu 108

Movie 112

MsgBox 114

OLEContainer 116

OpenFile 120

Page 123

Picture 125

Printer 128

Progress 131

Radio 133

Rectangle 135

RichEdit 137

RoundRect 141

APLX System Classes & User-Interface Programming 6

SaveFile 143

Scroll 146

Selector 148

SendMail 149

Series 154

Socket 155

Spinner 160

Splitter 162

System 164

Timer 168

ToolButton 169

Trackbar 173

Tree 176

Section 3. System Classes: Properties 181

The 'action' property 183

The 'activecell' property 183

The 'align' property 184

The 'allowselection' property 184

The 'anchors' property 185

The 'angle' property 185

The 'aplkeyboard' property 186

The 'aquaadjust' property 186

The 'attachments' property 187

The 'autoactivate' property 187

The 'autodraw' property 188

The 'autoeditstart' property 188

The 'axiswidth' property 189

The 'background' property 189

The 'barwidth' property 189

The 'bcc' property 190

The 'bitmap' property 190

The 'bitmapsize' property 191

The 'body' property 191

The 'border' property 192

The 'borderstyle' property 193

The 'canundo' property 193

The 'caption' property 193

The 'cc' property 194

The 'children' property 195

The 'class' property 195

The 'classes' property 195

The 'closevalues' property 196

The 'col' property 196

The 'color' property 196

The 'coloraxis' property 198

The 'colorback' property 198

The 'colorgrid' property 199

The 'colorhead' property 199

The 'colorlegend' property 200

The 'colormarker' property 200

The 'colornote' property 201

APLX System Classes & User-Interface Programming 7

The 'colortext' property 201

The 'colortitle' property 202

The 'colour' property 202

The 'cols' property 202

The 'colsize' property 203

The 'contents' property 203

The 'conversionerrorvalue' property 204

The 'cookie' property 205

The 'copies' property 205

The 'count' property 205

The 'custom' property 206

The 'data' property 206

The 'date' property 207

The 'def' property 207

The 'default' property 207

The 'deleteonread' property 208

The 'directory' property 208

The 'docstate' property 209

The 'doublebuffered' property 209

The 'dragsource' property 210

The 'droptarget' property 210

The 'enabled' property 210

The 'eventmask' property 211

The 'events' property 211

The 'extent' property 211

The 'family' property 212

The 'file' property 213

The 'filled' property 215

The 'fillmarker' property 215

The 'fillpattern' property 215

The 'filter' property 216

The 'filterindex' property 216

The 'firstvisible' property 217

The 'font' property 217

The 'fontaxis' property 218

The 'fontlegend' property 219

The 'fontnote' property 219

The 'fonts' property 220

The 'fontstyle' property 220

The 'fonttitle' property 221

The 'format' property 221

The 'formats' property 222

The 'from' property 223

The 'gridlines' property 223

The 'gridwidth' property 224

The 'group' property 224

The 'handle' property 225

The 'hdc' property 225

The 'headcols' property 226

The 'header' property 226

The 'headrows' property 227

APLX System Classes & User-Interface Programming 8

The 'highlightbold' property 227

The 'highlightcut' property 227

The 'highlightdrop' property 228

The 'highlightselect' property 228

The 'highvalues' property 228

The 'host' property 229

The 'html' property 230

The 'icon' property 230

The 'id' property 231

The 'imagealloc' property 231

The 'imagecount' property 231

The 'imageindex' property 232

The 'imagelist' property 232

The 'imagelistuser' property 233

The 'imagenames' property 233

The 'imagesize' property 234

The 'increment' property 235

The 'indent' property 235

The 'interval' property 235

The 'labeledithwnd' property 236

The 'limit' property 236

The 'linecount' property 236

The 'lineheight' property 237

The 'linetype' property 237

The 'linewidth' property 238

The 'list' property 238

The 'lowvalues' property 239

The 'margin' property 239

The 'marker' property 240

The 'maskcolor' property 240

The 'maxsize' property 241

The 'menuimagelist' property 241

The 'messages' property 242

The 'methods' property 242

The 'minsize' property 243

The 'modified' property 243

The 'monochrome' property 243

The 'movieref' property 244

The 'name' property 244

The 'note' property 245

The 'offline' property 245

The 'oleclasses' property 246

The 'oledoctypes' property 247

The 'opened' property 248

The 'openvalues' property 249

The 'order' property 249

The 'orientation' property 250

The 'overlays' property 250

The 'page' property 250

The 'password' property 251

The 'path' property 251

APLX System Classes & User-Interface Programming 9

The 'pen' property 251

The 'pensize' property 252

The 'picture' property 252

The 'pitch' property 253

The 'placelegend' property 254

The 'placenote' property 254

The 'placetitle' property 254

The 'playing' property 255

The 'pointer' property 255

The 'port' property 256

The 'position' property 256

The 'printername' property 257

The 'printers' property 257

The 'progid' property 258

The 'properties' property 258

The 'protocol' property 259

The 'proxy' property 259

The 'quality' property 259

The 'range' property 260

The 'referrer' property 260

The 'replyto' property 261

The 'rounding' property 261

The 'row' property 261

The 'rows' property 262

The 'rowsize' property 262

The 'rtf' property 263

The 'scale' property 263

The 'searchstring' property 264

The 'selalign' property 265

The 'selbullet' property 265

The 'selcolor' property 265

The 'selection' property 266

The 'self' property 266

The 'selfont' property 267

The 'selindents' property 267

The 'selrtf' property 267

The 'selstyle' property 268

The 'seltabs' property 268

The 'seltext' property 269

The 'separator' property 269

The 'serverreply' property 269

The 'shortcut' property 270

The 'size' property 270

The 'sizemode' property 271

The 'sliderlen' property 272

The 'sliderwhere' property 272

The 'sourceformats' property 272

The 'state' property 273

The 'status' property 273

The 'style' property 274

The 'subject' property 274

APLX System Classes & User-Interface Programming 10

The 'subtitle' property 275

The 'svg' property 275

The 'tabgroup' property 275

The 'tabparent' property 276

The 'tabrows' property 276

The 'tabstop' property 276

The 'targetformats' property 277

The 'taskid' property 277

The 'text' property 278

The 'textalign' property 279

The 'tickinterval' property 279

The 'tickpos' property 280

The 'ticks' property 280

The 'tie' property 280

The 'timeout' property 281

The 'title' property 281

The 'to' property 281

The 'tooltip' property 282

The 'tooltipenabled' property 282

The 'type' property 282

The 'unicode' property 283

The 'units' property 283

The 'update' property 284

The 'url' property 285

The 'usealtscale' property 285

The 'user' property 285

The 'valid' property 286

The 'value' property 286

The 'values' property 287

The 'verbs' property 288

The 'version' property 288

The 'view' property 289

The 'visible' property 289

The 'volume' property 290

The 'where' property 290

The 'winptr' property 291

The 'workarea' property 291

The 'wrap' property 292

The 'wssize' property 292

The 'xaltintercept' property 292

The 'xaxislabel' property 293

The 'xclasses' property 293

The 'xintercept' property 294

The 'xlabels' property 295

The 'xlogscale' property 295

The 'xmajorticks' property 296

The 'xminorticks' property 296

The 'xscale' property 296

The 'xvalues' property 297

The 'yaltaxislabel' property 297

The 'yaltlabels' property 297

APLX System Classes & User-Interface Programming 11

The 'yaltlogscale' property 298

The 'yaltmajorticks' property 298

The 'yaltminorticks' property 298

The 'yaltscale' property 299

The 'yaxislabel' property 299

The 'yintercept' property 299

The 'ylabels' property 300

The 'ylogscale' property 300

The 'ymajorticks' property 301

The 'yminorticks' property 301

The 'yscale' property 301

The 'yvalues' property 302

∆.. Delta property 302

Section 4. System Classes: Methods 305

The 'Abort' method 307

The 'Accept' method 307

The 'Addimages' method 308

The 'Addrows' method 309

The 'Arrange' method 309

The 'Back' method 309

The 'Beginlabeledit' method 309

The 'Cancellabeledit' method 310

The 'Chartalttopoint' method 310

The 'Chartoline' method 311

The 'Charttopoint' method 311

The 'Clear' method 312

The 'Click' method 312

The 'Clienttoscreen' method 313

The 'Close' method 313

The 'Closedocument' method 314

The 'Copy' method 315

The 'Create' method 315

The 'Cut' method 315

The 'Delete' method 316

The 'Deletecols' method 316

The 'Deletemessage' method 317

The 'Deletenodes' method 317

The 'Deleterows' method 318

The 'Doverb' method 318

The 'Draw' method 319

The 'Editstart' method 320

The 'Eject' method 320

The 'Ensurevisible' method 320

The 'Execute' method 321

The 'Expand' method 322

The 'Find' method 322

The 'Findnode' method 322

The 'Focus' method 323

The 'Forward' method 323

The 'Get' method 324

The 'Getinfo' method 325

APLX System Classes & User-Interface Programming 12

The 'Getmessage' method 327

The 'Getsummary' method 327

The 'Head' method 328

The 'Hide' method 329

The 'Hittest' method 329

The 'Insertcols' method 330

The 'Insertnodes' method 330

The 'Insertrows' method 331

The 'Interrupt' method 331

The 'Job' method 331

The 'Linelength' method 332

The 'Linetochar' method 332

The 'Listen' method 332

The 'Load' method 333

The 'New' method 333

The 'Open' method 335

The 'Overlay' method 336

The 'Paint' method 340

The 'Paste' method 340

The 'Play' method 341

The 'Pointtocell' method 341

The 'Pointtochart' method 342

The 'Pointtochartalt' method 342

The 'Popup' method 343

The 'Post' method 343

The 'Poster' method 344

The 'Preview' method 344

The 'Print' method 345

The 'Receive' method 345

The 'Refresh' method 346

The 'Reset' method 346

The 'Resize' method 347

The 'Rewind' method 347

The 'Save' method 347

The 'Screentoclient' method 348

The 'Send' method 349

The 'Sendmessage' method 349

The 'Set' method 350

The 'Setimages' method 350

The 'Setinfo' method 350

The 'Setopacity' method 351

The 'Setpos' method 351

The 'Setup' method 352

The 'Show' method 352

The 'Showaboutbox' method 353

The 'Shownode' method 353

The 'Showproperties' method 354

The 'Signal' method 354

The 'Sortchildren' method 355

The 'Stepit' method 355

The 'Stop' method 356

APLX System Classes & User-Interface Programming 13

The 'Transform' method 356

The 'Trigger' method 361

The 'Undo' method 361

The 'Valueof' method 362

The 'Wait' method 362

Section 5. System Classes: Callbacks 363

The 'onAboutMenu' callback 365

The 'onActivate' callback 365

The 'onChange' callback 365

The 'onClick' callback 366

The 'onClose' callback 366

The 'onColMoved' callback 367

The 'onConnectRequest' callback 367

The 'onDblClick' callback 367

The 'onDeactivate' callback 368

The 'onDestroy' callback 368

The 'onDisconnect' callback 368

The 'onDragDrop' callback 368

The 'onDragEnd' callback 369

The 'onDragEnter' callback 369

The 'onDragLeave' callback 370

The 'onDragOver' callback 370

The 'onDragStart' callback 371

The 'onDraw' callback 371

The 'onDropDown' callback 371

The 'onError' callback 371

The 'onExecute' callback 372

The 'onFocus' callback 372

The 'onHide' callback 373

The 'onKeyDown' callback 373

The 'onKeyPress' callback 373

The 'onKeyUp' callback 374

The 'onLimit' callback 374

The 'onMenu' callback 374

The 'onMouseDown' callback 375

The 'onMouseMove' callback 375

The 'onMouseUp' callback 376

The 'onMove' callback 376

The 'onMovieEnd' callback 376

The 'onOpen' callback 376

The 'onPaint' callback 377

The 'onPopup' callback 377

The 'onPreferencesMenu' callback 377

The 'onQuitMenu' callback 378

The 'onReady' callback 378

The 'onReceive' callback 379

The 'onResize' callback 379

The 'onRowMoved' callback 380

The 'onScroll' callback 380

The 'onSelChange' callback 380

The 'onSelection' callback 381

APLX System Classes & User-Interface Programming 14

The 'onSend' callback 381

The 'onShow' callback 381

The 'onSignal' callback 381

The 'onStop' callback 382

The 'onTimer' callback 382

The 'onUnfocus' callback 382

The 'onZoom' callback 382

Section 6. Using the Draw Method 385

Using the Draw method 387

Draw method: State commands 389

Draw method: Rendering commands 394

Draw method: Grouping and Control commands 399

Section 7. Using the Chart and Series Objects 401

Chart and Series Objects: Introduction 403

Using the Chart Object 405

Axes, Coordinates and Scales 409

Chart Object Properties 413

Chart Object Methods 423

Series Object Properties 425

Customizing the Chart using the Draw method 430

Section 8. OLE, OCX and ActiveX Programming 432

OCX/ActiveX Controls and OLE Automation 433

Using OCX/ActiveX Controls 435

Using OLE linked/embedded documents 439

Using OLE (COM) Server Applications 444

Array Properties and Constants 446

Section 9. APLX Multi-tasking 447

Introduction to APLX multi-tasking 449

Creating APL child tasks under program control 452

Using the child task 454

Communication between child and parent tasks 457

Signal events 458

Using 'delta' properties to share data between tasks 460

Sharing variables between tasks 461

APLX System Classes & User-Interface Programming 15

Section 1. Introduction to APLX System Classes

APLX System Classes & User-Interface Programming 17

Introduction to System Classes

Overview

Built in to all versions of APLX (excluding console-only versions) is a rich set of System Classes,

which implement windows, dialogs, graphics, movies, and other user-interface components which you

can use from your APL applications. They also include more advanced components, such as a chart-

drawing class for business and scientific graphs, an image-manipulation class, and some non-visual

classes for networking, e-mail and web access. As far as possible, these classes work cross-platform,

so that, with a few exceptions, the same APL user-interface code will run under APLX for Windows,
MacOS or Linux.

The syntax for using these System Classes is similar to the syntax for user-defined classes (which you

write yourself in APL), or external classes (for example, classes written in C# or Java). There is also

an alternative syntax (based on the ⎕WI system function) which is retained for compatibility with other

APL interpreters and with earlier versions of APLX, and which is sometimes useful in itself.

The workspaces 10 HELPSYSCLASS and 10 SAMPLESSYSCLASS contain examples of using System

Classes. If you take a look at these examples, you will see that the basic steps which you typically
need to carry out are as follows:

1. Create a top-level object (for example, a Dialog, Form, Window, or Document), using ⎕NEW.

2. Create controls such as edit boxes, buttons, or rectangles on the top-level object, using the New or

Create method which is implemented for all System Classes.

3. Provide APL functions known as callbacks which get run when certain events occur (such as when

a Button is pressed).

4. Call the ⎕WE system function which waits for events, and where appropriate executes your callback
functions.

Each object you create is an instance of a pre-defined class of objects which are built into APLX (or

accessible as an external OCX class). You tailor the appearance and behavior of an object by setting

properties for it, and you find out about an object's current state by reading its properties. Properties

include things like the size and position of an object, its title, its color and font, the current text

displayed in it, and so on. In most cases, when you set a property, the object immediately reacts

accordingly (for example, if you change its size property, it is immediately re-sized). Some properties

(such as the data property, an arbitrary APL array associated with the object) are valid for all objects.

Many properties (such as size) are valid for several classes of object, and a few (such as the text

property) for certain specific classes only. Most properties can be both set and read by your program,

but some are read-only.

You can also call built-in functions associated with objects from APL (these are known as methods).
These carry out operations such as hiding or closing the object.

APLX System Classes & User-Interface Programming 18

Creating instances of System Classes using ⎕NEW

The first stage in using System Classes is to create a top-level object (i.e. an instance of a class such as

Window, GetMail or Image) using ⎕NEW. The right argument is the name of the class, and the left

argument should be '⎕' to indicate that this is a System Class (rather than a user-defined or external

class).

For example, you might create a window with the standard Dialog border and appearance:

 dlg←'⎕' ⎕NEW 'Dialog'

This has created a new object, and returned a reference to that object which has been placed in the

variable dlg.

You can then set and read properties, or call methods, of this new object using dot notation, where you

refer to the property or method using a compound name in the form ObjectRef.PropertyName or

ObjectRef.MethodName. For example, to set the caption property of the window (which sets the title
of the window):

 dlg.caption←'My first window'

Reading the value of a property is similar:

 dlg.caption
My first window

To call a method which takes no arguments, you simply refer to the object and method:

 dlg.Show

To call a method which takes arguments:

 dlg.Clienttoscreen 8 12
158 180

Not all System Classes can be created as top-level objects. For example, a Button can be created only

as the child of a Window or similar container, as described below. The classes which can be top-level
objects are either windows, pre-defined dialogs, or invisible classes. The full list is:

APL ChooseColor ChooseDir ChooseFont Dialog Document Form GetMail HTTPClient Image

ImageList Menu MsgBox OpenFile Printer SaveFile SendMail Socket System Timer

Window OLE (COM) Server

Creating Child controls

Once you have a top-level object (such a window or form), you can typically create child controls

(such as buttons, list boxes, and so on) on it. Because these controls cannot exist independently of the

parent object, you cannot use ⎕NEW to create them. Instead, you use the New or Create methods. These

take a right argument which is the name of the System Class which you want to create. The name of
the control is specified using dot notation.

APLX System Classes & User-Interface Programming 19

for example, to create an object called Lst1, of class List, on the window which we have just defined,
you would enter:

 dlg.Lst1.New 'List'

When you create a control in this way, the system chooses defaults for properties such as size and

position. You can change these using dot notation in the normal way. For example, to set the size

property of the list you just created to be 5 standard rows high and 30 columns wide (the object will
immediately be re-sized):

 dlg.Lst1.size←5 30

Put a set of choices (contained in the variable NAMES) into the list box by setting its list property:

 dlg.Lst1.list←NAMES

Read back the selection which the user has made by reading the value property of the list box:

 dlg.Lst1.value
2

Rules for Object Names

As can be seen in the above examples, the dot-notation syntax is hierarchical in that the first part (up

to the first dot) represents the reference to the top-level object, created using ⎕NEW. The next part

represents the child object name (created using the New or Create method of the System Class sub-

system), if there is one. Potentially there may be further levels of hierarchy separated by further dots -

for example, a menu item may be a child of a sub-menu which is a child of a menu-bar item. The

maximum length of each part of an object's name is 32 characters. Apart from the special significance
of dots, names follow the normal APL symbol-naming rules. Object names are case-sensitive.

Finally, the last part of the dot-notation sequence is the property or method name. The valid property,

method, and class names are pre-assigned and are documented separately. APLX ignores case when

searching for these pre-assigned names, but it is recommended that you enter them as shown for future
compatibility with other systems.

Responding to events

The processing of events which occur in your program (such as a button being pressed) is handled by

the system function ⎕WE in conjunction with callback properties which you set. These callback

properties tell the system 'If this event occurs for this object, then you should execute the following

APL expression'. For example, if you want to run a function called HITME when a button is pressed,

you would set the onClick handler for that button as follows:

 MyWin.MyButton.onClick←'HITME'

The actual execution of the HITME function takes place during an event loop, invoked by the function
⎕WE. This is described in detail separately.

APLX System Classes & User-Interface Programming 20

Drawing pictures, shapes and text

As well as placing controls and text or graphic objects on your windows, you can also use the Draw

method to display text, geometric shapes such as polygons and ellipses, and pictures or bitmaps.

Implementing Drag-and-Drop

If you want to use drag-and-drop for specific functionality in your application, you can do this very

simply. In outline, all you need to do is the following. First define the sourceformats property for the

control which can be dragged. Then define the targetformats property for the control or controls on

to which it can be dragged. If the two formats match, the user will now be able to drag the source

control on to the target control. Your program will be notified when a drag-drop occurs using the

onDragDrop callback for the target, and the onDragEnd callback for the source control.

Note: Under Windows, APLX Edit and RichEdit controls have built-in drag-and-drop capability for
text editing, and you do not need to do anything for users of your application to take advantage of this.

Deleting objects

In order to free up memory used by an object, you must make sure it is deleted when you are finished

with it. As with user-defined APL classes, a top-level object will be deleted when the last reference to

it is deleted from the workspace. Thus, if the variable dlg in the above example was erased (either

explicitly, or because the name was localized in a function header, and the function completed), then

the window would be closed (if it were still open), and it would be deleted. All child objects on the

window are automatically deleted when the parent is deleted.

You can also delete an object explicitly using the Delete method (note that this is not the same as

closing the object). This closes the object (and any children it has), and frees up any memory which it

was using. However, this does not erase any references to the object in your workspace, if it is a top-
level object:

 dlg.Delete
 dlg
[⎕:UNKNOWN OBJECT]

As a convenience, windows which have no onClose callback defined are automatically deleted if the

user closes the window.

Alternative syntax using ⎕WI

As an alternative to using ⎕NEW and dot-notation, you can interface to System Classes by means of the

system function ⎕WI. This syntax usually less readable than dot-notation, but is retained for

compatibility with earlier versions of APLX and with some other APL interpreters. In a few cases, it is
preferable to dot-notation.

When you use ⎕WI to create objects, there is no object reference held in the workspace. Instead, you

provide a name for the object, which is held in the System Class sub-system, and you use a character
vector to identify the object.

APLX System Classes & User-Interface Programming 21

The left argument of ⎕WI is the name of the object, and the right argument names the property or

method you wish to access, and if appropriate also provides the value you wish to assign to the

property or pass to the method. When you create an object, you can optionally set properties at

creation time, otherwise the system chooses defaults. You can use the New or Create methods to
create a new object. The following examples show how this works:

Create a top-level object called Example, in this case a window with the standard Dialog border and
appearance:

 'Example' ⎕WI 'New' 'Dialog'

Create an object called Lst1, of class List Box, on the window Example (the system chooses defaults

for things like size and position):

 'Example.Lst1' ⎕WI 'New' 'List'

Set the size property of the list you just created to be 5 standard rows high and 30 columns wide (the

object will immediately be re-sized):

 'Example.Lst1' ⎕WI 'size' 5 30

Create an object called Lst1, as above, but this time set the size property at the time you create it:

 'Example.Lst1' ⎕WI 'New' 'List' ('size' 5 30)

Put a set of choices (contained in the variable NAMES) into the list box by setting its list property:

 'Example.Lst1' ⎕WI 'list' NAMES

Read back the selection which the user has made by reading the value property of the list box:

 'Example.Lst1' ⎕WI 'value'
2

The exact syntax of ⎕WI for the three possible cases is as follows:

Setting a property:

 ObjectName ⎕WI PropertyName Value

ObjectName and PropertyName are character vectors, and Value can be any APL array valid for the

particular property in question. The right argument to ⎕WI is thus a two-element nested vector.

However, as a convenience ⎕WI accepts any length of nested array vector and treats the first element as

the property name and the rest of the argument as the property value, so that the following two
statements are both valid and do exactly the same thing:

 'Win1.But' ⎕WI 'where' (12 20 3 8) ⍝ Two-element vector
 'Win1.But' ⎕WI 'where' 12 20 3 8 ⍝ Five-element vector

(You can also use the New, Create and Set methods to set multiple properties in one line.)

APLX System Classes & User-Interface Programming 22

Reading a property:

 Value ← ObjectName ⎕WI PropertyName

ObjectName and PropertyName are character vectors as before, and the current value for the property

is returned as the explicit result of ⎕WI. For example:

 'Win1.But' ⎕WI 'where'
12 20 3 8
 'Win1.But' ⎕WI 'caption'
Cancel

Invoking a method:

 {Result ← } ObjectName ⎕WI MethodName {Argument}

ObjectName and MethodName are character vectors, and Argument is an optional argument to the

method. It can be any APL array valid for the particular method in question. Again, ⎕WI accepts any

length of nested array vector and treats the first element as the method name and the rest as the

argument to the method. In addition some methods return a result.

 'Win1.Movie' ⎕WI 'Rewind' ⍝ Method with no argument
 'Win1.But' ⎕WI 'New' 'Button' ⍝ Argument is 'Button'
 'Win1.RichEdit' ⎕WI 'Linelength' 4 ⍝ Argument is 4
17 ⍝ Method returns result

Mixing dot-notation and ⎕WI

If you create a top-level object using ⎕WI, you cannot access it using dot notation because there is no

reference to the object held in the workspace. However, if you create a top-level object using ⎕NEW,

then you can access it (and its children, if any) using ⎕WI. When an object is created using ⎕NEW,

APLX automatically assigns a name in the form SYSOBJ-NNN to the object, and you can use this name

in the left argument to ⎕WI. The easiest way of doing this is to reference the self property, which
gives the fully-qualified name:

 dlg←'⎕' ⎕NEW 'Dialog'
 dlg.self
SYSOBJ-1
 dlg.Lst1.New 'List'
 dlg.Lst1.self
SYSOBJ-1.Lst1
 dlg.Lst1.self ⎕WI 'List' ⎕W

This is particularly useful for a few cases where ⎕WI provides an easier syntax than dot-notation.

These include accessing array properties in OCX/ActiveX controls, and dynamically determining the
source of an event using ⎕WSELF.

Converting ⎕WI syntax to dot-notation

If you have written code using ⎕WI syntax in previous versions of APLX, it will continue to work.

However, if you wish, you can convert the syntax to use ⎕NEW and dot-notation. The workspace 10

CONVERTQWI helps to automate this.

APLX System Classes & User-Interface Programming 23

Special considerations for Client-Server versions of APLX

In Client-Server implementations of APLX, the front-end which implements the user-interface (the

"Client") runs on one machine, and the APLX interpreter itself (the "Server") can run on a different

machine. The two parts of the application communicate via a TCP/IP network. Typically, the Client

will be the APLX front-end built as a 32-bit Windows application running on a desktop PC, and the

Server will be a 64-bit APLX64 interpreter running on a 64-bit Linux or Windows server.

Alternatively, the Client and the Server may run on the same physical machine (this is the case if you
are running APLX64 on a 64-bit desktop machine).

In this environment, it is important to bear in mind that the whole of the System Class sub-system

runs on the Client machine as a 32-bit application. This is nearly always transparent to your

application, so for example a workspace originally written for a 32-bit Windows desktop machine

should continue to work unchanged in a Client-Server configuration where the Client executes on a

32-bit Windows desktop and the APLX interpreter (Server) executes on a 64-bit server machine.

However, you should be aware that any file or path names used in your objects always relate to the
Client machine, never to the Server.

In such an environment, when you make a ⎕WI call, the parameters are passed over the network from

the Server to the ⎕WI sub-system on the Client machine. If the Server is a 64-bit APLX64 interpreter,

the data will be converted to 32-bit form before it is sent over the network. (This means that any data

you associate with an object using the data property or a 'delta' variable will be held on the Client
machine, and must be representable as a 32-bit variable).

See also the description of the APL (Child Task) object for special considerations applying to multiple

tasks in a Client-Server environment.

APLX System Classes & User-Interface Programming 24

System Classes by category

Windows and Menus

To create a top-level window on which other controls will be placed, you normally use the Window or

Form class. The Dialog class is similar, but is automatically preset with the default appearance and
behavior suitable for a dialog box. You can add menus to your windows using the Menu class.

The Document class is a convenience class which comprises a window with a built-in text-edit
capability.

Buttons, Combos, and List Boxes

Simple controls which you will use on many dialogs include the Button class for standard action

buttons, the Check and Radio buttons which allow users to select options, and the Combo box. The
List class implements standard List boxes, for selecting one or more items from a list.

The ToolButton class can be used as an alternative to Buttons, Check boxes and Radio buttons. It

allows you to specify an image to be displayed on the button, and is particularly suitable for
implementing a toolbar.

Displaying and inputting text

You can use the Label class to place static text on your windows. For editable text, use the Edit class;
this can handle both single-line and multi-line text input and editing.

For more sophisticated text display and editing, with full control over formatting, you can use the

powerful RichEdit class.

(See also the Draw method, which provides an alternative way of placing text on windows).

Selecting or displaying a numeric value or position

The Spinner class allows the user to select a numeric value using a pair of up-down or left-right

arrows. The Trackbar class displays a slider, which the user can move to select a value. The Scroll
class implements a scroll bar.

The Progress class implements a progress bar; it is typically used to show the progress of a long
operation.

Trees and Grids

Two of APLX's built-in classes provide more complex user-interface functionality, although they are

still easy to use. These are the Tree object class, for displaying and manipulating hierarchical tree-

APLX System Classes & User-Interface Programming 25

views of data, and the Grid class, which provides a spreadsheet-like interface for handling arrays of
data.

Shapes and Icons

These controls provide simple decorative elements for your dialogs. They include the Line, Rectangle,

RoundRect, Arc and Icon classes. (You can also use the Draw method for more sophisticated
geometric drawing.)

Pictures, Images and Movies

You can display pictures, such as JPEG and BMP files, using a Picture object. This can also be used to
display APL arrays of pixel values.

For more sophisticated image handling, APLX provides an interface to the ImageMagick package,

encapsulated as the Image class. This provides the capability for loading and saving graphics images

in a very wide range of formats, as well as providing facilities for scaling, transformation, color

adjustment, and image enhancement. It can also be used in conjunction with the Draw method for
creating or adding graphics elements to images.

Movies can be played using the Movie class.

The ImageList class is a special non-visual class which holds images displayed in menus and other

controls. It is not available under MacOS.

Charts

The Chart object class, together with the related Series class, makes it very easy to add business and

scientific graphs to your APLX applications. It can display Line, Area, Scatter, Stair, High-Low-
Open-Close, Candlestick, Bar, Stacked Bar, and Pie charts.

Geometry management and tabs

The Bevel and Frame classes allow you to group controls together visually. For complex dialogs, you

can use a Splitter control to allow the user to expand or contract regions of the dialog. You can also
use the Selector and Page classes to implement tabbed dialogs.

Pre-defined dialogs

APLX includes a number of pre-defined dialogs, which encapsulate all of the necessary functionality

for common tasks such as displaying message boxes (MsgBox), selecting files and directories

(OpenFile, SaveFile and ChooseDir), selecting colors (ChooseColor), and (under Windows and Linux

only), selecting fonts (ChooseFont). These are top-level objects, which should not be created as a child

of a window, but can be used directly.

APLX System Classes & User-Interface Programming 26

Non-visual classes

A few special classes do not represent visible controls or windows. These include the System class

(which is created automatically as the parent of all top-level objects, and which can be used to return

information about the system APLX is running on and for accessing the Clipboard), the Timer class

(which runs APL callbacks at specified intervals), and the Printer class (for printing text and graphics).

Networking classes

Another set of non-visual classes allows your APLX applications to exchange data over a local-area

network or the Internet. These include classes for sending and retrieving e-mails (SendMail and

GetMail), for retrieving web pages and other documents using the HTTP protocol (HTTPClient), and
the low-level Socket class.

OCX/ActiveX (COM) classes

Under Windows, as well as using the APLX built-in classes such as Button and MsgBox, you can also

use external OCX/ActiveX controls (also known as COM controls). You can also embed or link to

documents belonging to other applications in an OLEContainer control, or invoke a separate

application such as Microsoft Excel and exchange data with it. See the section on OCX/ActiveX
Controls and OLE Automation for more information.

Multi-tasking

Using the APL class, your applications can create and communicate with new APL child tasks. These
can either be background tasks, or have their own Session windows.

APLX System Classes & User-Interface Programming 27

Positioning controls in windows

Setting the initial position of a control

When you create a control on a window, you normally set its position using the where property. This

defines the initial position of the control relative to the top left of the window, in units set by the

scale property of the parent. This example creates a window with a multi-line text-edit box taking up
most of the window, and an OK button in the right-hand corner:

 Win1←'⎕' ⎕NEW 'Window' ⊦ Win1.where←4 4 14 28
 Win1.Ed.New 'Edit' ⊦ Win1.Ed.where←1 1 8 25 ⊦ Win1.Ed.style←8196
 Win1.But.New 'Button' ⊦ Win1.But.where←10 16 ⊦ Win1.But.caption←'OK'

Caution: For compatibility with other APL systems, the scale property defaults to 1, 'character' units,

which is not necessarily the most convenient scale to use. You can change this to 5 (pixels) for more

precise positioning, or to values expressed in physical units such as points or millimetres. The scale

property for a given object is inherited from its parent when you create it, so it is often best to set the

scale of the System object (which is the ultimate parent of all objects) at the beginning of your

program. See the description of the scale property for more details.

If you want to query or change the size of a control but not its position, you can use the size or

extent properties. These are the same, except that size is expressed in the object's own scale,

whereas extent is in the scale of its parent.

Handling re-sizing

If the window or dialog can be re-sized by the user, you need to consider what should happen to the

control positions and sizes as the window size changes. The default is for the controls to remain at

their initial positions, and to stay the same size. For some controls, that may be what you want. In

many cases, however, you will want controls such as text-edit fields to get larger or smaller as the

window changes size. You may also want controls such as buttons to move so that they remain

anchored to the right or bottom-right of the window. In our example above, we want the OK button to

remain at the bottom-right of the window, and we want the edit field to grow or shrink with the
window.

One way of achieving this is to write an onResize callback, i.e. an APL function which gets called

when the window is resized. Your APL function can then read the new window size, and move the
controls around as necessary.

However, a much easier way is to use the anchors property. This defines which edges of the window

the control is anchored to. It comprises a vector of four boolean values, which govern whether the

control is anchored to the top, left, bottom and right of the window respectively. The default is 1 1 0

0, meaning that the control is anchored to the top and left of the window. As the window is resized, the
position of the control remains fixed relative to the top left.

APLX System Classes & User-Interface Programming 28

If you set the anchors property to 0 0 1 1, the control will be anchored to the bottom and right of the

window. This means that, as the window is resized, the control will remain at a constant distance from

the bottom right corner of the window (its where property will change accordingly). This is exactly
what we want for our OK button in the above example:

 Win1.But.anchors←0 0 1 1

If a control is anchored to both the left and the right, then as the window is re-sized, the left edge of

the control will remain at a fixed distance (as initially set by the where property) from the left edge of

the window, and the right edge of the control will remain at a fixed distance from the right edge of the

window. Thus the control will grow or shrink horizontally with the window. Similarly, if the control is

anchored to both the top and the bottom, it will grow or shrink vertically with the window. This is

what we want for our text-edit field in the above example:

 Win1.Ed.anchors←1 1 1 1

Forcing a control to align with an edge of its parent

Another way of managing control positions and sizes is to use the align property. This is somewhat

like the anchors property, in that it governs the position of a control by reference to the edge of the

parent. However, unlike the anchors property, it overrides the where property, and forces the control

to be positioned hard against the edge. It also forces it to expand or contract to be the same height or
width as the parent. You can set it to one of five values:

 0 No alignment (default)
 1 The control is aligned along the top edge of its parent
 2 The control is aligned along the left edge of its parent
 3 The control is aligned along the bottom edge of its parent
 4 The control is aligned along the right edge of its parent
 ¯1 The control fills the whole client area of its parent

If, instead of the above example, you wanted the text edit control to fill the whole window, you could
write:

 Win1←'⎕' ⎕NEW 'Window' ⊦ Win1.where←4 4 14 28
 Win1.Ed.New 'Edit' ⊦ Win1.Ed.align←¯1 ⊦ Win1.Ed.style←8196

Using Splitter controls

A special case arises with the Splitter control. This is a vertical or horizontal line control, which allows

the user to change the relative sizes of the controls on a window. For example, you might have a list
box and a text edit, and use a Splitter to allow the user to move the boundary between them.

To do this, you first set up the leftmost (or topmost) control or controls, using the align property to

align to the left (or top). You then create the Splitter, defining its position with the where property.

Then you create the rightmost (or bottom) control, setting its align property to fill the remaining
client area of the parent:

 DEMO←'⎕' ⎕NEW 'Window'
 DEMO.title←'Splitter Example' ⊦ DEMO.scale←5
 DEMO.List1.New 'List'

APLX System Classes & User-Interface Programming 29

 DEMO.List1.align←2 ⊦ DEMO.List1.size←50 20 ⊦ DEMO.List1.list←⎕M
 DEMO.MySplitter.New 'Splitter' ⊦ DEMO.MySplitter.where←0 22
 DEMO.Edit1.New 'Edit' ⊦ DEMO.Edit1.style←36 ⊦ DEMO.Edit1.align←¯1

Setting constraints on the maximum and minimum window size

Often, you may want to put limits on the maximum or minimum height and width of a window, so that

the user cannot make it so small that it becomes unusable, or so large that it wastes screen space. The

maxsize and minsize properties allow you to specify the maximum and minimum sizes respectively.

Automatic adjustment of control sizes for MacOS Aqua

The new look-and-feel (known as 'Aqua') which Apple introduced in MacOS X can sometimes require

controls to be slightly larger than they were in the 'classic' MacOS environment. For example, Buttons

have a more rounded look, which for some dialogs can mean that text which used to fit in the button is

now partially obscured. If you have code designed for the 'classic' MacOS which you now want to run

under MacOS X, the sizes therefore may need adjustment. Obviously, you can go through your code

and adjust the sizes of the controls on each dialog, but this can be very time-consuming. APLX

provides a quick method of reducing the conversion effort. If you set the aquaadjust property for the

System object, all subsequent Buttons, Radio buttons and Checkboxes which are created will be

adjusted in size slightly (although some additional manual adjustment may still be needed). This

property is inherited by window objects, as well as the individual controls, so you can set it on or off
individually for particular dialogs or controls. The property is ignored under Windows and Linux.

APLX System Classes & User-Interface Programming 30

Events and Callbacks

Concepts

Windowing systems such as MacOS and Windows are event-driven, which means that your program

has to be able to respond to events such as a key stroke or new data being available. An event

(sometimes called a message) can arise from a number of sources. It can be directly triggered by a user

action - for example, Mouse Down or Key Down. It might be indirectly triggered by a user action -

for example, if the uses presses the mouse button over a button in a dialog, a Mouse Down event

occurs, and this in turn causes a Clicked event for the button. Events can also be triggered by the

system software - for example, to indicate that a window needs to be redrawn - or by another program
or even your own program.

Much event handling is automatic, and you do not normally need to deal with it. For example,

redrawing of windows is usually handled automatically by APL. For events which you do need to

know about, such as a Click event in a button, you define an APL callback, which is an APL

expression (usually a function) which will be run if the event occurs. You assign a character vector

containing the expression or function name to the appropriate callback property of the object. This is a

special property (whose name begins with 'on..') which creates the association between the event and
your callback function or expression.

For example, this code creates a dialog with an OK button, and associates the APL function

ENDDIALOG with the Click event for the button:

 DEMO←'⎕' ⎕NEW 'Dialog'
 DEMO.title←'Button Example'
 DEMO.OK.New 'Button'
 DEMO.OK.onClick←'ENDDIALOG'

The APL callback function is actually run during execution of the system function ⎕WE (wait for
event).

How APLX handles events

When an event occurs, APLX looks to see if the event refers to a user-defined window, or to one of

APL's own windows (such as a session or edit window). In the latter case, the event is handled

internally and you do not normally need to be aware of it. If the window was user-defined, however,

then your APL application might need to be informed of the event. For every event, there is a default

system action (which may be to do nothing), and there might in addition be an APL callback function

which you have defined for that event. Often, the default system action is to create another, higher-

level event. At the lowest level, events take place in windows, but where appropriate are passed to a
control (such as an Edit text or Check box) to produce a higher-level event.

APLX System Classes & User-Interface Programming 31

When events are handled

APLX calls the operating system for the latest event at two main points in the code. These are:

(a) When APL is requesting input

(b) During execution, the APL interpreter many times a second to see if any events need to be
handled.

The system handler for an event is invoked immediately the event is retrieved from the operating

system. This means that events continue to be processed even if your application is busy (doing a long

calculation, for example), which helps APLX applications appear responsive to window updates and
user actions. In contrast, your APL callback functions are executed only when you call ⎕WE.

Where you have defined an APL callback for an event, the event is placed in a queue, and callbacks in

the queue are run in turn when your program next calls ⎕WE. You can either call ⎕WE in an 'event loop'

(with a long or infinite timeout value), in which case all processing takes place by ⎕WE looping

internally and executing your callback functions as events happen, or you can call ⎕WE with a small or

zero timeout value, in which case it will return almost immediately and you can continue with other

APL processing. Where your program needs to carry out processing which will take a long time, it

should call ⎕WE from time to time (preferably at least two or three times a second), bearing in mind
that when it does so events may cause other callbacks to be invoked.

Note that, when APL is in desk-calculator mode (for example, if an untrapped APL error occurs in

your program), your APL callback functions will not be run. When you next call ⎕WE, there may be

quite a few callbacks queued up. You can flush these from the event queue by passing a left argument
of 1 to ⎕WE.

Information about events

When your APL callback function runs, you can find out information about the event using the niladic

system function ⎕EV. This returns the system clock, keyboard state and mouse position at the time of

the event, a number which identifies the event type, and sometimes extra information associated with a
particular type of event.

APLX System Classes & User-Interface Programming 32

Modal Dialogs

Making your own modal dialogs

The default behaviour of all windows you create (even Dialog objects) is non-modal, which means

that the user can activate other windows and menus. Often, this behaviour is preferred, since it gives

the user more control over the application. Sometimes, however, you may wish a dialog to be modal,

which means that the user must close the dialog (typically by clicking in an OK or Cancel button)

before continuing with other tasks. In addition, you might want your program to wait until the dialog

has been closed before proceeding. These two features are logically separate, but often go together.

You make the dialog modal by invoking the Wait method on it, and you cause your program to wait

for the dialog to be closed by calling ⎕WE with a right argument which is the name of the window. The

following is a complete example of a function which puts up a modal dialog containing a label and

two buttons. The function then waits until the user has responded, and returns 1 if the user presses the
'Yes' button or 0 if he presses the 'No' button.

 ↔R←ASK;X;MyDlog
[1] ⍝ Example of a modal dialog
[2] MyDlog←'⎕' ⎕NEW 'Dialog' ⊦ MyDlog.size←5 34
[3] MyDlog.Label.New 'Label' ⊦ MyDlog.Yes.where←0.5 4 1.5 30
[4] MyDlog.Label.caption←'Do you want to erase this file?'
[5] MyDlog.No.New 'Button' ⊦ MyDlog.Yes.where←3 3 1.5 8 ⊦ MyDlog.Yes.style←2
[6] MyDlog.Yes.New 'Button' ⊦ MyDlog.Yes.where←3 23 1.5 8 ⊦ MyDlog.Yes.style←1
[7] MyDlog.No.onClick←'R←0 ⊦ MyDlog.Close'
[8] MyDlog.Yes.onClick←'R←1 ⊦ MyDlog.Close'
[9] MyDlog.Wait
[10] R←0
[11] X←⎕WE MyDlog
 ↔

In this function, line [9] causes the dialog to be modal, and line [11] causes the function to wait until

the Dialog object MyDlog has been closed (or hidden), executing any callbacks which are invoked as

a result of events that come in. The Dialog object can be closed under program control, by calling the

Close method. In this example, this happens when either of the Yes or No buttons is clicked, which

causes the onClick handler to be invoked, as set up in lines [7] and [8]. If the user presses the 'Yes'

button, the APL function behaves very much as though line [11] was:

[11] ⍎'R←1 ⊦ MyDlog.Close'

which has the effect both of setting the explicit result of the function and closing the dialog.

Pre-defined modal dialogs

As an alternative to creating your own modal dialogs, you can often use one of the pre-defined dialog

objects which are built-in to APLX. These include MsgBox, ChooseFont, ChooseDir, ChooseColor,

OpenFile and SaveFile. To use these, you create an instance of the object, set the properties you want,

and then call the Show method. This displays the dialog modally, and returns an integer indicating

which button was used to exit. Where appropriate, you can then read the properties to see what the
user selected. The above example can be written more simply as:

APLX System Classes & User-Interface Programming 33

 ↔R←ASK;MBOX
[1] ⍝ Modal dialog using the MsgBox object
[2] MBOX←'⎕' ⎕NEW 'MsgBox' ⊦ MBOX.style←3 ⊦ MBOX.icon←1
[3] MBOX.text←'Do you want to erase this file?'
[4] R←6=MBOX.Show
 ↔

APLX System Classes & User-Interface Programming 35

Section 2. List of APLX System Classes

This section lists the System Classes implemented by APLX, in alphabetical order.
Subsequent sections list the properties, methods and events which APLX supports.

APLX System Classes & User-Interface Programming 37

APL (Child task) Object

Description

The APL object allows you to create APL child tasks under program control. They can either be

background tasks (with no session window), or alternatively they can be ordinary tasks with their own

session windows, although these might be hidden. Child tasks may be terminated in the same ways as

top-level tasks, but in addition they can be terminated under program control by the parent task. They

will also terminate automatically if their parent task terminates. Child tasks can themselves create
further child tasks.

Each task has its own separate memory allocation for the workspace, of a size which you can specify.

The tasks execute independently, but you can use signals to allow parent and child tasks to

communicate with one another. In addition, variables can be shared between tasks. The niladic system
function ⎕UL returns the number of APLX tasks which are currently running.

If you are running a Client-Server implementation of APLX, you can set the host property of the APL
object to specify on which machine the new APL task should run.

See the separate section on APLX Multi-tasking for more details.

Example

 ↔DEMO_APL;ChildTask
[1] ⍝ Sample function demonstrating use of the APL object
[2] ChildTask←'⎕' ⎕NEW 'APL'
[3] ChildTask.wssize←100000
[4] ChildTask.Open
[5] ChildTask.Execute '"There are now ",(⍕⎕UL)," APLX tasks running"'
[6] 0 0⍴⎕DL 5
[7] ⍝ ChildTask will be deleted when function ends
 ↔

Properties

background children class data events extent host methods name opened port properties scale self size
status taskid text tie visible where wssize

Methods

Close Create Delete Execute Hide Interrupt New Open Send Set Show Signal Trigger

Callbacks

onClose onDestroy onError onExecute onOpen onReady onSend onSignal

APLX System Classes & User-Interface Programming 38

Arc

Description

The Arc class implements the circles, ellipses and arcs. They can be filled or just outlined.

These objects are normally used for display purposes only. The where or size property is used to
define the enclosing rectangle.

The angle property defines the start and end angle; if this is 0 0, a complete circle (or ellipse) is
drawn.

You can set the filled property to indicate that you want the object filled with the foreground color.

You can set the foreground color using the color property. (The background color is ignored). The

pensize property changes the thickness of the lines.

Note: Remember that the default scale is in character units. See the scale property for details.

See also the Draw method which allows you to draw geometric shapes on your windows and controls.

Example

 ↔DEMO_Arc;DEMO
[1] ⍝ Sample function demonstrating use of the Arc object
[2] DEMO←'⎕' ⎕NEW 'Window' ⊦ DEMO.scale←1
[3] DEMO.title←'Arc Example'
[4] ⍝
[5] DEMO.ARC.New 'Arc'
[6] DEMO.ARC.where←4 4 3 5
[7] DEMO.ARC.color←255
[8] DEMO.ARC.angle←90 330
[9] ⍝
[10] DEMO.FILLEDARC.New 'Arc'
[11] DEMO.FILLEDARC.where←4 12 3 5
[12] DEMO.FILLEDARC.color←(255×256)
[13] DEMO.FILLEDARC.angle←90 330
[14] DEMO.FILLEDARC.filled←1
[15] ⍝
[16] ⍝ Wait for the user to close the window
[17] 0 0⍴⎕WE DEMO
 ↔

Properties

align anchors angle aquaadjust autodraw children class color data dragsource droptarget enabled

events extent filled maxsize methods minsize name opened pen pointer properties scale self size
sourceformats targetformats tie units visible where

APLX System Classes & User-Interface Programming 39

Methods

Click Clienttoscreen Close Create Delete Hide New Open Paint Resize Screentoclient Send Set Show

Trigger

Callbacks

onClick onClose onDblClick onDestroy onDragDrop onDragEnd onDragEnter onDragLeave

onDragOver onDragStart onHide onMouseDown onMouseMove onMouseUp onOpen onSend
onShow

APLX System Classes & User-Interface Programming 40

Bevel

Description

The Bevel class implements bevelled boxes and lines, typically used as separators and layout panels in

dialogs. Use the where property to define the rectangle containing the bevel, and style property to set
the type and appearance:

0 The entire client area appears lowered or raised
1 The client area is outlined by a lowered or raised frame.
2 The bevel displays a line at the top of the client area.
3 The bevel displays a line at the bottom of the client area.
4 The bevel displays a line at the left side of the client area.
5 The bevel displays a line at the right side of the client area.
6 The bevel is an empty space.

You can also optionally add 8 to this value, to make the bevel raised rather than lowered.

Note: A Bevel is a purely geometric object. It cannot be the parent of other controls.

Example

 ↔DEMO_Bevel;DEMO
[1] ⍝ Sample function demonstrating use of the Bevel object
[2] DEMO←'⎕' ⎕NEW 'Dialog' ⊦ DEMO.where←4 4 ⊦ DEMO.scale←1 ⊦ DEMO.size←16 40
[3] DEMO.title←'Bevel Example'
[4] ⍝
[5] ⍝ Bevel as horizontal line
[6] DEMO.Bevel1.New 'Bevel' ⊦ DEMO.Bevel1.where←2 0 1 40 ⊦ DEMO.Bevel1.style←2
[7] ⍝
[8] ⍝ Bevel as lowered rectangle
[9] DEMO.Bevel2.New 'Bevel' ⊦ DEMO.Bevel2.where←4 1 8 38 ⊦ DEMO.Bevel2.style←0
[10] DEMO.Button.New 'Button' ⊦ DEMO.Button.where←6 15 3 12
[11] DEMO.Button.caption←'Action'
[12] ⍝
[13] ⍝ Wait for the user to close the window
[14] 0 0⍴⎕WE DEMO
 ↔

Properties

align anchors aquaadjust autodraw caption children class color data dragsource droptarget enabled

events extent maxsize methods minsize name opened pointer properties scale self size sourceformats
style targetformats tie units visible where

Methods

Click Clienttoscreen Close Create Delete Hide New Open Paint Resize Screentoclient Send Set Show

Trigger

APLX System Classes & User-Interface Programming 41

Callbacks

onClick onClose onDblClick onDestroy onDragDrop onDragEnd onDragEnter onDragLeave

onDragOver onDragStart onHide onMouseDown onMouseMove onMouseUp onOpen onSend
onShow

APLX System Classes & User-Interface Programming 42

Browser

Exact behavior depends on operating system - see below

Description

The APLX Browser control implements a web browser, as a control which you can place on windows

which you create. You can use it to display HTML Help files in your application, or to display pages

from web sites accessed over the internet (Note: Under Linux, this is only partially implemented, as
described below).

To use the Browser control, you create a window in the normal way, and place the Browser control on

it. (If you want the Browser to fill the whole window, use the align property with a value of ¯1). You

tell the control to fetch an HTML page (either from the local disk, or from the internet) by using the

Load method. The user can then click on hyperlinks to load further pages, as in a normal web browser.

Browser properties

Key properties of the Browser control include:

status: (Read-only) Returns a three-element boolean vector. The first is 1 if the control is busy

fetching a page, 0 if it is not busy. The second is 1 if the Back method can be called (i.e. there is a

previous page in the history list), else 0. The third is 1 if the Forward method can be called (i.e. there
is a subsequent page in the history list).

text: (Read-only) Returns a character vector (with embedded carriage returns), containing the current
text as displayed in the control, with the HTML tags stripped out.

contents: (Read-only) Returns a character vector (with embedded carriage returns), containing the
raw HTML text of the page currently displayed in the control.

caption or title: (Read-only) Returns a character vector containing the title of the page currently
displayed in the control.

url: (Read-only) Returns a character vector containing the URL (Uniform Resource Location) of the

page currently displayed in the control. This is not necessarily the same as the page which has been

requested using the Load method or clicked-on by the user, because the request may have been
redirected to a different location.

offline: If the offline property is set to 1, the Browser object will access only local files and cached

copies of pages. The default is 0, meaning that the Browser will connect via the Internet to access web
pages where necessary. Note: This property is ignored under MacOS.

Browser methods

APLX System Classes & User-Interface Programming 43

Key methods of the Browser control include:

Load: The Load method takes a single parameter, which is the URL of the web page you want to

display. It can be an internet address (such as 'http://www.bbc.co.uk/news'), or a local file

address (such as 'file://C:\Program Files\MicroAPL\APLX\help\HTML\ch.htm'). You can also

just specify a local file name without the 'file://' prefix. It is important to note that the actual loading of

the page happens asynchronously, i.e. the Load method may return before the page has been retrieved

from the internet. You can use the status property to determine whether the page is still being loaded.

Back: This method takes no arguments. It causes the Browser to go back one page in the history of

previously-displayed web pages. It does nothing if there is no previous page. (You can test for this by

reading the status property).

Forward: This method takes no arguments. It causes the Browser to go forward one page in the history

of previously-displayed web pages. It does nothing if there is no subsequent page. (You can test for

this by reading the status property).

Copy: This method takes no arguments. It causes the Browser to copy any selected text to the

Clipboard.

Print: This method takes no arguments. It causes the Browser to print the currently-displayed page on
the currently-selected printer. Note: The Print method is not implemented under Linux.

Stop: This method takes no arguments. If a page is loading, this method will abort the fetch.

Refresh: This method takes no arguments. It causes the current page to be reloaded from the internet
or from disk, as appropriate.

Browser events

The Browser control can trigger the following callbacks:

onReady: This event occurs when a page has been successfully loaded and displayed.

onError: This event occurs when an error occurs retrieving a page.

Platform-dependent notes

Under Windows, the APLX Browser control is a wrapper for the Internet Explorer ActiveX Control.

This means that, to use the Browser control, you must have Microsoft Internet Explorer installed. Note

that, as well as using the properties and methods documented for the APLX Browser control itself,

you can also directly access the Internet Explorer properties and methods (with names preceded by 'x'

or 'X' respectively). See Microsoft's documentation on Reusing the Web Browser Control for more
details on programming the browser directly.

APLX System Classes & User-Interface Programming 44

Under Linux, the APLX Browser control is built-in to APLX, but its functionality is very restricted. It

uses a limited HTML rendering engine which can handle simple HTML pages, but which does not

have any scripting, plug-in, form-filling or encryption capability. Unrecognised HTML elements are

ignored. In addition, the control implements only a small subset of the HTTP protocol. This means

that many web pages will not display or operate correctly. The Print method is not supported.

However, the Browser control is still very useful for adding HTML help to an application, and for

certain accessing web pages which you know can be displayed reasonably well using only the simpler
HTML elements. (The same underlying control is used to display the APLX Help pages under Linux).

Under MacOS X, the APLX Browser control is a wrapper for Apple's Safari HTML display engine.

This is available under MacOS 10.2 and later only. Because of limitations in the Safari control, it may

not operate correctly if the window contains Edit fields and other input controls.

Under MacOS 9, the APLX Browser control is not available.

Example

 ↔DEMO_Browser;DEMO
[1] ⍝ Sample function demonstrating use of the Browser object
[2] DEMO←'⎕' ⎕NEW 'Window' ⊦ DEMO.scale←5 ⊦ DEMO.size←470 800
[3] DEMO.Web.New 'Browser' ⊦ DEMO.Web.align←¯1
[4] ⍝
[5] ⍝ Add a callback so window title changes when a new page is loaded
[6] DEMO.Web.onReady←"DEMO.title←DEMO.Web.title"
[7] ⍝
[8] ⍝ Display a page from the MicroAPL web site
[9] DEMO.Web.Load 'http://www.microapl.co.uk/apl'
[10] ⍝
[11] ⍝ Process events until the window is closed
[12] 0 0⍴⎕WE DEMO
 ↔

Properties

align anchors aquaadjust autodraw caption children class color contents data doublebuffered

dragsource droptarget enabled events extent handle maxsize methods minsize name offline opened

order pointer properties scale self size sourceformats status tabstop targetformats text tie units url
verbs visible where winptr

Methods

Back Click Clienttoscreen Close Copy Create Delete Draw Focus Forward Hide Load New Open
Paint Print Refresh Resize Screentoclient Send Set Show Stop Trigger

Callbacks

onClick onClose onDblClick onDestroy onDragDrop onDragEnd onDragEnter onDragLeave

onDragOver onDragStart onError onFocus onHide onKeyDown onKeyPress onKeyUp
onMouseDown onMouseMove onMouseUp onOpen onReady onSend onShow onUnFocus

APLX System Classes & User-Interface Programming 45

Button

Description

The Button class implements the command button objects, like the OK and Cancel buttons found in

many dialogs. You typically set the caption property which indicates the caption associated with the

control, and you might set the enabled property to 1 or 0 depending on whether a particular option is

valid (for example, an OK button might be disabled unless the user has entered some valid text in an

Edit field)

For Buttons, you will always want to define an onClick callback, which is invoked when the button is

pressed, and which in many cases will close the dialog. For most dialogs, you should define one of

your buttons (typically the OK button or equivalent) to have a style property of 1, which means that

it is the default button which ends the dialog. Buttons with a style of 1 are outlined in a heavy line,

and respond to the Enter or Return key as well as to mouse clicks. In addition, you may wish to have a

second button with a style of 2, which means that it is a Cancel style button which responds to the
Escape or (under MacOS) Command-period key.

To provide help text when the user moves the mouse pointer over the control and pauses, you can use

the tooltip property.

See also the ToolButton class, which provides a different kind of button on which you can place an
image as well as or instead of text.

Example

 ↔DEMO_Button;DEMO
[1] ⍝ Sample function demonstrating use of the Button object
[2] DEMO←'⎕' ⎕NEW 'Dialog' ⊦ DEMO.where←5 10 ⊦ DEMO.scale←1 ⊦ DEMO.size←10 46
[3] DEMO.title←'Button Example'
[4] ⍝
[5] ⍝ CREATE OK BUTTON
[6] DEMO.OK.New 'Button'
[7] DEMO.OK.style←1
[8] DEMO.OK.where←2 5 2 12
[9] DEMO.OK.caption←'I''m OK'
[10] DEMO.OK.tooltip←'Press this button if you are feeling fine today'
[11] DEMO.OK.onClick←'⎕←''OK Hit!'''
[12] ⍝
[13] ⍝ CREATE CANCEL BUTTON
[14] DEMO.CANCEL.New 'Button'
[15] DEMO.CANCEL.style←2
[16] DEMO.CANCEL.where←2 20 2 20
[17] DEMO.CANCEL.caption←'You''re Cancelled'
[18] DEMO.CANCEL.tooltip←'Want to cancel something? Now is your chance'
[19] DEMO.CANCEL.onClick←'⎕←''Cancel Hit!'''
[20] ⍝
[21] ⍝ Wait for the user to close the window
[22] 0 0⍴⎕WE DEMO
 ↔

APLX System Classes & User-Interface Programming 46

Properties

align anchors aquaadjust autodraw caption children class color data doublebuffered dragsource

droptarget enabled events extent font handle maxsize methods minsize name opened order pointer

properties scale self size sourceformats style tabstop targetformats tie tooltip units visible where

winptr

Methods

Click Clienttoscreen Close Create Delete Draw Focus Hide New Open Paint Resize Screentoclient
Send Set Show Trigger

Callbacks

onClick onClose onDblClick onDestroy onDragDrop onDragEnd onDragEnter onDragLeave

onDragOver onDragStart onFocus onHide onKeyDown onKeyPress onKeyUp onMouseDown
onMouseMove onMouseUp onOpen onSend onShow onUnFocus

APLX System Classes & User-Interface Programming 47

Chart

Description

The Chart object is a control which can display a range of different business, statistical and scientific

graphs. The actual data which is displayed in the graph is held in one or more Series objects.

The types of chart which can be displayed include Line, Area, Scatter, Bar, Stacked Bar, Horizontal

Bar, Horizontal Stacked Bar, High-Low-Open-Close, and Candlestick graphs. You can also mix
different graph types on a single Chart.

For full details, see the separate section on the Chart and Series Objects

Example

 ↔DEMO_Chart;labels;W
[1] ⍝ Sample bar chart (See workspace 10 SAMPLESCHART for more examples)
[2] W←'⎕' ⎕NEW 'Window' ⊦ W.title←'Beer Consumption' ⊦ W.visible←3
[3] W.Ch.New 'Chart' ⊦ W.Ch.align←¯1 ⊦ W.Ch.type←'bar'
[4] W.Ch.title←'Thirsty people'
[5] W.Ch.subtitle←'Beer sales per head of population'
[6] W.Ch.note←'Source: The Economist Pocket World in Figures, 2004'
[7] W.Ch.yaxislabel←'Retail Sales per head, litres'
[8] W.Ch.s1.New 'Series' ⊦ W.Ch.s1.color←374479
[9] W.Ch.s1.values←85.8 76.7 73.9 69.9 69.7 66.6 64.7 64.5 49 40.2 38.6 31.7
[10] labels←'Czech Republic' 'Venezuela' 'Germany' 'Denmark' 'S.Africa'
[11] labels←labels,'Austria' 'US' 'Australia' 'Canada' 'Belgium' 'Japan' 'UK'
[12] W.Ch.xlabels←labels
[13] ⍝
[14] ⍝ Wait for the user to close the window
[15] 0 0⍴⎕WE W
 ↔

Properties

align anchors aquaadjust autodraw axiswidth barwidth bitmap border caption children class color

coloraxis colorgrid colorlegend colornote colortitle data doublebuffered dragsource droptarget enabled

events extent font fontaxis fontlegend fontnote fonttitle gridwidth handle linewidth margin maxsize

methods minsize monochrome name note opened order picture placelegend placenote placetitle

pointer properties scale self size sourceformats style subtitle svg tabstop targetformats tie type units

update visible where winptr workarea xaltintercept xaxislabel xintercept xlabels xlogscale xmajorticks

xminorticks xscale yaltaxislabel yaltlabels yaltlogscale yaltmajorticks yaltminorticks yaltscale
yaxislabel yintercept ylabels ylogscale ymajorticks yminorticks yscale

Methods

Chartalttopoint Charttopoint Click Clienttoscreen Close Copy Create Delete Draw Focus Hide New

Open Paint Pointtochart Pointtochartalt Print Resize Save Screentoclient Send Set Show Trigger

APLX System Classes & User-Interface Programming 48

Callbacks

onClick onClose onDblClick onDestroy onDragDrop onDragEnd onDragEnter onDragLeave

onDragOver onDragStart onFocus onHide onKeyDown onKeyPress onKeyUp onMouseDown
onMouseMove onMouseUp onOpen onSend onShow onUnFocus

APLX System Classes & User-Interface Programming 49

Check

Description

The Check class implements the check boxes, for selecting several independent on/off options. You

typically set the caption property which indicates the caption associated with the control, and you

might set the enabled property to 1 or 0 depending on whether a particular option is valid. The value
property (1 or 0) represents whether the check box is selected.

For Check boxes, it is not always necessary to have any callbacks defined, since when the dialog ends

or a Button is pressed you can determine the state of the Check objects using the value property. In

other cases, use of an onClick callback to detect changes in the state of these controls may be
preferable, and it is necessary if other items in a dialog need to depend on the state of the Check box.

To provide help text when the user moves the mouse pointer over the Check box and pauses, you can

use the tooltip property.

Example

 ↔DEMO_Check;DEMO
[1] ⍝ Sample function demonstrating use of the Check object
[2] DEMO←'⎕' ⎕NEW 'Dialog' ⊦ DEMO.scale←1
[3] DEMO.title←'Check Example'
[4] ⍝
[5] DEMO.CHECK1.New 'Check'
[6] DEMO.CHECK1.where←2 3 1 30
[7] DEMO.CHECK1.caption←'I run APLX on MacOS'
[8] ⍝
[9] DEMO.CHECK2.New 'Check'
[10] DEMO.CHECK2.where←3.5 3 1 30
[11] DEMO.CHECK2.caption←'I use a Postscript printer'
[12] ⍝
[13] DEMO.CHECK3.New 'Check'
[14] DEMO.CHECK3.where←5 3 1 30
[15] DEMO.CHECK3.caption←'I upgraded from APL.68000'
[16] DEMO.CHECK3.value←1
[17] ⍝
[18] DEMO.CHECK4.New 'Check'
[19] DEMO.CHECK4.where←6.5 3 1 30
[20] DEMO.CHECK4.caption←'I prefer Visual Basic'
[21] DEMO.CHECK4.enabled←0
[22] ⍝
[23] ⍝ Wait for the user to close the window
[24] 0 0⍴⎕WE DEMO
 ↔

Properties

align anchors aquaadjust autodraw caption children class color data doublebuffered dragsource

droptarget enabled events extent font handle maxsize methods minsize name opened order pointer

APLX System Classes & User-Interface Programming 50

properties scale self size sourceformats tabstop targetformats tie tooltip units value visible where
winptr

Methods

Click Clienttoscreen Close Create Delete Draw Focus Hide New Open Paint Resize Screentoclient

Send Set Show Trigger

Callbacks

onClick onClose onDblClick onDestroy onDragDrop onDragEnd onDragEnter onDragLeave

onDragOver onDragStart onFocus onHide onKeyDown onKeyPress onKeyUp onMouseDown
onMouseMove onMouseUp onOpen onSend onShow onUnFocus

APLX System Classes & User-Interface Programming 51

ChooseColor

Alternative name: ChooseColour

Description

The ChooseColor class implements the pre-defined color-selection dialog. This is a top-level object
(i.e. it should not be opened as the child of a window).

To use the dialog, you must first create it using ⎕NEW. (Alternatively, you can create it as a top-level

object using the New or Create method of ⎕WI). It will remain hidden at this stage. You can optionally

set the initial color selection as the first element of the color property (foreground color only).

The style property applies to Windows only (it is ignored under MacOS and Linux). It defines

whether the user can select custom colors, by selecting one of:

 0 = Allow custom colours
 1 = Open with custom colours displayed
 2 = Disallow custom colors

You can also add the following to style:

 4 = Return nearest solid colour
 8 = Allow any colour, dither if necessary

Under Windows and Linux, you can pre-define up to 16 custom colors by setting the custom property,

as a vector of 16 integers representing the RGB values of each color. (This property is ignored under
MacOS).

To set the color which will be selected when the dialog is shown, you can assign a value to the color
property.

When you are ready to show the dialog, call the Show method. This displays the modal dialog. The

user can then select a color; if the Cancel button is pressed, the Show method returns 0. If the OK

button is pressed, the Show method returns 1. You can then read the color property to retrieve the

color selected by the user (only the first element is used); if this is ¯1, the user has selected an

undefined custom color. Under Windows and Linux, you can also optionally read the custom property
to retrieve the list of any custom colors which the user has defined, as a vector of up to 16 integers.

Example

 ↔DEMO_ChooseColor;DLG
[1] ⍝ Sample function demonstrating use of the ChooseColor object
[2] DLG←'⎕' ⎕NEW 'ChooseColor'
[3] ⍝ Show the dialog. If user presses Cancel, quit
[4] :If 1=DLG.Show

APLX System Classes & User-Interface Programming 52

[5] ⍝ He pressed OK.
[6] 'Color chosen: ',⍕1↑DLG.color
[7] :EndIf
 ↔

Properties

children class color custom data events methods name opened properties self style tie

Methods

Close Create Delete New Open Send Set Show Trigger

Callbacks

onClose onDestroy onOpen onSend

APLX System Classes & User-Interface Programming 53

ChooseDir

Description

The ChooseDir class implements the pre-defined directory-selection dialog. This is a top-level object

(i.e. it should not be opened as the child of a window).

To use the dialog, you must first create it using ⎕NEW. (Alternatively, you can create it as a top-level

object using the New or Create method of ⎕WI). It will remain hidden at this stage. You can optionally

set the initial directory as the directory property. You can also set the title of the dialog as the

caption property.

When you are ready to show the dialog, call the Show method. This displays the modal dialog. The

user can then select a directory; if the Cancel button is pressed, the Show method returns 0. If the OK

button is pressed, the Show method returns 1. You can then read the directory property to retrieve the
directory selected by the user.

Example

 ↔DEMO_ChooseDir;DLG
[1] ⍝ Sample function demonstrating use of the ChooseDir object
[2] DLG←'⎕' ⎕NEW 'ChooseDir'
[3] ⍝ Show the dialog. If user presses Cancel, quit
[4] :If 1=DLG.Show
[5] ⍝ He pressed OK.
[6] 'Directory selected: ',DLG.directory
[7] :EndIf
 ↔

Properties

caption children class data directory events methods name opened properties self tie

Methods

Close Create Delete New Open Send Set Show Trigger

Callbacks

onClose onDestroy onOpen onSend

APLX System Classes & User-Interface Programming 54

ChooseFont

Not implemented under MacOS

Description

The ChooseFont class implements the pre-defined font-selection dialog. This is a top-level object (i.e.
it should not be opened as the child of a window).

To use the dialog, you must first create it using ⎕NEW. (Alternatively, you can create it as a top-level

object using the New or Create method of ⎕WI). It will remain hidden at this stage. You can set the

initially-selected font by setting the font property.

The style property is impelemted under Windows only (it is ignored under Linux). It defines the

fonts which can be selected:

 0 = Screen fonts only
 1 = Printer fonts
 2 = Both

You can also add the following to style:

 4 = Include strikeout/underline/color effects
 8 = Exclude OEM fonts
 16 = ANSI character set fonts only (no Symbol)
 32 = Fixed Pitch only
 64 = Scalable only
 128 = TrueType only

If you have included 4 in the style property, you can also optionally set the initial color selection as

the first element of the color property (foreground color only).

Under Windows, if you want to restrict the range of valid font sizes, set the range property to be a

two-element vector of the minimum and maximum size, in the current scale of the object.

(Remember that the scale defaults to 1, 'character' units.) Setting range to be an empty vector means
there is no restriction. (This property is not available under Linux.)

When you are ready to show the dialog, call the Show method. This displays the modal dialog. The

user can then select a font; if the Cancel button is pressed, the Show method returns 0. If the OK button

is pressed, the Show method returns 1. The font property will contain the selected font as a 4-element

nested vector of (Font Face) (Size) (Style) (Character set). You can also read the color property to
retrieve the color (if any) selected by the user (only the first element is used).

APLX System Classes & User-Interface Programming 55

Example

 ↔DEMO_ChooseFont;⎕IO;VERSION;DLG
[1] ⍝ Sample function demonstrating use of the ChooseFont object
[2] ⍝
[3] ⍝ Can't run this on a Mac, because it doesn't support the
[4] ⍝ ChooseFont object
[5] ⎕IO←1
[6] VERSION←'⎕' ⎕WI 'version'
[7] →(VERSION[2]=0)/MAC
[8] DLG←'⎕' ⎕NEW 'ChooseFont' ⊦ DLG.scale←3
[9] ⍝
[10] ⍝ Say we want to offer 'effects' (color and strikeout etc)
[11] DLG.style←4
[12] ⍝
[13] ⍝ Set initial values, Arial 12-point bold, red
[14] DLG.font←('Arial' 12 1)
[15] DLG.color←255
[16] ⍝
[17] ⍝ Show the dialog. If user presses Cancel, quit
[18] :If 1=DLG.Show
[19] ⍝ He pressed OK
[20] 'Selected font: ',⍕DLG.font
[21] 'Selected color: ',⍕1↑DLG.color
[22] :EndIf
[23] →0
[24] MAC:
[25] 'This demo cannot be run on the Macintosh because the'
[26] 'ChooseFont object is not supported'
 ↔

Properties

children class color data events font methods name opened properties range scale self style tie

Methods

Close Create Delete New Open Send Set Show Trigger

Callbacks

onClose onDestroy onOpen onSend

APLX System Classes & User-Interface Programming 56

Combo

Description

The Combo class implements the Combo object, a drop-down menu (or list-box) with an optional edit

field.

The style property defines the type of combo box, as follows:

 0 = drop down menu with edit field
 1 = simple list box (always down), with edit field
 2 = drop down list, no edit field

Note: Under MacOS, only style 2 is currently supported. Under Linux, style 1 is not supported.

The list property determines the items in the menu/list box part of the control. You can set it either

as a character matrix or as a character vector with embedded carriage returns. (If you read it back, it
will be returned as a character matrix).

Under Windows amd Linux, the text property contains the text of the edit field (which the user may

have edited), as a character vector. The selection and seltext properties contain the selection

start/end and selected text in the edit field. Under Windows only, the limit property allows you to

limit the maximum number of characters in this text.

The value property is an integer containing the index into the list of the selected item, in index origin
1. It is an empty vector if there is no selection (you can also write 0 to achieve the same effect).

To provide help text when the user moves the mouse pointer over the control and pauses, you can use

the tooltip property.

If you need to detect when the user changes the selection, add an onChange callback.

Example

 ↔DEMO_Combo;DEMO
[1] ⍝ Sample function demonstrating use of the Combo object
[2] DEMO←'⎕' ⎕NEW 'Dialog' ⊦ DEMO.scale←1
[3] DEMO.title←'Combo Example'
[4] DEMO.myCombo.New 'Combo' ⊦ DEMO.myCombo.where←2 1
[5] DEMO.myCombo.list←⎕W ⊦ DEMO.myCombo.value←3
[6] ⍝ Wait for the user to close the window
[7] 0 0⍴⎕WE DEMO
 ↔

APLX System Classes & User-Interface Programming 57

Properties

align anchors aquaadjust autodraw caption children class color data doublebuffered dragsource

droptarget enabled events extent font handle limit list maxsize methods minsize name opened order

pointer properties scale selection self seltext size sourceformats style tabstop targetformats text tie

tooltip units value visible where winptr

Methods

Click Clienttoscreen Close Create Delete Draw Focus Hide New Open Paint Resize Screentoclient
Send Set Show Trigger

Callbacks

onChange onClick onClose onDblClick onDestroy onDragDrop onDragEnd onDragEnter

onDragLeave onDragOver onDragStart onFocus onHide onKeyDown onKeyPress onKeyUp
onMouseDown onMouseMove onMouseUp onOpen onSend onShow onUnFocus

APLX System Classes & User-Interface Programming 58

Dialog

Description

The Dialog class is a special case of the Form or Window object, with the default properties already

set up for a typical dialog box.

It defaults to a non-resizable, standard dialog box border, and a dialog-box background color

(typically light gray for Windows and Linux, or the color from the default Aqua theme on Mac OS X).

Note that, under Linux, the Window Manager determines how the request for a particular border will

be interpreted; under some Window Managers, windows are always resizable.

You can use the Wait method to make the dialog display in modal form. This means that other
windows of your application are disabled until the dialog is closed.

Example

 ↔DEMO_Dialog;DEMO
[1] ⍝ Sample function demonstrating use of the Dialog object
[2] DEMO←'⎕' ⎕NEW 'Dialog' ⊦ DEMO.title←'Dialog Example'
[3] DEMO.where←4 4
[4] DEMO.scale←1
[5] DEMO.size←10 30
[6] ⍝
[7] ⍝ Wait for the user to close the window
[8] 0 0⍴⎕WE DEMO
 ↔

Properties

align anchors aquaadjust autodraw border caption children class color data doublebuffered dragsource

droptarget enabled events extent handle maxsize menuimagelist methods minsize name opened pointer
properties scale self size sourceformats targetformats tie units visible where winptr

Methods

Click Clienttoscreen Close Create Delete Draw Focus Hide New Open Paint Resize Screentoclient
Send Set Show Trigger Wait

Callbacks

onClick onClose onDblClick onDestroy onDragDrop onDragEnd onDragEnter onDragLeave

onDragOver onDragStart onFocus onHide onMenu onMouseDown onMouseMove onMouseUp
onMove onOpen onPaint onResize onSend onShow onUnFocus

APLX System Classes & User-Interface Programming 59

Document

Description

The Document class implements a special window for displaying and editing text. It is equivalent to

an ordinary Window with a built-in multi-line edit control.

The text displayed in the window is represented by the text property, and the font used by the font

property. Other text-edit properties include selection, seltext and canundo. Related methods are

Cut, Clear, Paste and Undo.

You can optionally install an onChange callback to detect when the user edits the text.

Example

 ↔DEMO_Document;DEMO
[1] ⍝ Sample function demonstrating use of the Document object
[2] DEMO←'⎕' ⎕NEW 'Document' ⊦ DEMO.scale←3
[3] DEMO.title←'Document Example'
[4] DEMO.Font('Arial' 12 1)
[5] DEMO.Text 'You can edit this text (if you must).'
[6] DEMO.where←10 10
[7] DEMO.size←130 250
[8] ⍝
[9] ⍝ Wait for the user to close the window
[10] 0 0⍴⎕WE DEMO
 ↔

Properties

align anchors aquaadjust autodraw border canundo caption children class color data doublebuffered

dragsource droptarget enabled events extent font maxsize menuimagelist methods minsize name

opened pointer properties scale selection self seltext size sourceformats targetformats text tie units
visible where winptr

Methods

Clear Click Clienttoscreen Close Copy Create Cut Delete Focus Hide New Open Paint Paste Resize

Screentoclient Send Set Show Trigger Undo Wait

Callbacks

onChange onClick onClose onDblClick onDestroy onDragDrop onDragEnd onDragEnter

onDragLeave onDragOver onDragStart onFocus onHide onMenu onMouseDown onMouseMove
onMouseUp onMove onOpen onPaint onResize onSend onShow onUnFocus

APLX System Classes & User-Interface Programming 60

Edit

Description

Where the user is expected to enter text, you typically use an Edit object. Depending on the style

property, this can be single- or multi-line, and can optionally be read-only.

The text in an Edit object is all displayed in the same font, size, style and color. (If you want to allow

multiple fonts, styles, sizes and colors, use the RichEdit control instead).

At any time, the text property contains the displayed text; it can be set either under program control

(for example, to set up an initial default) or by the user typing. In addition, the selection property

allows you to get or set the position of the cursor and the text selection position. If you want to restrict

the maximum number of characters entered, use the limit property.

You can set the font, color and enabled properties for special effects. The border property for Edit
texts defaults to 1, which means that a border is drawn. If you do not want this, set it to 0.

The style property for an edit control is the sum of a set of flags:

 1 = Centered
 2 = Right justified
 4 = Multiline
 16 = Vertical scroll bar
 32 = Inhibit auto horizontal scroll (i.e. word wrap if multiline)
 64 = Horizontal scroll bar
 1024 = Show selection even when control does not have focus (Windows only)
 4096 = Read only
 8192 = Allow Enter chars (multi-line only)
 131072 = Allow Tab characters to be input, instead of tabbing to next control
 262144 = Disable unnecessary scroll bars instead of removing them (MacOS only)

To provide help text when the user moves the mouse pointer over the control and pauses, you can use

the tooltip property.

The Cut, Copy and Paste methods can be used to cut and paste to and from the clipboard.

There are several callbacks which are often used for Edit text objects. These include:

onClick: Invoked when the cursor position or text selection is changed

onChange: Invoked when the text is modified

onFocus: The Edit text object has got input focus

onUnfocus: The object has lost focus (often used to validate user input)

APLX System Classes & User-Interface Programming 61

onLimit: The user has attempted to enter more characters than allowed by the limit property

Example

 ↔DEMO_Edit;DEMO
[1] ⍝ Sample function demonstrating use of the Edit object
[2] DEMO←'⎕' ⎕NEW 'Dialog' ⊦ DEMO.title←'Edit Example'
[3] DEMO.myEdit.New 'Edit' ⊦ DEMO.myEdit.where←2 1
[4] DEMO.myEdit.text←'Some sample text'
[5] ⍝
[6] ⍝ Wait for the user to close the window
[7] 0 0⍴⎕WE DEMO
 ↔

Properties

align anchors aquaadjust autodraw border canundo caption children class color data doublebuffered

dragsource droptarget enabled events extent font handle limit maxsize methods minsize name opened

order pointer properties scale selection self seltext size sourceformats style tabstop targetformats text

tie units visible where winptr

Methods

Clear Click Clienttoscreen Close Copy Create Cut Delete Draw Focus Hide New Open Paint Paste
Resize Screentoclient Send Set Show Trigger Undo

Callbacks

onChange onClick onClose onDblClick onDestroy onDragDrop onDragEnd onDragEnter

onDragLeave onDragOver onDragStart onFocus onHide onKeyDown onKeyPress onKeyUp
onMouseDown onMouseMove onMouseUp onOpen onSend onShow onUnFocus

APLX System Classes & User-Interface Programming 62

Form

Alternative name: Window

Description

The Form (or Window) object is a standard window, on which can be placed other objects (such as

buttons, pictures, or edit text fields). You can determine whether or not it is resizable, has close and

zoom boxes, and the appearance of the title bar, by setting the border property when you create the

window. The basic border styles are:

 0 No border
 1 Standard document window, window not resizable
 2 Resizable document window
 3 Modal-dialog style window
 4 Movable modal-dialog style window
 5 Thin title-bar, non-resizable window
 6 Thin title-bar, resizable window

The optional flags which you can add to these basic values are:

 16 Window includes a Close box
 64 Window includes a Zoom box (under MacOS)
 or Minimize/Maximize controls (under Windows or Linux)

You cannot include a Close box if the basic border type is 0, and you cannot include a Zoom box if it
is 0, 5 or 6.

Note that, under Linux, the Window Manager determines how the request for a particular border will

be interpreted, so the border style you ask for may not be honored. Under some Window Managers,
windows are always resizable.

The default value is 2+16+64 = 82 for a Window object.

Window properties

The other main properties of a Window which you are likely to use are:

title: The title which appears in the Window's title bar.

visible: Allows you to make the window visible or invisible

scale: Determines the units used to place controls in the window (inherits from the System object

scale when the window is created).

size: The height and width of the window, in the window's own scale.

APLX System Classes & User-Interface Programming 63

where: The position and size of the window, in the scale of the System object.

maxsize: Allows you to specify the maximum size of the window

minsize: Allows you to specify the minimum size of the window

bitmap: Read-only property which returns a matrix of the pixels which make up the displayed

window's contents. (Not implemented under Linux. Under MacOS 9, valid only if the window is
completely visible on screen.)

Window methods

Methods which are useful include:

Open: Open a window which you have previously closed

Close: Close a window, either conditionally or unconditionally

Wait: Makes the window modal (see below)

Draw: Draws geometric shapes and text on the window

Window events

The event handler (callback) properties which are particularly relevant to Window objects are:

onResize: Invoked when the user changes the window's size

onFocus: Invoked when the window gets focus (is activated)

onClose: Invoked when the user wants to close the window

onDestroy: Invoked when the window is destroyed

Creating and Opening of Windows

In order to avoid lots of drawing and moving while creating a window and its child objects, it is

always initially created in a hidden state. It is shown (unless explicitly hidden) on the first of the
following:

 APL requests input

 You call ⎕WE, or (under MacOS) one of the APLX library functions GETEVENT, WAITEVENT or
GETEVENTS

 You create another window

 You explicitly open it using the Open or Show methods

APLX System Classes & User-Interface Programming 64

Using windows as modal dialogs

The Wait method makes the window display in modal form, i.e. other windows of your application are

disabled until the window has closed. For modal dialogs, you should consider using the Dialog object,

which is a special case of the Form object in which the borders and background automatically take on

the appropriate appearance for a modal dialog on the system on which APLX is running.

Deleting windows

In order to free up memory used by an object, you must ensure it is deleted when you have finished

with it. If you created it using ⎕NEW, it will be deleted automatically when the last reference to it is

erased from the workspace. (In the example below, this will happen automatically when the function

ends, because the variable DEMO which hold the reference to the window is localized).

If you created the window using ⎕WI, there is no explicit reference to the window held in the

workspace, so it will not be deleted automatically until the APLX session ends. You therefore need to

delete it explicitly, using the Delete method (note that this is not the same as closing the object). You

normally only need to do this for the window itself, since all child objects on the window are

automatically deleted when you delete the parent.

As a convenience, windows which have no onClose callback defined are automatically deleted if the

user closes the window. If you still have a reference to the window in the workspace because you
created it using ⎕NEW, the reference will become a reference to an 'Unknown object'.

Example

 ↔DEMO_Form;DEMO
[1] ⍝ Sample function demonstrating use of the Form object
[2] ⍝ Set border to 5 (for thin title) plus 16 (Close box)
[3] DEMO←'⎕' ⎕NEW 'Form' ⊦ DEMO.border←(5+16)
[4] DEMO.title←'Form Example'
[5] DEMO.where←4 4
[6] ⍝
[7] ⍝ Wait for the user to close the window
[8] 0 0⍴⎕WE DEMO
 ↔

Properties

align anchors aquaadjust autodraw bitmap border caption children class color data doublebuffered

dragsource droptarget enabled events extent handle maxsize menuimagelist methods minsize name
opened pointer properties scale self size sourceformats targetformats tie units visible where winptr

Methods

Click Clienttoscreen Close Create Delete Draw Focus Hide New Open Paint Resize Screentoclient
Send Set Show Trigger Wait

APLX System Classes & User-Interface Programming 65

Callbacks

onClick onClose onDblClick onDestroy onDragDrop onDragEnd onDragEnter onDragLeave

onDragOver onDragStart onFocus onHide onMenu onMouseDown onMouseMove onMouseUp
onMove onOpen onPaint onResize onSend onShow onUnFocus

APLX System Classes & User-Interface Programming 66

Frame

Description

The Frame class implements a frame or group box in which you can create other controls as children.

This is typically used in dialogs to group together a set of controls. For example, a set of radio buttons

defined in a Frame object form a single group in which only one radio button can be selected at a time;
a different set of radio buttons in a different Frame object will form a separate, independent group.

You can also use a Frame to contain a set of controls, such as Buttons or ToolButtons, which you want

to move together on the window (for example, so they act as a toolbar which can be positioned along
the top or bottom of the window).

Whether the group box title (caption property) is shown depends on the style property. If style is

0, the caption is shown. If style is 1, it is not.

If you want to display geometric shapes and draw text on the frame, you can use the Draw method.

Example

 ↔DEMO_Frame;DEMO
[1] ⍝ Sample function demonstrating use of the Frame object
[2] DEMO←'⎕' ⎕NEW 'Dialog' ⊦ DEMO.scale←1 ⊦ DEMO.size←18 24
[3] DEMO.title←'Frame Example'
[4] ⍝ Create a frame with a caption and some radio buttons
[5] DEMO.Frame1.New 'Frame' ⊦ DEMO.Frame1.where←5 1 8 22
[6] DEMO.Frame1.caption←'Radio buttons'
[7] DEMO.Frame1.R1.New 'Radio'
[8] DEMO.Frame1.R1.caption←'Option 1' ⊦ DEMO.Frame1.R1.where←1.5 1 2 20
[9] DEMO.Frame1.R2.New 'Radio'
[10] DEMO.Frame1.R2.caption←'Option 2' ⊦ DEMO.Frame1.R2.where←3.5 1 2 20
[11] DEMO.Frame1.R3.New 'Radio'
[12] DEMO.Frame1.R3.caption←'Option 3' ⊦ DEMO.Frame1.R3.where←5.5 1 2 20
[13] ⍝ Create a second frame with no caption, and some action buttons
[14] ⍝ which will align it to top or bottom of window
[15] DEMO.Frame2.New 'Frame'
[16] DEMO.Frame2.style←1 ⊦ DEMO.Frame2.size←4 0 ⊦ DEMO.Frame2.align←1
[17] DEMO.Frame2.B1.New 'Button'
[18] DEMO.Frame2.B1.caption←'Top' ⊦ DEMO.Frame2.B1.where←1 1 2 10
[19] DEMO.Frame2.B1.onClick←"DEMO.Frame2.align←1"
[20] DEMO.Frame2.B2.New 'Button'
[21] DEMO.Frame2.B2.caption←'Bottom' ⊦ DEMO.Frame2.B2.where←1 12 2 10
[22] DEMO.Frame2.B2.onClick←"DEMO.Frame2.align←3"
[23] ⍝
[24] ⍝ Wait for the user to close the window
[25] 0 0⍴⎕WE DEMO
 ↔

APLX System Classes & User-Interface Programming 67

Properties

align anchors aquaadjust autodraw caption children class color data doublebuffered dragsource

droptarget enabled events extent font handle maxsize methods minsize name opened order pointer
properties scale self size sourceformats style tabstop targetformats tie units visible where winptr

Methods

Click Clienttoscreen Close Create Delete Draw Focus Hide New Open Paint Resize Screentoclient
Send Set Show Trigger

Callbacks

onClick onClose onDblClick onDestroy onDragDrop onDragEnd onDragEnter onDragLeave

onDragOver onDragStart onFocus onHide onKeyDown onKeyPress onKeyUp onMouseDown
onMouseMove onMouseUp onOpen onSend onShow onUnFocus

APLX System Classes & User-Interface Programming 68

GetMail

Description

The GetMail object allows your APLX applications to retrieve and manipulate e-mail messages on a

mail server, using the POP3 protocol supported by most Internet Service Providers (ISPs) for reading

e-mails. (A more complex protocol, IMAP, is sometimes used instead, but is not currently supported

by APLX.) It complements the SendMail object, which can be used to send e-mails from your APLX

application.

You can use the GetMail object for a number of purposes. For example, you might have an APLX

application for which you set up a special mailbox, to which data is sent in e-mail form, analysed, and

the reply sent back automatically using the SendMail object. Or you might use it to help process and

organise your standard personal e-mails in a way which is more sophisticated than that provided by

the filtering and scripting rules provided by ordinary mail programs such as Microsoft's Outlook

Express; this might include automatically deleting certain unwanted e-mails before they are
downloaded from the server.

Connecting to the mail server

The GetMail object should be created as a top-level object, i.e. not as the child of a Window or other

control. You then need set up the following properties, to define the address of the POP3 mail server

you are using, your username, and your password (all this information should be available from your
ISP or network administrator):

host: This is a character vector, to which you should assign the Internet address of the POP3 server. It

can be specified either as a domain name (such as 'pop3.myisp.com'), or directly as an internet node

address (such as '168.9.211.53').

port: You can use this property to change the port used by the POP3 connection. For most
applications you should leave this set to the default value of 110.

user: The user name for the account should be assigned to this property.

password: The password for the account should be assigned to this property.

You will probably also want to set up the path property. This is a character vector specifying the
directory where APLX should place any attachments associated with messages you download.

Next, you need to call the Open method, which establishes the connection with the server. (Note:

Whilst you have this connection open, the mailbox will be locked. You should aim to close the

connection as soon as you can; if you fail to do so, the POP3 server will eventually time out, close the

connection, and abort any pending requests to delete messages). The Open method returns an integer

APLX System Classes & User-Interface Programming 69

scalar, which indicates whether the connection succeeded. The returned value will be one of 0 = OK, 1
= Could not find host, 2 = Authentication error (i.e. incorrect username or password), 3 = Other error.

For example:

 Mail1←'⎕' ⎕NEW 'GetMail'
 Mail1.host←'pop3.supernet.com'
 Mail1.user←'microapl'
 Mail1.password←'secret'
 Mail1.Open
0

Retrieving information about available messages

Once you are successfully connected to the POP3 server, the following read-only properties give

information about the messages available for download:

count: The count of messages on the server, as an integer scalar.

messages: Returns a nested matrix describing the messages on the server, with one row per message.
The columns (in Index Origin 1) are:

1. The 'From' field, i.e. the sender of the message, as a character vector.

2. The 'To' field, i.e. the recipient or recipients of the message, as a character vector. If there are

more than one, they will delimited by commas.

3. The 'Date' field, as a character vector, in the format 'Fri, 14 Jan 2005 10:31:00 +0000'.

4. The 'Subject' field, as a character vector.

5. The Size of the message in bytes, as an integer.

6. A Boolean scalar indicating whether the message has multiple parts.

7. The unique Message ID, as a character vector.

The messages are listed in order, so you can retrieve them by index position using the GetMessage or

GetSummary methods. Message indices always start at 1, so the e-mail associated with the first row of

the messages matrix can be retrieved as message number 1.

Retrieving individual messages or headers

Whilst you have the POP3 connection open, you can retrieve the full contents of an individual

message (into properties of the GetMail object) by calling the GetMessage method. Alternatively, you

can call the GetSummary method which retrieves the message headers only, and thus executes much

faster, especially if the message is long or has large attachments. Both methods take an integer scalar

argument, which is the index (in origin 1) of the message you want to retrieve. (This will be a number

in the range 1 to the value of the count property, or the number of rows in the messages property).

APLX System Classes & User-Interface Programming 70

Having successfully called GetMessage or GetSummary, you can then access the following read-only
properties, which will now contain details of the retrieved e-mail message:

Valid after calling either GetMessage or GetSummary:

subject: The subject of the e-mail, as a character vector.

from: The e-mail address of the sender of the e-mail, as a character vector.

id: The ID of the e-mail, as a character vector. This can be used to identify the e-mail. If the Internet

mailing standards have been followed correctly, this should be unique to this particular e-mail

message.

header: The raw header of the e-mail, formatted as a character vector, with embedded carriage return

(⎕R) characters separating lines. Each item in the header comprises a keyword, ending in a colon,

followed by a text string which is the value associated with the keyword. See the description of the

header property for more details.

size: An integer scalar giving the size of the e-mail in bytes.

Valid after calling GetMessage only:

to: The recipients of the e-mail, specified as a comma-delimited list of e-mail addresses.

cc: The list of e-mail addresses to which the message is copied, specified as a comma-delimited list.

replyto: The e-mail address to which any reply to an e-mail should be sent. It is a simple character
vector.

date: The timestamp of an e-mail, as a character vector. It is normally formatted in the form 'Tue, 16

Nov 2004 12:17:40 +0000', where the last part is the offset from Greenwich Mean Time as HHMM.

body: The main text of the e-mail in plain text, as a simple character vector with carriage return (⎕R)

characters separating paragraphs. If the message has been correctly formatted by the program which

sent it, this property should always contain the plain-text version of the message. However, some e-
mail applications, and many senders of 'spam' (junk) mail, place HTML text here.

html: The main text of the e-mail as HTML, if the message as sent in HTML form. If the message was

sent in plain-text form only, this property will be an empty vector. (Note: You can write the HTML
text to a temporary file and use the Browser object to display it.)

attachments: A list of file names which correspond to the attachments of the mail message, as a

nested vector of file names. The GetMessage method will have retrieved the attachments and written

them out to these files. They will be placed in the directory specified by the path property. If there is a

name clash, i.e. an attachment has the same name as an existing file, APLX will append .1, .2 etc to

distinguish the different files. If for some reason the attachment cannot be written (for example, if the

APLX System Classes & User-Interface Programming 71

path property is invalid, or the disk is full), APLX will report a FILE I/O ERROR when you run the

GetMessage method.

For example, assuming you have a reference to a GetMail object in Mail1 and have successfully

connected to the server, the following function would fetch the Nth e-mail from the server, and display
the message in the Session window. Any attachments would also be retrieved and saved to local files.

 ↔GetMail N
[1] ⍝ Get and display message N
[2] Mail1.GetMessage N
[3] 'To: ',Mail1.to
[4] 'From: ',Mail1.from
[5] 'CC: ',Mail1.cc
[6] 'Subject: ',Mail1.subject
[7] 'Attachments: ',⍕Mail1.attachments
[8] 50⍴'-'
[9] Mail1.body
[10] 50⍴'-'
 ↔

Caution: Before calling the GetMessage method, consider whether you want the message to be

deleted, or left on the server, as described in the next paragraph.

Deleting messages on the server

The DeleteMessage method marks a message on the server for deletion. It takes an integer scalar
argument, which is the index number of the message to be deleted.

Alternatively, you can set the deleteonread property of the GetMail object to 1. This causes

messages which are retrieved using the GetMessage method to be marked for deletion automatically.

The server will not actually delete the messages until the session is successfully completed and you

call the Close method. If an error occurs, or if the connection is lost, the message will be left

untouched. They will also not be deleted if you call the Reset method.

Closing the connection

Finally, you should call the Close method to terminate the POP3 session. This releases the mailbox
lock, and causes the server to remove any messages which have been marked for deletion.

Error reporting and diagnostics

If an error occurs when calling the GetMessage or GetSummary methods, an APL I/O ERROR will be

generated. If an error occurs when the connection is being established using the Open method, it will

return a non-zero result, as described above. In either case, you can use the status property to find

out more about the error. This returns a two-element integer vector. The first element is 1 if the

connection to the POP3 server is active, else 0. The second element is the latest error code returned by

the underlying operating-system networking code. (See for example, the Windows documentation and
include file 'winsock.h' for details on these error codes.)

APLX System Classes & User-Interface Programming 72

Another useful diagostic tool is the serverreply property. This returns a character vector containing

the status message which the server sent back after a call such as GetMessage or Open. Usually it will

begin "+OK..." to indicate success, but if there is a problem (for example, if the mailbox is already
locked) it will contain an error message. This can comprise several lines, separated by carriage returns.

Other properties and methods

Reset: This is a method which takes no arguments. It resets the connection to the server. Any pending

deletes are cancelled.

timeout: This is an integer scalar property, which allows you to set the timeout for mail operations, in

milliseconds.

Example

 ↔DEMO_GetMail;host;user;password;errcode;messages;count;⎕IO;GM;W
[1] ⍝ Sample function demonstrating use of the GetMail object
[2] ⍝ To run this function, you need an Internet account with
[3] ⍝ a POP3 mail server, and you need to know the host name,
[4] ⍝ user name and password for this account.
[5] ⍝
[6] ⍝ Ask the user for the mail account details
[7] ⍞←'Enter mail server (POP3) host name: ' ⊦ host←⎕DBR⍞
[8] ⍞←'Enter user name: ' ⊦ user←⎕DBR⍞
[9] ⍞←'Enter password: ' ⊦ password←⎕DBR⍞
[10] ⍝
[11] ⍝ Create the GetMail object and set up connection details
[12] ⍝ Don't delete messages on the server when we read them
[13] GM←'⎕' ⎕NEW 'GetMail' ⊦ GM.deleteonread←0
[14] GM.host←host ⊦ GM.user←user ⊦ GM.password←password
[15] ⍝
[16] ⍝ Open the connection to the POP3 server
[17] errcode←GM.Open
[18] :If errcode≠0
[19] :Select errcode
[20] :Case 1
[21] 'Could not find host'
[22] :Case 2
[23] 'Authentication error'
[24] :Else
[25] 'Comms error, error code = ',⍕1↓GM.status
[26] :EndSelect
[27] :Return
[28] :EndIf
[29] ⍝
[30] ⍝ Get list of messages and display them in a Grid object
[31] ⎕IO←1
[32] count←GM.count
[33] :If count>0
[34] 'Fetching list of messages from server...'
[35] messages←GM.messages
[36] ⍝ Close connection as soon as possible
[37] ⍝ In a real application, you would fetch or delete selected messages here
[38] GM.Close
[39] ⍝
[40] W←'⎕' ⎕NEW 'Window' ⊦ W.caption←'Messages' ⊦ W.scale←5 ⊦ W.size←500 430
[41] W.Show

APLX System Classes & User-Interface Programming 73

[42] W.Grid.New 'Grid' ⊦ W.Grid.align←¯1
[43] W.Grid.headcols←0 ⊦ W.Grid.rows←count ⊦ W.Grid.cols←5
[44] W.Grid.colsize←(1⍴0)150
[45] W.Grid.text←(¯1)(⍳5)('From' 'To' 'Date' 'Subject' 'Size')
[46] W.Grid.value←(⍳count)(⍳5)(messages[;⍳5])
[47] ⍝ Wait for the user to close the window
[48] 0 0⍴⎕WE W
[49] :Else
[50] 'You have no messages available'
[51] ⍝ Close connection
[52] GM.Close
[53] :EndIf
[54] ⍝
 ↔

Properties

attachments body cc children class count data date deleteonread events from header host html id

messages methods name opened password path port properties replyto self size status subject tie

timeout to user

Methods

Close Create Delete Deletemessage Getmessage Getsummary New Open Reset Send Set Trigger

Callbacks

onClose onDestroy onOpen onSend

Licensing (Windows and Linux versions)

In the Windows and Linux versions of APLX, the GetMail object is based on the Indy networking
classes. The following notices apply to these versions:

Portions of this software are Copyright (c) 1993 - 2003, Chad Z. Hower (Kudzu) and
the Indy Pit Crew - http://www.IndyProject.org/.

THIS SOFTWARE IS PROVIDED BY Chad Z. Hower (Kudzu) and the Indy Pit Crew "AS IS'' AND

ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE

IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR

PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS

BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR

CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF

SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS

INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER

IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR

OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

APLX System Classes & User-Interface Programming 74

Grid

Introduction

The Grid object allows the display, optionally with editing, of two-dimensional data in a form similar

to that of a spreadsheet. By placing Grid objects on a Page object within a tabbed Selector, you can
add further dimensions to the data.

The Grid is made up of a rectangular array of cells, which can contain either text or numeric data. At
the top and left of the grid you can optionally have header (non-scrolling) cells.

In this example, we create a grid with 4 rows and 3 columns of scrolling (data) cells, and one row and
column of header cells:

 W←'⎕' ⎕NEW 'Window' ⊦ W.caption←'Grid example'
 W.Grid.New 'Grid' ⊦ W.Grid.align←¯1 ⊦ W.Grid.rows←4 ⊦ W.Grid.cols←3
 W.Grid.text (¯1) (⍳3) ('Jan' 'Feb' 'Mar')
 W.Grid.text (⍳4) (¯1) ('Europe' 'N. America' 'S. America' 'Asia')
 DATA←4 3⍴17.3 14.4 19.2 12.2 12.9 14.2 7.4 7.1 7.9 2.3 3 2.8
 W.Grid.value (⍳4) (⍳3) DATA

This produces the following effect:

Cell Properties

As well as ordinary properties, a Grid object has properties which are associated with individual cells,

known as cell properties. In the example above, we have used the text cell property to set the text

within the header cells. We have also used the value cell property to set the contents of the data

(scrolling) cells, in this case to be numbers. Cell properties are set with the special dot-notation syntax
(rather as though they were methods):

 WindowRef.ControlName.PropertyName Rows Cols Array

where Rows is a scalar or vector of the row indices you want to change, Cols is a scalar or vector of

the column indices you want to change, and Array is an array of the data you want to assign to the

cells. As with normal APL indexed assignment, the shape of Array must match the number of rows

and columns specified, or be a scalar (in which case the data is assigned to all the cells specified). If

APLX System Classes & User-Interface Programming 75

either Rows or Cols has only one element, a vector can be used for Array instead of a one-row or one-
column matrix.

If you are using the older ⎕WI syntax, the equivalent is:

 'WindowName.ControlName' ⎕WI 'PropertyName' Rows Cols Array

The syntax for reading back cell properties is similar, simply omitting the Array parameter:

 R←WindowRef.ControlName.PropertyName Rows Cols

or the equivalent

 R←'WindowName.ControlName' ⎕WI 'PropertyName' Rows Cols

The result will be an array of shape (⍴Rows) (⍴Cols)

Rows and columns in the data (scrolling) region are numbered starting from 1. Rows and columns in

the header (non-scrolling) region are numbered ¯1, ¯2 etc, where ¯1 means the row or column

nearest to the data area. In some cases, you can specify a row or column of 0, which means 'apply to
the whole row/column'.

Using our example above:

 W.Grid.text (1 2) (¯1)
 Europe
 N. America

 ⎕DISPLAY W.Grid.text (1 2) (¯1)
┌→─────────────┐
↓ ┌→─────┐ │
│ │Europe│ │
│ └──────┘ │
│ ┌→─────────┐ │
│ │N. America│ │
│ └──────────┘ │
└↕─────────────┘

 W.Grid.value (1 2) (1 3)
17.3 19.2
12.2 14.2

or, using ⎕WI syntax, something like this (assuming Win is the name of the window):

 'Win.Grid' ⎕WI 'text' (1 2) (¯1)
 Europe
 N. America
 'Win.Grid' ⎕WI 'value' (1 2) (1 3)
17.3 19.2
12.2 14.2

APLX System Classes & User-Interface Programming 76

Numeric versus Text cells

Each cell can be of type Text or Numeric. Text cells contain simply character vectors; when you read

either the text or value property of the cell, you get the text shown in the cell, possibly edited by the
user, as a character vector.

Numeric cells contain numbers. If you read the value property of a Numeric cell, you get a numeric

scalar, which is the current value of the cell. If the cell does not currently contain a valid number

(because the user has edited it), you get a special numeric value to indicate an invalid number (by

default this is a very large negative number; you can change it using the conversionerrorvalue

property). If you read the text property of the cell, you get the actual text shown in the cell, which is

usually the text representation of the cell∇s value, but may be different if it has been edited by the user

and is not a valid value. You can also read the valid cell property, which tells you whether the cell
contains a valid value.

With our example above:

 W.Grid.valid (1 2) (1 3)
1 1
1 1

 ⎕DISPLAY W.Grid.value (1 2) (1 3)
┌→────────┐
↓17.3 19.2│
│12.2 14.2│
└~────────┘

 ⎕DISPLAY W.Grid.text (1 2) (1 3)
┌→──────────────┐
↓ ┌→───┐ ┌→───┐ │
│ │17.3│ │19.2│ │
│ └────┘ └────┘ │
│ ┌→───┐ ┌→───┐ │
│ │12.2│ │14.2│ │
│ └────┘ └────┘ │
└↕──────────────┘

In this example, the text property returns a 2 by 2 nested array of character vectors, but the value
property returns a 2 by 2 numeric matrix.

Initially, all cells default to type Text. A cell becomes of type Numeric if you write a numeric value to

its value property, or if you write a format string to its format property, which determines how it is
formatted in the cell.

Properties of the Grid object

style: (Integer) The style property is the sum of a set of flags which determine how the Grid

behaves:

 1 If set, user can select a range of cells (Default: Off)
 To allow the mouse to be used to select the range,
 you should also set autoeditstart to 0.

APLX System Classes & User-Interface Programming 77

 2 If set, a whole row is selected together (Default: Off)

 4 If set, user can use the Tab key to move between cells (Default: On)

 8 Reserved

 16 If set, vertical scroll bar is shown if the Grid's contents will not
 fit between the top and bottom of the visible area (Default: On)

 32 Reserved

 64 If set, horizontal scrollbar is shown if the Grid's contents will not
 fit between the left and right of the visible area (Default: On)

 128 If set, user can re-size rows (Default: Off)

 256 If set, user can re-size columns (Default: On)

 512 If set, user can move rows to re-arrange their order (Default: Off)

 1024 If set, user can move columns to re-arrange their order (Default: Off)

 2048 If set, the contents of the grid update as the scroll-bar is moved
 (Default: Off. Under MacOS, this flag is ignored since the grid
 always updates immediately).

 4096 If set, unnecessary scroll bars are disabled instead of being
 hidden (MacOS only)

borderstyle: (Integer) The borderstyle property is the sum of a set of flags which determine the

appearance of the Grid (the defaults are all On):

 1 Header cells have separator horizontal line

 2 Header cells have separator vertical line

 4 Data cells have separator horizontal line

 8 Data cells have separator vertical line

 16 Use 3D effect (Windows and MacOS only, ignored under Linux)

autoeditstart: (Integer) Determines whether the data in the Grid can be edited, and if so how the

edit process starts. It can be one of:

 0 Editing of a cell is possible only when the program calls Editstart

 1 Editing is automatically enabled when the cell is selected; the user
 can immediately type

 2 The user must press Enter (or, under Windows and Linux, F2) to start
 editing a cell

The default is 1.

APLX System Classes & User-Interface Programming 78

color or colour: (1, 2, 3 or 6 element numeric) The color or colour property for a Grid is set in the

same way as for other controls. The foreground color you set determines the default color of the text

shown in the Grid (you can change this for individual cells using the colortext cell property). The

background color is used as the background for the data part of the Grid (you can change this for

individual cells using the colorback cell property).

colorhead or colourhead: (1 or 3 element numeric) The colorhead or colourhead property for a

Grid can be set as either a single RGB encoded integer (256 ⊥ Blue Green Red) or as three Red Green

Blue values, each 0 to 255. It determines the background color used for header cells. The special value

¯1 means use the Grid control's foreground color. The special value ¯2 means use the default (light
gray).

font: (Character vector or nested vector) The font for a Grid is set in the same way as for other

controls. It determines the default font for the text shown in the Grid. You can change the font style

for individual cells using the fontstyle cell property.

conversionerrorvalue: (Floating-point number) Value to return if a numeric cell cannot be

converted to valid number. The default is a large negative number.

gridlines: (Boolean) Determines whether the grid lines within the data area are visible. (Default 1)

headcols: (Integer) The number of heading (fixed) columns (Default 1). You typically set this

property when you create the grid (before setting the cols property).

headrows: (Integer) The number of heading (fixed) rows (Default 1). You typically set this property

when you create the grid (before setting the rows property).

cols: (Integer) The number of data (scrolling) columns. You typically set this property when you

create the Grid to fit the size of the data you want to display.

rows: (Integer) The number of data (scrolling) rows. You typically set this property when you create

the Grid to fit the size of the data you want to display.

col: (Integer) The Column number (in index origin 1) of the currently-active cell. You can write to

this property to change the current cell.

row: (Integer) The Row number (in index origin 1) of the currently-active cell. You can write to this

property to change the current cell.

activecell: (2-element integer vector) The Row and Column of the currently-active cell. You can

write to this property to change the current cell.

text: (Character vector) Although text is a cell property for a Grid object, as a convenience you can

read (but not write to) text as a simple property of the Grid object. It returns the text of the currently-
active cell.

APLX System Classes & User-Interface Programming 79

value: (Character vector or numeric scalar) Although value is a cell property, as a convenience you

can read (but not write to) value as a simple property of the Grid object. It returns the value of the

currently-active cell. If the cell is a text cell, it will return a character vector. If it is a numeric cell, it

will return the numeric value of the cell, or (if the cell is invalid) the current conversionerrorvalue.

selection: (4-element integer vector) The Row and Column of the top-left of the selected cell range,

followed by the number of rows selected and the number of columns selected. If the style property is

set so that only single-selection is possible (which is the default), the last two elements will both be
one. You can write to this property to change the selection under program control.

view: (4-element integer vector) Determines the visible portion of the grid. The four elements are the

First visible row, First visible column, Number of visible Rows, Number of visible columns. You can

write to this property to scroll the grid under program control (only the first two elements are
required).

firstvisible: (2-element integer vector) Determines the top-left position of the visible portion of the

Grid. It is the same as the first two elements of the view property.

imagesize: (Read-only, 2-element numeric vector) Returns the total height and width, in the

control∇s current scale, of all the cells in the Grid. This may be smaller than or larger than the height
and width of the visible Grid control itself.

Cell properties of the Grid object

These are all set using the syntax:

 WindowRef.ControlName.PropertyName Rows Cols Array

and read using the syntax:

 R←WindowRef.ControlName.PropertyName Rows Cols

value: (Each cell element is a character vector or numeric scalar) Read or set cell values.

When you read this cell property for a Grid object, it returns a character vector for each Text cell and a

numeric scalar for each Numeric cell, for each cell in the list of rows and columns specified. If a

Numeric cell is invalid, it will return the current conversionerrorvalue. If you read a set of cells

some of which are Numeric and some Text, it will return a nested array containing a mixture of

character vectors and numeric scalars. If you read a set of cells all of which are Numeric, it will return
a simple numeric array.

When you write to this cell property for a Grid object, it sets the value for each cell in the list of rows

and columns specified. If you supply a number for a cell, that cell becomes a Numeric cell. If you

supply a character vector or scalar, it becomes a Text cell. Writing to a cell also causes its valid
property to be set to 1.

text: (Each cell element is a character vector) Read or set cell text.

APLX System Classes & User-Interface Programming 80

When you read this property, it returns a character vector containing the text displayed in the cell,

irrespective of the cell∇s type, for each cell in the list of rows and columns specified. For multiple
cells, it will therefore return a nested array of character vectors.

When you write to this property, the text displayed in the cell is set to the text you supply. To set

multiple cells in one operation, provide a nested array of character vectors. The type of the cell, and

the cell∇s valid property, are not changed. If the cell is Numeric, it will remain so, and its value will
not change.

Note: The text in the cell can contain embedded carriage-return (⎕R) characters, which results in the
text being displayed on multiple lines. In this case, you may need to increase the row height.

valid: (Each cell element is a Boolean scalar, read-only) Returns 1 if the cell is valid, and 0 if it is

invalid. Text cells are always valid. Numeric cells may be invalid if the user has edited the text.

allowselection: (Each cell element is a Boolean scalar) If this is set to 1 (default), the cell can be

selected. If it is set to 0, the cell cannot be selected.

textalign: (Each cell element is an integer scalar) Determines how the text is aligned within the cell.

The value is the sum of two numbers. The horizontal alignment is 1 for left, 2 for right, or for 4 center.

The vertical alignment is 8 for top, 16 for bottom, or 32 for center. The default value depends on the

type of the cell. Header cells default to centered in both directions (4 + 32 = 36). Text cells in the data
area default to top, left (1 + 8 = 9). Numeric cells default to top, right (2 + 8 = 10).

colortext or colourtext: (Each cell element is an integer scalar) Determines the color of text in the

cell. The value is a color expressed as a numeric scalar (256 ⊥ Blue Green Red). The special value of
¯1 means use the Grid foreground color for this cell; this is the default.

colorback or colourback: (Each cell element is an integer scalar) Determines the background color

for the cell (when it is not selected). The value is a color expressed as a numeric scalar (256 ⊥ Blue

Green Red). The special value of ¯1 means use the Grid background color for this cell; this is the
default.

fontstyle: (Each cell element is an integer scalar) Determines the style of the text within the cell.

The value is the sum of:

 0 Plain
 1 Bold
 2 Italic
 4 Underlined
 8 Hollow (supported under MacOS only)
 16 Strikeout (not supported under MacOS)

The special value of ¯1 means use the default font style of the Grid.

format: (Each cell element is a character vector) Determines the format used to display numeric

values. You can specify separate formats for positive, negative and zero numbers. See the description

of the format cell property for details of the format strings.

APLX System Classes & User-Interface Programming 81

Setting this value automatically sets the cell type to Numeric.

Row and Column sizes

You can set the size of the rows and columns using the rowsize and colsize properties, as follows:

 WindowRef.ControlName.rowsize Rows Sizes
 WindowRef.ControlName.colsize Cols Sizes
or:
 'WindowName.ControlName' ⎕WI 'rowsize' Rows Sizes
 'WindowName.ControlName' ⎕WI 'colsize' Cols Sizes

where Rows or Cols is a scalar or vector list of row/column numbers, and Sizes is a matching vector

(or scalar) of the row/column sizes in pixels. A row or column number of 0 sets the default size for all

rows or columns which are not explicitly set. Note: At least one of Rows/Cols and Sizes parameters

must be a vector, otherwise the statement will be interpreted as an attempt to read back the current
sizes.

You can read back the current sizes using the syntax:

 R ← WindowRef.ControlName.rowsize Rows
 R ← WindowRef.ControlName.colsize Cols
or:
 R ← 'WindowName.ControlName' ⎕WI 'rowsize' Rows
 R ← 'WindowName.ControlName' ⎕WI 'colsize' Cols

Note that, depending on the flags you have set in the style property, the user may be able to resize

rows and columns.

Methods for the Grid object

EditStart: This method takes no arguments. It initiates an editing session on the currently-active cell.

It is useful mainly if you have set the autoeditstart property to 0. For example, you might initiate

an edit session for certain cells only (in response to an onSelChange event).

DeleteCols and DeleteRows: These methods take an argument which is a vector of rows or columns

to be deleted. After they have been deleted, the remaining rows or columns are re-numbered to form
an integer sequence starting at 1.

InsertCols and InsertRows: These methods take an argument which is a vector of positions at

which you wish to insert new rows or columns. You can specify integers (for example 5 means 'insert

before the current row/column 5'), or non-integers (for example 4.5 means 'insert between the current

row/column 4 and 5'). After the insertion, the rows or columns are re-numbered to form an integer

sequence starting at 1. Thus, if you insert at 5 and 6, the new rows/columns become numbers 5 and 7.
To insert three new rows/columns before the current second one, specify 2 2 2.

Pointtocell: Converts a point on the visible Grid control to cell row/column.

APLX System Classes & User-Interface Programming 82

Callbacks for the Grid object:

onChange: This event is triggered when the user has edited the contents of a cell. The event-specific

parameters in ⎕EV are (in index origin 1):

 ⎕EV[6] Row number of the edited cell
 ⎕EV[7] Column number of the edited cell
 ⎕EV[8] Flag to indicate whether the contents were valid

onColMoved: This event is triggered when the user has moved a column by dragging it to a different

position in the grid. (This is possible only if the style property includes the flag 1024, column
moving allowed). The event-specific parameters in ⎕EV are (in index origin 1):

 ⎕EV[6] Column number before the move
 ⎕EV[7] The position of the column after the move

onRowMoved: This event is triggered when the user has moved a row by dragging it to a different

position in the grid. (This is possible only if the style property includes the flag 512, row moving
allowed). The event-specific parameters in ⎕EV are (in index origin 1):

 ⎕EV[6] Row number before the move
 ⎕EV[7] The position of the row after the move

onColSized: (MacOS only) This event is triggered when the user has resized a column. (This is

possible only if the style property includes the flag 256, column re-sizing allowed). The event-
specific parameters in ⎕EV are (in index origin 1):

 ⎕EV[6] Column number

onRowSized: (MacOS only) This event is triggered when the user has resized a row. (This is possible

only if the style property includes the flag 128, row re-sizing allowed). The event-specific
parameters in ⎕EV are (in index origin 1):

 ⎕EV[6] Row number

onScroll: This event is triggered when the user has scrolled the Grid control.

onSelChange: This event is triggered when the user selects a new cell. The event-specific parameters

in ⎕EV are (in index origin 1):

 ⎕EV[6] Row number of the newly-selected cell
 ⎕EV[7] Column number of the newly-selected cell

Example

 ↔DEMO_Grid;DATA;SIZE;Demo
[1] ⍝ Sample function demonstrating use of the Grid object
[2] ⍝
[3] ⍝ Create basic Grid control, without automatic edit
[4] Demo←'⎕' ⎕NEW 'Window' ⊦ Demo.caption←'Grid example' ⊦ Demo.scale←5
[5] Demo.Grid.New 'Grid' ⊦ Demo.Grid.align←¯1 ⊦ Demo.Grid.autoeditstart←2
[6] Demo.Grid.rows←4 ⊦ Demo.Grid.cols←3

APLX System Classes & User-Interface Programming 83

[7] ⍝
[8] ⍝ Add headings (text cell properties)
[9] Demo.Grid.text (¯1) (¯1) ('Profit')
[10] Demo.Grid.text (¯1) (⍳3) ('Jan' 'Feb' 'Mar')
[11] Demo.Grid.text (⍳4) (¯1) ('Europe' 'N. America' 'S. America' 'Asia')
[12] ⍝
[13] ⍝ Insert data (numeric cell properties)
[14] DATA←4 3⍴17.33 14.41 19.21 12.2 12.94 14.23 7.4 7.17 7.92 ¯2.32 ¯3.03 ¯2.85
[15] Demo.Grid.value (⍳4) (⍳3) DATA
[16] ⍝
[17] ⍝ Add format strings for the numbers, different for positive/negative
[18] Demo.Grid.format (⍳4) (⍳3) (⊂'$#.00M;($#.00M)')
[19] ⍝
[20] ⍝ Set some foreground colors for cells
[21] Demo.Grid.colortext (4) (⍳3) 255
[22] ⍝
[23] ⍝ Set header text styles
[24] Demo.Grid.fontstyle (¯1) (¯1) 1
[25] Demo.Grid.fontstyle (¯1) (⍳3) 2
[26] ⍝
[27] ⍝ Make the window fit snugly around the Grid control, with a small margin
[28] SIZE←Demo.Grid.imagesize
[29] Demo.size←(SIZE+4)
[30] ⍝
[31] ⍝ Wait for the user to close the window
[32] 0 0⍴⎕WE Demo
 ↔

Properties

activecell align anchors aquaadjust autodraw autoeditstart borderstyle caption children class col color

colorhead cols colsize conversionerrorvalue data doublebuffered dragsource droptarget enabled events

extent firstvisible font gridlines handle headcols headrows maxsize methods minsize name opened

order pointer properties row rows rowsize scale self size sourceformats style tabstop targetformats tie
tooltip units view visible where winptr

Cell Properties

allowselection colorback colortext fontstyle format text textalign valid value

Methods

Click Clienttoscreen Close Create Delete Deletecols Deleterows Draw Editstart Focus Hide Insertcols

Insertrows New Open Paint Pointtocell Resize Screentoclient Send Set Show Trigger

Callbacks

onChange onClick onClose onColMoved onDblClick onDestroy onDragDrop onDragEnd

onDragEnter onDragLeave onDragOver onDragStart onFocus onHide onKeyDown onKeyPress

onKeyUp onMouseDown onMouseMove onMouseUp onOpen onRowMoved onScroll onSelChange

onSend onShow onUnFocus

APLX System Classes & User-Interface Programming 84

Icon

Description

The Icon class allows you to display standard fixed images in your windows. It is used for the simple

icons defined for standard dialogs, by setting the icon property to a scalar integer as follows:

 0 = Stop
 1 = Alert
 2 = Note
 3 = Question

Under APLX for MacOS, you can also set the icon property to an arbitrary resource ID for an icon.

See also the Draw method which allows you to draw icons, pictures and bitmaps on your windows and

controls.

Example

 ↔DEMO_Icon;DEMO
[1] ⍝ Sample function demonstrating use of the Icon object
[2] DEMO←'⎕' ⎕NEW 'Dialog' ⊦ DEMO.title←'Icon Example'
[3] DEMO.myIcon.New 'Icon' ⊦ DEMO.myIcon.where←2 1
[4] DEMO.myIcon.icon←2
[5] ⍝
[6] ⍝ Wait for the user to close the window
[7] 0 0⍴⎕WE DEMO
 ↔

Properties

align anchors aquaadjust autodraw caption children class color data dragsource droptarget enabled

events extent icon maxsize methods minsize name opened pointer properties scale self size
sourceformats targetformats tie units visible where

Methods

Click Clienttoscreen Close Create Delete Hide New Open Paint Resize Screentoclient Send Set Show
Trigger

Callbacks

onClick onClose onDblClick onDestroy onDragDrop onDragEnd onDragEnter onDragLeave

onDragOver onDragStart onHide onMouseDown onMouseMove onMouseUp onOpen onSend
onShow

APLX System Classes & User-Interface Programming 85

HTTPClient

Description

The HTTPClient object allows your APLX applications to retrieve information over the internet using

the HTTP protocol used by the World Wide Web. For example, you can use it to download the HTML

text of a web page, or to download a binary file from a web site. It should be created as a top-level
object, i.e. not as the child of a Window or other control.

Using the Get method

The HTTPClient object is very easy to use. In most cases, all you need to do is call the Get method to

retrieve the data associated with a web address (URL). This takes as an argument a character vector

containing the URL to retrieve (e.g. 'http://www.microapl.co.uk/apl/index.html').

The result is a three element nested vector.

The first element is an integer scalar. If the web server was successfully contacted, this will be the

HTTP return code. A number in the range 200 to 299 indicates success. A number in the range 400 to

499 indicates an error, such as 404 meaning 'page not found'. (See below for a list of HTTP return

codes.) If the web server could not be contacted, for example because the server name was not found,

or your network connection has failed, the return code will be ¯1. In this case, the status property
will contain more details on the underlying error.

The second element is a character vector indicating the MIME type of the returned data, for example

'image/gif' or 'text/plain'.

The third element is a character vector containing the data. This will usually be the HTML text of the

web page (possibly with embedded carriage returns), translated to the APLX character set. For a

binary file or image, or any data for which the MIME type does not begin with 'text', it will be the

raw bytes returned by the web-server, without translation. If there is no data, or an error occurs, this
will be an empty vector.

For example:

 HTTP←'⎕' ⎕NEW 'HTTPClient'
 (errcode mimetype text) ← HTTP.Get 'http://www.microapl.co.uk/apl'
 errcode
200
 mimetype
text/html
 ⍴text
10254
 100↑text
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">

<!-- $$PAGE_TITLE$$='APLX<sup><small

APLX System Classes & User-Interface Programming 86

Using the Post and Head methods

The Post and Head methods are similar to Get, and have the same syntax, arguments, and result

structure. Post is used for HTML forms and pages where you need to send data to the web server; the

argument has the data appended to the URL separated by a question mark, with & substituted for

space (for example, 'http://www.blah.com?request=doit&code=101').

Head is the same as Get, except that it returns the HTTP header associated with the page, not the page

itself. For example:

 (errcode mimetype text) ← HTTP.Head 'http://www.microapl.co.uk/apl'
 errcode
200
 mimetype
text/html
 text
Server: Zeus/4.2
Date: Wed, 09 Feb 2005 12:19:41 GMT
Content-Type: text/html
Content-Length: 10437
Accept-Ranges: bytes
Last-Modified: Thu, 07 Oct 2004 11:35:34 GMT

Properties of the HTTPClient object

user and password: Set the user name and password for web pages which require login, as character
vectors.

style: An integer scalar, which is the sum of the codes 1 meaning 'Allow Cookies' and 2 meaning
'Allow Redirects'. The default is 3.

timeout: An integer scalar, which is the timeout value in milliseconds.

proxy: Some corporate networks may require you to send HTTP requests via a 'proxy server'. If this is

the case, you need to set the proxy property as a nested vector of (Proxy address) (Port number). Your

network administrator will be able advise on whether this applies to your network. The default is an
empty vector, meaning no proxy server is required.

referrer: This property contains the Referrer URL which will be passed to the web server when you

access a page using the HTTPClient object. It is typically used by web administrators to keep track of

the page which contained the link by which a given user reached the web-site. Normally you can leave
this as an empty vector.

status: (Read-only) This returns a two-element integer vector. The first element is reserved for future

use. The second element is the latest error code returned by the underlying operating-system

networking code. (See for example, the Windows documentation and include file 'winsock.h' for

details on these error codes.)

APLX System Classes & User-Interface Programming 87

url: (Read-only) This property contains the actual Uniform Resource Location (i.e. web page address)

which has just been retrieved. This may not be the same as the page you requested, because the request
may have been re-directed.

cookie: (Read-only) Once you have used the Get method to retrieve the a page from a web-site, this

property contains the text of any 'cookie' sent by the web server. It will be an empty vector if no

'cookie' was sent. Under Windows and Linux, the cookie will automatically be sent back to the web

server if you access the same site again, unless you have disallowed cookies using the style property.
Under MacOS, cookies are always disallowed.

HTTP Return Codes

Informational

100 Continue

101 Switching Protocols

Successful

200 OK

201 Created

202 Accepted

203 Non-Authoritative Information

204 No Content

205 Reset Content

206 Partial Content

Redirection

300 Multiple Choices

301 Moved Permanently

302 Moved temporarily

303 See Other

304 Not Modified

305 Use Proxy

306 (Unused)

307 Temporary Redirect

Client Error

400 Bad Request

401 Unauthorized

402 Payment Required

403 Forbidden

404 Not Found

405 Method Not Allowed

406 Not Acceptable

407 Proxy Authentication Required

408 Request Timeout

APLX System Classes & User-Interface Programming 88

409 Conflict

410 Gone

411 Length Required

412 Precondition Failed

413 Request Entity Too Large

414 Request-URI Too Long

415 Unsupported Media Type

416 Requested Range Not Satisfiable

417 Expectation Failed

Server Error

500 Internal Server Error

501 Not Implemented

502 Bad Gateway

503 Service Unavailable

504 Gateway Timeout

505 HTTP Version Not Supported

Example

 ↔DEMO_HTTPClient;errcode;mimetype;data;address;HTTP
[1] ⍝ Sample function demonstrating use of the HTTPClient object
[2] HTTP←'⎕' ⎕NEW 'HTTPClient'
[3] ⍞←'Enter web address (for example, http://www.bbc.co.uk): '
[4] address←⎕DBR ⍞
[5] (errcode mimetype data)←HTTP.Get address
[6] :If (errcode<200)∨(errcode>300)
[7] 'An error occurred, code = ',errcode
[8] :Else
[9] 'Got the page OK.'
[10] 'Asked for: ',address
[11] 'Actual URL: ',HTTP.url
[12] 'MIME Type: ',mimetype
[13] 'Size: ',⍕⍴data
[14] 'Cookie: ',HTTP.cookie
[15] :EndIf
 ↔

Properties

children class cookie data events methods name opened password properties proxy referrer self status
style tie timeout url user

Methods

Close Create Delete Get Head New Open Post Send Set Trigger

APLX System Classes & User-Interface Programming 89

Callbacks

onClose onDestroy onOpen onSend

Licensing (Windows and Linux versions)

In the Windows and Linux versions of APLX, the HTTPClient object is based on the Indy networking
classes. The following notices apply to these versions:

Portions of this software are Copyright (c) 1993 - 2003, Chad Z. Hower (Kudzu) and
the Indy Pit Crew - http://www.IndyProject.org/.

THIS SOFTWARE IS PROVIDED BY Chad Z. Hower (Kudzu) and the Indy Pit Crew "AS IS'' AND

ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE

IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR

PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS

BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR

CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF

SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS

INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER

IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR

OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

APLX System Classes & User-Interface Programming 90

Image

Description

This class implements a (possibly invisible) image-manipulation object, using the ImageMagick
TM

open-source package. It can be used to load images from file in over 90 different formats, transform
them, optionally draw on them from APLX, and save them, again in a wide range of different formats.

It can also be used to manipulate an APL pixel array, i.e. a matrix of pixel values where each point is

represented by an integer which encodes the Red, Green and Blue intensities. This can be created

directly in APL, or can be read from the bitmap property of the System object (i.e. retrieved from the

Clipboard), or from a Chart, Picture or Window. It can also be created using the Draw method

GetBitmap keyword.

You can also use the Draw method to 'draw' directly on the off-screen bitmap of an Image object,

allowing you to create your own image from within APLX, or add graphic elements to an existing

image read from file. You can then save the image in one of the many formats supported by

ImageMagick.

A single Image object can contain a sequence of actual images. These might, for example, be

displayed as a moving image in an animated GIF. The Image object also allows you to combine

images, for example for place a semi-transparent foreground picture on top of a background picture.

Note that the Image object itself is not visible, and cannot be placed directly on a window. Instead, it

can either be created at the top level (child of the System object), or be a child of a Picture object. In

the latter case, it effectively becomes visible, since whenever it is changed, the Picture object will
automatically transfer the current bitmap of the Image to the Picture.

About ImageMagick

ImageMagick is copyright ImageMagick Studio LLC, a non-profit organization. ImageMagick is

distributed under a Apache-style license, which is approved by the Open Source Initiative.

ImageMagick is available for free, may be used to support both open and proprietary applications, and

may be redistributed without fee, subject to the conditions of the license supplied with the software. It

is available for a wide variety of platforms, and can be used in conjunction with APLX under

Windows, Linux, and MacOS X (APLX cannot interface to it under Mac OS 9). For more information,
visit http://www.imagemagick.org.

Installation of ImageMagick

To use the Image object, you must have ImageMagick version 6.1 or later installed on your system. If

it is not already installed, when you try to create the Image object, APLX will put up a dialog box to

report the error. An APL DOMAIN ERROR will also be raised.

APLX System Classes & User-Interface Programming 91

ImageMagick may be installed already on your system (for example, many Linux distributions include

it as standard). If not, the easiest way to install ImageMagick is to download pre-built Binary releases

from http://www.imagemagick.org, or a mirror site. Versions for Windows, MacOS and Linux are

available. We recommend you use the 8-bit versions (8 bits per pixel color). At the time of writing, the
files you need to install are:

Windows: ImageMagick-6.1.9-Q8-windows-dll.exe ('dynamic' version)

Linux: ImageMagick-i686-pc-linux-gnu.tar.gz

MacOS X: ImageMagick-powerpc-apple-darwin7.8.0.tar.gz

If you have installed ImageMagick and APLX still reports that it cannot find it, the most likely reason

is that the shared library path is not set up correctly. Check first that the ImageMagick utility programs
(such as 'display' and 'convert') work correctly outside APLX.

Under Windows, the ImageMagick directory (under 'c:\Program Files') should be in the path. Under

Linux, the ImageMagick shared library files should be in /usr/lib.

Supported Graphics Formats

The exact set of supported file formats will depend on the platform, the ImageMagick version, and on

whether you have installed extensions called 'delegates'. Each format is identified by a tag string (also
used, by default, as the file extension). Some of the most important formats include:

Tag Description

BMP Microsoft Windows bitmap

EMF Microsoft Enhanced Metafile (32-bit)

EPS Adobe Encapsulated PostScript

GIF CompuServe Graphics Interchange Format

JPEG Joint Photographic Experts Group JFIF format

PDF Portable Document Format

PICT MacOS PICT file

PNG Portable Network Graphics

SVG Scalable Vector Graphics

TIFF Tagged Image File Format

Not all formats will necessarily be available, and some may be read-only (i.e you can read the format

into the image, but not write it out in that format). Note that APLX itself does not contain any format-

conversion code for the Image object; this is done in the ImageMagick package or 'delegates', which

you install separately.

You can determine which formats are supported by reading the formats property of an Image object.

APLX System Classes & User-Interface Programming 92

Loading or creating an image

You can either load an existing image from file, or from an APL pixel array, or from the Clipboard, or

you can create it from scratch using the Draw method of the Image itself.

Load method: This takes a single argument, which is a character vector containing the full filename of

an image file, in one of the supported formats, which you want to display or manipulate. If you specify

an empty vector for the file name, APLX will display a dialog asking the user to select an image file.

You can also use pseudo-filenames for certain built-in images and patterns, such as 'magick:logo' or

'magick:rose'. See the ImageMagick documentation for more details. The current image, if any, is

replaced (unless you have set the style property so that images are appended).

bitmap property: This is an integer matrix, with one element per pixel. Each pixel is encoded as 256 ⊤

Blue Green Red. If you write to this property, any current image is replaced with the pixels you

specify (unless you have set the style property so that new images are appended). You can create the

pixel array directly in APL, or read it from the bitmap property of the System object (read from
Clipboard), of a Chart object, or of a Picture object.

Paste method: This method takes no arguments. It causes any picture on the Clipboard to be loaded
into the Image.

In order to create the image from scratch using the Draw method, you need first to set the image size

using the imagesize property. You then use the Draw method in the normal way.

Saving or reading back an image

Similarly, you can save the image to a file, read it back into an APL pixel array, or transfer it to the
Clipboard:

Save method: This method again takes a character vector argument, which is the file name under

which you want to save the image. You can specify the format in which you want to save it by setting

the format property before calling this method, or alternatively allow the format to be determined

automatically from the file extension. If you specify an empty vector for the filename, APLX displays
a dialog allowing the user to specify the file name and type.

In this example, an invisible Image object is used to load an image file in JPEG format, and save it out

as a PDF (Adobe Acrobat) file:

 Img←'⎕' ⎕NEW 'Image'
 Img.Load 'c:\temp\sds.jpg'
 Img.Save 'c:\temp\sds.pdf'

bitmap property: As well as writing the image out to file, you can also read it back at any time from

the bitmap property, as an integer array of pixel values. (The size of the returned array will be the

same as the internal image size, as returned by the imagesize property). You can then manipulate the

pixel array further in APL, or write it to the Clipboard using the System object, or display it on a

APLX System Classes & User-Interface Programming 93

Picture object. You can also display it on a window (or other control), or print it, using the Draw

method GetBitmap keyword.

Copy: This method takes no arguments. It causes the currently-active image to be copied to the

Clipboard as a bitmap.

Main properties of the Image object

imagesize or bitmapsize: This is a two-element numeric vector, which contains the height and

width of the image, in the current scale units. (We recommend that you always use scale 5, pixels, for

Image objects). In most cases, the initial size of the image is set automatically when you Load the

image from file, or write an array to the bitmap property. If you are creating a new image from scratch

using the Draw method, you should first specify the size of the image by writing to the imagesize

property; this will create a new image of the size specified, using the current background color. If you

write a new value to the imagesize property of an existing image, it will be re-scaled to the new size.

file: A character vector, which contains the name of the image file from which the image was loaded

(if any). Writing to this property causes the image to be loaded from the named file. Writing an empty
vector will bring up a dialog allowing the user to chose the name.

format: A character string, which is the tag associated with the file format to be used when the Image

is saved to file, for example 'BMP' or 'GIF' or 'PDF'. (It should be one of the values returned by the

formats property). When you load a graphics file, this property will initially be set to the original

format. If you change it, when the file is saved the new format will be used. (You can also set the

format implicitly by the file extension).

formats: Read-only Returns a nested vector of character strings, which are the tags for the formats
supported by the underlying ImageMagick package.

quality: Some image formats allow you to specify an image-quality parameter, where higher values

give a better-quality image but require a larger file size. This integer-scalar property allows you to set

or retrieve the quality parameter. The exact meaning depends on the image format. See the
ImageMagick documentation for more details.

colorback or colourback: Sets the background color for the image. This is used to fill the new area

when a creating a new image by setting the imagesize property, and for filling any new regions

which are created when you transform the image, for example in a rotate or shear operation. You can

specify it either as a three-element vector of Red Green Blue values (each in the range 0 to 255), or as

a single integer of 256 ⊤ Blue Green Red. When you read the property, APLX returns the single-
integer form.

Handling multiple images within a single Image object

A single Image object may contain multiple images, although only some file formats support this

feature. The following properties apply to multiple images:

imagecount: Read-only An integer scalar, containing the number of images in the object.

APLX System Classes & User-Interface Programming 94

imageindex: An integer scalar, which specifies the currently active image, in index origin 1. This is

therefore a number in the range 1 to imagecount. The currently-active image is the one on which any

transformations or drawing takes place, and is also the one which will be displayed by the parent

Picture object, if appropriate. (You can thus display an animated image by using a timer to advance

the imageindex value at regular intervals.)

style: This is an integer scalar. The default value of 0 means that, when you create a new image using

the Load or Paste method, or by writing to the bitmap property, the currently-active image is

replaced. If the style property is 1, the new image will be appended to the end of the image list, and

will become the new active image. This allows you to create a sequence of images (for example, an
animated GIF), directly from APL.

The Transform method

ImageMagick includes a very wide range of functions for transforming an image. For example, you

can shear, scale, crop, rotate or skew the image, sharpen edges, adjust colors and intensity, and filter

out noise. You can also apply special effects to the image, such as making it look like a charcoal

drawing or an oil painting. The Transform method of the APLX Image object allows you to use many

of these functions directly.

See the documentation on the Transform method for more information.

Other Methods

Draw: This is fully supported for Image objects, allowing you to add graphics elements and text to an
existing or new image. See the documentation on the Draw method for details.

Setopacity: ImageMagick supports images which are transparent, which means that when you place

one image on top of another using the Overlay method, the background image will still be partially

visible through the foreground image. Some file formats, such as PNG, allow specific parts of the

image to be transparent. The Setopacity method allows you to specify that the whole image is

transparent. it takes a single argument, which is a number between 0.0 (completely transparent) to 1.0
(fully opaque, i.e. the background is not visible at all).

Overlay: This method allows you to overlay one image (the foreground) on top of another (the

background). If the foreground image is transparent, the background image will partially show through

it. Normally you first load the background image into the Image object, and then use the Overlay

method to load the foreground image (from file) on top of it, at a specified position. You can also

overlay an image from another Image object. See the documentation on the Overlay method for
details.

Calling ImageMagick directly

The ImageMagick package includes many other features which are not directly supported by the

Image object. You can access these features either using ⎕NA, or by writing a small Auxiliary

Processor. In order to do this, you need the handle to the underlying ImageMagick 'Magick Wand';

this can be read from the handle property.

APLX System Classes & User-Interface Programming 95

Interaction between the Image object and the Picture object

The Image object itself is always invisible. However, if you create it as the child of a Picture object,

the Picture object will display it. Whenever the Image object is changed, the Picture object will be re-
drawn to reflect the changes.

If you are making a series of changes to the Image object, APLX attempts to buffer these up to avoid

multiple redraws. However, for best performance when making several changes to an Image, and to

avoid flickering effects, you can temporarily set the update property of the Picture object to 0 before

changing the Image. This suppresses automatic redrawing. When the changes are complete, you

should set the update property back to 1, which will cause the Image to be redrawn with all the

changes you have made.

Example

 ↔DEMO_Image;DEMO;X
[1] ⍝ Sample function demonstrating use of the Image object
[2] ⍝ You must have ImageMagick installed on your system to run this demo
[3] ⍝
[4] ⍝ Create window with a Picture, which we'll use to display Image object
[5] DEMO←'⎕' ⎕NEW 'Window' ⊦ DEMO.scale←5 ⊦ DEMO.size←376 280
[6] DEMO.title←'Image'
[7] DEMO.Pic.New 'Picture' ⊦ DEMO.Pic.align←¯1
[8] ⍝
[9] ⍝ Create the Image object, as a child of the Picture.
[10] ⍝ This effectively makes the image visible.
[11] ⍝ Use error trapping in case ImageMagick is not installed.
[12] :Try
[13] DEMO.Pic.Img.New 'Image'
[14] :CatchAll
[15] 'You must have ImageMagick installed to run this demo.'
[16] 'See http://www.imagemagick.org'
[17] →0
[18] :EndTry
[19] DEMO.Pic.Img.scale←5
[20] ⍝
[21] ⍝ Load a picture into the Image object. This could come from file,
[22] ⍝ in any format supported by ImageMagick (JPEG, GIF, BMP, SVG etc).
[23] ⍝ Here we use an array of pixels, encoded as 256 ⊤ Blue Green Red
[24] DEMO.Pic.Img.bitmap←SAMPLE_BITMAP
[25] ⍝
[26] ⍝ Show the original image for a few seconds
[27] DEMO.Show
[28] X←⎕DL 3
[29] ⍝
[30] ⍝ Rescale to twice original size, and flip around vertical axis
[31] ⍝ We'll suppress updates temporarily so we don't get a redraw
[32] ⍝ until both operations are done
[33] DEMO.Pic.update←0
[34] DEMO.Pic.Img.Transform 'magnify'
[35] DEMO.Pic.Img.Transform 'flop'
[36] DEMO.Pic.update←1 ⍝ Now do redraw
[37] X←⎕DL 3
[38] ⍝
[39] ⍝ Now use one of ImageMagick's image-transformation functions
[40] ⍝ (see workspace 10 HELPTRANSFORM for more examples):

APLX System Classes & User-Interface Programming 96

[41] DEMO.Pic.Img.Transform 'charcoal' 1 2
[42] ⍝
[43] ⍝ Use the Draw method to add text to the Image object
[44] DEMO.Pic.Img.Draw 'Color' 255
[45] DEMO.Pic.Img.Draw 'Text' 'APLX and ImageMagick' 2 60
[46] ⍝
[47] ⍝ Wait a few seconds, then allow user to save the image to file,
[48] ⍝ in any of the formats supported by ImageMagick (JPEG, GIF, PDF, BMP etc)
[49] ⍝ Providing an empty file name automatically brings up the dialog
[50] X←⎕DL 3
[51] DEMO.Pic.Img.Save ''
[52] ⍝
[53] ⍝ Window will be deleted when function ends and DEMO goes out of scope
 ↔

Properties

bitmap bitmapsize children class colorback data events file format formats handle imagecount
imageindex imagesize methods name opened properties quality self style tie

Methods

Close Copy Create Delete Draw Load New Open Overlay Paste Save Send Set Setopacity Transform
Trigger

Callbacks

onClose onDestroy onOpen onSend

APLX System Classes & User-Interface Programming 97

ImageList

Not implemented under MacOS

Description

The ImageList class allows you to attach images to Menus, Tree controls, and the Pages (tab sheets) in
a Selector control.

As its name implies, an ImageList object contains a series of images (typically small icons or

pictures), numbered from 1 onwards. These images are all of the same size. The ImageList object is

not itself visible; instead, you associate an ImageList with another control, and that control displays

images from the list as required. For example, you can have a Tree control where different images are
used for different types of node, or you can display an icon from the ImageList next to a Menu item.

The ImageList can be created either as a top-level object, or as the child of another object. The former

case is preferable if it will be used in several different controls. On the other hand, if it will be used in

only one control, then it may be more convenient to create it as a child of that control so that it is
automatically deleted with the control.

You can specify the images in the ImageList either as file names, or as APL numeric arrays where

each element contains the color corresponding to a pixel in the image. The imagenames property or

Addimages method can be used to specify the images. You can arrange for a portion of the image to
be transparent.

A single bitmap can optionally contribute multiple images to the ImageList, laid side by side. To do

this, you need first to set the imagesize property to be the size of the image. Any bitmap of a width N

times the width specified in imagesize will then contribute N images to the list.

Once you have created an ImageList, you associate it with the control where it will be used by writing

its name to the imagelist property of a Tree, Selector or pop-up Menu control. (For a Tree control

there is also a second ImageList contained in the imagelistuser property). To use an ImageList for

the menu items in a window's menu bar, write its name to the menuimagelist property of the Form,
Dialog, Document or Window object. A given ImageList can be used by several other objects.

Finally, you need to tell the control associated with the ImageList to display an image from the list.

For a Menu item or Page control, you do this by specifying the imageindex property, as an integer

index (in origin 1) into the images in the ImageList. For a Tree control, there are various options; you

can specify a fixed image for particular nodes, or the image shown can depend on the state of the

node. See the list property for more information.

Cross-platform use: Although this class is implemented under both Windows and Linux, there are
some differences in the supported properties and methods. It is not implemented at all under MacOS.

APLX System Classes & User-Interface Programming 98

ImageList properties

The main ImageList properties are:

style: The default style is 0, meaning that the images are not automatically transparent. If you set the

style to 1, pixels correspondng to the maskcolor property are treated as transparent.

maskcolor: Allows you to specify the color which will be treated as transparent if style is 1. The

color can be a single integer 256 ⊥ Blue Green Red, or a vector of Red Green Blue values separately
(in range 0 to 255).

imagenames: Allows you to specify a vector of file names, one for each image in the list.

Alternatively, you can specify APL arrays which encode the pictures directly as pixel color values.
You can also explicitly set the transparency mask for an image.

imagesize: Specifies the height and width of the images, in the current scale of the ImageList.

overlays: Allows you to specify the index positions (in origin 1) of up to four images in the

ImageList which will be used to overlay other images. These overlays can then be used in a Tree
object. Note: This property is not available under Linux.

imagecount: A read-only property, the number of images in the list.

ImageList methods

The main ImageList method is:

Addimages: Allows you to add images to the list.

Example 1: Using an ImageList in a window's menu

 ↔DEMO_Menu_Images;img;DEMO;MyImageList
[1] ⍝ Use of an ImageList and a Menu
[2] ⍝
[3] DEMO←'⎕' ⎕NEW 'Window' ⊦ DEMO.title←'Menu & ImageList Example'
[4] ⍝
[5] ⍝ Create an image list containing icons and add it to the window
[6] MyImageList←'⎕' ⎕NEW 'ImageList'
[7] MyImageList.imagesize←16 16
[8] MyImageList.maskcolour←0 ⍝ Black areas transparent
[9] img←16 16⍴0 ⍝ Create a 16×16 pixel colour matrix
[10] img[4+⍳8;4+⍳8]←256⊥0 255 0 ⍝ Make middle 8x8 green
[11] MyImageList.AddImages img ⍝ Image 1: green square
[12] img[4+⍳8;4+⍳8]←256⊥255 0 0 ⍝ Make middle 8x8 blue
[13] MyImageList.AddImages img ⍝ Image 2: blue square
[14] MyImageList.maskcolour←(256⊥255 255 255) ⍝ White areas transparent
[15] MyImageList.AddImages(FULL_IMAGE_PATH 'abc.bmp') ⍝ Images 3,4,5 from file

APLX System Classes & User-Interface Programming 99

[16] DEMO.menuimagelist←MyImageList.name
[17] ⍝
[18] ⍝ Set up the File menu
[19] ⍝ The 'imageindex' property of a window's menu items select the image
[20] ⍝ from the 'menuimagelist' of the window
[21] ⍝
[22] DEMO.FileMenu.New 'Menu' ⊦ DEMO.FileMenu.caption←'&File'
[23] DEMO.FileMenu.imageindex←1
[24] DEMO.FileMenu.Open.New 'Menu' ⊦ DEMO.FileMenu.Open.caption←'&Open'
[25] DEMO.FileMenu.Open.imageindex←3
[26] DEMO.FileMenu.Close.New 'Menu' ⊦ DEMO.FileMenu.Close.caption←'&Close'
[27] DEMO.FileMenu.Close.imageindex←4
[28] DEMO.FileMenu.Exit.New 'Menu' ⊦ DEMO.FileMenu.Exit.caption←'&Exit'
[29] DEMO.FileMenu.Exit.shortcut←(81 2)
[30] DEMO.FileMenu.Exit.imageindex←5
[31] ⍝
[32] ⍝ Set up the Edit menu
[33] DEMO.EditMenu.New 'Menu' ⊦ DEMO.EditMenu.caption←'&Edit'
[34] DEMO.EditMenu.imageindex←2
[35] DEMO.EditMenu.Undo.New 'Menu' ⊦ DEMO.EditMenu.Undo.caption←'&Undo'
[36] DEMO.EditMenu.Undo.enabled←0 ⊦ DEMO.EditMenu.Undo.shortcut←(92 2)
[37] DEMO.EditMenu.Sep1.New 'Menu' ⊦ DEMO.EditMenu.Sep1.separator←1
[38] DEMO.EditMenu.Cut.New 'Menu' ⊦ DEMO.EditMenu.Cut.caption←'&Cut'
[39] DEMO.EditMenu.Cut.shortcut←('C' 2)
[40] DEMO.EditMenu.Cut.imageindex←1
[41] DEMO.EditMenu.Copy.New 'Menu' ⊦ DEMO.EditMenu.Copy.caption←'&Copy'
[42] DEMO.EditMenu.Copy.shortcut←('X' 2)
[43] DEMO.EditMenu.Copy.imageindex←2
[44] DEMO.EditMenu.Paste.New 'Menu' ⊦ DEMO.EditMenu.Paste.caption←'&Paste'
[45] DEMO.EditMenu.Paste.shortcut←('V' 2)
[46] ⍝
[47] ⍝ Wait for the user to close the window
[48] 0 0⍴⎕WE DEMO
 ↔

Example 2: Using an ImageList in a pop-up menu

 ↔DEMO_Popup_Images;img;MyPopUp;il
[1] ⍝ Demonstrate pop-up menu in conjunction with the ImageList System Class
[2] ⍝
[3] ⍝ Create the pop-up menu itself
[4] MyPopUp←'⎕' ⎕NEW 'Menu'
[5] ⍝
[6] ⍝ Create an imagelist object to provide images for the menu items
[7] ⍝ and add it to the popup menu
[8] il←'⎕' ⎕NEW 'ImageList'
[9] il.imagesize←16 16
[10] ⍝
[11] ⍝ Create image 1: Circle
[12] img←16 16⍴256⊥255 255 255 ⍝ Create a 16×16 pixel colour matrix
[13] img[1,16;]←256⊥255 0 0 ⊦ img[;1,16]←256⊥255 0 0 ⍝ Surround by blue square
[14] img[6,9;7,8]←0 ⊦ img[7,8;6,9]←0
[15] il.AddImages img
[16] ⍝
[17] ⍝ Create image 2: Triangle
[18] img←16 16⍴256⊥255 255 255 ⍝ Create a 16×16 pixel colour matrix
[19] img[1,16;]←256⊥255 0 0 ⊦ img[;1,16]←256⊥255 0 0 ⍝ Surround by blue square
[20] img[6,7,8,9;6]←0 ⊦ img[9;6,7,8,9]←0 ⊦ img[7;7]←0 ⊦ img[8;8]←0
[21] il.AddImages img
[22] ⍝

APLX System Classes & User-Interface Programming 100

[23] ⍝ Create image 3: Line
[24] img←16 16⍴256⊥255 255 255 ⍝ Create a 16×16 pixel colour matrix
[25] img[1,16;]←256⊥255 0 0 ⊦ img[;1,16]←256⊥255 0 0 ⍝ Surround by blue square
[26] img[7;6,7,8,9]←0
[27] il.AddImages img
[28] ⍝
[29] ⍝ Create image 4: Rectangle
[30] img←16 16⍴256⊥255 255 255 ⍝ Create a 16×16 pixel colour matrix
[31] img[1,16;]←256⊥255 0 0 ⊦ img[;1,16]←256⊥255 0 0 ⍝ Surround by blue square
[32] img[6;6,7,8,9]←0 ⊦ img[9;6,7,8,9]←0 ⊦ img[6,7,8,9;5]←0
[33] img[6,7,8,9;10]←0
[34] il.AddImages img
[35] ⍝
[36] ⍝ Assign the image list to the popup menu
[37] MyPopUp.imagelist←il.name
[38] ⍝
[39] ⍝ Create the pop-up menu items
[40] ⍝ The 'imageindex' property of a popup menu's items select the image
[41] ⍝ from the 'imagelist' of the popup menu
[42] MyPopUp.Rect.New 'Menu' ⊦ MyPopUp.Rect.caption←'Rectangle'
[43] MyPopUp.Rect.imageindex←4
[44] MyPopUp.Circle.New 'Menu' ⊦ MyPopUp.Circle.caption←'Circle'
[45] MyPopUp.Circle.imageindex←1
[46] MyPopUp.Triangle.New 'Menu' ⊦ MyPopUp.Triangle.caption←'Triangle'
[47] MyPopUp.Triangle.imageindex←2
[48] MyPopUp.Line.New 'Menu' ⊦ MyPopUp.Line.caption←'Line'
[49] MyPopUp.Line.imageindex←3
[50] ⍝
[51] ⍝ In a real example, you would define onClick callbacks here
[52] ⍝
[53] ⍝ Pop up the menu at the mouse position
[54] MyPopUp.Popup
 ↔

Example 3: Using an ImageList with a Selector and Pages

 ↔DEMO_Page_Images;DEMO
[1] ⍝ Demonstrating use of the Selector (tab sheet) System Class
[2] ⍝ in conjunction with the ImageList class
[3] ⍝
[4] DEMO←'⎕' ⎕NEW 'Dialog' ⊦ DEMO.scale←1
[5] DEMO.title←'Selector/Page & ImageList Example'
[6] ⍝ Create selector to hold the individual pages, fill the client area
[7] DEMO.Sel.New 'Selector' ⊦ DEMO.Sel.align←¯1
[8] ⍝
[9] ⍝ Create image list with icons for the pages and add to selector.
[10] ⍝ (Image list does not have to be child of the selector, but it
[11] ⍝ is convenient because it will be deleted with its parent)
[12] DEMO.Sel.il.New 'ImageList'
[13] DEMO.Sel.il.imagesize←16 16
[14] DEMO.Sel.il.maskcolour←(256⊥255 255 255) ⍝ White areas transparent
[15] DEMO.Sel.il.AddImages(FULL_IMAGE_PATH 'abc.bmp')
[16] DEMO.Sel.imagelist←DEMO.Sel.il.name
[17] ⍝
[18] ⍝ Now create three pages each with some radio buttons
[19] DEMO.Sel.Page1.New 'Page' ⊦ DEMO.Sel.Page1.caption←'Appetizer'
[20] DEMO.Sel.Page1.imageindex←1 ⍝ Use image 1 in selector's image list
[21] DEMO.Sel.Page1.R1.New 'Radio'
[22] DEMO.Sel.Page1.R1.caption←'Smoked Salmon'
[23] DEMO.Sel.Page1.R1.where←2 1
[24] DEMO.Sel.Page1.R1.value←1

APLX System Classes & User-Interface Programming 101

[25] DEMO.Sel.Page1.R2.New 'Radio'
[26] DEMO.Sel.Page1.R2.caption←'Fresh asparagus'
[27] DEMO.Sel.Page1.R2.where←4 1
[28] DEMO.Sel.Page1.R3.New 'Radio'
[29] DEMO.Sel.Page1.R3.caption←'Clam chowder'
[30] DEMO.Sel.Page1.R3.where←6 1
[31] ⍝
[32] DEMO.Sel.Page2.New 'Page' ⊦ DEMO.Sel.Page2.caption←'Main course'
[33] DEMO.Sel.Page2.imageindex←2
[34] DEMO.Sel.Page2.R1.New 'Radio'
[35] DEMO.Sel.Page2.R1.caption←'Roast duck'
[36] DEMO.Sel.Page2.R1.where←2 1
[37] DEMO.Sel.Page2.R1.value←1
[38] DEMO.Sel.Page2.R2.New 'Radio'
[39] DEMO.Sel.Page2.R2.caption←'Grilled steak'
[40] DEMO.Sel.Page2.R2.where←4 1
[41] DEMO.Sel.Page2.R3.New 'Radio'
[42] DEMO.Sel.Page2.R3.caption←'Fresh sea-bass'
[43] DEMO.Sel.Page2.R3.where←6 1
[44] ⍝
[45] DEMO.Sel.Page3.New 'Page'
[46] DEMO.Sel.Page3.caption←'Dessert'
[47] DEMO.Sel.Page3.imageindex←0 ⍝ Use no image for this page
[48] DEMO.Sel.Page3.R1.New 'Radio'
[49] DEMO.Sel.Page3.R1.caption←'Fresh stawberries'
[50] DEMO.Sel.Page3.R1.where←2 1
[51] DEMO.Sel.Page3.R1.value←1
[52] DEMO.Sel.Page3.R2.New 'Radio'
[53] DEMO.Sel.Page3.R2.caption←'Creme caramel'
[54] DEMO.Sel.Page3.R2.where←4 1
[55] DEMO.Sel.Page3.R3.New 'Radio'
[56] DEMO.Sel.Page3.R3.caption←'Baked Alaska'
[57] DEMO.Sel.Page3.R3.where←6 1
[58] ⍝
[59] ⍝ Wait for the user to close the window
[60] 0 0⍴⎕WE DEMO
 ↔

Properties

children class data events handle imagealloc imagecount imagenames imagesize maskcolor methods
name opened overlays properties self style tie

Methods

Addimages Close Create Delete New Open Send Set Trigger

Callbacks

onClose onDestroy onOpen onSend

APLX System Classes & User-Interface Programming 102

Label

Alternative name: Static

Description

The Label (or Static) class implements simple text labels.

Normally you need to set only the caption property, which determines the text displayed, and the

where property, to determine where it is placed on the window. You can also set the font, color and

enabled properties for special effects (if enabled is 0, the text is grayed out).

Under Windows and Linux only. the style property for a static text object sets the text alignment:

 0 = Left justified
 1 = Centered
 2 = Right justified

plus optional bits:

 4 = Inhibit prefix (interpretation of '&' as accelerator key (Windows, Linux
only)
 8 = Inhibit word-wrap if the text is too wide for the label
 32 = Inhibit auto-sizing of the label to ensure text fits
128 = Text is transparent (Windows, Linux only)

Event handling is not usually relevant to Label objects, but sometimes it is useful to define an

onMouseDown callback. In this case, you should usually provide some visual indication to the user that

the text is capable of responding to mouse events, for example by displaying it in a special color or

underlining it using the font property. This can be used for 'hypertext' type applications where the

user clicks on a word for more information about it.

Note: Another way of displaying text on a window or control is to use the Draw method. This provides

more flexibility in specifying the font colors and transparency, and also allows you to write text at any

angle. Under Windows, it is also useful where you want the text to appear over another control; Label

objects always display behind windowed controls such as Buttons.

Example

 ↔DEMO_Label;DEMO
[1] ⍝ Sample function demonstrating use of the Label object
[2] DEMO←'⎕' ⎕NEW 'Window' ⊦ DEMO.scale←1
[3] DEMO.title←'Label Example'
[4] ⍝
[5] DEMO.LABEL1.New 'Label'
[6] DEMO.LABEL1.caption←'Today''s Work Plan'
[7] DEMO.LABEL1.where←2 1 1 30
[8] DEMO.LABEL1.font←'Helvetica' 1 1 ⍝ Bold text
[9] ⍝

APLX System Classes & User-Interface Programming 103

[10] DEMO.LABEL2.New 'Label'
[11] DEMO.LABEL2.caption←'Tidy up the office!'
[12] DEMO.LABEL2.where←4 1 1 30
[13] DEMO.LABEL2.enabled←0
[14] ⍝
[15] DEMO.LABEL3.New 'Label'
[16] DEMO.LABEL3.caption←'Have lunch'
[17] DEMO.LABEL3.where←6 1 1 30
[18] DEMO.LABEL3.font←'Helvetica' 1 0
[19] DEMO.LABEL3.color←255
[20] ⍝
[21] ⍝ Wait for the user to close the window
[22] 0 0⍴⎕WE DEMO
 ↔

Properties

align anchors aquaadjust autodraw caption children class color data dragsource droptarget enabled

events extent font maxsize methods minsize name opened pointer properties scale self size

sourceformats style targetformats tie tooltip units visible where

Methods

Click Clienttoscreen Close Create Delete Hide New Open Paint Resize Screentoclient Send Set Show
Trigger

Callbacks

onClick onClose onDblClick onDestroy onDragDrop onDragEnd onDragEnter onDragLeave

onDragOver onDragStart onHide onMouseDown onMouseMove onMouseUp onOpen onSend

onShow

APLX System Classes & User-Interface Programming 104

Line

Description

The Line object draws a single line, and is normally used for display purposes only. The where or

size property is used to define the enclosing rectangle, with a special meaning. The first two

parameters (top and left of the 'rectangle') are the starting position of the line. The second two (height

and width of the 'rectangle') are the offset to the end of the line, and may be negative. For example, if

where is 20 20 10 0, the line starts at 20 20 and is vertically downwards; if where is 20 20 ¯10 0, it
is vertically upwards.

You can set the drawing (foreground) color using the color property, and the pensize property

changes the thickness of the lines.

Note: Remember that the default scale is in character units. See the scale property for details.

See also the Draw method which allows you to draw geometric shapes on your windows and controls.

Example

 ↔DEMO_Line;DEMO
[1] ⍝ Sample function demonstrating use of the Line object
[2] DEMO←'⎕' ⎕NEW 'Window' ⊦ DEMO.scale←1
[3] DEMO.title←'Line Example'
[4] ⍝
[5] ⍝ Thin horizontal line in red
[6] DEMO.LN1.New 'Line'
[7] DEMO.LN1.where←4 0 0 10
[8] DEMO.LN1.color←255
[9] ⍝
[10] ⍝ Thicker diagonal line in blue
[11] DEMO.LN2.New 'Line'
[12] DEMO.LN2.where←4 10 8 10
[13] DEMO.LN2.pen←4
[14] DEMO.LN2.color←0 0 255
[15] ⍝
[16] ⍝ Wait for the user to close the window
[17] 0 0⍴⎕WE DEMO
 ↔

Properties

align anchors aquaadjust autodraw children class color data dragsource droptarget enabled events

extent filled maxsize methods minsize name opened pointer properties scale self size sourceformats

targetformats tie units visible where

APLX System Classes & User-Interface Programming 105

Methods

Click Clienttoscreen Close Create Delete Hide New Open Paint Resize Screentoclient Send Set Show

Trigger

Callbacks

onClick onClose onDblClick onDestroy onDragDrop onDragEnd onDragEnter onDragLeave

onDragOver onDragStart onHide onMouseDown onMouseMove onMouseUp onOpen onSend
onShow

APLX System Classes & User-Interface Programming 106

List

Description

The List class implements list boxes, allowing the user to make a selection from a list.

The style property defines the type of list box, as the sum of the following flags:

 1 = Allow multi select
 2 = Allow display of a non-integral number of lines
 16 = Show the vertical scroll bar
 64 = Show the horizontal scroll bar (Mac only)
128 = Hide scroll bars when they are not needed (Mac only)

The list property determines the items in the list box. You can set it either as a character matrix or as

a character vector with embedded carriage returns. (If you read it back, it will be returned as a

character matrix).

The value property is an integer scalar or vector containing the index into the list of the selected item,

in index origin 1. It is an empty vector if there is no selection. If the style allows multi-select, it may
be a vector of more than one element.

The firstvisible property allows you to read or set the first visible item in the list (i.e. where the list
is scrolled to).

If you need to detect when the user changes the selection, add an onChange callback.

Example

 ↔DEMO_List;DEMO
[1] ⍝ Sample function demonstrating use of the List object
[2] DEMO←'⎕' ⎕NEW 'Dialog' ⊦ DEMO.scale←1
[3] DEMO.title←'List Example'
[4] DEMO.myList.New 'List'
[5] DEMO.myList.where←2 1
[6] DEMO.myList.list←⎕M
[7] DEMO.myList.value←3
[8] ⍝
[9] ⍝ Wait for the user to close the window
[10] 0 0⍴⎕WE DEMO
 ↔

Properties

align anchors aquaadjust autodraw border caption children class color data doublebuffered dragsource

droptarget enabled events extent firstvisible font handle list maxsize methods minsize name opened

order pointer properties scale self size sourceformats style tabstop targetformats tie units value visible
where winptr

APLX System Classes & User-Interface Programming 107

Methods

Click Clienttoscreen Close Create Delete Draw Focus Hide New Open Paint Resize Screentoclient

Send Set Show Trigger

Callbacks

onChange onClick onClose onDblClick onDestroy onDragDrop onDragEnd onDragEnter

onDragLeave onDragOver onDragStart onFocus onHide onKeyDown onKeyPress onKeyUp
onMouseDown onMouseMove onMouseUp onOpen onSend onShow onUnFocus

APLX System Classes & User-Interface Programming 108

Menu

Description

The Menu class implements menu bars, sub-menus, and individual menu items. It also implements

pop-up menus. The behavior depends on the parent of the Menu object:

 If the Menu object is created as the child of a window object, it represents an item in the

menubar of the window, for example the 'File' menu of a typical application window.

 If the Menu object is defined as top-level object, it is a pop-up menu which can be displayed

using the Popup method.

 If the Menu object is the child of another Menu object, it is an item in the parent menu or sub-

menu. Sub-menus can be multiple levels deep if required.

Principal Menu properties

The main properties used when working with Menu objects are:

caption: A character vector containing the menu title string. An ampersand character '&' in the string

will not be displayed, but under Windows will cause the next character to be the keyboard-selection

character for the menu. Under MacOS, the ampersand will have no effect but again will not be

displayed, so you can use the same string for cross-platform applications. To display an ampersand in
the menu title, put two ampersands in the character vector.

enabled: 1 if menu is enabled, 0 to disable it (default: 1)

visible: 1 if menu is visible, 0 to hide it (default: 1)

value: 1 to place a check mark by the menu item, else 0 (default 0)

separator: 1 if the item is just a separator line, else 0

shortcut: The shortcut key (if any) as a two-element vector. The first element is the letter

corresponding to the key (for example, 'A'), or alternatively an integer which is the virtual key code

(for alphabetic keys, this is just the ASCII code, for example 65 for 'A'). Under Windows and Linux,

the second element is the modifier code: 0 (plain), 1 (shift), 2 (ctrl), 4 (alt) and sums thereof. Note:

Some of these may not be useful in practice because the operating-system intervenes before APLX sees

the keystroke; in Windows, for example, this happens with the Alt key. The second element can be

omitted and defaults to 2 (ctrl). Under MacOS, the second element is ignored since the Command key

is always used for menu shortcuts. If the shortcut property is an empty vector, there is no shortcut

key.

APLX System Classes & User-Interface Programming 109

Other Menu properties

Other less commonly-used properties include:

order: Position of menu item in parent menu, in index origin 1. Set by default to the order of creation,

but you can change it under program control (under Windows only). Set a fractional value to insert a

menu item between two existing items. The menu items will be renumbered from 1 to the total number
of items. Writing to this property has no effect under MacOS.

group: Menu items can automatically work like radio buttons, i.e. if one of the group is selected, all

others are automatically deselected. Normally, this behavior is switched off, with the group property

set to 0. Setting the group property to an integer in the range 1 to 255 makes the the item a member of
that group, and enables the radio-button behavior.

style: If the style property is 1, the menu item is automatically selected/deselected when the user

clicks it (the value property will reflect the state). This may sometimes mean that there is no need to

define an onClick handler for the menu, because you can read back its value property when you need

it.

Pop-up Menu Methods

When you want to display the pop-up menu (for example, in response to a right-mouse click), you call

the Popup method. If you call this without parameters, the menu pops up at the mouse position.

Alternatively you can supply the Top and Left coordinates as a two-element vector in the parent

(System object's) scaling units.

Menu callbacks

You typically respond to menu selections by defining the onClick callback of the menu item, to carry

out the appropriate action when the user selects a menu. An alternative way of doing this is to define

an onMenu callback for the window containing the menu bar; this allows a single callback function to

respond to a whole set of menu items. You can combine the two approaches if it is more convenient to
do so.

Placing images next to menu items

Under Windows and Linux, you can optionally place images next to menu items. To do this, you need

to create an ImageList object which contains all the images which appear in the menubar (or pop-up

menu) and any sub-menu items. You then associate the ImageList with the menu hierarchy as follows:

 For the menus in a window's menubar, write the name of the ImageList to the window's

menuimagelist property.

 For a pop-up menu, write the name of the ImageList to the pop-up menu's imagelist property.

Finally, you set the imageindex property of each menu item where you want to display an image. This

selects one of the images from the ImageList. (See the description of the ImageList object for an
example.)

APLX System Classes & User-Interface Programming 110

Example 1: Window menu bar

 ↔DEMO_Menu;DEMO
[1] ⍝ Sample function demonstrating use of the Menu object
[2] DEMO←'⎕' ⎕NEW 'Window' ⊦ DEMO.title←'Menu Example'
[3] ⍝
[4] ⍝ Set up the File menu
[5] DEMO.File.New 'Menu' ⊦ DEMO.File.caption←'&File'
[6] DEMO.File.Open.New 'Menu' ⊦ DEMO.File.Open.caption←'&Open'
[7] DEMO.File.Close.New 'Menu' ⊦ DEMO.File.Close.caption←'&Close'
[8] DEMO.File.Exit.New 'Menu' ⊦ DEMO.File.Exit.caption←'&Exit'
[9] DEMO.File.Exit.shortcut←81 2
[10] ⍝
[11] ⍝ Set up the Edit menu
[12] DEMO.Edit.New 'Menu' ⊦ DEMO.Edit.caption←'&Edit'
[13] DEMO.Edit.Undo.New 'Menu' ⊦ DEMO.Edit.Undo.caption←'&Undo'
[14] DEMO.Edit.Undo.shortcut←92 2
[15] DEMO.Edit.Undo.enabled←0
[16] DEMO.Edit.Sep1.New 'Menu' ⊦ DEMO.Edit.Sep1.separator←1
[17] DEMO.Edit.Cut.New 'Menu' ⊦ DEMO.Edit.Cut.caption←'&Cut'
[18] DEMO.Edit.Cut.shortcut←'C' 2
[19] DEMO.Edit.Copy.New 'Menu' ⊦ DEMO.Edit.Copy.caption←'&Copy'
[20] DEMO.Edit.Copy.shortcut←'X' 2
[21] DEMO.Edit.Paste.New 'Menu' ⊦ DEMO.Edit.Paste.caption←'&Paste'
[22] DEMO.Edit.Paste.shortcut←'V' 2
[23] ⍝
[24] ⍝ Set up callbacks. In a real example, these would be functions.
[25] ⍝ We just print the name of the menu which was clicked
[26] DEMO.File.Open.onClick←'⎕←⎕WSELF,'' selected'''
[27] DEMO.File.Close.onClick←'⎕←⎕WSELF,'' selected'''
[28] DEMO.File.Exit.onClick←'⎕←⎕WSELF,'' selected'''
[29] DEMO.Edit.Undo.onClick←'⎕←⎕WSELF,'' selected'''
[30] DEMO.Edit.Cut.onClick←'⎕←⎕WSELF,'' selected'''
[31] DEMO.Edit.Copy.onClick←'⎕←⎕WSELF,'' selected'''
[32] DEMO.Edit.Paste.onClick←'⎕←⎕WSELF,'' selected'''
[33] ⍝
[34] ⍝ Wait for the user to close the window
[35] 0 0⍴⎕WE DEMO
 ↔

Example 2: Pop-up menu

 ↔DEMO_Popup;MyPopUp
[1] ⍝ Sample function demonstrating pop-up menu
[2] ⍝ Create the pop-up menu itsel
[3] MyPopUp←'⎕' ⎕NEW 'Menu'
[4] ⍝
[5] ⍝ Create the pop-up menu items
[6] MyPopUp.Rect.New 'Menu' ⊦ MyPopUp.Rect.caption←'Rectangle'
[7] MyPopUp.Circle.New 'Menu' ⊦ MyPopUp.Circle.caption←'Circle'
[8] MyPopUp.Triangle.New 'Menu' ⊦ MyPopUp.Triangle.caption←'Triangle'
[9] MyPopUp.Line.New 'Menu' ⊦ MyPopUp.Line.caption←'Line'
[10] ⍝
[11] ⍝ In a real example, you would define onClick callbacks here
[12] ⍝
[13] ⍝ Pop up the menu at the mouse position
[14] MyPopUp.Popup
 ↔

APLX System Classes & User-Interface Programming 111

Properties

caption children class data enabled events group imageindex imagelist menuimagelist methods name

opened order properties self separator shortcut style tie value visible

Methods

Click Clienttoscreen Close Create Delete New Open Popup Send Set Trigger

Callbacks

onClick onClose onDestroy onOpen onPopup onSend

See also onMenu

APLX System Classes & User-Interface Programming 112

Movie

Alternative name: Media

Functionality restricted under Linux

Description

The Movie object class is used to play movies, audio clips, and other multi-media files from disk.

Movies can be of two kinds, depending on the style property (you must set this at the time you create

the Movie object, before setting the file property). If the Movie has a controller (which is the default,

style = 0), it is displayed with a VCR-style control along the bottom edge, which lets the user play,

stop, change the position in the movie. In this case, your program has no control over the playing of

the movie, and no events are created. Alternatively, if the style is 1, the movie is played under

control of your program using the Play, Stop and Rewind methods, and you can get an onMovieEnd

callback when it completes. A style of 2 is similar, except that the movie once started plays

continuously until the Stop method is called. No onMovieEnd callback is invoked.

In each case, you set the file property to determine the movie (or other type of file) which is to be

played. If this is set to an empty vector, a standard file selection dialog is displayed to allow the user to

choose the movie. Selecting the movie also re-sizes the object to the original size of the movie, though

you can change this later if you wish (movies display best if the size is an integral multiple of the

original size, but can be stretched or compressed if you wish). The playing property is useful for
finding out the current movie state.

Cross-platform use: This class is fully implemented under Windows and MacOS, but under Linux

only a sub-set of the functionality is available. The Linux implementation can play animated GIF files

only (these are commonly used to display animated images in web pages). There is no support for

sound. In addition, under Linux there is no movie-controller; style 0 is not implemented.

Example

 ↔DEMO_Movie;DEMO
[1] ⍝ Sample function demonstrating use of the Movie object
[2] DEMO←'⎕' ⎕NEW 'Window' ⊦ DEMO.title←'Movie Example'
[3] DEMO.myMovie.New 'Movie' ⊦ DEMO.myMovie.where←0 0 ⊦ DEMO.myMovie.style←0
[4] ⍝ Set the file property to empty vector to put up selection dialog
[5] DEMO.myMovie.file←''
[6] ⍝
[7] ⍝ Wait for the user to close the window
[8] 0 0⍴⎕WE DEMO
 ↔

Properties

align anchors aquaadjust autodraw caption children class color data doublebuffered dragsource

droptarget enabled events extent file handle maxsize methods minsize movieref name opened order

APLX System Classes & User-Interface Programming 113

playing pointer position properties range scale self size sourceformats style tabstop targetformats tie
units visible volume where winptr

Methods

Click Clienttoscreen Close Create Delete Draw Focus Hide New Open Paint Play Poster Preview

Resize Rewind Screentoclient Send Set Show Stop Trigger

Callbacks

onClick onClose onDblClick onDestroy onDragDrop onDragEnd onDragEnter onDragLeave

onDragOver onDragStart onFocus onHide onKeyDown onKeyPress onKeyUp onMouseDown
onMouseMove onMouseUp onOpen onSend onShow onStop onUnFocus

APLX System Classes & User-Interface Programming 114

MsgBox

Description

The MsgBox class implements the pre-defined message-box dialog. This is a top-level object (i.e. it

should not be opened as the child of a window).

To use the dialog, you must first create it as a top-level object using the New method; it will remain

hidden at this stage. You can then set up the dialog using the following properties:

caption: The dialog title as a character vector.

text: The text to appear in the message-box, as a character vector.

style: The buttons to appear in the message-box, as an integer scalar. Valid values are:

 0 = OK only
 1 = OK and Cancel
 2 = Retry and Cancel
 3 = Yes and No
 4 = Yes, No and Cancel
 5 = Abort, Retry and Ignore

icon: Icon as an integer scalar (default 0):

 0 = Stop
 1 = Alert
 2 = Note
 3 = Question
 -1 = None

default: The button to use as the default (1 to 4 - see button numbers below)

Displaying the dialog

When you are ready to show the dialog, call the Show method. This displays the modal dialog, and

waits for the user to press one of the buttons. The Show method returns the button which the user
pressed to end the dialog:

 1 = OK
 2 = Cancel
 3 = Abort
 4 = Retry
 5 = Ignore
 6 = Yes.
 7 = No
 ¯1 = The dialog ended without a button being clicked

APLX System Classes & User-Interface Programming 115

Finally, you will normally call the Delete method to dispose of the dialog. Alternatively, you can
keep it for re-use later in your application.

Example

 ↔DEMO_MsgBox;DLG
[1] ⍝ Sample function demonstrating use of the MsgBox object
[2] DLG←'⎕' ⎕NEW 'MsgBox' ⊦ DLG.icon←2 ⊦ DLG.style←1
[3] DLG.caption←'Sample Message'
[4] DLG.text←'Sounds fun. Shall we do it?'
[5] ⍝ Show the dialog. If user presses Cancel, quit
[6] →(2=DLG.Show)/0
[7] ⍝ He pressed OK.
[8] 'OK, let''s do it!'
 ↔

Properties

caption children class data default events icon methods name opened properties self style text tie

Methods

Close Create Delete New Open Send Set Show Trigger

Callbacks

onClose onDestroy onOpen onSend

APLX System Classes & User-Interface Programming 116

OLEContainer

Implemented under Windows only

Description

The OLEContainer object allows you to include OLE (Object Linking and Embedding) documents in

your APLX windows. For example, you could include a Microsoft Word document as part of a more

complex window, merging the Word menus and toolbar with your own. The OLEContainer control

handles all of the OLE protocol required for this to work; you merely need to specify the document (or

type of document) to be embedded or linked, or alternatively you can allow the user to select one.

(You can use the 'Control Browser' item in the APLX 'Tools' menu to find out information about the
OLE object types available on your system).

The OLEContainer object automatically merges menus defined by the OLE server application with

your own menus on the same window. The group property of your main menu items determine how

the merging takes place. Top-level menu items whose group property is one of 0, 2, and 4 are left

unchanged. Top-level menu items whose group property is one of 1, 3, and 5 are merged with the

OLE server applications menus. In addition, OLE objects which are activated inside your windows
add their own toolbars to your window.

Once the document is embedded or linked, the OLEContainer object will have additional properties,

methods, and events which belong to the external software but which you can access just as you do

with ordinary APLX objects. (To avoid any possible ambiguity, each external property, method, or

event name is prefixed with an 'x', but you can omit this provided there is no clash with an APLX
built-in name.)

More information on using OLE objects can be found in the separate chapter on OCX/ActiveX

Controls and OLE Automation.

OLEContainer properties

The main OLEContainer properties are:

style: The style is the sum of a set of flags:

1 = Linked instead of embedded document (must be set before setting the 'file'
property)
2 = Allow in-place activation
4 = Show as icon instead of document (must be set before setting 'file' property)

progid: A character vector determining the class of object (for example, whether it is a Word

document or a Pinnacle Chart). It is of the same form as the third column of the oledoctypes property

of the System object. If there is a document loaded, reading the progid property allows you to find

out what the document type is. Writing to the progid property creates a new empty document of the
appropriate class. If you write an empty vector, a dialog is displayed allowing the user to choose.

APLX System Classes & User-Interface Programming 117

file: A character vector determining the name of the document contained in the OLEContainer. If the

OLE container is linked to a document, reading the file property allows you to find out its name.

Writing to the file property causes the container to attempt to load the document (or link to it, if the

style is 1). If you write an empty vector, a dialog is displayed allowing the user to choose a
document.

autoactivate: Determines how the activation of the document takes place. One of:

0 = Manual (use the DoVerb method to activate the document)
1 = Automatic (APLX activates it automatically) [Default]
2 = Activate when the control gets focus
3 = Activate when the user double-clicks in the control.

sizemode: Determines how the document fits in the container. One of:

0 = Displays the OLE object at its normal size, clipping any parts that don't
 fit within the container. [Default]
1 = Displays the OLE object at its normal size, centering it within the container.
2 = Scales or shrinks the view of the OLE object to fit within the container,
 by scaling width and height proportionally.
3 = Scales or shrinks the view of the OLE object to fill the OLE container,
 without regard to preserving the proportions of the OLE object.
4 = Displays the OLE object at its normal size and automatically resizes the
 container to fit the size of the OLE object.

docstate: Read-only property giving information about the OLE document state. One of:

0 = There is no OLE object in the container.
1 = There is an OLE object in the container, but its server application isn't
 currently running.
2 = The OLE object's server is running.
3 = The OLE object is open in a separate window.
4 = The OLE object is activated inplace, but hasn't yet merged its menus or
toolbars.
5 = The OLE object is activated inplace and menus and toolbars have been merged

modified: Boolean property, saying whether the document has been modified. You can reset this to 0
(false).

verbs: Read-only property. It returns a nested array of the application-specific 'verbs' which the server

application defines. See the Doverb method for details.

contents: When you read the contents property, APLX returns a character vector containing the

internal representation of the document (or the link) in the container, encoded as a series of bytes and

including information about the type of the document. You should never change the contents of this

vector, but you can store it in a file and write the same vector back to an OLEContainer to cause it to
re-display the same document.

OLEContainer methods

The main OLEContainer methods are:

Showproperties: (No arguments). Displays the document's properties dialog.

APLX System Classes & User-Interface Programming 118

Doverb: Takes an integer argument which is the ID of a 'verb' to perform. This can either be a positive

integer representing one of the application-specific verbs (see the verbs property), or one of the
standard verbs:

0 Specifies the action that occurs when an end-user
 double-clicks the object in its container.
¯1 Instructs an object to show itself for editing or viewing.
¯2 Instructs an object to open itself for editing in a window
 separate from that of its container.
¯3 Causes an object to remove its user interface from the view.
 Applies only to objects that are activated in-place.
¯4 Activates an object in place, along with its full set of
 user-interface tools, including menus,
 If the object does not support in-place activation, gives domain error
¯5 Activates an object in place without displaying tools, such as menus
 and toolbars, that end-users need to change the behavior or appearance
 of the object.
¯6 Used to tell objects to discard any undo state
 that they may be maintaining without deactivating the object.

Refresh: (No arguments). Causes the display to be updated to reflect any changes to the source

document.

Closedocument: (No arguments). Closes the document, remembers its state, and disconnects from the

server application. You can still read the contents property to retrieve the document contents.

Example

 ↔DEMO_OLEContainer;doc_class;contents;DEMO
[1] ⍝ Sample function demonstrating use of the OLEContainer object
[2] DEMO←'⎕' ⎕NEW 'Window' ⊦ DEMO.title←'OLE Example'
[3] DEMO.OLE.New 'OLEContainer' ⊦ DEMO.OLE.align←¯1
[4] DEMO.Show
[5] ⍝
[6] ⍝ Set the file property to empty vector to put up selection dialog.
[7] ⍝ This will ask the user to choose a document to embed or link
[8] DEMO.OLE.file←''
[9] ⍝
[10] ⍝ See what was selected
[11] doc_class←DEMO.OLE.progid
[12] :If doc_class≡''
[13] ⍝ No valid document selected - user probably cancelled dialog
[14] DEMO.Close 1
[15] :Return
[16] :EndIf
[17] 'Document of class ',doc_class,' loaded'
[18] ⍝
[19] ⍝ Read the raw bytes which represent (in encoded form) the document.
[20] ⍝ In a real example, we might save this data to file and later use
[21] ⍝ it to re-create the document in another OLE container
[22] contents←DEMO.OLE.contents
[23] 'The document requires ',(⍕⍴contents),' bytes of storage'
[24] ⍝
[25] ⍝ Wait for the user to close the window
[26] 0 0⍴⎕WE DEMO
 ↔

APLX System Classes & User-Interface Programming 119

Properties

align anchors aquaadjust autoactivate autodraw border caption children class color contents data

docstate doublebuffered dragsource droptarget enabled events extent file handle maxsize methods

minsize modified name opened order pointer progid properties scale self size sizemode sourceformats

style tabstop targetformats tie units verbs visible where winptr

In addition, any properties exported by the embedded object will be available, with the name prefixed

by 'x'. You can omit the prefix if the name does not clash with an APLX built-in name.

Methods

Click Clienttoscreen Close Closedocument Delete Doverb Draw Focus Hide New Open Paint Refresh
Resize Screentoclient Send Set Show Showproperties Trigger

In addition, any methods exported by the embedded object will be available, with the name prefixed by
'X'. You can omit the prefix if the name does not clash with an APLX built-in name.

Callbacks

onClick onClose onDblClick onDestroy onDragDrop onDragEnd onDragEnter onDragLeave

onDragOver onDragStart onFocus onHide onKeyDown onKeyPress onKeyUp onMouseDown
onMouseMove onMouseUp onOpen onResize onSend onShow onUnFocus

In addition, any event callbacks defined by the embedded object will be available, with the name

prefixed by 'onX'. You can omit the 'X' in the prefix if the name does not clash with an APLX built-in
name.

APLX System Classes & User-Interface Programming 120

OpenFile

Description

The OpenFile class implements the pre-defined file-selection dialog to allow the user to choose a file

to open. This is a top-level object (i.e. it should not be opened as the child of a window).

To use the dialog, you must first create it using ⎕NEW. (Alternatively, you can create it as a top-level

object using the New or Create method of ⎕WI). It will remain hidden at this stage. You can then

optionally set the initial file name/path as the file property. This can be either:

 A full path name.

 Just the file part, in which case you get the current working directory.

 Just a directory ending in a directory-separation character ('\' '/' or ':' depending on the host

system), in which case you get no initial file but the intial directory will be set.

The style property defines the behavior of the dialog. It is an integer (default 0), as follows:

 1 = Allow multi-select

Under Windows and Linux, you can also add one or more of the following style codes (these are

ignored under MacOS):

 2 = Disable re-sizing
 4 = Show 'Open as read-only' control
 8 = Check 'Open As Read-Only'
 16 = Path must exist
 32 = File must exist

Under Windows and Linux, the default property defines the default file extension which will

automatically be added if the user enters a filename without an extension. (Not implemented under
MacOS).

The filter property sets one or more filters (file extensions or types which will be allowed). It

comprises one or more sets of descriptive text, a | character, and a semi-colon delimited list of

supported filters. Multiple filters should be separated by a vertical bar. Under Windows and Linux,

you specify file extensions as file wildcards. For example, the filter 'Text files|*.txt;*.log|All

files|*.*' gives the user the choice of selecting 'Text files' (in which case extensions .txt and .log
are accepted), or 'All files' (any extension is accepted).

Under MacOS, you can choose to filter either using file extensions (in which case the syntax is

identical to that used for Windows and Linux), or using file types. In the latter case the filters are four-

character file types rather than file extensions beginning with the wildcard '*.'. For example:

'Picture files|JPEG;PICT' would display the description "Picture files" to the user, and allow

selection of files of type JPEG and PICT. The file type '****' matches all file types. You can also

APLX System Classes & User-Interface Programming 121

combine both types of filter; for example, 'Text files|*.txt;TEXT' would match files which either
have the extension .txt or which are of type TEXT.

The filterindex property determines which of the filters (in index origin 1) is displayed from the
drop-down list.

Displaying the dialog

When you are ready to show the dialog, call the Show method. This displays the modal dialog. The

user can then select a directory; if the Cancel button is pressed, the Show method returns 0. If the OK

button is pressed, the Show method returns 1. You can then read the file property to retrieve the file

selected by the user. If the multi-select bit was on in the style property, this will be a nested vector of
file names.

Finally, you will normally call the Delete method to dispose of the dialog. Alternatively, you can
keep it for re-use later in your application.

Example

 ↔DEMO_OpenFile;VERSION;⎕IO;DLG
[1] ⍝ Sample function demonstrating use of the OpenFile object
[2] DLG←'⎕' ⎕NEW 'OpenFile'
[3] ⍝
[4] ⍝ Are we running on Windows/Mac/Linux?
[5] ⍝ The way we specify the file filter differs
[6] ⎕IO←1
[7] VERSION←'⎕' ⎕WI 'version'
[8] :If VERSION[2]≠0
[9] ⍝ Running under Windows or Linux:
[10] ⍝ Set up default file
[11] :If VERSION[2]=1
[12] DLG.file←'c:\temp.txt'
[13] :Else
[14] DLG.file←'/temp.txt'
[15] :EndIf
[16] ⍝
[17] ⍝ Set up filter
[18] DLG.filter←'Text files (*.txt *.log)|*.txt;*.log|APL Workspaces (*.aws)|
 *.aws'
[19] :Else
[20] ⍝ Running under MacOS:
[21] ⍝ Set up default file
[22] DLG.file←'temp.txt'
[23] ⍝
[24] ⍝ Set up filter
[25] DLG.filter←'Text files|TEXT|APL Workspaces|AXWS'
[26] :EndIf
[27] ⍝
[28] ⍝ Show the dialog. If user presses Cancel, quit
[29] →(0=DLG.Show)/0
[30] ⍝ He pressed OK.
[31] 'File selected: ',DLG.file
 ↔

APLX System Classes & User-Interface Programming 122

Properties

caption children class data default events file filter filterindex methods name opened properties self

style tie

Methods

Close Create Delete New Open Send Set Show Trigger

Callbacks

onClose onDestroy onOpen onSend

APLX System Classes & User-Interface Programming 123

Page

Description

The Page class implements the individual pages or tab sheets within a Selector object, like the

'Display' and 'Syntax Coloring' tabs in the APLX Preferences dialog. A Page must have a Selector as
its parent, and typically will have other controls (such as check boxes and edit fields) as its children.

The Page caption property sets the title of the tab sheet.

The order property gives the position of the Page within the Selector, in index origin 1. You can

change the position by writing a new value to order. Other Pages are re-numbered accordingly.
Setting a non-integer value will place the Page between two existing pages.

For a Page object, the onShow and onHide callbacks are triggered when the page is
selected/deselected.

Placing images on the tabs

Under Windows and Linux, you can optionally place images on the tabs of Page controls. To do this,

you need to create an ImageList object which contains all the images which appear in the Pages of a

given Selector object. You then write the name of the ImageList to the Selector object's imagelist
property.

Finally, you set the imageindex property of each Page where you want to display an image. This

selects one of the images from the ImageList and displays it on the tab. (See the description of the
ImageList object for an example.)

Example

 ↔DEMO_Page;DEMO
[1] ⍝ Sample function demonstrating use of the Selector object and pages
[2] DEMO←'⎕' ⎕NEW 'Dialog' ⊦ DEMO.scale←1 ⊦ DEMO.size←14 40
[3] DEMO.title←'Selector/Page Example'
[4] ⍝
[5] ⍝ Create selector to hold the individual pages
[6] ⍝ (Could just use "align ¯1" here to make selector same size as the window.
[7] ⍝ However we make it slightly smaller to get the drop shadow under MacOS X)
[8] DEMO.Sel.New 'Selector' ⊦ DEMO.Sel.size←12 38 ⊦ DEMO.Sel.anchors←1 1 1 1
[9] ⍝
[10] ⍝ Now create three pages each with some radio buttons
[11] DEMO.Sel.Page1.New 'Page' ⊦ DEMO.Sel.Page1.caption←'Appetizer'
[12] DEMO.Sel.Page1.R1.New 'Radio' ⊦ DEMO.Sel.Page1.R1.caption←'Smoked Salmon'
[13] DEMO.Sel.Page1.R1.where←2 1 ⊦ DEMO.Sel.Page1.R1.value←1
[14] DEMO.Sel.Page1.R2.New 'Radio' ⊦ DEMO.Sel.Page1.R2.caption←'Fresh asparagus'
[15] DEMO.Sel.Page1.R2.where←4 1
[16] DEMO.Sel.Page1.R3.New 'Radio' ⊦ DEMO.Sel.Page1.R3.caption←'Clam chowder'
[17] DEMO.Sel.Page1.R3.where←6 1
[18] ⍝

APLX System Classes & User-Interface Programming 124

[19] DEMO.Sel.Page2.New 'Page' ⊦ DEMO.Sel.Page2.caption←'Main course'
[20] DEMO.Sel.Page2.R1.New 'Radio' ⊦ DEMO.Sel.Page2.R1.caption←'Roast duck'
[21] DEMO.Sel.Page2.R1.where←2 1 ⊦ DEMO.Sel.Page2.R1.value←1
[22] DEMO.Sel.Page2.R2.New 'Radio' ⊦ DEMO.Sel.Page2.R2.caption←'Grilled steak'
[23] DEMO.Sel.Page2.R2.where←4 1
[24] DEMO.Sel.Page2.R3.New 'Radio' ⊦ DEMO.Sel.Page2.R3.caption←'Fresh sea-bass'
[25] DEMO.Sel.Page2.R3.where←6 1
[26] ⍝
[27] DEMO.Sel.Page3.New 'Page' ⊦ DEMO.Sel.Page3.caption←'Dessert'
[28] DEMO.Sel.Page3.R1.New 'Radio' ⊦ DEMO.Sel.Page3.R1.caption←'Fresh
 stawberries'
[29] DEMO.Sel.Page3.R1.where←2 1 ⊦ DEMO.Sel.Page3.R1.value←1
[30] DEMO.Sel.Page3.R2.New 'Radio' ⊦ DEMO.Sel.Page3.R2.caption←'Creme caramel'
[31] DEMO.Sel.Page3.R2.where←4 1
[32] DEMO.Sel.Page3.R3.New 'Radio' ⊦ DEMO.Sel.Page3.R3.caption←'Baked Alaska'
[33] DEMO.Sel.Page3.R3.where←6 1
[34] ⍝
[35] ⍝ Wait for the user to close the window
[36] 0 0⍴⎕WE DEMO
 ↔

Properties

align anchors aquaadjust autodraw caption children class color data doublebuffered dragsource

droptarget enabled events extent font handle imageindex maxsize methods minsize name opened order
pointer properties scale self size sourceformats tabstop targetformats tie units visible where winptr

Methods

Click Clienttoscreen Close Create Delete Draw Focus Hide New Open Paint Resize Screentoclient

Send Set Show Trigger

Callbacks

onClick onClose onDblClick onDestroy onDragDrop onDragEnd onDragEnter onDragLeave

onDragOver onDragStart onFocus onHide onKeyDown onKeyPress onKeyUp onMouseDown
onMouseMove onMouseUp onOpen onSend onShow onUnFocus

APLX System Classes & User-Interface Programming 125

Picture

Description

The Picture class allows you to display various kinds of picture (for example, JPEG, Windows

bitmaps, or MacOS PICT images). The object can optionally include scroll bars for scrolling around

the image (if the image is bigger than the object), or can allow stretching of the image to fit the object

size. The image can be read from file, from an APL array of pixel color values, or from a stored vector

of drawing commands.

See also the Draw method which allows you to draw icons, pictures and bitmaps on your windows and

controls.

Properties to specify the image

You can specify the image which is displayed in one of four ways:

 By writing the name of an image file (for example, 'mypic.bmp' or 'myphoto.jpg') to the file

property. This can be a full pathname and filename, or just a file name in the current directory.

(For compatibility with other APL systems, you can alternatively write the name to the bitmap

property). The image file must be of a type supported by the host system on which you are

running APLX. If you write an empty vector to the file property, a dialog is displayed

allowing the user to select an image file.

 By writing an array of pixel color values to the bitmap property. The image is represented as

an APL integer matrix, where each element contains an RGB color for the corresponding pixel.

The color value is encoded as 256⊥Blue Green Red, where each color value is in the range 0

to 255. You can also write a boolean array where 0 represents black and 1 represents white.

 By writing an integer vector containing drawing instructions (in the format appropriate to the

host platform) to the picture property. Under MacOS, this is a PICT or JPEG object. Under

Windows, it is a Windows Enhanced Metafile. In both cases, the data can for example be

obtained from the clipboard (as the picture property of the System object). This option is not

supported under Linux.

 By creating an Image object as a child of the Picture object. In this case, the Picture will

display the current image from the off-screen bitmap of the Image object. When the Image
object is changed, the Picture will update automatically.

Reading back the bitmap property always returns an APL array of color values, so you can use this to
convert an image from file (such as a JPEG picture) to a bitmap.

APLX System Classes & User-Interface Programming 126

Other properties

style: An integer comprising one of:

 0 Picture is unscaled and centred
 4 Picture is scaled to fit image
 8 Picture is always scaled to fit frame, even when frame resized

to which can be added:

 16 Vertical scroll bar (Not valid if style = 8)
 64 Horizontal scroll bar (Not valid if style = 8)
 128 Disable unnecessary scroll bars instead of removing them (MacOS only)

imagesize: The size (in current scale units) of the picture. This may be larger than or smaller than

the size property of the object itself. If the style is 8, you cannot set imagesize, since it is always
the same as the object size.

bitmapsize: The size (in current scale units) of the image within the picture.

Example

 ↔DEMO_Picture;DEMO
[1] ⍝ Sample function demonstrating use of the Picture object
[2] DEMO←'⎕' ⎕NEW 'Window' ⊦ DEMO.scale←5 ⊦ DEMO.size←188 140
[3] DEMO.title←'Picture'
[4] DEMO.myPicture.New 'Picture' ⊦ DEMO.myPicture.align←¯1
[5] ⍝
[6] ⍝ Specify the picture either from a PICT or JPEG file, e.g.
[7] ⍝
[8] ⍝ Macintosh:
[9] ⍝ DEMO.myPicture.file←'Macintosh HD:MyPicture'
[10] ⍝
[11] ⍝ Windows:
[12] ⍝ DEMO.myPicture.file←'C:/MyFiles/MyPicture.jpg'
[13] ⍝
[14] ⍝ ...or put up a dialog asking the user to choose an image file:
[15] ⍝
[16] ⍝ DEMO.myPicture.file←''
[17] ⍝
[18] ⍝ ...or from an image held in a variable or the clipboard, e.g.
[19] ⍝
[20] ⍝ DEMO.myPicture.picture←('⎕' ⎕WI 'picture')
[21] ⍝
[22] ⍝
[23] ⍝ ...or from an integer matrix of encoded RGB colour values, as here:
[24] ⍝
[25] DEMO.myPicture.bitmap←SAMPLE_BITMAP
[26] ⍝
[27] ⍝ Wait for the user to close the window
[28] 0 0⍴⎕WE DEMO
 ↔

APLX System Classes & User-Interface Programming 127

Properties

align anchors aquaadjust autodraw bitmap bitmapsize border children class color data dragsource

droptarget enabled events extent file imagesize maxsize methods minsize name opened picture pointer
properties scale self size sourceformats style targetformats tie units visible where

Methods

Click Clienttoscreen Close Create Delete Draw Hide New Open Paint Resize Screentoclient Send Set
Show Trigger

Callbacks

onClick onClose onDblClick onDestroy onDragDrop onDragEnd onDragEnter onDragLeave

onDragOver onDragStart onHide onMouseDown onMouseMove onMouseUp onOpen onSend
onShow

APLX System Classes & User-Interface Programming 128

Printer

Description

The Printer class gives you control over the printer, and also allows you to display the standard dialogs

related to printing. This is an invisible, top-level object (i.e. it should not be created as a child of a
window object).

To use a Printer object, you first create it as a top-level object. You can then if you wish call the Setup

and Job methods to display the standard printer page-setup and print-job dialogs, allowing the user to

set the printing parameters. Both of these methods return 1 if the user selected OK and 0 for Cancel.

Output to the printer or spool file begins when you Open the printer (this starts a new print job). You

have control over the font and placement of the text using the font and position properties. Calling

the Print method allows you to print text (either as a character vector, possibly with embedded

carriage returns, or as a character matrix). Printing starts at the current position, and the position

property is updated at the end of the Print method to reflect where the printing position has reached.

If, during printing, the position reaches the bottom margin of the page, a page throw will automatically

be generated and printing will resume at the top, left of the next page. You can fine-tune the line

height and character pitch using the lineheight and pitch properties.

To draw graphics and arbitrary text on the printer page, you can use the Draw method. (If you have

already used the Draw method to create the graphics in a window, you can retrieve a nested array of

drawing commands from the window using the Draw 'State' keyword, and then re-submit the same

commands to the Printer object as the argument of the printer's Draw method).

The Eject method forces a page throw. When you have output all the text, you call the Close method

which ends the print job and submits it to the printer. If you want to abort the print job, call the Abort
method.

The margin property, a four-element vector, allows you to set or retrieve the Left/Right/Top/Bottom

margins in the current scale. Other useful properties include copies (the number of copies which

will be printed), and orientation (a boolean scalar, 0=Portrait, 1=Landscape). These are read-only

once the print job has started using Open.

There are a number of read-only properties associated with a Printer object. These include page (the

current page number), size (the page size), handle (the handle to the printer record, used in low-level

programming), and winptr (the display context/port also for low-level programmng). Under

Windows, the fonts property lists available printer fonts.

Note that, although it is possible to create more than one Printer object, only one can be used at a time.
In general, we recommend that you do not create more than one Printer in your application.

APLX System Classes & User-Interface Programming 129

Automatic (unattended) printing

If you want to print without user intervention (i.e. without displaying a dialog), you must set the

parameters for the print job before calling the Open method. You can select the page orientation by

setting the orientation property, and (except under MacOS), the number of copies by setting the

copies property.

Under Windows only, if you have several printers accessible from your system, you can also select a

particular one under program control. The printers read-only property returns a nested vector of the

names of each available printer. The printername property allows you to select one of these, or query
which one is selected.

Example

 ↔DEMO_Printer;TEXT;PRN
[1] ⍝ Sample function demonstrating use of the Printer object
[2] PRN←'⎕' ⎕NEW 'Printer' ⊦ PRN.scale←3 ⊦ PRN.margin←72 72 72 72
[3] ⍝
[4] ⍝ Put up the printer select dialog, quit on cancel
[5] →(0=PRN.Setup)/0
[6] ⍝
[7] ⍝ (We could also display the Job dialog here)
[8] ⍝
[9] ⍝ Now open the printer to start the job, and print some text
[10] PRN.Open
[11] PRN.font←'Times' 36 1
[12] PRN.color←220
[13] PRN.Print('Quotation',⎕R)
[14] PRN.font←'Times' 18 0
[15] PRN.color←0
[16] PRN.Print('Let me not to the marriage of true minds',⎕R)
[17] PRN.Print('Admit impediments. Love is not love',⎕R)
[18] PRN.Print('Which alters when it alteration finds,',⎕R)
[19] PRN.Print('Or bends with the remover to remove.',⎕R,⎕R)
[20] PRN.font←'Times' 9 2
[21] PRN.Print 'William Shakespeare'
[22] ⍝
[23] ⍝ Close printer to submit the job
[24] PRN.Close
 ↔

Properties

caption children class color copies data events font fonts handle lineheight margin methods name
opened orientation page pitch position printers printername properties scale self size tie units winptr

Methods

Abort Close Create Delete Draw Eject Job New Open Print Send Set Setup Trigger

APLX System Classes & User-Interface Programming 130

Callbacks

onClose onDestroy onOpen onSend

APLX System Classes & User-Interface Programming 131

Progress

Description

The Progress class implements the 'progress bar' control, typically used to display the progress of a

long operation such as copying a large number of files.

Progress properties

The main Progress properties are:

style: The basic style is 0 for a vertical control. Add 1 to make it use smooth increments

(recommended), and add 2 to make it a horizontal control (not needed for MacOS - the orientation is

deduced from the where property).

value: Up to 4 integers of Position, Maximum, Step, Minimum.

range: A two-element integer vector giving the minimum and maximum values (default 0 100)

increment: An integer scalar giving the amount by which the value will change when the StepIt
method is run. without an argument

Progress method

StepIt: Increment the value. If called with no arguments, the progress bar value is increased by the

increment property. If called with an argument (integer scalar), it increments by the amount
specified.

Example

 ↔DEMO_Progress;N;X;DEMO
[1] ⍝ Sample function demonstrating use of the Progress object
[2] ⍝ Default is progress bar from 0 to 100
[3] DEMO←'⎕' ⎕NEW 'Dialog' ⊦ DEMO.title←'Progress Example'
[4] DEMO.myProgress.New 'Progress' ⊦ DEMO.myProgress.where←2 1
[5] DEMO.myProgress.scale←1 ⊦ DEMO.myProgress.style←1
[6] ⍝
[7] ⍝ Must show window now, otherwise if won't appear until after loop below
[8] DEMO.Show
[9] ⍝
[10] :For N :In ⍳10
[11] X←⎕DL 0.3
[12] DEMO.myProgress.value←(N×10)
[13] :EndFor
[14] ⍝
[15] ⍝ Wait for the user to close the window
[16] 0 0⍴⎕WE DEMO
 ↔

APLX System Classes & User-Interface Programming 132

Properties

align anchors aquaadjust autodraw caption children class color data doublebuffered dragsource

droptarget enabled events extent handle increment maxsize methods minsize name opened order

pointer properties range scale self size sourceformats style tabstop targetformats tie tooltip units value

visible where winptr

Methods

Click Clienttoscreen Close Create Delete Draw Focus Hide New Open Paint Resize Screentoclient
Send Set Show Stepit Trigger

Callbacks

onClick onClose onDblClick onDestroy onDragDrop onDragEnd onDragEnter onDragLeave

onDragOver onDragStart onFocus onHide onKeyDown onKeyPress onKeyUp onMouseDown
onMouseMove onMouseUp onOpen onSend onShow onUnFocus

APLX System Classes & User-Interface Programming 133

Radio

Alternative name: Option

Description

The Radio class implements 'radio' buttons, for selecting one-of-many mutually-exclusive options.

You typically set the caption property which indicates the caption associated with the control, and

you might set the enabled property to 1 or 0 depending on whether a particular option is valid. The

value property is 1 if the control is selected, and 0 otherwise. Only one radio button in a group can be
selected at any time; selecting a different Radio button automatically de-selects the current one.

For Radio buttons, it is not always necessary to have any callbacks defined, since when the dialog

ends or a Button is pressed you can determine the state of Radio objects using the value property. In

other cases, use of an onClick callback to detect changes in the state of these controls may be

preferable, and it is necessary if other items in a dialog need to depend on the state of the Radio or
Check boxes.

The group property of a Radio button determines which group (within a particular control) the button

belongs to. Only one Radio button in the group can be selected at any time, so that if one is selected,

all others in the same group are automatically de-selected.

Usually, this grouping occurs automatically (typically, you place Radio buttons in a Frame object).

The initial group property for the first Radio button to be created as the child of a Frame or Window is

0. If you create further Radio buttons one after another with the same parent, the group property for

each new button is the same as that of the previous button, so each button in the series belongs to the

same group.

If you create a different type of control in between, the group property is incremented by one for the
next series, so that the second series of Radio buttons behaves independently of the first.

Alternatively, you can override this behavior and set the Radio button's group explicitly, as an integer

scalar in the range 0 to 255.

To provide help text when the user moves the mouse pointer over the control and pauses, you can use

the tooltip property.

Example

 ↔DEMO_Radio;DEMO
[1] ⍝ Sample function demonstrating use of Radio buttons
[2] DEMO←'⎕' ⎕NEW 'Dialog' ⊦ DEMO.scale←1
[3] DEMO.title←'Radio Example'

APLX System Classes & User-Interface Programming 134

[4] ⍝
[5] DEMO.RADIO1.New 'Radio'
[6] DEMO.RADIO1.where←2 3 1 30
[7] DEMO.RADIO1.caption←' APLX for MacOS'
[8] ⍝
[9] DEMO.RADIO2.New 'Radio'
[10] DEMO.RADIO2.where←3.5 3 1 30
[11] DEMO.RADIO2.caption←'APLX for Windows'
[12] ⍝
[13] DEMO.RADIO3.New 'Radio'
[14] DEMO.RADIO3.where←5 3 1 30
[15] DEMO.RADIO3.caption←'APLX for Linux'
[16] DEMO.RADIO3.value←1
[17] ⍝
[18] DEMO.RADIO4.New 'Radio'
[19] DEMO.RADIO4.where←6.5 3 1 30
[20] DEMO.RADIO4.caption←'APLX for Solaris'
[21] DEMO.RADIO4.enabled←0
[22] ⍝
[23] ⍝ Wait for the user to close the window
[24] 0 0⍴⎕WE DEMO
 ↔

Properties

align anchors aquaadjust autodraw caption children class color data doublebuffered dragsource

droptarget enabled events extent font group handle maxsize methods minsize name opened order

pointer properties scale self size sourceformats tabstop targetformats tie units value visible where
winptr

Methods

Click Clienttoscreen Close Create Delete Draw Focus Hide New Open Paint Resize Screentoclient
Send Set Show Trigger

Callbacks

onClick onClose onDblClick onDestroy onDragDrop onDragEnd onDragEnter onDragLeave

onDragOver onDragStart onFocus onHide onKeyDown onKeyPress onKeyUp onMouseDown
onMouseMove onMouseUp onOpen onSend onShow onUnFocus

APLX System Classes & User-Interface Programming 135

Rectangle

Description

The Rectangle object is normally used for display purposes only. The where or size property is used

to define the coordinates of the rectangle.

You can set the filled property to indicate that you want the object filled with the foreground color.

You can set the foreground color using the color property. (The background color is ignored). The

pensize property changes the thickness of the lines.

Note: Remember that the default scale is in character units. See the scale property for details.

See also the Draw method which allows you to draw geometric shapes on your windows and controls.

Example

 ↔DEMO_Rectangle;DEMO
[1] ⍝ Sample function demonstrating use of the Rectangle object
[2] DEMO←'⎕' ⎕NEW 'Window' ⊦ DEMO.scale←1
[3] DEMO.title←'Rectangle Example'
[4] ⍝
[5] DEMO.RECT.New 'Rectangle'
[6] DEMO.RECT.where←4 4 3 6
[7] DEMO.RECT.color←255
[8] ⍝
[9] DEMO.FILLEDRECT.New 'Rectangle'
[10] DEMO.FILLEDRECT.where←4 12 3 6
[11] DEMO.FILLEDRECT.color←(255×256)
[12] DEMO.FILLEDRECT.filled←1
[13] ⍝
[14] ⍝ Wait for the user to close the window
[15] 0 0⍴⎕WE DEMO
 ↔

Properties

align anchors aquaadjust autodraw children class color data dragsource droptarget enabled events

extent filled maxsize methods minsize name opened pensize pointer properties scale self size
sourceformats targetformats tie units visible where

Methods

Click Clienttoscreen Close Create Delete Hide New Open Paint Resize Screentoclient Send Set Show
Trigger

APLX System Classes & User-Interface Programming 136

Callbacks

onClick onClose onDblClick onDestroy onDragDrop onDragEnd onDragEnter onDragLeave

onDragOver onDragStart onHide onMouseDown onMouseMove onMouseUp onOpen onSend
onShow

APLX System Classes & User-Interface Programming 137

RichEdit

Description

The RichEdit class implements the RichEdit control, which is a text input and display control with

advanced formatting capabilities, including support for multiple fonts, colors, and styles. Typically,

you set the 'selection' properties such as selcolor and selfont to choose a text format, and then

output some text using the seltext property. You can then change the format and output some more

text. The RichEdit control can also be used for advanced word-processing type applications.

RichEdit properties

The main RichEdit properties are:

style: The style is a set of flags:

 1 = centered
 2 = right justified
 4 = multiline
 16 = vertical scroll bar
 32 = inhibit auto horizontal scroll (ie word wrap if multiline)
 64 = horizontal scroll bar
 1024 = show selection even when control does not have focus (Windows only)
 4096 = read only
 8192 = allow Enter characters to be input (multi-line only)
 65536 = disable unnecessary scroll bars rather than removing them
 (Windows and MacOS only)
 131072 = allow Tab characters to be input, instead of tabbing to next control
 (Windows and MacOS only)

text: A character vector containing the text of the whole control. Writing to the text property replaces

all the current text in the control. (Under Windows, you can also use the rtf property which is the
same except that the text is in Rich Text Format and includes formatting information.)

selection: A two-element integer vector (start, length) giving the current selection start position (in

index origin 0) and length. Writing to the selection property changes the selection on the screen, and

determines where the next text will be output (i.e. the insertion point). A length of 0 means that no text

is selected. A length of ¯1 selects from the given start position to the end of the text.

seltext: A character vector containing the text of the selected part of the control. If there is no

selection, this is an empty vector. Writing to the seltext property deletes any current selection and

inserts the text you write, in the current selection font, style and color. (Under Windows, you can also

use the selrtf property which is the same except that the text is in Rich Text Format and includes
formatting information.)

selcolor: The current selection color, in the same format as the color property.

APLX System Classes & User-Interface Programming 138

selfont: The current selection font and style, in the same format as the font property.

selstyle: The current selection style, as a 5-element vector: bold, italic, underline, strikeout, and

protected. Valid values for each are 1 = Set, 0 = Clear, ¯1 = Leave unchanged. Setting the 'protected'

attribute means the text cannot be changed, even under program control; it must therefore be set only

after you have output text to the control. (Note: The 'protected' attribute is not available under
MacOS).

selalign: The current paragraph alignment, as a character vector keyword. One of 'left', 'right',
'center' (or 'centre')

selbullet: The current paragraph bullet style, as a character vector keyword or boolean scalar. One

of 'none' (or 0), 'bullet' (or 1)

selindents: A three-element numeric vector giving the left, bullet and right indents in the current

scale of the control

seltabs: A numeric vector giving the tab positions in the current scale of the control. (Windows
only)

linecount: (Read-only) The number of lines of text in the control

range: (Read-only) A two-element integer vector. The first element is the line number of the first

visible line, and the second is the count of lines visible in the control.

RichEdit methods

The main RichEdit methods are:

Clear: Delete the currently-selected text.

Cut: Cut the currently-selected text to the clipboard.

Copy: Copy the currently-selected text to the clipboard.

Paste: Replace the currently-selected text with the contents of the clipboard.

Undo: Undo the last change.

Print: Print the contents of the control (with formatting), to the current printer. Can optionally be

called with a character-vector argument, which is the print-job name. (You can use the Setup and Job
dialogs in the Printer object to allow the user to configure the printer.)

Save: Saves the contents of the rich-edit control to a file. You can specify the file name as the

argument, or specify an empty vector in which case a dialog is displayed to allow the user to specify

the file name. You can also optionally pass a second argument, to indicate whether the saved file

APLX System Classes & User-Interface Programming 139

should include formatting information. The valid values are 0 (no formatting, save as plain text), 1
(under Windows, save in Rich Text Format as a .rtf file), or 2 (under MacOS, save as Styled text).

Load: Loads the contents of a file into the rich-edit control. You can specify the file name as the

argument, or specify an empty vector in which case a dialog is displayed to allow the user to choose a

file name. Under Windows, the file can be in Rich Text Format (.rtf), in which case formatted text is
loaded.

Linetochar: Takes a line number, and returns the position within the text of the first character of the
line. Both are in index origin 0.

Chartoline: Takes a character position within the text, and returns the number of the line containing

the character. Both are in index origin 0.

Linelength: Takes a line number (in index origin 0), and returns the length of the line in characters.

Example

 ↔DEMO_RichEdit;TEXT;DEMO
[1] ⍝ Sample function demonstrating use of the RichEdit object
[2] DEMO←'⎕' ⎕NEW 'Window' ⊦ DEMO.title←'RichEdit Example'
[3] DEMO.myRichEdit.New 'RichEdit' ⊦ DEMO.myRichEdit.align←¯1
[4] DEMO.myRichEdit.scale←3 ⊦ DEMO.myRichEdit.border←0
[5] DEMO.myRichEdit.selindents←20 20 20
[6] ⍝
[7] DEMO.myRichEdit.selection←0
[8] DEMO.myRichEdit.selfont←'Times New Roman' 18 1
[9] DEMO.myRichEdit.selcolor←220
[10] DEMO.myRichEdit.seltext←('Quotation',⎕R)
[11] ⍝
[12] DEMO.myRichEdit.selfont←'Times New Roman' 12 0
[13] DEMO.myRichEdit.selcolor←0
[14] TEXT←⎕R,'Let me not to the marriage of true minds',⎕R
[15] TEXT←TEXT,'Admit impediments. Love is not love',⎕R
[16] TEXT←TEXT,'Which alters when it alteration finds,',⎕R
[17] TEXT←TEXT,'Or bends with the remover to remove.',⎕R,⎕R
[18] DEMO.myRichEdit.seltext←TEXT
[19] ⍝
[20] DEMO.myRichEdit.selfont←'Times New Roman' 10 2
[21] DEMO.myRichEdit.selalign←'right'
[22] DEMO.myRichEdit.seltext←'William Shakespeare'
[23] ⍝
[24] ⍝ Wait for the user to close the window
[25] 0 0⍴⎕WE DEMO
 ↔

Properties

align anchors aquaadjust autodraw border canundo caption children class color data doublebuffered

dragsource droptarget enabled events extent font handle limit linecount maxsize methods minsize

name opened order pointer properties rtf scale selalign selbullet selcolor selection self selfont

selindents selrtf selstyle seltabs seltext size sourceformats style tabstop targetformats text tie units
visible where winptr

APLX System Classes & User-Interface Programming 140

Methods

Chartoline Clear Click Clienttoscreen Close Copy Create Cut Delete Draw Focus Hide Linelength

Linetochar Load New Open Paint Paste Print Resize Save Screentoclient Send Set Show Trigger Undo

Callbacks

onChange onClick onClose onDblClick onDestroy onDragDrop onDragEnd onDragEnter

onDragLeave onDragOver onDragStart onFocus onHide onKeyDown onKeyPress onKeyUp
onMouseDown onMouseMove onMouseUp onOpen onSend onShow onUnFocus

APLX System Classes & User-Interface Programming 141

RoundRect

Description

The RoundRect object implements a rectangle with rounded corners, and is normally used for display

purposes only. The where or size property is used to define the coordinates of the rectangle. The

rounding property determines the curvature of the corners.

You can set the filled property to indicate that you want the object filled with the foreground color.

You can set the foreground color using the color property. (The background color is ignored). The

pensize property changes the thickness of the lines.

Note: Remember that the default scale is in character units. See the scale property for details.

See also the Draw method which allows you to draw geometric shapes on your windows and controls.

Example

 ↔DEMO_RoundRect;DEMO
[1] ⍝ Sample function demonstrating use of the RoundRect object
[2] DEMO←'⎕' ⎕NEW 'Window' ⊦ DEMO.scale←1
[3] DEMO.title←'RoundRect Example'
[4] ⍝
[5] DEMO.RECT.New 'RoundRect'
[6] DEMO.RECT.where←4 4 3 6
[7] DEMO.RECT.color←255
[8] ⍝
[9] DEMO.FILLEDRECT.New 'RoundRect'
[10] DEMO.FILLEDRECT.where←4 12 3 6
[11] DEMO.FILLEDRECT.rounding←2
[12] DEMO.FILLEDRECT.color←(255×256)
[13] DEMO.FILLEDRECT.filled←1
[14] ⍝
[15] ⍝ Wait for the user to close the window
[16] 0 0⍴⎕WE DEMO
 ↔

Properties

align anchors aquaadjust autodraw children class color data dragsource droptarget enabled events

extent filled maxsize methods minsize name opened pensize pointer properties rounding scale self size
sourceformats targetformats tie units visible where

Methods

Click Clienttoscreen Close Create Delete Hide New Open Paint Resize Screentoclient Send Set Show
Trigger

APLX System Classes & User-Interface Programming 142

Callbacks

onClick onClose onDblClick onDestroy onDragDrop onDragEnd onDragEnter onDragLeave

onDragOver onDragStart onHide onMouseDown onMouseMove onMouseUp onOpen onSend
onShow

APLX System Classes & User-Interface Programming 143

SaveFile

Description

The SaveFile class implements the pre-defined file-selection dialog to allow the user to choose a name

and location for saving a file. This is a top-level object (i.e. it should not be opened as the child of a
window).

To use the dialog, you must first create it using ⎕NEW. (Alternatively, you can create it as a top-level

object using the New or Create method of ⎕WI). It will remain hidden at this stage. You can then

optionally set the initial file name/path as the file property. This can be either:

 A full path name.

 Just the file part, in which case you get the current working directory.

 Just a directory ending in a directory-separation character ('\' '/' or ':' depending on the host

system), in which case you get no initial file but the initial directory will be set.

Under Windows, the style property defines the behavior of the dialog (it is ignored under MacOS). It
is an integer (default 0) made up of the sum of:

 2 = Disable re-sizing
 4 = Warn if the selection would overwrite an existing file
 8 = Give error if the user selects a read-only file (Windows only)
 16 = Path must exist

Under Windows and Linux, the default property defines the default file extension which will

automatically be added if the user enters a filename without an extension. It is not implemented in
APLX for MacOS.

The filter property sets one or more filters (file extensions or types which will be allowed). It

comprises one or more sets of descriptive text, a | character, and a semi-colon delimited list of
supported filters. Multiple filters should be separated by a vertical bar.

Under Windows and Linux, you specify file extensions as file wildcards. For example, the filter 'Text

files|*.txt;*.log|All files|*.*' gives the user the choice of selecting "Text files" (in which
case extensions .txt and .log are accepted), or "All files" (any extension is accepted).

Under MacOS, you can choose to filter either using file extensions (in which case the syntax is

identical to that used for Windows and Linux), or using file types. In the latter case the filters are four-

character file types rather than file extensions beginning with the wildcard '*.'. For example:

'Picture files|JPEG;PICT' would display the description "Picture files" to the user, and allow

selection of files of type JPEG and PICT. The file type '****' matches all file types. You can also

combine both types of filter; for example, 'Text files|*.txt;TEXT' would match files which either
have the extension .txt or which are of type TEXT.

APLX System Classes & User-Interface Programming 144

The filterindex property determines which of the filters (in index origin 1) is displayed from the
drop-down list.

Displaying the dialog

When you are ready to show the dialog, call the Show method. This displays the modal dialog. The

user can then select a directory; if the Cancel button is pressed, the Show method returns 0. If the OK

button is pressed, the Show method returns 1. You can then read the file property to retrieve the file
selected by the user. This will be a character vector.

Example

 ↔DEMO_SaveFile;VERSION;⎕IO;DLG
[1] ⍝ Sample function demonstrating use of the SaveFile object
[2] DLG←'⎕' ⎕NEW 'SaveFile' ⊦ DLG.caption←'Save demonstration file'
[3] ⍝
[4] ⍝ Are we running on Windows or Mac? The way we specify the file filter
[5] ⍝ is different...
[6] ⎕IO←1
[7] VERSION←'⎕' ⎕WI 'version'
[8] :If VERSION[2]≠0
[9] ⍝ Running under Windows or Linux:
[10] ⍝ Set up default file
[11] :If VERSION[2]=1
[12] DLG.file←'c:\temp.txt'
[13] :Else
[14] DLG.file←'/temp.txt'
[15] :EndIf
[16] ⍝
[17] ⍝ Set up filter
[18] DLG.filter←'Text files (*.txt *.log)|*.txt;*.log|APL Workspaces (*.aws)|
 *.aws'
[19] :Else
[20] ⍝ Running under MacOS:
[21] ⍝ Set up default file
[22] DLG.file←'temp.txt'
[23] ⍝
[24] ⍝ Set up filter
[25] DLG.filter←'Text files|TEXT|APL Workspaces|AXWS'
[26] :EndIf
[27] ⍝
[28] ⍝ Show the dialog. If user presses Cancel, quit
[29] →(0=DLG.Show)/0
[30] ⍝
[31] ⍝ He pressed OK.
[32] 'File selected: ',DLG.file
 ↔

Properties

caption children class data default events file filter filterindex methods name opened properties self

style tie

APLX System Classes & User-Interface Programming 145

Methods

Close Create Delete New Open Send Set Show Trigger

Callbacks

onClose onDestroy onOpen onSend

APLX System Classes & User-Interface Programming 146

Scroll

Description

The Scroll class implements scroll bars, allowing the user to move a slider to scroll around data or

select a value from a range.

The main property for a Scroll object is value. This is a five-element vector, as follows:

[1] Current value (initially 0)

[2] Maximum value (default 100)

[3] 'Page' increment (default 1)

[4] Minimum value (default 0)
[5] (Reserved: 0)

When setting this property, you do not have to set all the elements.

The style property determines the orientation of the scroll bar. It is 0 for Vertical or 1 for Horizontal.

When the user changes the position of the slider, the onChange callback is triggered.

Note that you do not need to create your own scroll bars for List, Tree, Picture, Edit, RichEdit and

Document objects; these will automatically include scroll bars where necessary, provided you have set

the correct style property.

Example

 ↔DEMO_Scroll;CB_SCROLL;DEMO
[1] ⍝ Sample function demonstrating use of the Scroll object
[2] DEMO←'⎕' ⎕NEW 'Dialog' ⊦ DEMO.scale←1
[3] DEMO.title←'Scroll Bar Example'
[4] DEMO.Scrl.New 'Scroll' ⊦ DEMO.Scrl.where←2 1
[5] DEMO.Scrl.value←0 100 10 0 0
[6] DEMO.Lab.New 'Label' ⊦ DEMO.Lab.where←4 1
[7] DEMO.Lab.caption←'Value: 0'
[8] ⍝
[9] ⍝ Create callback function which will run when the user spins the control
[10] 0 0⍴⎕FX 'CB_SCROLL;X' 'X←DEMO.Scrl.value' 'DEMO.Lab.caption←"Value ",⍕1↑X'
[11] DEMO.Scrl.onChange←'CB_SCROLL'
[12] ⍝
[13] ⍝ Wait for the user to close the window
[14] 0 0⍴⎕WE DEMO
 ↔

APLX System Classes & User-Interface Programming 147

Properties

align anchors aquaadjust autodraw caption children class color data doublebuffered dragsource

droptarget enabled events extent handle maxsize methods minsize name opened order pointer

properties scale self size sourceformats style tabstop targetformats tie tooltip units value visible where

winptr

Methods

Click Clienttoscreen Close Create Delete Draw Focus Hide New Open Paint Resize Screentoclient
Send Set Show Trigger

Callbacks

onChange onClick onClose onDblClick onDestroy onDragDrop onDragEnd onDragEnter

onDragLeave onDragOver onDragStart onFocus onHide onKeyDown onKeyPress onKeyUp
onMouseDown onMouseMove onMouseUp onOpen onSend onShow onUnFocus

APLX System Classes & User-Interface Programming 148

Selector

Description

The Selector class implements a container for a set of pages or tab sheets, such as is used in the APLX

Preferences dialog. A Selector must have Page objects as its children, on which typically other
controls will be placed.

The Selector style property governs the appearance of the tab sheets under Windows. It can be either

0 (meaning use tabs to choose the pages), or 1 (use buttons). In addition, you can add one or both of 8

= Allow multiple lines of tabs, 16 = Ragged right. Under MacOS, the style property is ignored.

The value property sets or retrieves the index of the currently-selected Page, starting at 1. This is the

same as the order property of the current Page.

The font property can be used to change the font which is used to display the names of the tabs. It is
also the default font for any children of the tab sheets.

See the Page class for more information and an example.

Properties

align anchors aquaadjust autodraw caption children class color data doublebuffered dragsource

droptarget enabled events extent font handle imagelist maxsize methods minsize name opened order

pointer properties scale self size sourceformats style tabrows tabstop targetformats tie units value

visible where winptr

Methods

Click Clienttoscreen Close Create Delete Draw Focus Hide New Open Paint Resize Screentoclient
Send Set Show Trigger

Callbacks

onChange onClick onClose onDblClick onDestroy onDragDrop onDragEnd onDragEnter

onDragLeave onDragOver onDragStart onFocus onHide onKeyDown onKeyPress onKeyUp
onMouseDown onMouseMove onMouseUp onOpen onSend onShow onUnFocus

APLX System Classes & User-Interface Programming 149

SendMail

Description

The SendMail object allows your APLX applications to send e-mail messages, using the SMTP

protocol supported by most Internet Service Providers (ISPs). It complements the GetMail object,
which can be used to retrieve incoming e-mails in your APLX application.

You can use the SendMail object for a number of purposes. For example, you might have an APLX

application which automatically analyses some data on a regular basis, and e-mails the results to a list

of recipients. Or you might use it as part of an APL-based mailing list application. You can also use it
to e-mail automatically-generated diagnostic reports to software-support staff.

Caution: The ability to send e-mails automatically from APLX is very powerful, but you should be very

careful not to abuse it by violating privacy or sending out unsolicited 'spam' e-mails to people who do

not want to receive them. Not only is this objectionable to many people, it is almost certainly not

permitted by your Internet Service Provider and could result in your internet account being
terminated. In addition, in many jurisdictions it may be illegal.

Connecting to the SMTP server

The SendMail object should be created as a top-level object, i.e. not as the child of a Window or other

control. You then need set up the following properties, to define the address of the SMTP mail server

you are using, your username and password (if required). This information should be available from
your ISP or network administrator:

host: This is a character vector, to which you should assign the Internet address of the SMTP server.

It can be specified either as a domain name (such as 'smtp.myisp.com'), or directly as an internet

node address (such as '168.9.211.53').

port: You can use this property to change the port used by the SMTP connection. For most
applications you should leave this set to the default value of 25.

user: The user name for the account, if required, should be assigned to this property. (Not currently

supported under MacOS.)

password: The password, if required for this account, should be assigned to this property. Not all ISPs

require a password for sending mail, in which case you can leave this property as an empty vector.
(Not currently supported under MacOS.)

Next, you need to call the Open method, which establishes the connection with the server. (Note:

Whilst you have this connection open, you are tying up resources on the server. You should aim to

close the connection as soon as you can; if you fail to do so, the SMTP server will eventually time out

and close the connection automatically). The Open method returns an integer scalar, which indicates

APLX System Classes & User-Interface Programming 150

whether the connection succeeded. The returned value will be one of 0 = OK, 1 = Could not find host,
2 = Authentication error (i.e. incorrect username or password), 3 = Other error.

For example:

 SM←'⎕' ⎕NEW 'SendMail'
 SM.host←'smtp.supernet.com'
 SM.user←'microapl'
 SM.password←'sesame'
 SM.Open
0

Preparing the e-mail

Before sending an e-mail, you need to set it up by assigning values to the following properties of the

SendMail object:

subject: The subject of the e-mail, as a character vector.

from: The e-mail address of the sender of the e-mail, as a character vector.

to: The recipients of the e-mail, specified as a comma-delimited list of e-mail addresses.

cc: The list of e-mail addresses to which the message should be 'carbon-copied', specified as a

comma-delimited list. Leave this as an empty vector if you do not want the e-mail to be copied to

people than the main recipients.

bcc: The same as cc, except that the list of recipients will not be shown on the e-mail sent out ('blind

carbon copy').

replyto: The e-mail address to which any reply to an e-mail should be sent. It is a simple character

vector. If you do not specify this, the 'from' address will be used.

body: The main text of the e-mail, as a simple character vector with carriage return (⎕R) characters
separating paragraphs.

attachments: A list of the names of the files (if any) which you want to attach to the e-mail. You

should provide full paths for these. You can specify them either as a nested vector of vectors, or as a

character matrix, or as a CR-delimited simple character vector. (If you read back the property, APLX

always returns the nested vector form). Leave this property as an empty vector if there are no
attachments.

Sending the e-mail

Once you have set up the properties of the e-mail, you send it by calling the SendMessage method

(you must be connected to the SMTP server to do this). This method takes no argument; it returns an

error code as follows: 0 = No error, 1 = Host not found, 2 = Authentication error, 3 = General or

APLX System Classes & User-Interface Programming 151

comms error, 4 = Attachment not found, 5 = Incomplete header (e.g. 'to' property not set), 6 =
Recipient not found.

For example, assuming you have created a SendMail object 'SM' and successfully connected to the
server, the following APLX statements would send an e-mail, with an attachment, to MicroAPL:

 SM.to←'microapl@microapl.co.uk'
 SM.from←'bob3@yahoo.com'
 SM.subject←'APLX feedback'
 SM.attachments←'c:\docs\APLXReview.doc'
 SM.body←'APLX is fantastic! See attached review.',⎕R,'Thanks. Bob'
 errcode←SM.SendMessage

Sending another e-mail

Once you have called the SendMessage method to send the e-mail, you can then write new values to

the various properties, and send another message. To reset all the properties to their default (empty)

values before assigning new values, call the Clear method; this is usually recommended to avoid

accidentally retaining some parts of the previous message (such as an attachment). In some cases,

however, you may want to send out variants of the same message, in which you can simply change

those properties which are different, without calling Clear.

Closing the connection

Finally, you should call the Close method to terminate the SMTP session and free resources on the

mail server.

Error reporting and diagnostics

If an error occurs when calling the SendMessage method, an APL I/O ERROR will be generated. If an

error occurs when the connection is being established using the Open method, it will return a non-zero

result, as described above. In either case, you can use the status property to find out more about the

error. This returns a two-element integer vector. The first element is 1 if the connection to the SMTP

server is active, else 0. The second element is the latest error code returned by the underlying

operating-system networking code. (See for example, the Windows documentation and include file
'winsock.h' for details on these error codes.)

Another useful diagostic tool is the serverreply property. This returns a character vector containing

the status message which the server sent back after a call to SendMessage or Open. Usually it will

begin "+OK..." to indicate success, but if there is a problem (for example, if the mailbox is already
locked) it will contain an error message. This can comprise several lines, separated by carriage returns.

Other

timeout: This is an integer scalar property, which allows you to set the timeout for mail operations, in
milliseconds.

APLX System Classes & User-Interface Programming 152

Example

 ↔DEMO_SendMail;host;user;password;address;errcode;SM;⎕IO
[1] ⍝ Sample function demonstrating use of the SendMail object
[2] ⍝ To run this function, you need an Internet account with
[3] ⍝ an SMTP mail server, and you need to know the host name,
[4] ⍝ user name and password (if required) for this account.
[5] ⍝
[6] ⍝ Ask the user for the mail account details
[7] ⍞←'Enter mail server (SMTP) host name: ' ⊦ host←⎕DBR ⍞
[8] ⍞←'Enter user name: ' ⊦ user←⎕DBR ⍞
[9] ⍞←'Enter password (if required): ' ⊦ password←⎕DBR ⍞
[10] ⍞←'Enter your e-mail address: ' ⊦ address←⎕DBR ⍞
[11] ⍝
[12] ⍝ Create the SendMail object and set up connection details
[13] SM←'⎕' ⎕NEW 'SendMail'
[14] SM.host←host ⊦ SM.user←user ⊦ SM.password←password
[15] ⍝
[16] ⍝ Open the connection to the SMTP server
[17] errcode←SM.Open
[18] :If errcode≠0
[19] :Select errcode
[20] :Case 1
[21] 'Could not find host'
[22] :Case 2
[23] 'Authentication error'
[24] :Else
[25] 'Comms error, error code = ',⍕1↓SM.status
[26] :EndSelect
[27] :Return
[28] :EndIf
[29] ⍝
[30] ⍝
[31] ⍝ Set up the e-mail properties. We'll send an email back to ourselves
[32] SM.to←address
[33] SM.from←address
[34] SM.subject←'Test message: Using the SendMail object'
[35] SM.body←('APLX is fantastic!',⎕R,'Thanks.')
[36] errcode←SM.SendMessage
[37] :If errcode≠0
[38] 'Error ',(⍕errcode),' - message not sent'
[39] :EndIf
[40] ⍝
[41] ⍝ Close connection and clean up
[42] SM.Close
 ↔

Properties

attachments bcc body cc children class data events from host methods name opened port properties
replyto self status subject tie timeout to user

Methods

Clear Close Create Delete New Open Send Sendmessage Set Trigger

APLX System Classes & User-Interface Programming 153

Callbacks

onClose onDestroy onOpen onSend

Licensing (Windows and Linux versions)

In the Windows and Linux versions of APLX, the SendMail object is based on the Indy networking
classes. The following notices apply to these versions:

Portions of this software are Copyright (c) 1993 - 2003, Chad Z. Hower (Kudzu) and
the Indy Pit Crew - http://www.IndyProject.org/.

THIS SOFTWARE IS PROVIDED BY Chad Z. Hower (Kudzu) and the Indy Pit Crew "AS IS'' AND

ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE

IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR

PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS

BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR

CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF

SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS

INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER

IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR

OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

APLX System Classes & User-Interface Programming 154

Series

Description

The Series object is an invisible object which contains a series of data points to be displayed on a

Chart object. It must always be the child of a Chart.

As well as containing the data which is to be displayed on the chart, it also has attributes for

customizing the appearance of the series.

For full details, see the separate section on the Chart and Series Objects

Example

 ↔DEMO_Chart;labels;W
[1] ⍝ Sample bar chart (See workspace 10 SAMPLESCHART for more examples)
[2] W←'⎕' ⎕NEW 'Window' ⊦ W.title←'Beer Consumption' ⊦ W.visible←3
[3] W.Ch.New 'Chart' ⊦ W.Ch.align←¯1 ⊦ W.Ch.type←'bar'
[4] W.Ch.title←'Thirsty people'
[5] W.Ch.subtitle←'Beer sales per head of population'
[6] W.Ch.note←'Source: The Economist Pocket World in Figures, 2004'
[7] W.Ch.yaxislabel←'Retail Sales per head, litres'
[8] W.Ch.s1.New 'Series' ⊦ W.Ch.s1.color←374479
[9] W.Ch.s1.values←85.8 76.7 73.9 69.9 69.7 66.6 64.7 64.5 49 40.2 38.6 31.7
[10] labels←'Czech Republic' 'Venezuela' 'Germany' 'Denmark' 'S.Africa'
[11] labels←labels,'Austria' 'US' 'Australia' 'Canada' 'Belgium' 'Japan' 'UK'
[12] W.Ch.xlabels←labels
[13] ⍝
[14] ⍝ Wait for the user to close the window
[15] 0 0⍴⎕WE W
 ↔

Properties

caption children class closevalues color colormarker data enabled events fillmarker fillpattern

highvalues linetype linewidth lowvalues marker methods name opened openvalues properties self tie
type usealtscale values visible xvalues yvalues

Methods

Close Create Delete Hide New Open Send Set Show Trigger

Callbacks

onClose onDestroy onOpen onSend

APLX System Classes & User-Interface Programming 155

Socket

Description

The Socket class allows you to use the low-level networking facilities provided by BSD or Windows

sockets, for client-server applications. (See also the GetMail, SendMail and HTTPClient classes,

which provide a higher-level interface for mail and HTTP protocols, and which are much easier to

use.) It allows your APLX applications to exchange data with other processes, either on the local

machine or over a network.

Usually, you will use Socket objects to allow APLX applications to communicate with non-APL

processes. You can also use them to allow APLX applications to communicate with each other across
a network.

For more details on using sockets, consult any of the standard documents on BSD or Windows socket

programming.

Creating and using a socket as a client

The steps you need to carry out at the client end of the connection are as follows:

1. Create a Socket object, as a top-level object.

2. If necessary, set the family and protocol properties to specify the type of socket you want.

3. Call the Open method to establish the connection with the server. This takes two arguments.

The first is the network address of the server, as a character string; for example, this might be

'localhost' (your own machine), or '192.100.200.1' (an internet address) or

'www.microapl.co.uk' (an internet domain name). The second argument is the port number.

Port numbers are usually associated with specific type of network protocol, for example port

80 is used for HTTP (web access). The Open method returns a status code indicating whether it

succeeded: 0 = OK, 1 = Could not find host, 2 = Authentication error, 3 = Other error. If the
connection was established successfully, you can now exchange data with the server.

4. To send data to the server, call the Send method. This takes a character vector argument. The

data is sent exactly as it, without any character translation (i.e. the character vector is treated as

a sequence of raw bytes). The return code is 0 for success, or 3 if an error occurs (see the

description of the status property below).

5. To receive data from the server, call the Receive method. This takes no arguments. It returns a

character vector, which is the data received (as an untranslated sequence of raw bytes). The

APL task will block until the data has been received, or the time specified in the timeout

property has elapsed. Note: If you do not want the task to be blocked waiting for data, use the

onReceive event to ensure that Receive is called only when there is data already waiting.

6. To end the session, call the Close method. This takes no arguments.

APLX System Classes & User-Interface Programming 156

Creating and using a socket as a server

At the server end of a connection, things are usually a little more complex. This is because a server

typically needs to be able to handle multiple client connections simultaneously, and must not get

blocked communicating with one client when other clients are also trying to access the service. One

way of handling this is to use multiple APLX tasks, with one task per client connection, plus one

master task which waits for clients to connect. Another way is to use a single APLX task for

everything, and use events to ensure that the task never gets blocked waiting for a response from a
client.

The task which is waiting for clients to connect starts up first. It does the following:

1. Create a Socket object, as a top-level object.

2. Set the port property, to specify which port to listen to. If necessary, set the family and

protocol properties to specify the type of socket you want.

3. Call the Listen method. This sets up the socket so that it is associated with the port.

4. You can now do one of two things. If the server task does not need to do anything until a client

tries to connect, you can simply call the Accept method. The task will block, waiting for the

next connection (or until the time specified by the timeout property has elapsed). Alternatively,

you can set up an onConnectRequest callback, and call the Accept method only when a client
tries to establish a connection.

5. If an request from a client to establish a new connection is successful, the Accept method

returns a non-zero positive integer. This is the internal handle for a new underlying operating-

system socket, which can be used to exchange data with the client. The Accept method will
return 0 if it timed out, or ¯1 if it could not establish the connection.

6. The server now needs to create a new Socket object (as a top-level object), which will be used

to exchange data with the client which has just connected. The internal handle returned by the

Accept method should be written to the handle property of the new Socket object. It will often

be convenient to create this new socket in a new APLX task (see the description of the APL

object), although this is not essential. Data exchange takes place using the Send and Receive

methods, as already described for the client end of the connection. When the connection is no

longer needed, it should be closed using the Close method, and deleted.

7. Meanwhile, the server loops back to step 4 and calls Accept again to wait for a new client

connection, or waits for an onConnectRequest event.

Key properties of the Socket object

family: An integer scalar which specifies the address family of the socket. The default is 2,

AF_INET, the address family used for the internet. It should be specified before calling the Open or

Listen methods.

type: An integer scalar which specifies the socket type. It defaults to 1, SOCK_STREAM. It should

be specified before calling the Open or Listen methods.

APLX System Classes & User-Interface Programming 157

protocol: An integer scalar which specifies the protocol. It defaults to 0, the default for the address
family.

port: An integer scalar which specifes the port number.

timeout: An integer scalar which sets the timeout (in milliseconds) before the Accept or Receive

methods will return if no connection request or data is received. A value of ¯1 means 'wait for ever'.
A value of 0 means 'return immediately'.

status: Read-only Returns the connection status as a two-element vector. The first element is 1 if the

socket is connected, else 0. The second element is the latest error number from the underlying

operating-system socket.

handle: An integer scalar, which is the handle of the underlying operating-system handle. You can

use this, in conjunction with ⎕NA, to access socket functions not supported by the Socket object. You

also need to write the result of the Accept method to this value at the server end, when you have
created a new socket to accept an incoming client connection.

Key methods of the Socket object

Open: Open a new connection. (This method should be called from the client end of the connection

only.) It takes two arguments. The first is the address of the server (usually an internet domain name

or address, or 'localhost' for your own machine). The second is the port number to connect on. The

result is a status code indicating whether the connection succeeded: 0 = OK, 1 = Could not find host, 2

= Authentication error, 3 = Other error. (More details of any error are available from the status
property).

Listen: Establish the socket as a server listener. This method takes no arguments. (It should be called

on the server end of the connection only.). It returns the same error code as Open.

Accept: Wait for a client to try to connect. This method takes no arguments. (It should be called on

the server end of the connection only.). It causes the task to block until a connection request is made,

or the timeout value is reached. It returns the handle to use for the client connection, or 0 if it timed
out or ¯1 if it could not establish the connection.

Receive: Receive some data from the socket. This method takes no arguments. It causes the task to

block until data is available, or the timeout value is reached. It returns a character vector which is the

data received from the socket, as a raw sequence of bytes with no character translation. It returns an
empty vector if it times out or an error occurs.

Send: Send some data to the socket. This method takes as an argument a character vector, which is the

raw data to send to the other end of the connection. It returns 0 on success, else 3 if an error occurred.

Close: Disconnect and close the socket. This method takes no arguments. You always ensure the
connection is closed cleanly by calling this method when the session is complete.

APLX System Classes & User-Interface Programming 158

Callbacks of the Socket object

onConnectRequest: This event occurs on the server end, when you have called Listen and a client

tries to connect. It indicates that you should now call the Accept method to accept the connection.

onReceive: This event occurs both on clients and servers. It indicates that the other end has sent some

data, which you can now read using the Receive method.

onDisconnect: This event occurs both on clients and servers. It indicates that the other end has closed

the connection. You should now call Close, and delete the socket.

Example

 ↔DEMO_Socket;x;count;handle;cmd;errcode;ServerSock;Client1;Client2;SendSock
[1] ⍝ Show how to use the Socket object. For this demo, we set up a
[2] ⍝ Server and two client APL tasks, all on the local machine
[3] ⍝ using port 10000 (which hopefully won't clash with anything)
[4] Client1←'⎕' ⎕NEW 'APL' ⊦ Client1.wssize←100000 ⊦ Client1.where←0 0 10 20
[5] Client2←'⎕' ⎕NEW 'APL' ⊦ Client2.wssize←100000 ⊦ Client2.where←0 35 10 20
[6] Client1.Open
[7] Client2.Open
[8] ⍝
[9] ⍝ Create sockets in each client APL task
[10] Client1.Execute "MySock←'⎕' ⎕NEW 'Socket'"
[11] Client2.Execute "MySock←'⎕' ⎕NEW 'Socket'"
[12] ⍝
[13] ⍝ Create a socket for the server, in our main task
[14] ServerSock←'⎕' ⎕NEW 'Socket'
[15] ServerSock.port←10000
[16] errcode←ServerSock.Listen
[17] :If errcode≠0
[18] ⍝ Oops, something went wrong
[19] 'An error occurred in Listen, error code ',⍕¯1↑ServerSock.status
[20] :Return
[21] :EndIf
[22] ⍝
[23] ⍝ After a few seconds, get the clients to try to connect, and await data
[24] x←⎕DL 3
[25] cmd←"x←MySock.Open 'localhost' 10000 ⊦ 'Server sent: ',MySock.Receive"
[26] Client1.Execute("x←⎕DL 3 ⊦ 'Connecting..' ⊦ ",cmd)
[27] Client2.Execute("x←⎕DL 6 ⊦ 'Connecting..' ⊦ ",cmd)
[28] ⍝
[29] ⍝ Meanwhile, loop round accepting connections
[30] count←0
[31] 'Waiting for clients to connect...' ⊦ ⎕CC ' '
[32] :Repeat
[33] handle←ServerSock.Accept
[34] :If handle>0
[35] ⍝ A client is trying to connect
[36] ⍝ Establish new socket to talk to the client.
[37] ⍝ We'll just transfer one packet, then close the connection
[38] 'Got connection request.' ⊦ ⎕CC ' '
[39] count←count+1
[40] SendSock←'⎕' ⎕NEW 'Socket'
[41] SendSock.handle←handle
[42] errcode←SendSock.Send('Hello, client task ',⍕count)

APLX System Classes & User-Interface Programming 159

[43] SendSock.Close
[44] SendSock.Delete
[45] :ElseIf handle=¯1
[46] ⍝ Oops, something went wrong
[47] 'An error occurred in Accept, error code ',⍕¯1↑ServerSock.status
[48] :Leave
[49] :EndIf
[50] :Until count=2
[51] ⍝
[52] ⍝ Wait, then kill the child tasks (this will also delete their sockets)
[53] x←⎕DL 4
[54] Client1.Close ⊦ Client2.Close
[55] ⍝
[56] ⍝ Clean up this end as well
[57] ServerSock.Close
 ↔

Properties

children class data events family handle methods name opened port properties protocol self status tie
timeout type

Methods

Accept Close Create Delete Listen New Open Receive Send Set Trigger

Callbacks

onClose onConnectRequest onDestroy onDisconnect onOpen onReceive onSend

APLX System Classes & User-Interface Programming 160

Spinner

Description

The Spinner class implements the Spinner control, a pair of up-down or left-right arrows for

incrementing/decrementing a value.

The Spinner properties are:

style: 0=Vertical 1=Horizontal (Not needed under MacOS - the where property determines the
orientation).

value: An integer giving the current value

range: A pair of integers giving the minimum and maximum values (default 0 100)

increment: The step by which the value property will change each time the user clicks one of the

arrows

wrap: A boolean indicating if the value wraps round when the maximum/minimum is passed.

tooltip: Provides help text when the user moves the mouse pointer over the control and pauses.

The onChange callback is invoked when the user changes the value.

Example

 ↔DEMO_Spinner;CB_SPIN;DEMO
[1] ⍝ Sample function demonstrating use of the Spinner object
[2] DEMO←'⎕' ⎕NEW 'Dialog' ⊦ DEMO.scale←1
[3] DEMO.title←'Spinner Example'
[4] DEMO.Spin.New 'Spinner' ⊦ DEMO.Spin.style←1 ⊦ DEMO.Spin.where←2 1
[5] DEMO.Spin.value←32 ⊦ DEMO.Spin.range←0 50
[6] DEMO.Lab.New 'Label' ⊦ DEMO.Lab.where←4 1 ⊦ DEMO.Lab.caption←'Value 32'
[7] ⍝ Create callback function which will run when the user spins the control
[8] 0 0⍴⎕FX 'CB_SPIN;X' 'X←DEMO.Spin.value' 'DEMO.Lab.caption←''Value: '',⍕X'
[9] DEMO.Spin.onChange←'CB_SPIN'
[10] ⍝
[11] ⍝ Wait for the user to close the window
[12] 0 0⍴⎕WE DEMO
 ↔

Properties

align anchors aquaadjust autodraw caption children class color data doublebuffered dragsource

droptarget enabled events extent handle increment maxsize methods minsize name opened order

APLX System Classes & User-Interface Programming 161

pointer properties range scale self size sourceformats style tabstop targetformats tie tooltip units value
visible where winptr wrap

Methods

Click Clienttoscreen Close Create Delete Draw Focus Hide New Open Paint Resize Screentoclient

Send Set Show Trigger

Callbacks

onChange onClick onClose onDblClick onDestroy onDragDrop onDragEnd onDragEnter

onDragLeave onDragOver onDragStart onFocus onHide onKeyDown onKeyPress onKeyUp
onMouseDown onMouseMove onMouseUp onOpen onSend onShow onUnFocus

APLX System Classes & User-Interface Programming 162

Splitter

Description

The Splitter class implements the Splitter control. This is a vertical or horizontal line control, which

allows the user to change the relative sizes of the controls on a window. For example, you might have
a list box and a text edit, and use a Splitter to allow the user to move the boundary between them.

To do this, you first set up the leftmost (or topmost) control or controls, using the align property to

align to the left (or top). You then create the Splitter, defining its position with the where property.

Then you create the rightmost (or bottom) control, setting its align property to fill the remaining
client area of the parent, as shown in the example below.

If the Splitter style is 0 (the default), it has the normal bevelled appearance. If style is 1, it is not
bevelled. (This parameter is ignored under MacOS).

The limit property is a numeric scalar, which sets the minimum size of the panes in the current

scale. The default is 0.

Example

 ↔DEMO_Splitter;TEXT;DEMO
[1] ⍝ Sample function demonstrating use of the Splitter object
[2] ⍝ We set up a list box and multiline edit fields, aligned to the
[3] ⍝ left in each case, with a splitter between them
[4] DEMO←'⎕' ⎕NEW 'Window' ⊦ DEMO.scale←5
[5] DEMO.title←'Splitter Example'
[6] ⍝
[7] ⍝ Set up the list box
[8] DEMO.List1.New 'List' ⊦ DEMO.List1.align←2 ⊦ DEMO.List1.size←50 100
[9] DEMO.List1.list←⎕M
[10] ⍝
[11] ⍝ Now create the splitter, just to the right of the list box
[12] DEMO.mySplitter.New 'Splitter' ⊦ DEMO.mySplitter.where←0 102
[13] ⍝
[14] ⍝ Now create right edit object, aligned to fill remainder of client area
[15] DEMO.Edit1.New 'Edit' ⊦ DEMO.Edit1.style←36 ⊦ DEMO.Edit1.align←¯1
[16] DEMO.Edit1.color←0 0 0 225 255 255 ⊦ DEMO.Edit1.border←0
[17] TEXT←'This is an example of a window with a splitter.'
[18] TEXT←TEXT,⎕R,⎕R,'Try re-sizing the window and moving the splitter around.'
[19] DEMO.Edit1.text←TEXT
[20] ⍝
[21] ⍝ Wait for the user to close the window
[22] 0 0⍴⎕WE DEMO
 ↔

APLX System Classes & User-Interface Programming 163

Properties

align anchors aquaadjust autodraw caption children class color data dragsource droptarget enabled

events extent handle limit maxsize methods minsize name opened order pointer properties scale self
size sourceformats style targetformats tie units visible where

Methods

Click Clienttoscreen Close Create Delete Hide New Open Paint Resize Screentoclient Send Set Show
Trigger

Callbacks

onChange onClick onClose onDblClick onDestroy onDragDrop onDragEnd onDragEnter

onDragLeave onDragOver onDragStart onFocus onHide onKeyDown onKeyPress onKeyUp
onMouseDown onMouseMove onMouseUp onOpen onSend onShow onUnFocus

APLX System Classes & User-Interface Programming 164

System

Description

The System class implements the System object, which is the ultimate parent for all other objects

belonging to a particular APL task. It gives information about the APLX system and allows your APL
applications to use the Clipboard.

In addition, the System object of a child task is used to communicate with its parent (see the Signal
method), and to share data using 'delta' properties.

If you use the ⎕WI syntax, you do not need to create the System object; it always exists, under the

name '#'. You can alternatively use the name '⎕'. To use the System object using dot-notation, you
need to get a reference to it using ⎕NEW in the normal way:

 Sys←'⎕' ⎕NEW 'System'

The main System properties and methods are:

System properties

scale: The scale used to position windows on the screen. The System object scale is inherited by all

windows (and thus their controls) which you subsequently create.

pointer: The default mouse pointer type, which will be displayed unless the mouse is over a control

which explicitly sets a different cursor.

text: The contents of the Clipboard, as a text vector. You can read this property to retrieve any text in

the Clipboard, and write to it to place text in the Clipboard. If the Clipboard does not contain text, an

empty vector is returned.

unicode: The contents of the Clipboard, as an integer vector comprising Unicode values. You can

read this property to retrieve any Unicode text in the Clipboard, and write to it to place Unicode text in

the Clipboard (you can write either integers, or characters). If the Clipboard does not contain Unicode

text, an empty vector is returned.

contents: The contents of the Clipboard, returned if possible as an APL array. For example, you can

copy a range of cells from Excel to the Clipboard, and read it into APL as a numeric or nested array.

You can also write to the contents property, in which case the data will be available in the clipboard
for APLX or for other applications to read back.

picture: (Windows and MacOS only) The contents of the Clipboard, as a Picture. You can read this

property to retrieve any picture in the Clipboard, and write to it to place a picture on the Clipboard.

The data is represented as a numeric vector, which internally holds a PICT or JPEG object under

MacOS, or a Windows Enhanced Metafile under Windows. If the Clipboard does not contain a picture

APLX System Classes & User-Interface Programming 165

which is in or can be converted to PICT or Enhanced Metafile format, an empty vector is returned.

(This property is not implemented under Linux - use the bitmap property instead.)

bitmap: The contents of the Clipboard, as a bitmap. You can read this property to retrieve any picture

in the Clipboard, and write to it to place a picture on the Clipboard. The data is represented as an APL

integer array of pixel color values. If the Clipboard does not contain a bitmap (or an image which can
be converted to a bitmap), an empty matrix is returned.

aplkeyboard: An integer scalar. It is 1 if the APL keyboard is being used, and 0 if the default (non-

APL) keyboard is in use. You can also set this under program control, with additional options for the

APL keyboard layout. Setting the value to 1 means 'select whichever APL keyboard layout the user

prefers'. Setting it to 2 selects the 'standard' APL keyboard layout, and 3 selects the 'unified' APL
keyboard layout.

aquaadjust: A property which causes the size of certain controls to be enlarged slightly to take

account of the MacOS X 'Aqua' appearance. This property is inherited by windows and controls which
you create. It is ignored under Windows and Linux.

System read-only properties

fonts: A nested array of the names of screen fonts installed on the system.

size: The screen height and width in the current scale.

workarea: The rectangle within the screen size which available for application use, allowing for any

task bar or application dock area reserved by the operating system. Note: Under Linux, this property
returns the whole screen size.

children: A nested vector of the names of all the top-level objects (windows, pre-defined dialogs,
etc) which you have created.

version: A five-element integer vector containing:

 [1] Version number for the System Class sub-system
 [2] GUI environment code 0=MacOS 1=Windows, 2=X-Windows, 4=Console only
 [3] OS Family code. For MacOS: 0 = Classic, 1 = OSX
 For Windows: 0 = 95/98/ME, 1 = NT/2000/XP/Vista
 [4] OS Major version
 [5] OS Minor version

classes: A nested vector of character vectors, giving the names of all the System Classes available in
your APLX system.

xclasses: A nested matrix of the OCX/ActiveX classes installed on your computer. This will always
be empty under MacOS and Linux.

oleclasses: A nested matrix of the OLE Server Application classes installed on your computer. This
will always be empty under MacOS and Linux.

APLX System Classes & User-Interface Programming 166

oledoctypes: A nested matrix of the OLE document types for which applications are installed on
your computer. This will always be empty under MacOS and Linux.

file: A character vector, containing the names of the files (or the command-line under Windows or
Linux) which you need to open or print in your packaged APLX application.

action: A character vector containing the keyword 'open' or 'print' depending on how the user started

up your packaged APLX application. It can be an empty vector if no operation is required.

directory: A character vector containing the path from which the running program (either APLX

itself, or your packaged application) was loaded.

printers: A nested vector giving the names of the printers available on the system.

taskid: A unique integer identifying the APL task.

host: If you are running a Client-Server implementation of APLX, and the task is running on a Server,

this property will contain the name (or IP address) of the server system. It will be 'localhost' if the

Client and the Server are running on the same machine. It will be an empty string if this is not a
Client-Server configuration.

System methods

Reset: This method takes no arguments. It resets the System Class (⎕WI) sub-system to its initial state,
deleting all objects.

Signal: Used by a child task to send a signal to its parent.

System events

onAboutMenu, onPreferencesMenu and onQuitMenu: These are triggered under MacOS to indicate

that the user has selected a menu item from the system or application menu, which your packaged
application needs to respond to.

onOpen: If you have packaged your APL workspace into a standalone application, this event is

triggered under MacOS when the user drags a file icon on to your application icon once the

application is running. The file and action properties indicate what files you need to open or print.

onSignal: Invoked when a parent task sends a signal to a child task.

APLX System Classes & User-Interface Programming 167

Example

 ↔DEMO_System;OLDSCALE;Sys
[1] ⍝ Sample function demonstrating use of the System object
[2] ⍝
[3] ⍝ -- First show use of ⎕WI syntax --
[4] ⍝ Show the screen size in pixels
[5] OLDSCALE←'⎕' ⎕WI 'scale'
[6] '⎕' ⎕WI 'scale' 5
[7] ''
[8] 'Screen size: ',⍕'⎕' ⎕WI 'size'
[9] '⎕' ⎕WI 'scale' OLDSCALE
[10] ⍝
[11] ⍝ -- Now show use of dot-notation syntax --
[12] Sys←'⎕' ⎕NEW 'System'
[13] ⍝
[14] 'Program started from: ',Sys.directory
[15] 'You have ',(⍕⍴Sys.fonts),' fonts installed on your machine.'
[16] ⍝
[17] ⍝ Read the contents of any text in the clipboard
[18] ''
[19] 'Text in the clipboard:'
[20] 60⍴'-'
[21] Sys.text
[22] 60⍴'-'
[23] ''
[24] ⍝
[25] ⍝ Set the clipboard contents
[26] Sys.text←'This was put in the clipboard by APLX'
[27] ⍝
[28] 'Now try pasting text from the clipboard into a window'
 ↔

Properties

action aplkeyboard aquaadjust bitmap children class classes color contents data directory events file

fonts host methods name oleclasses oledoctypes opened picture pointer printers properties scale self

size taskid text tie unicode units version workarea xclasses

Methods

Reset Send Set Signal Trigger

Callbacks

onAboutMenu onOpen onPreferencesMenu onQuitMenu onSend onSignal

APLX System Classes & User-Interface Programming 168

Timer

Description

The Timer class implements a periodic timer. This is an invisible object, which calls the onTimer

callback at a fixed interval (provided the object's enabled property is 1). The time interval is set by

the interval property, and is expressed in milliseconds.

A Timer object can be a top-level object (created directly using ⎕NEW,or the New or Create method of

⎕WI). It can also be the child of the System object, of a Window or Form, or of any standard control. It
cannot be the child of a pre-defined dialog or another Timer object.

Example

 ↔DEMO_Timer;CB_TIMER;DEMO
[1] ⍝ Sample function demonstrating use of the Timer object
[2] DEMO←'⎕' ⎕NEW 'Window'
[3] DEMO.where←4 4 ⊦ DEMO.scale←1 ⊦ DEMO.size←7 30
[4] DEMO.title←'Timer Example'
[5] DEMO.myLabel.New 'Label' ⊦ DEMO.myLabel.where←2 1
[6] DEMO.myLabel.caption←''
[7] ⍝ Set up 1-second timer which updates the label text
[8] DEMO.myTimer.New 'Timer' ⊦ DEMO.myTimer.interval←1000
[9] ⍝ Create a little callback function which will run once a second
[10] 0 0⍴⎕FX 'CB_TIMER' 'DEMO.myLabel.caption←⎕TIME'
[11] DEMO.myTimer.onTimer←'CB_TIMER'
[12] ⍝
[13] ⍝ Wait for the user to close the window
[14] 0 0⍴1 ⎕WE DEMO
 ↔

Properties

children class data enabled events interval methods name opened properties self tie

Methods

Close Create Delete New Open Send Set Trigger

Callbacks

onClose onDestroy onOpen onSend onTimer

APLX System Classes & User-Interface Programming 169

ToolButton

Description

The ToolButton class is similar to a Button, but allows you to specify one or more images (as bitmaps)

which can be displayed on the button face, depending on its state. It can optionally also display a text

caption. In addition, it has built-in capability to act as a toggle button (like a Check box), or as one of a
group (like a Radio button).

Specifying the images

You specify the images displayed on the button using the bitmap property. This is an integer matrix,
containing between 1 and 4 images laid out side-by-side. These correspond to:

1. The image displayed when the button is in its 'normal' (Up) state.

2. The image displayed when the button is disabled.

3. The image displayed during the time that the button is being clicked. If the button is acting as

an Action button (i.e. its group property is 0), the 'normal' (Up) image reappears when the user
releases the mouse button.

4. The image displayed when the button is in its 'selected' (Down) state. This applies only if the

button is used as a radio or toggle button.

If you provide fewer than 4 images, the ToolButton will represent the other states automatically by
altering the image slightly.

The actual images are specified as an APL integer matrix, where each element contains an RGB color

for the corresponding pixel. The color value is encoded as 256⊥Blue Green Red, where each color

value is in the range 0 to 255. If you want to supply more than one image, these should be laid out

horizontally; you specify the imagecount property to indicate how the array should be be divided up.

For example, suppose you supply an array 20 pixels high and 60 pixels wide. If you set imagecount to

1, the whole array will be treated as a single image of size 20 by 60, and will be used when the button

is in its 'normal' (Up) state; images for the remaining states will be simulated automatically. If you set

imagecount to 2, the array will be treated as representing two images side-by-side, each 20 by 30

pixels, representing the button in its 'normal' and disabled states respectively. If you set imagecount to

3, it will be treated as representing three images, each of 20 by 20 pixels, corresponding to the first
three states listed above.

Depending on the style property, the bitmap may be transparent. If so, the pixel value in the lower

left corner of each image will be used as the transparent color value; any other pixel with the same

value will not be displayed, so the background shows through.

APLX System Classes & User-Interface Programming 170

Determining the behavior of the button

The group property is an integer scalar which determines the behavior of the button. If it is 0 (the

default), the button behaves like an ordinary 'action' button; when the user clicks on it, it temporarily

displays the third image, and when the user releases the mouse it reverts to the normal ('up') state. You

would typically use this by hooking it to the onClick callback to take some action when the button is
pressed.

If the group property is non-zero, the button can remain selected after the user has clicked it. In this

state, it displays the fourth image, and its value property becomes 1 rather than 0. However, it also

interacts with other ToolButtons with the same group property; only one button in the group can be

selected at a time, so clicking on one de-selects all the others. In addition, you can specify whether all

the buttons in the group can be deselected, using the style property (see below). If the style property

contains 8, it is legal for none of the buttons in the group to be selected; if it does not contain 8,
exactly one of the buttons in the group will be selected at all times.

Thus, you can use the button in three main ways:

 As an 'Action' button: Leave the group property as 0, and use the onClick event to detect

when it is pressed. It never stays selected.

 As a 'Toggle' button: Set the group property to a unique non-zero value, so the button does not

interact with any other buttons. When the user clicks on the button, it will change to the

'selected' (Down) state (value = 1). When the user clicks on it again, it will revert to the

'normal' (Up) state (value = 0). For this to work, you must ensure that the style property

contains 8, otherwise the button can never be deselected.

 As a 'Radio' button: Set the group property to a non-zero value which is common to several

ToolButtons with the same parent. When the user clicks on the button, it will change to the

'selected' (Down) state (value = 1), and any button in the group which is currently selected

will be de-selected. If the style property contains 8, the user can click on the currently-

selected button to de-select it, so that no buttons in the group are selected. Otherwise, exactly

one of the buttons in the group will always be selected.

In the second and third of these cases, you can optionally use the onClick event to detect transitions,

or you can simply the read the value property when you need it.

Other key properties

style: An integer scalar comprising one of:

 0 Caption (if any) appears below image (default)
 1 Caption (if any) appears above image
 2 Caption (if any) appears to left of image
 3 Caption (if any) appears to right of image

to which can be added:

 4 If this bit is set, the button appears 'flat',
 without a border. Recommended for toolbars.
 8 Specifies that all buttons in a group can be deselected.
 16 Specifies that the button is transparent

APLX System Classes & User-Interface Programming 171

caption: A character vector, which specifies a caption to be displayed on the button. It defaults to an

empty vector, meaning no caption is displayed. The location of the caption relative to the image is

determined by the style property.

value: A boolean scalar indicating whether the button is selected. You can set this to select a button
under program control.

tooltip: A character vector which gets displayed as help text when the user moves the mouse pointer

over the control and pauses. You normally use this to provide information about what the button does.

(It will be suppressed if you set the tooltipenabled property of the system object to 0).

enabled: A boolean scalar. If you set this to 0, the button will be disabled, will not responds to clicks,

and cannot be selected. It will display the second of the images you supply, or a greyed-out image if
you supply one one.

Example

 ↔DEMO_ToolButton;NORMAL;DISABLED;CLICKED;SELECTED;X;STATE;DEMO
[1] ⍝ Sample function demonstrating use of theTool Button object
[2] DEMO←'⎕' ⎕NEW 'Dialog' ⊦ DEMO.scale←5 ⊦ DEMO.size←60 235
[3] DEMO.title←'ToolButton Example'
[4] STATE←'Unselected' 'Selected'
[5] ⍝
[6] ⍝ Create a simple 20 by 20 bitmap of a triange shape, which we use to make
[7] ⍝ four images for up/down/left/right, in four colors
[8] X←(⌽X),X←20 10↑0,[1]2/[1]⊃9↑¨(⍳9)⍴¨1
[9] ⍝
[10] ⍝ Choose some colors for our simple images.
[11] NORMAL←256⊥0 255 0 ⍝ Green
[12] DISABLED←256⊥160 160 255 ⍝ Pale Red
[13] CLICKED←256⊥170 240 170 ⍝ Pale green
[14] SELECTED←256⊥255 0 0 ⍝ Blue
[15] ⍝
[16] ⍝ Make four tool buttons, with triangle in different color for each state
[17] ⍝ Style 0+4+8+16 for caption below image, 'flat', allow all up, transparent
[18] ⍝ Create the buttons in a radio group, so only one can be down at any time.
[19] DEMO.UP.New 'ToolButton'
[20] DEMO.UP.tooltip←'Up direction (disabled)' ⊦ DEMO.UP.caption←'Up'
[21] DEMO.UP.where←0 0 50 40 ⊦ DEMO.UP.style←28
[22] DEMO.UP.imagecount←4 ⊦ DEMO.UP.group←99
[23] DEMO.UP.bitmap←((X×NORMAL),(X×DISABLED),(X×CLICKED),(X×SELECTED))
[24] DEMO.UP.onClick←"⎕←'Up Hit!'"
[25] ⍝ Show effect of disabling the Up button; we'll get the second (red) image
[26] DEMO.UP.enabled←0
[27] ⍝
[28] ⍝
[29] X←⊄X
[30] DEMO.DN.New 'ToolButton'
[31] DEMO.DN.tooltip←'Down direction' ⊦ DEMO.DN.caption←'Down'
[32] DEMO.DN.where←0 40 50 40 ⊦ DEMO.DN.style←28
[33] DEMO.DN.imagecount←4 ⊦ DEMO.DN.group←99
[34] DEMO.DN.bitmap←((X×NORMAL),(X×DISABLED),(X×CLICKED),(X×SELECTED))
[35] DEMO.DN.onClick←"⎕←'Down Hit! ',STATE[⎕IO+⎕WSELF ⎕WI 'value']"
[36] ⍝
[37] X←⍉X

APLX System Classes & User-Interface Programming 172

[38] DEMO.RT.New 'ToolButton'
[39] DEMO.RT.tooltip←'Right direction' ⊦ DEMO.RT.caption←'Right'
[40] DEMO.RT.where←0 80 50 40 ⊦ DEMO.RT.style←28
[41] DEMO.RT.imagecount←4 ⊦ DEMO.RT.group←99
[42] DEMO.RT.bitmap←((X×NORMAL),(X×DISABLED),(X×CLICKED),(X×SELECTED))
[43] DEMO.RT.onClick←"⎕←'Right Hit!',STATE[⎕IO+⎕WSELF ⎕WI 'value']"
[44] ⍝
[45] X←⌽X
[46] DEMO.LF.New 'ToolButton'
[47] DEMO.LF.tooltip←'Left direction' ⊦ DEMO.LF.caption←'Left'
[48] DEMO.LF.where←0 120 50 40 ⊦ DEMO.LF.style←28
[49] DEMO.LF.imagecount←4 ⊦ DEMO.LF.group←99
[50] DEMO.LF.bitmap←((X×NORMAL),(X×DISABLED),(X×CLICKED),(X×SELECTED))
[51] DEMO.LF.onClick←"⎕←'Left Hit!',STATE[⎕IO+⎕WSELF ⎕WI 'value']"
[52] ⍝
[53] ⍝ Wait for the user to close the window
[54] 0 0⍴⎕WE DEMO
 ↔

Properties

align anchors aquaadjust autodraw bitmap caption children class color data dragsource droptarget

enabled events extent font group imagecount maxsize methods minsize name opened pointer
properties scale self size sourceformats style targetformats tie tooltip units value visible where

Methods

Click Clienttoscreen Close Create Delete Hide New Open Paint Resize Screentoclient Send Set Show

Trigger

Callbacks

onClick onClose onDblClick onDestroy onDragDrop onDragEnd onDragEnter onDragLeave

onDragOver onDragStart onHide onMouseDown onMouseMove onMouseUp onOpen onSend
onShow

APLX System Classes & User-Interface Programming 173

Trackbar

Description

The Trackbar class implements a control which allows the user to move a slider to select a value. It is

somewhat like a scroll bar in functionality, although the appearance is different. Under Windows, it

also allows the programmer to display a current selection range, and to define the position of the tick
marks along the control.

Trackbar properties

The main Trackbar properties are:

style: The basic style is 0 for Vertical and 1 for Horizontal. Under Windows, you can also add one of

more of:

 0 = Ticks on bottom or right side.
 2 = Ticks on top or left side.
 4 = Ticks on both sides.
 8 = Hide tick marks but display slider (Windows only).

value: The current slider position, as an integer scalar.

range: A two-element integer vector giving the minimum and maximum values (default 0 100)

selection: A two-element integer vector giving the 'selection' start and end, or an empty vector if
there is no selection. This property is ignored under MacOS and Linux.

increment: A two-element vector giving the amount by which the value will change when the Page

Up/Down keys are pressed, and the amount by which the value will change when the use clicks in the

track or presses an arrow key. This property is ignored under MacOS because keyboard operation of
the Trackbar is not supported.

sliderlen: The length of the slider in current scale units, or 0 to make it invisible. This property is

ignored under MacOS and Linux.

tickinterval: The interval at which ticks appear, or 0 if just at Min and Max, or hidden. This
property is ignored under MacOS.

ticks: An integer vector of user-defined tick positions (overrides tickinterval). This property is
ignored under MacOS and Linux.

tickpos: A read-only matrix giving the values and positions of the tick marks. This property is not
available under MacOS and Linux.

APLX System Classes & User-Interface Programming 174

sliderwhere: A read-only property returning the position of the slider. This property is not available
under MacOS and Linux.

The onChange callback is invoked when the user moves the slider.

Example

 ↔DEMO_Trackbar;VERSION;⎕IO;CB_TRACK;CB_CLOSE;X;DEMO
[1] ⍝ Sample function demonstrating use of the Trackbar object
[2] ⍝
[3] ⍝ The windows version of this function demonstrates features not
[4] ⍝ available on the Mac or Linux. The Mac/Linux Trackbar is very simple.
[5] ⎕IO←1
[6] VERSION←'⎕' ⎕WI 'version'
[7] :If VERSION[2]=1
[8] ⍝ Running under Windows:
[9] DEMO←'⎕' ⎕NEW 'Dialog' ⊦ DEMO.title←'Trackbar Example' ⊦ DEMO.scale←1
[10] DEMO.TBar.New 'Trackbar' ⊦ DEMO.TBar.where←2 1
[11] DEMO.TBar.style←1 ⊦ DEMO.TBar.value←35
[12] DEMO.Label1.New 'Label' ⊦ DEMO.Label1.where←1 1
[13] DEMO.Label1.caption←'Move slider to set threshold'
[14] DEMO.Label2.New 'Label' ⊦ DEMO.Label2.where←6 1 ⊦ DEMO.Label2.color←255
[15] DEMO.Label2.caption←''
[16] ⍝
[17] ⍝ Create a callback which will run when the user closes the window
[18] ⍝ This prevents the window being closed asynchronously
[19] DEMO.onClose←'→'
[20] ⍝
[21] ⍝ Must show window now, otherwise it won't appear until after loop below
[22] DEMO.Show
[23] ⍝
[24] :While 1
[25] ⍝ Loop round until the CB_CLOSE callback has run
[26] ⍝ Set some random value in the 'selection' property
[27] DEMO.TBar.selection←(0,?80)
[28] X←⎕WE 0.3 ⍝ Process events for up to 300 ms
[29] :If (¯1↑DEMO.TBar.selection)<DEMO.TBar.value
[30] DEMO.Label2.caption←''
[31] :Else
[32] DEMO.Label2.caption←'Threshold exceeded'
[33] :End
[34] :End
[35] :Else
[36] ⍝ Running under MacOS or Linux:
[37] DEMO←'⎕' ⎕NEW 'Dialog' ⊦ DEMO.title←'Trackbar Example' ⊦ DEMO.scale←1
[38] DEMO.TBar.New 'Trackbar' ⊦ DEMO.TBar.where←2 1
[39] DEMO.TBar.style←1 ⊦ DEMO.TBar.value←35
[40] DEMO.Lab.New 'Label' ⊦ DEMO.Lab.where←4 1
[41] DEMO.Lab.caption←'Value: 35'
[42] ⍝
[43] ⍝
[44] ⍝ Create a callback function which will run when user spins the control
[45] 0 0⍴⎕FX 'CB_TRACK;X' 'X←DEMO.TBar.value' 'DEMO.Lab.caption←"Value ",⍕1↑X'
[46] DEMO.TBar.onChange←'CB_TRACK'
[47] ⍝
[48] ⍝ Wait for the user to close the window
[49] 0 0⍴⎕WE DEMO
[50] :EndIf
 ↔

APLX System Classes & User-Interface Programming 175

Properties

align anchors aquaadjust autodraw caption children class color data doublebuffered dragsource

droptarget enabled events extent handle increment maxsize methods minsize name opened order

pointer properties range scale selection self size sliderlen sourceformats style tabstop targetformats

tickinterval tickpos ticks tie tooltip units value visible where winptr

Methods

Click Clienttoscreen Close Create Delete Draw Focus Hide New Open Paint Resize Screentoclient
Send Set Show Trigger

Callbacks

onChange onClick onClose onDblClick onDestroy onDragDrop onDragEnd onDragEnter

onDragLeave onDragOver onDragStart onFocus onHide onKeyDown onKeyPress onKeyUp
onMouseDown onMouseMove onMouseUp onOpen onSend onShow onUnFocus

APLX System Classes & User-Interface Programming 176

Tree

Description

The Tree class implements a control for displaying and manipulating hierarchical lists. It comprises a

tree of 'nodes', which can be expanded or collapsed by the user. Examples are the left-hand pane of the

APLX 'Workspace Explorer' window, or Microsoft's 'Windows Explorer'. Under Windows and Linux,
you can optionally associate an ImageList with the Tree, to display images next to the nodes.

Tree properties

The main Tree properties are:

style: The sum of the following flags:

 1 = Hide the buttons at the nodes.
 2 = Hide the lines connecting the children.
 4 = Show the top-level (root) node
 8 = Highlight the selection even if control does not have focus
 16 = Allow the user to edit the labels (Windows only)
 128 = Disable rather than hide unneeded scroll bars (MacOS only)

list: A nested matrix (or vector) of either 3, 4 or 5 columns, and one row for each node. The columns

are:

 [;1] An integer node identifier. If you specify 0, APLX assigns
 a unique value for each node.
 [;2] An integer representing node depth, typically 1 = the top level.
 [;3] A character vector giving the label to display for this node
 [;4] A vector of four indices into the list of images associated with the
 control. These are the Unselected, Selected, Overlay, and State images,
 in index origin 1. 0 means no image. Ignored under MacOS.
 [;5] A nested vector of keywords giving the state of the node.

The state keywords are: 'highlightbold', 'highlightcut', 'highlightdrop',

'highlightselect', 'expanded', 'expandedonce', 'haschildren' and 'forceparent'. Precede

the keyword by a minus sign to switch off the state. The 'highlightcut', 'highlightdrop' and

'forceparent' keywords apply to Windows only, and are ignored under MacOS.

imagelist (Windows and Linux only): A character vector containing the name of the main ImageList

associated with the Tree. The first two elements of the fourth column of the list property are indexes

into this list of images, and the third element is an index into the overlays property of this list.

imagelistuser (Windows and Linux only): A character vector containing the name of the secondary

(user) ImageList associated with the Tree. The fourth element of the fourth column of the list
property is an index into this list of images.

indent: The tree indentation in the current scale units

APLX System Classes & User-Interface Programming 177

value: The ID of the currently-selected node

highlightbold: An integer vector specifying which nodes are bold highlighted

highlightcut: An integer vector specifying which nodes are highlighted for cutting

highlightdrop: An integer vector specifying which nodes are highlighted for dropping

highlightselect: An integer vector specifying which nodes are highlighted for selection

Tree methods

The main Tree methods are:

Expand: Control how a node displays. The method takes a length-2 nested vector. The first element is

a keyword indicating the action. The second element is an integer, the node ID. The action keywords
are:

 expand Open node to display children
 collapse Close node to hide children
 toggle Expand closed node or collapse open node
 expandbranch Open node to display children (recursively)
 collapsebranch Close node to hide children (recursively)
 collapsereset Removes all descendants

EnsureVisible: Ensure that a given node is visible, expanding any parents if they are currently
collapsed, and scrolling the node into view. Takes a single integer argument, the node ID.

ShowNode: Select a node, or make it visible as the first item visible in the window. The method takes a

length-2 nested vector. The first element is a keyword indicating the action. The second element is an

integer, the node ID, or is 0 or 'none' to indicate the currently-selected node. The action keywords

are:

 select Select the node
 drop make the node the drag-and-drop target (Windows only)
 firstvisible Make node visible at top of window

Ensurevisible: Ensure that a given node is visible, expanding and/or scrolling the tree if necessary.
The argument is the node ID to be shown.

SortChildren: (Windows Only) Sort the children of a node, and optionally recurses through all

descendants. First argument is node identifier, or character vector 'root'. The optional second

argument is the character vector 'recurse'.

DeleteNodes: Delete one or more nodes. Argument is a vector of node IDs to delete.

InsertNodes: Insert one or more nodes. The first argument is node id of parent (or 'root'). The

second argument is node id of preceding sibling (or 'first', 'last', or 'sort'). The third argument

is a matrix (or vector for single node), as per the list property.

APLX System Classes & User-Interface Programming 178

Setinfo: Sets various attributes of one or more nodes.

Getinfo: Retrieves various attributes of one or more nodes (Windows only).

Beginlabeledit: Allows the user to start editing a node's label (Windows only).

Cancellabeledit: Ends label editing.

Hittest: Determines which node a point on the control corresponds to.

Findnode: Finds a node given various criteria.

Example

 ↔DEMO_Tree;TREE;⎕IO;NAMES;DEMO
[1] ⍝ Sample function demonstrating use of the Tree object
[2] ⎕IO←1
[3] DEMO←'⎕' ⎕NEW 'Window' ⊦ DEMO.title←'Tree Example'
[4] DEMO.myTree.New 'Tree' ⊦ DEMO.myTree.align←¯1 ⊦ DEMO.myTree.style←12
[5] TREE←11 5⍴0
[6] TREE[;2]←1 2 2 3 3 3 4 4 2 2 1
[7] NAMES←'Work' 'APL Workspaces' 'Documents' 'Reports' 'Letters'
[8] NAMES←NAMES,'Planning' 'Product plan' 'Strategic plan'
[9] NAMES←NAMES,'Spreadsheets' 'Graphics' 'Personal'
[10] TREE[;3]←NAMES
[11] TREE[;4]←11⍴⊂1 1 0 0
[12] TREE[;5]←11⍴⊂0⍴'' ''
[13] TREE[1 3 6 11;5]←4⍴⊂'HIGHLIGHTBOLD' 'EXPANDED'
[14] DEMO.myTree.list←TREE
[15] ⍝
[16] ⍝ Wait for the user to close the window
[17] 0 0⍴⎕WE DEMO
 ↔

Properties

align anchors aquaadjust autodraw border caption children class color count data doublebuffered

dragsource droptarget enabled events extent font handle highlightbold highlightcut highlightdrop

highlightselect imagelist imagelistuser indent labeledithwnd list maxsize methods minsize name

opened order pointer properties scale searchstring self size sourceformats style tabstop targetformats

tie tooltip units value visible where winptr

Methods

Beginlabeledit Cancellabeledit Click Clienttoscreen Close Create Delete Deletenodes Draw

Ensurevisible Expand Findnode Getinfo Focus Hide Hittest Insertnodes New Open Paint Resize

Screentoclient Send Set Setinfo Show Shownode Sortchildren Trigger

APLX System Classes & User-Interface Programming 179

Callbacks

onClick onClose onDblClick onDestroy onDragDrop onDragEnd onDragEnter onDragLeave

onDragOver onDragStart onFocus onHide onKeyDown onKeyPress onKeyUp onMouseDown
onMouseMove onMouseUp onOpen onSelChange onSend onShow onUnFocus

APLX System Classes & User-Interface Programming 181

Section 3. System Classes: Properties

APLX System Classes & User-Interface Programming 183

The 'action' property

Read-only, Character vector

Valid for: System object

The action property is useful only for APL workspaces which have been packaged as standalone

applications. When one or more documents have been dragged on to the icon which represents your

packaged application, or documents associated with your packaged application have been double-

clicked, the operating system starts up the packaged application and runs your APL code. (Under

MacOS, the System object's onOpen event is triggered if your application is already running). You can

read the file property to find the list of documents (files) to open or print. Under MacOS, the action
property can contain the string 'open' or 'print', to indicate the action to take.

Under Windows and Linux, this property is implemented, but the action string can only be 'open' since

printing from the desktop is not implemented.

This property returns an empty vector if no action is required.

The 'activecell' property

Two-element integer vector

Valid for: Grid

The Row and Column of the currently-active cell. You can write to this property to change the current

cell.

APLX System Classes & User-Interface Programming 184

The 'align' property

Integer scalar

Valid for: All visible controls

The align property can be used to force a control to be aligned along the whole of one of the edges of

its parent, or to fill the whole contents area of its parent. It overrides the where property, and forces

the control to be positioned hard against the edge. It also forces it to expand or contract to be the same
height or width as the parent. You can set it to one of five values:

 0 No alignment (default)
 1 The control is aligned along the top edge of its parent
 2 The control is aligned along the left edge of its parent
 3 The control is aligned along the bottom edge of its parent
 4 The control is aligned along the right edge of its parent
 ¯1 The control fills the whole client area of its parent

For example, if you wanted a Browser control to fill the whole window, you could write:

 Win1←'⎕' ⎕NEW 'Window' ⊦ Win1.where←4 4 14 28
 Win1.WebCtl.New 'Browser' ⊦ Win1.WebCtl.align←¯1

The 'allowselection' property

Cell property of Grid object

Each cell element is a Boolean scalar

For each cell for which this property is 1 (default), the cell can be selected. If it is set to 0, the cell
cannot be selected.

APLX System Classes & User-Interface Programming 185

The 'anchors' property

Four-element boolean vector

Valid for: All visible controls

The anchors property defines which edges of the window the control is anchored to. It comprises a

vector of four boolean values, which govern whether the control is anchored to the top, left, bottom

and right of the window respectively. The default is 1 1 0 0, meaning that the control is anchored to

the top and left of the window. As the window is resized, the position of the control remains fixed
relative to the top left.

If you set the anchors property to 0 0 1 1, the control will be anchored to the bottom and right of the

window. This means that, as the window is resized, the control will remain at a constant distance from

the bottom right corner of the window (its where property will change accordingly), as in this
example:

 Win1.But.anchors←0 0 1 1

If a control is anchored to both the left and the right, then as the window is re-sized, the left edge of

the control will remain at a fixed distance (as initially set by the where property) from the left edge of

the window, and the right edge of the control will remain at a fixed distance from the right edge of the

window. Thus the control will grow or shrink horizontally with the window. Similarly, if the control is

anchored to both the top and the bottom, it will grow or shrink vertically with the window. This
example causes the control to grow or shrink with the window in both directions:

 Win1.Ed.anchors←1 1 1 1

The 'angle' property

A two-element integer vector

Valid for: Arc

The first element of the angle property determines the starting angle of the arc, measured in degrees

with 0 representing vertically upwards. The positive direction is clockwise. The second element is the

angle subtended by the arc, again in degrees. The special case of 0 0 is the default, and represents a
complete circle or ellipse.

APLX System Classes & User-Interface Programming 186

The 'aplkeyboard' property

Integer scalar

Valid for: System object

The aplkeyboard property is an integer scalar which determines whether the APL keyboard mapping

is in effect. Setting this property to 1 causes input to all APLX windows (including those created using

⎕NEW or ⎕WI) to use the user's preferred APL keyboard layout (unified or standard). Setting the value

to 2 selects the 'standard' APL keyboard layout, and 3 selects the 'unified' APL keyboard layout.

Setting it to 0 causes the ordinary non-APL layout to be used. This is particularly useful for packaged
applications, where you typically want to switch off the APL keyboard layout.

When you read the value back, you always get either 0 (for non-APL layout) or 1 (for APL layout).

The 'aquaadjust' property

Boolean scalar

Valid for: System, Window, Form, Dialog, Button, Check, Radio

The new look-and-feel (known as 'Aqua') which Apple introduced in MacOS X can sometimes require

controls to be slightly larger than they were in the 'classic' MacOS environment. For example, Buttons

have a more rounded look, which for some dialogs can mean that text which used to fit in the button is

now partially obscured. This can be a problem if you have existing APLX or APL.68000 code which

you want to move to MacOS X. Obviously, you can go through your code and adjust the sizes of the

controls on each dialog, but this can be very time-consuming. The aquaadjust property provides a

quick method of performing the adjustment automatically. If you set the aquaadjust property for the

System object to 1, all subsequent Buttons, Radio buttons and Check boxes which are created will be

adjusted in size slightly. The current value of this property is inherited at creation time by window

objects, as well as the individual controls, so you can set it on or off individually for particular dialogs

or controls.

The exact effect of setting aquaadjust to 1 is that Check and Radio controls will be sized to a

minimum of 18 by 18 pixels, and Buttons will be increased in size by 12 pixels. The property must be

set before you set the size or where property. Note that reading back the size or where property will
return the actual size after the adjustment.

You may still have to do some manual adjustment even when aquaadjust is set, but it should reduce

the work considerably.

APLX System Classes & User-Interface Programming 187

The aquaadjust property is ignored under Windows and Linux.

The 'attachments' property

Nested vector of character vectors, or a simple character vector or matrix

Valid for: GetMail, SendMail

The attachments property contains the list of file names which correspond to the attachments of a

mail message. For the GetMail object, it is a read-only property, which is valid only after you have

called the GetMessage method to retrieve the message together with the attachments. (The files are

written to the directory specified in the path property, and the names are returned without the

directory part). For a SendMail object, you should write to this property to set up any attachments

before calling the SendMessage method. For this case, you should specify the full file path.

You can specify this property either as a nested vector of file names, or as a carriage-return delimited

simple character vector, or as a character matrix with one name per row (trailing blanks are stripped
off). When you read the property, APLX always returns the nested vector form.

The 'autoactivate' property

Integer scalar

Valid for: OLEContainer (Implemented under Windows only)

The autoactivate property determines when a document in an OLEContainer control is 'activated'
(i.e. made visible and, usually, editable). The possible values are:

0 = Manual (use the DoVerb method to activate the document)
1 = Automatic (APLX activates it automatically)
2 = Activate when the control gets focus
3 = Activate when the user double-clicks in the control.

The default is 1 - activation occurs automatically.

APLX System Classes & User-Interface Programming 188

The 'autodraw' property

Boolean scalar

Valid for: All visible controls and windows

The autodraw property is a boolean scalar which determines whether commands issued using the

Draw method are stored and automatically replayed when the window needs updating. The default is

true (1).

If autodraw is 1, each time the window needs updating (for example, if you have resized it or

uncovered it), the Draw commands stored with the object are re-run to update the window. This means

that, once you have issued one or more Draw commands, you do not need to handle update events in
your APL code.

Occasionally, however, you may not want this to happen, and you may want to handle re-drawing

yourself. In this case you can set autodraw to 0, and use the onPaint callback to program the re-
drawing in APL.

Any Draw commands issued while autodraw is set to 0 are not entered into the list of saved drawing
commands associated with the object.

The 'autoeditstart' property

Integer scalar

Valid for: Grid

Determines whether the data in the Grid can be edited, and if so how the edit process starts. It can be
one of:

 0 Editing of a cell is possible only when the program calls Editstart

 1 Editing is automatically enabled when the cell is selected; the user
 can immediately type

 2 The user must press Enter (or, under Windows and Linux, F2) to start
 editing a cell

The default is 1.

APLX System Classes & User-Interface Programming 189

The 'axiswidth' property

Integer Scalar

Valid for: Chart

The axiswidth property allows you to specify the line width (in pixels) for the Chart object's axis, as

an integer scalar. The default is ¯1, which means use the value set in the Chart object's linewidth

property.

The 'background' property

Boolean scalar

Valid for: APL (child task) object

By default, any child task you create using the APL object class will have its own session window.

However, if you set the background property to 1, the task will not have a session window and all its

output will be thrown away (you must set this property before calling the Open method).

The 'barwidth' property

Integer Scalar in range 0 - 100

Valid for: Chart

The barwidth property allow you to specify the width of the bars used in bar charts. It is an integer

scalar, in the range 0 to 100, representing the percentage of the available width used to draw the bars

at each X value. (For a Bar or Horizontal Bar chart with multiple series, where the bars for each series

are placed side by side, this width is shared equally between the different series).

If the barwidth property is set to 100, then 100% of the available space is used, so there will be no

gaps between the bars. If it is set to a low value (say 20), then the bars will be very narrow, with lots
of white space between them. The default is 80.

APLX System Classes & User-Interface Programming 190

The 'bcc' property

Character Vector

Valid for: SendMail

The bcc ('blind carbon copy') property contains a list of e-mail addresses to which the message should

be copied, without the other recipients knowing that these addresses have been sent a copy. The

recipients are specified as a comma-delimited list of e-mail addresses. The default is an empty vector.

You should set this property before calling the SendMessage method.

The 'bitmap' property

Integer matrix (also Character vector for Picture object)

Valid for: Chart, Form, Image, Picture, ToolButton, System object, Window

Specifying or reading an array of pixel values

The bitmap property can be used to represent an image as an APL integer matrix, where each element

contains an RGB color for the corresponding pixel. The color value is encoded as 256⊥Blue Green

Red where each color value is in the range 0 to 255. You can also specify a boolean array, in which
case 0 is interpreted as black and 1 as white.

For the Picture object, writing to the bitmap property causes the bitmap to be displayed. Reading it
returns the current picture as an APL array of colors.

For the System object, writing to the bitmap property places the bitmap on the Clipboard, ready for

pasting into another application. Reading the bitmap property returns any bitmap currently on the

Clipboard as an APL array of color values. If there is no bitmap on the Clipboard, an empty array is
returned.

For an Image object, the bitmap property can be used to create the image, or to retrieve it as an array

of color values.

For a Chart, Form, or Window, the bitmap property is read-only. It returns an array of color values

which correspond to the displayed object. (Under Linux, this property is not currently implemented for

the Form or Window object. Under MacOS 9, it is valid for a Form or Window only if the window is
completely visible on screen.).

APLX System Classes & User-Interface Programming 191

For a ToolButton object, the bitmap property can contain between 1 and 4 images, laid out side by

side. These are displayed on the button, depending on its state. The imagecount property determines
how many images the bitmap holds.

Specifying a file name (Picture object only)

You can also use the bitmap property to specify the name of a file containing an image which will be

displayed in a Picture object. The file can be a Windows bitmap (.bmp), JPEG picture (.jpg or .jpeg),

or, on the Macintosh, a PICT image or any other file for which a Quicktime graphics converter is

installed. Under Linux, the supported types depend on the operating system version but will typically

include .png .xpm .jpg .jpeg .ico and .bmp files. Reading back the bitmap property always returns an

APL array containing the pixels in the picture, so you can use this property to convert one of the

supported image types to an APL bitmap array.

The 'bitmapsize' property

Read-only, two-element numeric vector

Valid for: Picture, Image

The bitmapsize property contains the height and width of the image in a Picture or Image object, in

the current scale units. For a Picture, this may be either larger or smaller than the visible area of the
picture.

The 'body' property

Character Vector

Valid for: GetMail, SendMail

The body property contains the main text of an e-mail, as plain text. It is a simple character vector,

with carriage return (⎕R) characters separating paragraphs.

For the SendMail object, you should set this property before calling the SendMessage method.

For the GetMail object, this property is read-only, and is valid only after you have called the

GetMessage method to retrieve an e-mail from the POP3 server. If the e-mail message was created

correctly by the program which sent it, this property should always contain the plain text of the

message. However, some e-mail programs, and many senders of 'spam' (junk) mail, place HTML

formatted text in this field, or leave it blank. If the message was sent with formatted (HTML) text, the
formatted version should be available in the html property.

APLX System Classes & User-Interface Programming 192

The 'border' property

An integer scalar

Valid for: Chart, Grid, List, Edit, RichEdit, OLEContainer, Picture, Tree, Form, Window, Document,
Dialog

For a Chart, List, Edit, RichEdit, OLEContainer, Picture, or Tree, the border property is either 0 or 1.

If it is 1, a frame is drawn around the object in the object's foreground color. The default is 0 for a
Chart, Picture, Icon, OLEContainer, and 1 for a Grid, List, Edit, RichEdit or Tree.

For a top-level object, the border property may be set only at creation time (as part of the New or

Create method). The value is made up of a basic border style, plus optional flags. The basic border
styles are:

 0 No border
 1 Standard document window, window not resizable
 2 Resizable document window
 3 Modal-dialog style window
 4 Movable modal-dialog style window
 5 Thin title-bar, non-resizable window
 6 Thin title-bar, resizable window

The optional flags which you can add to these basic values are:

 16 Window includes a Close box
 64 Window includes a Zoom box (under MacOS)
 or Minimize/Maximize controls (under Windows and Linux)

You cannot include a Close box if the basic border type is 0, and you cannot include a Zoom box if it

is 0, 5 or 6.

The default values are 20 for a Dialog object, and 2+16+64 = 82 for a Document or Window object.

Note that the setting of this property does not determine whether a given window operates in a modal
way, but merely sets the appearance and sizing controls.

Under Linux, the request which you make for a particular style of border is passed to the Window
Manager, which may choose not to honor it.

APLX System Classes & User-Interface Programming 193

The 'borderstyle' property

Integer scalar

Valid for: Grid

The borderstyle property is the sum of a set of flags which determine the appearance of the Grid

(the defaults are all On):

 1 Header cells have separator horizontal line

 2 Header cells have separator vertical line

 4 Data cells have separator horizontal line

 8 Data cells have separator vertical line

 16 Use 3D effect (Windows and MacOS only, ignored under Linux)

The 'canundo' property

Read-only, Boolean scalar

Valid for: Edit, RichEdit, Document

The canundo property indicates whether the most recent change to the text in an edit control can be

undone by calling the Undo method.

The 'caption' property

Alternative name: title

Character vector

Valid for: Window, Form, Dialog, Document, Browser, Chart, Label, Menu, Check, Radio, Button,

ToolButton, Combo, Page, Frame, Chart, Printer (Windows only), MsgBox, ChooseDir, OpenFile,
SaveFile

APLX System Classes & User-Interface Programming 194

The caption property is the text displayed by a text control such as a static text, button, radio or check

object, and the title of a menu, pre-defined dialog, or window. For a Printer object under Windows, it

is the name of the print job which will display in the printer queue. It defaults to the name of the object
when it is created. For example:

Create a button called OK on the window Win1. Its caption will be 'OK':

 Win1.OK←'⎕' ⎕NEW 'Button'

Change its caption to 'Yes':

 Win1.OK.caption←'Yes'

Note: Because of a limitation in Windows, you cannot change the title of the ChooseFont and

ChooseColor pre-defined dialogs.

For a Chart object, the caption property is one of three labels (the others are subtitle and note). It

is intended as a title for the whole chart. However, you can use it in any way you wish, or omit it

altogether by leaving it as an empty vector. You can specify the position, color and font of the

displayed text by using the placetitle, colortitle and fonttitle properties.

For a Browser object, the caption property is read-only. It corresponds to the HTML Title tag in the
page header, so should normally represent the title of the web-page currently displayed.

The 'cc' property

Character Vector

Valid for: GetMail, SendMail

The cc ('carbon copy') property contains a list of e-mail addresses to which the message is copied,

with the other recipients knowing that these addresses have been sent a copy. The recipients are
specified as a comma-delimited list of e-mail addresses.

For the SendMail object, you should set this property before calling the SendMessage method. The
default is an empty vector.

For the GetMail object, this property is read-only, and is valid only after you have called the

GetMessage method to retrieve an e-mail from the POP3 server.

APLX System Classes & User-Interface Programming 195

The 'children' property

Read-only, Nested vector of names

Valid for: All objects

The children property contains a list of the children for an object. It returns a nested vector of the

(fully-qualified) names of the children. Thus, the children property of the System object will return a

list of all the top-level objects which you have created (such as windows, pre-defined dialogs, and

printers). The children property of a window will return the name of the controls in the window. It is
a read-only property.

The 'class' property

Read-only, Character vector

Valid for: All objects

The class property contains the class of the object, for example 'Button' or 'Timer'. It is the same

as the class name used when you created the object using the New method.

The 'classes' property

Read-only, Nested vector of character vectors

Valid for: System object

The classes property of the System object returns a nested vector containing the names of each of the

APLX object classes which you can use. Where alternative names are available for a particular class
(such as 'Form and 'Window'), only the first name is returned.

APLX System Classes & User-Interface Programming 196

The 'closevalues' property

Numeric Vector

Valid for: Series

The closevalues property sets the data used for the closing values of a Series object displayed on a

High-Low-Open-Close or Candlestick chart. It is a numeric vector.

You should normally provide the same number of values for each of the openvalues, closevalues,

highvalues and lowvalues properties. However, the openvalues and closevalues properties are
optional, and can be left as an empty vector.

Note: The closevalues property is actually a synonym for yvalues, and contains the same data.

The 'col' property

Integer Scalar

Valid for: Grid

The Column number (in index origin 1) of the currently-active cell. You can write to this property to
change the current cell.

The 'color' property

(Alternative name: colour)

Numeric vector - see description

Valid for: All displayable objects, Printer and Series

The color (or, if you prefer, colour) property determines the foreground and optionally the

background color for an object. Colors are set by specifying the amount of Red, Green and Blue in the

range 0 to 255. (Because of limitations in display hardware, the color displayed will not be exact but
will be the closest available from the current palette.)

APLX System Classes & User-Interface Programming 197

Colors can be specified in one of two ways. In the first way, you specify a vector of three integers

(Red, Green and Blue), so that for example 255 0 0 is pure red and 255 255 255 is white. In the second

way, you specify a single integer which encodes the three values in base 256 as 256 ⊥ Blue Green Red.

In addition, two special values are recognised; ¯1 means use the parent's foreground or background

color as appropriate, and ¯2 means use the default color for that object (usually black for foreground

and white for background). The default value for most objects is ¯1 ¯1.

You can specify any of the following lengths for the value of the color property:

 1 The foreground color encoded as a single integer.
 2 The foreground and background colors both encoded as
 single integers
 3 The foreground color as R G B values separately
 6 Both foreground and background as R G B separately.

Referencing this property always returns a two-element vector of the encoded foreground and
background colors.

For a Grid object, the foreground color you set determines the default color of the text shown in the

Grid (you can change this for individual cells using the colortext cell property). The background

color is used as the background for the data part of the Grid (you can change this for individual cells

using the colorback cell property).

For a Series object, the color property determines the color used to display that series on a chart.

Only the first (foreground) color applies. By default, this is chosen automatically when the series is

created, but you can change it if you want to specify a particular color for that series. It is ignored if

the monochrome property of the parent Chart object is 1.

Note: Colors for controls like buttons should be used with discretion. In general, User Interface

Guidelines advise against using non-default colors for controls, and where these are used they should

normally not be bright hues which attract too much attention and detract from the typical look of the

screen. In addition, some controls will display in an ugly way if non-default colors are used. This is

particularly true of background colors, which generally paint the enclosing rectangle of the object. A

few controls will override the color which you set - for example, a color icon displays in its own

colors, ignoring the foreground color you specify except for drawing the frame (if any) around the
icon, and the color you set is ignored for scroll bars and pop-up menus (except for the frame, if any).

APLX System Classes & User-Interface Programming 198

The 'coloraxis' property

(Alternative name: colouraxis)

Integer Scalar or Length-3 Vector

Valid for: Chart

This property allow you to set a specific color for the axes (and associated tick marks and labels) of

the chart. It is specified as a single color value. It can be expressed as a vector of three separate RGB

values each in the range 0 - 255, or as a single integer which encodes the three values in base 256 as

256 ⊥ Blue Green Red. The default is the special value ¯1, meaning use the Chart object's
foreground color.

When you read back this property, APLX always returns the single-integer encoded form.

This property is ignored if the Chart's monochrome property is set to 1.

The 'colorback' property

(Alternative name: colourback)

Valid for: Image. Cell property of Grid object

Grid object

Each cell element is an integer scalar.

Determines the background color for the cell (when it is not selected). The value is a color expressed

as a numeric scalar (256 ⊥ Blue Green Red). The special value of ¯1 means use the Grid background

color for this cell; this is the default.

Image object

The colorback property represents a single color, specified either as a numeric scalar or a three-

element vector of Red Green Blue values, each in the range 0 to 255. It specifies the background color

used to fill blank areas created when an image is rotated, sheared, or extended.

APLX System Classes & User-Interface Programming 199

The 'colorgrid' property

(Alternative name: colourgrid)

Integer Scalar or Length-3 Vector

Valid for: Chart

This property allow you to set a specific color for the grid lines (if any) of the chart. It is specified as a

single color value. It can be expressed as a vector of three separate RGB values each in the range 0 -

255, or as a single integer which encodes the three values in base 256 as 256 ⊥ Blue Green Red. The
default is the special value ¯1, meaning use the Chart object's foreground color.

When you read back this property, APLX always returns the single-integer encoded form.

This property is ignored if the Chart's monochrome property is set to 1.

The 'colorhead' property

(Alternative name: colourhead)

Integer Scalar or 3-element Integer Vector

Valid for: Grid

The colorhead property for a Grid can be set as either a single RGB encoded integer (256 ⊥ Blue

Green Red) or as three Red Green Blue values, each 0 to 255. It determines the background color used

for header cells. The special value ¯1 means use the Grid control∇s foreground color. The special
value ¯2 means use the default (light gray).

APLX System Classes & User-Interface Programming 200

The 'colorlegend' property

(Alternative name: colourlegend)

Integer Scalar or Length-3 Vector

Valid for: Chart

This property allow you to set a specific color for the text used to display the legend (if any) of the

chart. It is specified as a single color value. It can be expressed as a vector of three separate RGB

values each in the range 0 - 255, or as a single integer which encodes the three values in base 256 as

256 ⊥ Blue Green Red. The default is the special value ¯1, meaning use the Chart object's
foreground color.

When you read back this property, APLX always returns the single-integer encoded form.

This property is ignored if the Chart's monochrome property is set to 1.

The 'colormarker' property

(Alternative name: colourmarker)

Integer Vector or Scalar (see description)

Valid for: Series

Usually, any marker associated with a Series object is drawn in the color set for the series as a whole

(i.e. the color property, which is either chosen automatically or set explicitly). If you wish, you can

display the marker in a different color by setting the colormarker property. You can also specify a

background color for filling the marker. The property is specified in the same way as the ordinary

color property. It can be either as a single color value (vector of three separate RGB values, or a

single integer encoding the three values), in which case it is used for both the foreground and

background colors, or as two color values (length six vector of RGB values, or two integers encoding

the color values), in which case the foreground color is used to outline the marker, and the background

color is used to fill it if the fillmarker property is 1. The default values of ¯2 ¯2 mean use the same
color as is used for the series as a whole.

The colormarker property is ignored if the Chart's monochrome property is set to 1.

APLX System Classes & User-Interface Programming 201

The 'colornote' property

(Alternative name: colournote)

Integer Scalar or Length-3 Vector

Valid for: Chart

This property allow you to set a specific color for the text used to display the 'note' (if any) of the

chart. It is specified as a single color value. It can be expressed as a vector of three separate RGB

values each in the range 0 - 255, or as a single integer which encodes the three values in base 256 as

256 ⊥ Blue Green Red. The default is the special value ¯1, meaning use the Chart object's
foreground color.

When you read back this property, APLX always returns the single-integer encoded form.

This property is ignored if the Chart's monochrome property is set to 1.

The 'colortext' property

(Alternative name: colourtext)

Cell property of Grid object

Each cell element is an integer scalar

Determines the color of text in the cell. The value is a color expressed as a numeric scalar (256 ⊥

Blue Green Red). The special value of ¯1 means use the Grid foreground color for this cell; this is the
default.

APLX System Classes & User-Interface Programming 202

The 'colortitle' property

(Alternative name: colourtitle)

Integer Scalar or Length-3 Vector

Valid for: Chart

This property allow you to set a specific color for the text used to display the title (if any) of the chart.

It is specified as a single color value. It can be expressed as a vector of three separate RGB values

each in the range 0 - 255, or as a single integer which encodes the three values in base 256 as 256 ⊥
Blue Green Red. The default is the special value ¯1, meaning use the Chart object's foreground color.

When you read back this property, APLX always returns the single-integer encoded form.

This property is ignored if the Chart's monochrome property is set to 1.

The 'colour' property

Synonym for the color property

The 'cols' property

Integer Scalar

Valid for: Grid

The number of data (scrolling) columns in the Grid control. You typically set this property when you

create the Grid to fit the size of the data you want to display.

APLX System Classes & User-Interface Programming 203

The 'colsize' property

Valid for: Grid (Special syntax applies)

You can set the size of the columns of a Grid control using the syntax:

 WindowRef.ControlName.colsize Cols Sizes
or:
 'WindowName.ControlName' ⎕WI 'colsize' Cols Sizes

where Cols is a scalar or vector list of column numbers, and Sizes is a matching vector (or scalar) of

the column sizes, in pixels. A column number of 0 sets the default size for all columns which are not

explicitly set. Note: At least one of the Cols and Sizes parameters must be a vector, otherwise the
statement will be interpreted as an attempt to read back the current sizes.

You can read back the current sizes using the syntax:

 R ← WindowRef.ControlName.colsize Cols
or:
 R ← 'WindowName.ControlName' ⎕WI 'colsize' Cols

Note that, depending on the flags you have set in the style property, the user may be able to resize
the columns.

The 'contents' property

Character vector

Valid for: Browser, OLEContainer. System

System object

For the System object, the contents property represents the contents of the clipboarrd as an APL

array. For example, you can copy a range of cells from Excel to the clipboard, and read it into APL as

a numeric or nested array. The clipboard formats which are accepted when you read this property are
(in order of preference):

1. The APLX binary format, which supports any arbitrary array

2. SLK (Spreadsheet format), two-dimensional arrays only

3. CSV (Comma-Separated Variables), two-dimensional arrays only
4. TSV (Tab-Separated Variables), two-dimensional arrays only

APLX System Classes & User-Interface Programming 204

If none of these formats is found, a text vector is returned.

If you write an array to the contents property, APLX will make the data available on the clipboard in
the following formats:

1. The APLX binary format, which supports any arbitrary array but is supported by APLX only

2. HTML, as a table (two-dimensional arrays only)
3. Unicode text (monadic format of the array)

Browser

For a Browser object, the contents property is read-only. It returns a character vector (with

embedded carriage returns), containing the raw HTML text of the page currently displayed in the
control.

OLEContainer (Windows only)

When you read the contents property for an OLEContainer control in which a document is embedded

or linked, APLX returns a character vector containing the internal representation of the document (or

the link) in the container. It is encoded as a series of bytes, and includes information about the type of
the document as well as its contents.

You should never change the contents of this vector, but you can store it in a file and write the same

vector back to an OLEContainer control to cause it to re-display the same document. This has the
effect of starting up the OLE server application associated with the document.

If there is no document loaded, reading contents returns an empty vector.

If you write an empty vector to contents, a dialog is displayed inviting the user to select a document

to embed or link in the OLEContainer.

The 'conversionerrorvalue' property

Numeric scalar

Valid for: Grid

The value to return in the value cell property if a numeric cell cannot be converted to a valid number.
The default is a large negative number.

APLX System Classes & User-Interface Programming 205

The 'cookie' property

Read-only, Character Vector

Valid for: HTTPClient

Once you have used the Get method of an HTTPClient object to retrieve the a page from a web-site,

the cookie property contains the text of any cookie sent by the web server.

The 'copies' property

Integer scalar in range 1 to N

Valid for: Printer

The copies property contains the number of copies which will be printed in the current print job.

Usually, you do not need to set this explicitly, because the user selects the number of copies in the

print-job dialog. You can read this property to determine how many copies the user has requested, and

you can also set this property before calling the Job method to pre-set a particular number of copies.

For unattended printing, you can set this property before calling the Open method.

The 'count' property

Read-only, Integer scalar (for GetMail), Two-element integer vector (for Tree)

Valid for: GetMail, Tree

For a Getmail object, the count property contains the number of e-mails available on the POP3 server.
It is valid only when you are successfully connected to the server.

For a Tree object, the count property returns a two-element vector. The first element is the total

number of nodes in the tree, and the second is the number of nodes that are fully visible in the control.
Under Linux, the second element is not available and will always be returned as 0.

APLX System Classes & User-Interface Programming 206

The 'custom' property

Implemented under Windows only

Integer vector of up to 16 elements

Valid for: ChooseColor

The pre-defined ChooseColor dialog can optionally allow the user to choose from and define 'custom'

colors, in addition to the default colors which appear in the dialog. (Custom colors are allowed by

default, unless you specify 2 for the style property). Setting the custom property before the dialog is

displayed allows you to specify the custom colors which will appear, and reading the custom property

after the dialog has been closed by the user allows you to retrieve the values of the custom colors
which the user may have defined or changed.

The colors in the custom property are each encoded in base 256 as 256 ⊥ Blue Green Red, where the
Blue, Green and Red values are in the range 0 to 255.

The 'data' property

Any APL array or overlay

Valid for: All objects

The data property allows you to associate arbitrary APL data with any object. The APL data can be

retrieved later, for example during a callback function. The data is stored outside the workspace, in

system memory.

Using the data property can help make your applications better structured, allowing information
associated with an object to be stored with it rather than held in global variables in the workspace.

If you reference the data property before assigning to it, APLX reports a VALUE ERROR.

You can also assign arbitrary APL data to 'delta' properties, allowing you to have as many distinct
variables associated with an object as you like.

Special considerations for Client-Server versions of APLX

Because the whole System Class sub-system runs on the Client machine, the data contained in the

data property is held (in memory) on the Client machine, as a variable in APLX 32-bit format (even if

APLX System Classes & User-Interface Programming 207

the APL session which wrote the variable is a 64-bit implementation of APLX). The data must

therefore be representable as a 32-bit object, which means it must be smaller than 2GB and must not

contain more than 2147483647 elements. An array which contains 64-bit integer numbers of
magnitude bigger than 2*31 will be converted to float data, and precision may be lost.

The 'date' property

Read-only, Character Vector

Valid for: GetMail

The date property contains the timestamp of an e-mail, as a character vector. It is a read-only

property, and is valid only after you have called the GetMessage method to retrieve the e-mail from
the POP3 server.

The date is normally formatted in the form 'Tue, 16 Nov 2004 12:17:40 +0000', where the last part is
the offset from Greenwich Mean Time as HHMM.

The 'def' property

Not currently implemented

The 'default' property

Character vector (or integer scalar for the MsgBox class)

Valid for: OpenFile, SaveFile, MsgBox

Under Windows and Linux, for the SaveFile and OpenFile pre-defined dialogs, the default property

determines the default file extension which will be added if the user specifies a file name without a file

extension, for example 'txt'. File extensions must not exceed three characters, and the leading period
should be omitted. It is ignored under MacOS.

For the MsgBox pre-defined dialog, the default property is an integer in the range 1 to 4,
representing the default button which will be selected if the user presses the Enter key.

APLX System Classes & User-Interface Programming 208

The 'deleteonread' property

Boolean Scalar

Valid for: GetMail

The deleteonread property determines whether or not e-mail messages are automatically marked for

deletion on the POP3 server once they have been read. If this property is 1, they will be deleted after

you have successfully retrieved them using the GetMessage method. If it is 0, they will be left on the
server.

The messages are not actually deleted until the POP3 session has been successfully completed and

closed using the Close method. If an error occurs, or if the session is aborted because the connection
is lost, they will not be deleted.

The 'directory' property

Character vector

Valid for: ChooseDir, System

ChooseDir object

The ChooseDir pre-defined dialog allows the user to select a directory on disk. Before the dialog is

displayed, you can optionally set the directory property to specify the initial directory which will be

displayed in the dialog. After the user has made the section, read the directory property to retrieve
the full path name of the selected directory.

System object

The directory property of the System object returns the directory from which the running program

(either APLX itself, or your packaged application) was loaded. It is a read-only property.

APLX System Classes & User-Interface Programming 209

The 'docstate' property

Read-only, Integer scalar

Valid for: OLEContainer (Implemented under Windows only)

The docstate property returns information about the state of the document in an OLEContainer. The

value returned is one of:

0 = There is no OLE object in the container.
1 = There is an OLE object in the container, but its server application isn't
 currently running.
2 = The OLE object's server is running.
3 = The OLE object is open in a separate window.
4 = The OLE object is activated inplace, but hasn't yet merged its menus
 or toolbars.
5 = The OLE object is activated inplace and menus and toolbars have been merged

The 'doublebuffered' property

Boolean scalar

Valid for: All visible controls and windows

The doublebuffered property is a boolean scalar which, under Windows, determines whether

drawing takes place to an off-screen bitmap before the window is updated. The default is false (0).

Setting doublebuffered to true (1) takes more memory, but may reduce screen flicker especially if
you are moving shapes on screen.

Under MacOS and Linux, this property has no effect, since the operating system determines whether

an off-screen bitmap is used for drawing. Double-buffered drawing is always used under MacOS X
and later.

APLX System Classes & User-Interface Programming 210

The 'dragsource' property

Valid for: All visible controls

Read-only, character vector

The dragsource property is used in drag-and-drop operations. When a drag-and-drop callback occurs

(i.e. one of onDragStart, onDragEnd, onDragOver, onDragEnter, onDragLeave, onDragDrop), the

dragsource property contains the name of the control which is being dragged.

The 'droptarget' property

Valid for: All visible controls

Read-only, character vector

The droptarget property is used in drag-and-drop operations. When an onEndDrag callback in

invoked, the droptarget property contains the name of the control on to which the source control is
being dragged.

The 'enabled' property

Boolean scalar

Valid for: Series, Timer, and all visible objects

The enabled property determines whether an object is active and capable of responding to events such

as mouse down. If enabled is 1 (the default), the control is active and potentially responds to events.

Text objects (such as static text, button, check box, radio button, list, edit, menus) display their text as
greyed out when they are disabled.

For a Timer object, the enabled property determines whether or not the timer will generate onTimer

events at the interval set by the interval property.

For a Series object, the enabled property determines whether the Series is active. If it is 0, the Series
does not appear, and is disregarded when the parent Chart computes the scale of the chart.

APLX System Classes & User-Interface Programming 211

The 'eventmask' property

Not currently implemented in APLX.

The 'events' property

Read-only, Nested vector of character vectors

Valid for: All objects

The events property returns a nested vector of the names of the events which are meaningful for a

particular object (for example, 'onClick'). These are the event properties which can be triggered as a
result of user action or by the system, and for which you might want to define APL callbacks.

Under Windows, for an OCX/ActiveX control, OLEContainer, or OLE Server Application, events
defined by the external software will be included in the list, preceded by 'onX'.

Note: You can also define callbacks for events which are not in this list (for example, you could define

an 'onClick' callback for a Timer object). This is valid, but such a callback will never be triggered

unless you explicitly call it using the Trigger method.

The 'extent' property

Two-element numeric vector

Valid for: All displayable objects

The extent property determines the height and width of an object, in the scale of its parent. The first

element of the extent property is the height, and the second is the width of the object. (This is exactly

the same as the size property, except that the scale used for the size property is that of the object
itself, not its parent.)

APLX System Classes & User-Interface Programming 212

The 'family' property

Integer Scalar

Valid for: Socket

The family property specifies the address family of the socket. It can be one of the following values:

Value C Name Description

1 AF_UNIX local to host (pipes, portals)

2 AF_INET internetwork: UDP, TCP, etc.

3 AF_IMPLINK arpanet imp addresses

4 AF_PUP pup protocols: e.g. BSP

5 AF_CHAOS mit CHAOS protocols

6 AF_NS IPX or XEROX NS protocols

7 AF_ISO ISO protocols

8 AF_ECMA european computer manufacturers

9 AF_DATAKIT datakit protocols

10 AF_CCITT CCITT protocols, X.25 etc

11 AF_SNA IBM SNA

12 AF_DECnet DECnet

13 AF_DLI Direct data link interface

14 AF_LAT LAT

15 AF_HYLINK NSC Hyperchannel

16 AF_APPLETALK AppleTalk

17 AF_NETBIOS NetBios-style addresses

18 AF_VOICEVIEW VoiceView

19 AF_FIREFOX Protocols from Firefox

21 AF_BAN Banyan

22 AF_ATM Native ATM Services

23 AF_INET6 Internetwork Version 6

24 AF_CLUSTER Microsoft Wolfpack

25 AF_12844 IEEE 1284.4 WG AF

26 AF_IRDA IrDA

28 AF_NETDES Network Designers OSI & gateway enabled protocols

The default is 2, the value required for Internet protocols.

APLX System Classes & User-Interface Programming 213

The 'file' property

Character vector (or a nested vector of character vectors)

Valid for: Movie, OpenFile, SaveFile, Image, Picture, OLEContainer, System

The file property allows you to set or retrieve a file name. The exact meaning depends on the object:

OpenFile and SaveFile pre-defined dialogs

For the two pre-defined dialogs which allow the user to select a file name, the file property contains

the filename. If you set this property to a character vector before displaying the dialog, it determines
the initial choice which will be presented in the dialog. You can set either:

 A full path name

 Just the file part, in which case you the current working directory is assumed.

 Just a directory (ending in a directory-separator character), in which case there is no initial file

selection in the dialog, but the initial directory will be set.

After the dialog has been closed by the user, the file property contains the fully-qualified name of the

selected file, usually as a character vector. In the case of the OpenFile dialog, you can optionally allow

multiple files to be selected, by setting the style value 1. In this case, the file property will return a
nested vector of file names.

Picture object

For a Picture object, the file property determines the image which will be displayed in the picture.

Under Windows, it should be the name of a Windows bitmap, icon, or JPEG image file (.bmp, .ico,

.jpg or .jpeg). Under MacOS, it should be the name of a JPEG or PICT file, or any image type

supported by Apple's QuickTime software. Under Linux, the supported types depend on the operating
system version but will typically include .png .xpm .jpg .jpeg .ico and .bmp files.

If you write an empty vector to the file property, a dialog is displayed allowing the user to choose an
image file.

Image object

For an Image object, the file property contains the name of the file (if any) from which the image

was loaded. Writing to the property causes the named file to be loaded. If you write an empty vector to

the file property, a dialog is displayed allowing the user to choose an image file, which can be of any

format supported by ImageMagick.

APLX System Classes & User-Interface Programming 214

Movie object

When you initially create a Movie object, a blank rectangle is displayed because the system does not

know what movie you wish to play. You select the particular movie you want by setting the file

property for the movie object. (Note that you must do this after setting the style property). There are

two ways you can specify the file:

(a) If you set the file property to be a file name, that is used as the movie file. The name can either be

a simple file name (in which case the default volume and directory is assumed), or a full pathname.
For example:

 MyWin.Mov.file←'Mydisk:Movies:Advert'

(b) If you set the file property to be an empty vector, APLX displays the standard file selection dialog
box, allowing the user to choose a movie file. This is then used for the movie object automatically.

A special feature of movie objects is that setting the file property has the side effect of re-sizing the

object to the default size for the selected movie. The movie will usually display best if the size of the

object is the same as (or an integral multiple of) the original movie size. You can change the size of

the movie object if you wish, but this must be done after setting the file property.

OLEContainer object

For an OLEContainer control, the file property determines the name of the document. If the OLE

container is linked to a document, reading the file property allows you to find out its name.

Writing to the file property causes the container to attempt to load the document (or link to it, if the

style is 1). If you write an empty vector, a dialog is displayed allowing the user to choose a
document.

System object

If you have packaged your APL workspace as a standalone application, it may be launched by the user

dragging one or more documents on to the application icon or double-clicking a document (for this to

work, you need to have set up the association between the file type/extension and the application).

Under Windows, the user may also have started the application from the command-line. The System

object's file property allows your APL program to respond correctly to these user actions. It is a
read-only property.

Under MacOS, file contains the full names of the document or documents which you should open or

print. If there are several file names, they will be delimited by carriage-return characters. The action

property indicates whether your should open or print them. The onOpen event is triggered if your
application is already running.

Under Windows and Linux, there are two possibilities. If the user dragged a document icon on to your

application icon (or double-clicked the document icon), file will contain the full filename of the

document. If the user started your application from the command-line, file will contain the
command-line options which were entered.

APLX System Classes & User-Interface Programming 215

The 'filled' property

0 or 1

Valid for: Line, Rectangle, RoundRect, Arc

For a graphic object, the filled property indicates whether the object is filled with the foreground color

(1), or not (0). The default is 0. This property can be set for a Line, but is ignored. For an arc which

does not describe a full 360 degrees, the effect is to display a filled wedge (such as you would have in

a 'pie' chart).

The 'fillmarker' property

Boolean Scalar

Valid for: Series

Where markers are drawn for the points of a Series displayed on a Chart object, by default they are

drawn in outline only. If you set the fillmarker property of the Series object to 1, the markers will

be filled with the current marker background color (as set by the colormarker property), provided it
is one of the following shapes: ○ ⌽ ⊄ ↔ ∆ ⊦ ⎕

See also the marker and colormarker properties.

The 'fillpattern' property

Integer Scalar

Valid for: Series

Normally, bars and pie slices associated with a Series object are filled with a solid block of color. If

you wish, you can specify a different fill pattern for the series, by assigning one of the following

values to the fillpattern property:

1=Solid, 2=Horizontal grid pattern, 3=Vertical grid pattern, 4=Forward diagonal, 5=Backward
diagonal, 6=Cross pattern, 7=Diagonal cross pattern

APLX System Classes & User-Interface Programming 216

Note: If the Chart's monochrome property is set to 1, and you haven't specified your own fill pattern, a

default pattern from one of the above will automatically be assigned to the Series object to distinguish
it from other series on the chart.

The 'filter' property

Character vector

Valid for: OpenFile, SaveFile

The filter property sets one or more filters (file extensions or types which will be allowed), for use
in the OpenFile and SaveFile pre-defined dialogs.

It comprises one or more sets of descriptive text, a | character, and a semi-colon delimited list of

supported filters. Multiple filters should be separated by a vertical bar.

Under Windows and Linux, you specify file extensions as file wildcards. For example, the filter 'Text

files|*.txt;*.log|All files|*.*' gives the user the choice of selecting "Text files" (in which
case extensions .txt and .log are accepted), or "All files" (any extension is accepted).

Under MacOS, you can choose to filter either using file extensions (in which case the syntax is

identical to that used for Windows and Linux), or using file types. In the latter case the filters are four-

character file types rather than file extensions beginning with the wildcard '*.'. For example: 'Picture

files|JPEG;PICT' would display the description "Picture files" to the user, and allow selection of

files of type JPEG and PICT. The file type '****' matches all file types. You can also combine both

types of filter; for example, 'Text files|*.txt;TEXT' would match files which either have the
extension .txt or which are of type TEXT.

The 'filterindex' property

Integer scalar

Valid for: OpenFile, SaveFile

The filterindex property determines which of the file extensions or types (of the list set using the

filter property) is displayed in an OpenFile or SaveFile pre-defined dialog. The value is the index
(in index origin 1) of the filter to display.

Usually you set filterindex before displaying the dialog. You can also read it when the dialog ends,

to see whether the user has changed it. This is useful to decide the file type to use. However, under

APLX System Classes & User-Interface Programming 217

Windows and Linux, you should also check the file extension (if any), because the user can type a full
filename and extension without changing the selected filter.

The 'firstvisible' property

Integer scalar or two-element vector

Valid for: List, Grid

For a List object, the firstvisible property is an integer scalar which represents the first visible item

at the top of the list box. Thus, if the list box has been scrolled down three lines, it will have the value

4. You can write to this property to force a scroll so that a specific item is at the top of the visible

portion of the list; however, because you the list will not scroll beyond the last item, you should read
back the property if you need to know exactly which item ended up as the first visible item.

For a Grid object, firstvisible is a two-element integer vector. It allows you to read or set the top-

left position of the visible portion of the Grid. It is the same as the first two elements of the view
property.

The 'font' property

A character vector or nested vector - see below

Valid for: Document, Static, Label, Grid, Edit, RichEdit, Button, ToolButton, Radio, Check, List,

Combo, Page, Selector, Frame, ChooseFont (Windows and Linux only), Printer, Chart

The font in which text objects display their text is set by the font property. In general, this is a nested

vector of four elements, but you do not have to supply all four, and if you supply a simple character
vector it will be taken as the font name. The four elements are:

1. Font name as a character vector. If you specify an empty vector, the font is unchanged. Otherwise

you can specify the name of the font you want to use. If you specify a font which is not installed, or

which is not compatible with the other characteristics you specify, the system will choose an

alternative font for you. To select the APL font, you can specify either 'APLX Mac' or 'APLX

Upright'.

2. Font size, in the current units of the object (see the scale property).

3. Font style as an integer scalar, from one of the following:

APLX System Classes & User-Interface Programming 218

 0 Plain
 1 Bold
 2 Italic
 4 Underlined
 8 Hollow (supported under MacOS only)
 16 Strikeout (not supported under MacOS)

You can also specify the sum of these, for example 3 for Bold and Italic.

4. The name of the font character set, as a character vector. On the Macintosh, this is always 'mac'.

Under Windows or Linux, this is one of 'ansi' 'default', 'symbol' 'mac' 'greek' 'turkish' 'baltic'

'easteurope' and 'oem'. The character set is used to select a version of the font capable of displaying
characters appropriate to the chosen locale.

For example, if the scale property is currently set to 3 (points), and you want a particular object to
display in 16-point Helvetica italic, you might enter:

 Win19.Subtitle.font←'Helvetica' 16 2

Note: Remember that the default scale is in character units, so that if you have not changed the scale
property the above example would give a font 16 times the default size, or 256 points.

The default font depends on the system and the user's default settings.

For a Chart object, the Size parameter of the font property is ignored. The property is used to

determine the base font of the Chart, which by default is used to draw each text element of the Chart at

a size which depends on the window size.

Under Windows or Linux, you can ask the user to select a font using the ChooseFont pre-defined

dialog. Before showing the dialog using the Show method, you can set the font property to choose the

initial selection which will be displayed when it appears. When the user has made the selection, read

back the font property to retrieve the selected font and style.

The 'fontaxis' property

Nested Vector

Valid for: Chart

The fontaxis property allow you to specify the font for tick labels and axis labels of a Chart object.

Any changes you make to this property overrides the setting of the base font property of the object.

The font details are specified in a similar way to ordinary font properties, as a nested vector of (Font

name) (Size) (Style) (Character set). However, the Size is defined in a special way. If it is set to a

value between 0 and 1, it means that the height of the font should be the specified proportion of the

APLX System Classes & User-Interface Programming 219

window size, defined as the smaller of the window height and width. Values in the region of 0.03 to

0.05 are reasonable. This is recommended for resizable charts, to ensure that the labels remain in

proportion to the chart as a whole. (If the font gets too small, a lower limit is imposed). If the font size

is specified as an integer greater than 1, it is interpreted as a font size in Points, and will be fixed

irrespective of the size of the Chart. This is likely to mean that the chart does not display well at very

small or large sizes.

If the Font name is an empty vector, the base font family is used. If the Size or Style element is ¯1, the
corresponding font attribute is left unchanged.

The 'fontlegend' property

Nested Vector

Valid for: Chart

The fontlegend property allow you to specify the font for the Legend of a Chart object. Any changes

you make to this property overrides the setting of the base font property of the object.

See the description of the fontaxis property for details of how it is specified.

The 'fontnote' property

Nested Vector

Valid for: Chart

The fontnote property allow you to specify the font for the note of a Chart object. Any changes you

make to this property overrides the setting of the base font property of the object.

See the description of the fontaxis property for details of how it is specified.

APLX System Classes & User-Interface Programming 220

The 'fonts' property

Read-only, nested vector of character vectors

Valid for: System, Printer (Windows only)

The read-only property fonts applies to the System object. It returns a nested vector containing the

names of the screen fonts installed on the system:

 '#' ⎕WI 'fonts'
Abadi MT Condensed
Abadi MT Condensed Extra Bold
Abadi MT Condensed Light
Algerian
American Uncial
Andy
APL385 Unicode
APLX Upright
Arial
..etc

(Note that the fact that a font is installed does not guarantee that it is available in a particular size, style
and character set).

Under Windows only, the fonts property also applies to the Printer object. It returns a nested vector

of the names of the fonts installed on the currently-selected printer, together with the TrueType fonts
which can be downloaded to the printer.

The 'fontstyle' property

Cell property of Grid object

Each cell element is an integer scalar

Determines the style of the text within the cell. The value is the sum of:

 0 Plain
 1 Bold
 2 Italic
 4 Underlined
 8 Hollow (supported under MacOS only)
 16 Strikeout (not supported under MacOS)

The special value of ¯1 means use the default font style of the Grid.

APLX System Classes & User-Interface Programming 221

The 'fonttitle' property

Nested Vector

Valid for: Chart

The fontnote property allow you to specify the font for the Title of a Chart object. Any changes you

make to this property overrides the setting of the base font property of the object.

See the description of the fontaxis property for details of how it is specified.

The 'format' property

Valid for: Image, Grid

Image object

Character Vector

For an Image object, the format property is a text string which indicates the graphics format used to

store the image on disk. After you have called the Load method to read an image file, the format
property will reflect the original format of the file, for example 'JPEG' or 'GIF'.

If you want to save the image in a different format, you can write a different string to the format

property before calling the Save method.

The list of supported formats can be read from the formats property. However, some of these may be

valid for reading only - see the ImageMagick documentation for more details.

Grid object

For the Grid object, the format is a Cell property, where each cell element is a character vector. It

determines the format used to display numeric values in cells of a Grid object. The format string is a

character vector of up to three parts, where each part is separated by a semicolon. If you supply just

one part, it applies to all numbers. If you supply two parts, the first applies to positive numbers or

zero, and the second to negative numbers. If you supply all three parts, the first applies to numbers

greater than zero, the second to less than zero, and the third to zero.

Each part comprises a set of characters giving the format for the number. These comprise:

APLX System Classes & User-Interface Programming 222

Character Meaning

0 Required digit. If the number has a digit in the position where the '0' appears in the format,

then that digit is displayed, otherwise 0 is displayed. Thus, the positions of the leftmost '0'

before the decimal point and the rightmost '0' after the decimal point in the format

determine the range of digits that are always displayed.

Optional digit. If the number has a digit in the position where the '#' appears in the format,
then that digit is displayed. Otherwise, nothing is displayed in that position.

.
Decimal point. The first '.' character in the format string determines the location of the

decimal separator in the display. (The actual character used as a the decimal separator may

depend on the locale set in the operating system).

,
Thousands separator. If the format string contains one or more ',' characters, the output will

have thousand separators inserted between each group of three digits to the left of the

decimal point. The placement and number of ',' characters in the format string does not

affect the output, except to indicate that thousand separators are wanted. (The actual

character used may depend on the locale set in the operating system.)

E+
Scientific notation. If any of the strings 'E+', 'E-', 'e+', or 'e-' are contained in the format

string, the number is formatted using scientific notation. A group of up to four '0' characters

can immediately follow the 'E+', 'E-', 'e+', or 'e-' to determine the minimum number of

digits in the exponent. The 'E+' and 'e+' formats cause a plus sign to be output for positive

exponents and a minus sign to be output for negative exponents. The 'E-' and 'e-' formats

output a sign character only for negative exponents.

' "
Quotes. Characters enclosed in single or double quotes are output unchanged.

Setting this value automatically sets the cell type to Numeric.

The 'formats' property

Read-only, Nested Vector of Character Vectors

Valid for: Image

The formats property of an Image object returns a list of all the formats supported by the underlying
ImageMagick library, as a nested vector of text strings. For example:

 Image1←'⎕' ⎕NEW 'Image'
 Image1.formats
 A ART AVI AVS B BIE BMP BMP2 BMP3 C CACHE CAPTION CIN CIP CLIP CLIPBOARD CMYK C
 MYKA CUR CUT DCM DCX DOT DPS DPX EMF EPDF EPI EPS EPS2 EPS3 EPSF EPSI EPT
 EPT2 EPT3 FAX FITS FPX FRACTAL G G3 GIF GIF87 GRADIENT GRAY HDF HISTOGRAM

APLX System Classes & User-Interface Programming 223

 HTM HTML ICB ICO ICON JBG JBIG JNG JP2 JPC JPEG JPG K LABEL M M2V MAP MAT
 MATTE MIFF MNG MONO MPC MPEG MPG MSL MTV MVG NULL O OTB P7 PAL PALM PATTER
 N PBM PCD PCDS PCL PCT PCX PDB PDF PFA PFB PGM PGX PICON PICT PIX PJPEG PL
 ASMA PNG PNG24 PNG32 PNG8 PNM PPM PREVIEW PS PS2 PS3 PSD PTIF PWP R RAS RG
 B RGBA RLA RLE SCR SCT SFW SGI SHTML STEGANO SUN SVG SVGZ TEXT TGA TIF TIF
 F TILE TIM TTC TTF TXT UIL UYVY VDA VICAR VID VIFF VST WBMP WMF WMFWIN32 W
 MZ WPG X XBM XC XCF XPM XV XWD Y YCbCr YCbCrA YUV

See the format property for more information.

The 'from' property

Character Vector

Valid for: GetMail, SendMail

The from property contains the e-mail address of the sender of an e-mail as a character vector.

For the SendMail object, you should set this property before calling the SendMessage method.

For the GetMail object, this property is read-only, and is valid only after you have called the

GetMessage or GetSummary method to retrieve an e-mail (or summary of an e-mail) from the POP3

server.

The 'gridlines' property

Boolean scalar

Valid for: Grid

Determines whether the grid lines within the data area are visible. (Default 1)

APLX System Classes & User-Interface Programming 224

The 'gridwidth' property

Integer Scalar

Valid for: Chart

The gridwidth property allows you to specify the line width (in pixels) for the Chart object's grid

lines, as an integer scalar. The default is ¯1, which means use the value set in the Chart object's

linewidth property. (Note that the gridlines will appear only if the appropriate values in the style
property are set.)

The 'group' property

An integer in the range 0 to 255

Valid for: Menu, Radio, ToolButton

Menu items

The group property is used to make Menu items behave like radio buttons. It indicates which group of

mutually-exclusive menu buttons the object belongs to. When one item in the group is selected (by the

user or under program control), all others in the same group on the same menu are de-selected. The

group property is an arbitrary number in the range 0 to 255 which serves to identify the group within
the window. If the value is 0, the control does not exhibit radio-button behavior.

Radio buttons

The group property of a Radio button determines which group (within a particular control) the button

belongs to. Only one Radio button in the group can be selected at any time, so that if one is selected,
all others in the same group are automatically de-selected.

Usually, this grouping occurs automatically (typically, you place Radio buttons in a Frame object).

The initial group property for the first Radio button to be created as the child of a Frame or Window is

0. If you create further Radio buttons one after another with the same parent, the group property for

each new button is the same as that of the previous button, so each button in the series belongs to the
same group.

If you create a different control or controls in between, the group property is incremented by one for

the next series, so that the second series of Radio buttons behaves independently of the first.

APLX System Classes & User-Interface Programming 225

Alternatively, you can override this behavior and set the Radio button's group explicitly, as an integer
scalar in the range 0 to 255.

ToolButtons

For a ToolButton, the group property determines which group of similar buttons the control belongs

to, and thus whether it behaves like a readio button. If it is 0, the button behaves like an Action button.
See the description of the ToolButton for details.

The 'handle' property

Read-Only (except for Socket), Integer Scalar

Valid for: Check, Radio, Button, Progress, Trackbar, Spinner, Scroll, List, Combo, Edit, RichEdit,

Movie, Splitter, Selector, Page, Tree, Frame, Printer, Image, ImageList, Socket

The handle property is generally used for low-level programming only. Its value is the internal value
which identifies the underlying control to the operating system.

It can be passed to external calls which require a handle argument via ⎕NA or Auxiliary Processors. If
no valid handle is available (for example, if the object is not open), 0 is returned.

For a Socket object, the handle property is used in a special way for server sockets accepting requests
for connection from clients. See the documentation on the Socket object for details.

The 'hdc' property

Synonym for the winptr property

APLX System Classes & User-Interface Programming 226

The 'headcols' property

Integer scalar

Valid for: Grid

The number of heading (fixed) columns (Default 1). You typically set this property when you create

the grid (before setting the cols property)

The 'header' property

Read-only, Character Vector

Valid for: GetMail

The header property returns the raw header of an e-mail. It is valid only after you have called the

GetMessage (or GetSummary) method to retrieve an e-mail from the POP3 server. It is formatted as a

character vector, with embedded carriage return (⎕R) characters separating lines. You can conveniently
use ⎕BOX to convert this to a matrix.

An e-mail header comprises a keyword, ending in a colon, followed by a text string which is the value

associated with the keyword. This can continue on successive lines. For example:

 MailObj.GetMessage 1
 MailObj.header
Return-path: <bounce_204417_131880@b2.mx0.net>
Received: from pop3.isp.net by mailstore
 for microapl@microapl.co.uk id 1CpOoK-00055Z-BL;
 Fri, 14 Jan 2005 10:36:08 +0000
Message-Id: <d1to1.204417.131880@m2.mx0.net>
Date: Fri, 14 Jan 2005 10:31:00 +0000
From: "VSJ" <VSJ-204417-131880z@m2.mx0.net>
To: microapl@microapl.co.uk
Subject: VSJ Developer Newswire - 14th Jan 2005
List-Owner: <mailto:abuse@mx0.net>
MIME-Version: 1.0
Content-Type: text/plain; charset=us-ascii
Content-Transfer-Encoding: 7Bit

APLX automatically extracts the most important of these header fields into specific properties of the

GetMail object such as subject, date, to and from. However, sometimes you may want to examine

the full header to extract more information, such as the path by which the e-mail reached your mailbox
(held in a series of one or more 'Received:' fields).

APLX System Classes & User-Interface Programming 227

The 'headrows' property

Integer scalar

Valid for: Grid

The number of heading (fixed) rows (Default 1). You typically set this property when you create the

grid (before setting the rows property)

The 'highlightbold' property

Integer vector

Valid for: Tree

The highlightbold property is an integer vector which contains a list of the IDs of all the Tree-object

nodes which are shown in bold face.

The 'highlightcut' property

Integer vector

Valid for: Tree

Under Windows and Linux, the highlightcut property is an integer vector which contains a list of
the IDs of all the Tree-object nodes which are highlighted for cutting. It is ignored under MacOS.

APLX System Classes & User-Interface Programming 228

The 'highlightdrop' property

Integer vector

Valid for: Tree

Under Windows and Linux, the highlightcut property is an integer vector which contains a list of

the IDs of all the Tree-object nodes which are highlighted for dropping. It is ignored under MacOS.

The 'highlightselect' property

Integer vector

Valid for: Tree

The highlightselect property is an integer vector which contains a list of the IDs of all the Tree-

object nodes which are highlighted as if selected.

The 'highvalues' property

Numeric Vector

Valid for: Series

The highvalues property sets the data used for the high values of a Series object displayed on a High-
Low-Open-Close or Candlestick chart. It is a numeric vector.

You should normally provide the same number of values for each of the openvalues, closevalues,

highvalues and lowvalues properties. However, the openvalues and closevalues properties are
optional, and can be left as an empty vector.

APLX System Classes & User-Interface Programming 229

The 'host' property

Character Vector

Valid for: GetMail, SendMail, APL (Child Task), System object

GetMail and SendMail

Before you can use the GetMail or SendMail objects, you need to specify the internet address of the

host you are using. For the GetMail object, this is the address of your POP3 server. For the SendMail

object, it is the address of your SMTP server. You will probably also need a user name and password.

The values to use will normally be supplied by your Internet Service Provider (ISP) or network
administrator.

The host address can be specified either as a domain name (such as 'pop3.myisp.com'), or directly as

an internet node address (such as '168.9.211.53').

For example:

 M←'⎕' ⎕NEW 'GetMail'
 M.host←'pop3.supernet.com'
 M.user←'microapl'
 M.password←'secret'
 M.Open
0

APL (Child Task)

If you are running a Client-Server implementation of APLX, you can use the host property of the

APL object to specify on which machine the new APL task should run. There are three possibilities:

 You can set the host property to an empty string. In this case, the new APL task will be

created as a local 32-bit session, running under the same process ID as the Client (user-
interface) program.

 You can set the host property to be an internet address or hostname. In this case, APLX will

attempt to contact an APLX or APLX64 (i.e. 32-bit or 64-bit) Server program on the named

system, and ask it to create the new APL task. If the host name is 'localhost', this will be

the same physical machine as the Client program. Note that the APLX Server program must
already be running on the specified machine.

 You can leave the host property as its default value. This will be the same as the host

property of the parent APL task. This means that the new task will be started on the same
system, under the same 32-bit or 64-bit interpreter, as the APL task which created it.

You must set the host property before calling the Open method, but you can read it back at any time.

If you are not running a Client-Server implementation of APLX, the host property can only be an
empty string.

APLX System Classes & User-Interface Programming 230

System Object

For the System object, the host property is read-only. It will be an empty string if the current APL

task is running locally on the Client machine, or if you are not running a Client-Server implementation

of APLX. It will be 'localhost' if the current APL task is running under an APLX Server on the

same machine as the Client. Otherwise, it will be the IP address or host name of the Server on which
the current APL task is running.

The 'html' property

Read-only, Character Vector

Valid for: GetMail

The html property contains the formatted text of an e-mail, as HTML, if this is available. It is a simple

character vector, possibly with embedded carriage return (⎕R) characters. If the e-mail was sent in

accordance with Internet standards, the plain (unformatted) text of the message should be available in

the body property.

Messages may be sent in plain text only, in which case this property will be an empty vector.

This property is read-only, and is valid only after you have called the GetMessage method to retrieve
an e-mail from the POP3 server.

The 'icon' property

An integer scalar

Valid for: Icon

The icon property determines the icon that displays. It is an integer scalar which corresponds to the ID
of the icon. Standard values which are built into the system are:

 0 Stop icon
 1 Alert icon
 2 Note icon
 3 Question icon

Under MacOS, you can also create your own icons using a standard tool such as ResEdit, in which

case you allocate the resource ID number. When you set this property, APLX looks in the resource

fork of the APL program, and then in the system file, to find the icon, looking first for a color icon of
type 'cicn', and, if it does not find one, looking for a monochrome icon of type ICON.

APLX System Classes & User-Interface Programming 231

The 'id' property

Read-only, Character Vector

Valid for: GetMail

The id property contains the unique ID of an e-mail, as a character vector. It is a read-only property,

and is valid only after you have called the GetMessage (or GetSummary) method to retrieve the e-mail
from the POP3 server.

The 'imagealloc' property

Implemented under Windows only

Two-element numeric vector

Valid for: ImageList

Sets the initial and increment allocation sizes for the ImageList (i.e. the number of images which will

be reserved when the ImageList is created or enlarged). This property is implemented mainly for
compatibility with other APL systems.

The 'imagecount' property

Read-only, integer scalar

Valid for: Image, ToolButton, ImageList (Not implemented under MacOS)

Contains the number of images in an Image or ImageList, or the number of images in the bitmap of a
ToolButton.

APLX System Classes & User-Interface Programming 232

The 'imageindex' property

Integer scalar

Valid for: Image, and (except under MacOS), for Menu, Page

If you have defined an ImageList for a pop-up Menu, window Menu, or Selector control, the

imageindex property determines (for each child Menu item or Page control) the particular image in

the list which will be displayed. Its value is the index (in origin 1) of the image within the list. A value
of 0 means no image is displayed. It is not available under MacOS.

For an Image object, the imageindex property determines the index of the currently-active image,
starting at 1.

The 'imagelist' property

Not implemented under MacOS

Character vector

Valid for: Menu, Selector, Tree

The imagelist property allows you to associate an ImageList object with a pop-up Menu, a Selector

control, or a Tree control. (To associate an ImageList with the menus in a window's menu bar, use the

menuimagelist property instead.)

For a pop-up Menu or Selector object, you use the imageindex property of the child Menu items or

Page controls to cause a particular image from the ImageList to be displayed on an individual menu
item or tab sheet.

For a Tree control, the fourth column of the list property determines which images from the

ImageList are displayed for each node. (A Tree control can also have a second ImageList, displayed to

the left of those associated with the imagelist property. See imagelistuser).

APLX System Classes & User-Interface Programming 233

The 'imagelistuser' property

Not implemented under MacOS

Character vector

Valid for: Tree

The imagelistuser property allows you to specify the a set of images, to be displayed to the left of

the nodes of a Tree. (The imagelist property also associates a set of images with a Tree. These images

are displayed between the imagelist images and the node name). The fourth column of the list
property determines which images from the two ImageLists are displayed for each node.

The 'imagenames' property

Not implemented under MacOS

See below for data format

Valid for: ImageList

The imagenames property assign images to the ImageList object. It accepts any of the following data
forms:

 A character vector giving an image file name (a bitmap, cursor, or icon file).

 An integer matrix of N by M pixel COLORVAL color values.

 A pair of character vectors, the first giving an image file name, the second giving a
transparency mask image file name.

 A pair of data items, the first a character vector giving an image file name, the second

indicating which color should be regarded as transparent. The format of the second element

can be either ('color' COLORVAL) or ('color' R G B).

 A pair of integer matrices, the first giving pixel color values, the second giving a transparency

mask.

 A pair of data items, the first an integer matrix of pixel color values, the second indicating a

transparency color in the form ('color' COLORVAL) or ('color' R G B).

 A nested vector of multiple instances of the above.

APLX System Classes & User-Interface Programming 234

In the above descriptions, R G and B are individual Red, Green and Blue color values, each in the

range 0 to 255. COLORVAL is a single integer encoding the color as 256 ⊥ Blue Green Red.

A single bitmap can optionally contribute multiple images to the ImageList, laid side by side. To do

this, you need first to set the imagesize property to be the size of the image. Any bitmap of a width N

times the width specified in imagesize will then contribute N images to the list.

Note: The imagenames property and the Addimages method are alternative ways of setting the list of

images. The imagenames property is persistent, and is used to refill the image list after any change

which would normally clear it (such as setting the imagesize property).

The 'imagesize' property

Two-element numeric vector

Valid for: Image, Picture, Grid, ImageList (ImageList not implemented under MacOS)

For an ImageList, the imagesize property determines the size of the images in the list (they all have

the same size). The first element is the height, and the second the width, in the current scale of the
ImageList.

Note: If you change this property, any images you have added using the Addimages method will be
removed from the ImageList.

For a Picture or Grid, the imagesize property holds the size (in current scale units) of the image

displayed in the control. This may be larger than or smaller than the size property of the object. If it is

larger, and the style property is set to show scroll bars, the user can use the control's scroll bars to

scroll the image within the visible area.

For a Grid object, this property is read-only. It is equivalent to the sums of all the row and column

sizes in the Grid.

For an Image object, this property contains the size of the image. If you change it, the image will be

rescaled to the new size.

APLX System Classes & User-Interface Programming 235

The 'increment' property

Integer scalar (or two-element vector for a Trackbar)

Valid for: Progress, Spinner, Trackbar

The increment property contains the amount by which the control's value will change when the user

clicks on one of the buttons of a Spinner control, or when the StepIt method is called for a Progress

bar. For a Trackbar, it is a two-element vector; the first element is the 'page' increment, and the second
is the 'line' increment.

The 'indent' property

Numeric scalar

Valid for: Tree

The indent property determines the amount by which successive levels in the tree view are indented.

It is expressed in the current horizontal scale units for the Tree control.

The 'interval' property

Integer scalar

Valid for: Timer

The interval property determines the frequency (in milliseconds) at which a Timer object will

invoke its onTimer callback. The accuracy of the interval is not exact, and the resolution of the timer

depends on the host system. The default value is 1000, giving an interval of approximately one
second.

APLX System Classes & User-Interface Programming 236

The 'labeledithwnd' property

Implemented under Windows only

Read-Only, Integer Scalar

Valid for: Tree

The labeledithwnd property is used for low-level programming only. Its value is the internal value
which identifies the edit control when the user is editing tree labels.

It can be passed to external calls which require a handle argument via ⎕NA or Auxiliary Processors.

The 'limit' property

Integer scalar (numeric scalar for Splitter)

Valid for: Edit, RichEdit, Combo, Splitter

For an Edit, RichEdit or Combo control, the limit property determines the maximum number of

characters which the user can type into the control. If this value is 0 (which is the default), there is no
application-defined limit.

For a Splitter, the limit property determines the minimum size of panes, in the current object's scale.

The 'linecount' property

Read-only, Integer scalar

Valid for: RichEdit

The linecount property contains the number of lines in a RichEdit control.

APLX System Classes & User-Interface Programming 237

The 'lineheight' property

Numeric scalar

Valid for: Printer

When you print multiple lines of text using the Print method of a Printer object, APLX usually

separates the lines by the standard line height associated with the current font. This behavior applies if

the lineheight property is set to its default value of ¯1

If you want to specify a different line spacing, you can set the lineheight property to be a positive

value, expressed in the current scale of the object.

The 'linetype' property

Integer Scalar

Valid for: Series

Normally, lines associated with a Series are drawn as a continuous (solid) line. If you wish, you can

specify a different line type for the series, by assigning one of the following values to the linetype
property:

1=Solid, 3=Dash, 4=Dot, 5=DashDot, 6=DashDotDot

Note: If the Chart's monochrome property is set to 1, and you haven't specified your own line type

pattern, a default type from one of the above will be assigned to the Series object to distinguish it from
other series on the chart.

APLX System Classes & User-Interface Programming 238

The 'linewidth' property

Integer Scalar

Valid for: Chart, Series

The linewidth property of a Chart object specifies the width in pixels of lines drawn in the chart. The

default is 1. The value set here is used for all lines (axes, grids, and the data series lines), unless you

specify a different value for a particular element using one of the more specific properties axiswidth

or gridwidth, or the linewidth property of a specific Series.

For a Series object, this property determines the width (in pixels) of lines drawn for the specific series.

By default, it is ¯1, which means that the width should be taken from the linewidth property of the

parent Chart object. By assigning a different value, you can specify a different line width for this

series only.

The 'list' property

A character vector or matrix, or a nested matrix for a Tree

Valid for: List, Combo, Tree

List and Combo

The list property specifies the list of items displayed in a List box or Combo box. You can specify it as

either a character matrix or a character vector (with lines delimited by carriage returns). For example,
to set the contents of a list box to be the days of the week, you could enter:

 MyWin.List.list←⎕W

When referenced, the list property returns a character matrix.

Tree

For a Tree object, the list property is a matrix of 3, 4 or 5 columns, with one row for each node. (If

there is just one node, it can be a vector).

Each row has fields: id depth label [image_indices [state]]:

APLX System Classes & User-Interface Programming 239

|→--|
↓ |→-----| |→------| |→---------------------------| |
| 0 1 |LABEL1| |1 1 0 0| | |→------------| |→-------| | |
| ⌊------| ⌊~------| | |HIGHLIGHTBOLD| |EXPANDED| | |
| | ⌊-------------| ⌊--------| | |
| ⌊↕---------------------------| |
| |→-------| |→------| |→------------| |
| 0 2 |LABEL1_A| |1 1 0 0| |HIGHLIGHTBOLD| |
| ⌊--------| ⌊~------| ⌊-------------| |
| |→-----| |→------| |→-------| |
| 0 1 |LABEL2| |1 1 0 0| |EXPANDED| |
| ⌊------| ⌊~------| ⌊--------| |
⌊↕--|

This list is essentially a flattened hierarchy where the level of each node is given by the (relative but
dense) 'depth' field. See the description of the Tree object for more details.

The 'lowvalues' property

Numeric Vector

Valid for: Series

The lowvalues property sets the data used for the low values of a Series object displayed on a High-

Low-Open-Close or Candlestick chart. It is a numeric vector.

You should normally provide the same number of values for each of the openvalues, closevalues,

highvalues and lowvalues properties. However, the openvalues and closevalues properties are
optional, and can be left as an empty vector.

The 'margin' property

Four-element numeric scalar

Valid for: Printer

The margin property is a four-element vector containing the Left, Right, Top and Bottom margins for

printing in the current print job, in the current scale units for the Printer object.

APLX System Classes & User-Interface Programming 240

The 'marker' property

Character Scalar (or empty vector)

Valid for: Series

When a series is drawn as a Scatter chart, each point is denoted by a marker symbol. By default, the

symbol to use is selected when the series is created. By changing the marker property, you can choose

a particular marker symbol. In addition, if you specify a marker using this property, the marker will be
also be displayed if the series is shown as a Line chart.

The marker is specified by assigning a character scalar, which is one of the following APL symbols: +

× * ○ ⌽ ⊄ ↔ ∆ ⊦ ⎕ ↑ ↓ → ← It can also be a space or empty vector, in which case no marker is
drawn.

Note: The actual marker is drawn is not a character, but a shape similar to that of the corresponding
APL symbol. The APL font is not used to render the marker shape.

The 'maskcolor' property

Not implemented under MacOS

Integer scalar or 3-element vector

Valid for: Tree

When you specify an image in an ImageList object using the imagenames property or Addimages

method, you can provide a mask which indicates that certain portions of the image should be

transparent. The maskcolor property provides an alternative way of achieving a similar effect. As new

images are added, and provided no explicit mask is specified for a given image, any pixel in the

bitmap which matches the color specified in maskcolor will be set to be transparent.

You can specify maskcolor as a three-element vector of Red, Green and Blue color values, each in the
range 0 to 255, or as a single integer encoding the color as 256 ⊥ Blue Green Red.

APLX System Classes & User-Interface Programming 241

The 'maxsize' property

Two-element numeric vector

Valid for: All displayable controls, but usually used for window-level objects (Form, Dialog,
Document, Window). Under MacOS, valid only for window-level objects.

When you create a resizable window, you may want to limit the maximum size to which the user can

enlarge it. The maxsize property allows you to define the upper limit. The first element is the

maximum height, and the second is the maximum width, in the current scale of the object. A value of
0 means no constraint.

See also the minsize property.

The 'menuimagelist' property

Not implemented under MacOS

Character vector

Valid for: Form, Dialog, Document, Window

The menuimagelist property allows you to associate an ImageList object with a window's menu bar.

You can then use the imageindex property of the individual Menu items on the menu bar or in sub-

menus to cause a particular image from the ImageList to be displayed next to the menu item.

To associate an ImageList with the menus in a pop-up menu (rather than a window's menu bar), use

the imagelist property of the menu instead.

APLX System Classes & User-Interface Programming 242

The 'messages' property

Read-only, Nested Matrix

Valid for: GetMail

Once you have established a connection to a POP3 mail server using the Open method of a GetMail

object, you can retrieve a list of the messages on the server by reading the messages property. This is

a nested matrix, with one row per message.

The columns (in Index Origin 1) are:

1. The 'From' field, i.e. the sender of the message, as a character vector.

2. The 'To' field, i.e. the recipient or recipients of the message, as a character vector. If there are

more than one, they will delimited by commas.

3. The 'Date' field, as a character vector, in the format 'Fri, 14 Jan 2005 10:31:00 +0000'.

4. The 'Subject' field, as a character vector.

5. The Size of the message in bytes, as an integer.

6. A Boolean scalar indicating whether the message has multiple parts.

7. The unique Message ID, as a character vector.

The messages are listed in order, so you can retrieve them by index position using the GetMessage or

GetSummary methods. Message indices always start at 1, so the e-mail associated with the first row of

the messages matrix can be retrieved as message number 1.

The 'methods' property

Read-only, Nested vector of character vectors

Valid for: All objects

The methods property returns a nested vector of the names of the methods which are valid for a
particular object.

Under Windows, for an OCX/ActiveX control, OLEContainer, or OLE Server Application, methods

defined by the external software will be included in the list, preceded by 'X'.

APLX System Classes & User-Interface Programming 243

The 'minsize' property

Two-element numeric vector

Valid for: All displayable controls, but usually used for window-level objects (Form, Dialog,

Document, Window). Under MacOS, valid only for window-level objects.

When you create a resizable window, you may want to limit the minimum size to which the user can

shrink it. Typically, this is to ensure that buttons and other controls are still usable. The minsize

property allows you to define the lower limit. The first element is the minimum height, and the second

is the minimum width, in the current scale of the object. A value of 0 means no constraint.

See also the maxsize property.

The 'modified' property

Boolean scalar

Valid for: OLEContainer (Implemented under Windows only)

The modified property is set to 1 whenever a document in an OLEContainer control is modified by
the user. You can set it back to 0, in which case it will remain 0 until the document is modified again.

The main purpose of this property is to indicate to your program that it is necessary save the contents

of the document in a file (you can do this by reading the contents property and writing it out either to
a native file or an APL component file).

The 'monochrome' property

Boolean Scalar

Valid for: Chart

Normally, charts are drawn in color, with different series being drawn in different colors to distinguish

them. Sometimes, however, you may want the chart to be drawn in monochrome, for example if you

are printing it on a black-and-white printer. The monochrome property allows this. If you set it to 1, all
the elements of the chart will be drawn in the Chart object's Foreground color (by default, black).

APLX System Classes & User-Interface Programming 244

Since this means that the different series cannot be distinguished by color, they will instead be

distinguished by line type (solid, dashed, dotted, etc) or by fill pattern (vertical hatch, horizontal hatch

etc). See the linetype and fillpattern properties of the Series object for more information on
these.

The 'movieref' property

Read-Only, Integer scalar

Valid for: Movie

The movieref property is used for low-level programming only. Under MacOS, it contains the

internal Quicktime movie reference ID. Under Windows, it contains the Windows media player
handle. It may be zero if the movie file has not been opened successfully.

By using the value contained in the movieref property in an Auxiliary Processor or ⎕NA call, it is

possible to exercise closer control over the movie than is supported by the standard Movie object, but
this requires knowledge of low-level programming.

The 'name' property

Character Vector

Valid for: All objects

If you created the object using ⎕NEW, the name property is the internal name of the object, allocated by

APLX. You can use this name as the right argument of ⎕WE, to wait for events until a window has been
closed:

 win←'⎕' ⎕NEW 'Window'
 win.caption←'Sample Window'
 win.name
SYSOBJ-3
 ⎕WE win.name

If you created the object using ⎕WI, the name property is the which you specified as the left argument,

excluding the parent name if any. In this case you can change the name subsequently, as in this
example:

 'Win1.OK' ⎕WI 'name' ⍝ Read the current name
OK
 'Win1.OK' ⎕WI 'name' 'OKBut' ⍝ Change the name
 'Win1.OKBut' ⎕WI 'name' ⍝ Note left argument
OKBut

APLX System Classes & User-Interface Programming 245

If you want the fully-qualified name including the parent hierarchy, use the self property instead.

The 'note' property

Character Vector

Valid for: Chart

The note property is one of three labels which you can associate with a Chart (the others are title

and subtitle). It is typically displayed in a small font, and is intended to represent additional

information such as a copyright notice or acknowledgement. However, you can use it in any way you
wish, or omit it altogether by leaving it as an empty vector.

You can specify the position, color and font of the displayed text by using the placenote, colornote

and fontnote properties.

The 'offline' property

Boolean Scalar

Valid for: Browser

If the offline property is 1, the Browser object will access only local files and cached copies of

pages. The default is 0, meaning that the Browser will connect via the Internet to access web pages
where necessary.

APLX System Classes & User-Interface Programming 246

The 'oleclasses' property

Read-only, 4-column nested matrix of character vectors

Valid for: System object

The oleclasses property of the System object returns a nested matrix which gives details of the OLE

Server Applications installed on your system. (The same information is also shown in the Control

Browser on the Tools menu). An OLE Server Application is a program (such as Microsoft Word or
Microsoft Excel) which you can invoke and control from APLX.

The returned array has one row for each OLE server application installed. However, not all of these

will necessarily be usable from APLX, since they may not be designed for use from general OLE
client programs such as APLX.

The first column is the plain text name, for example 'Microsoft Excel'. The second column is an

alphanumeric string enclosed in curly brackets, which is the unique ID of the OCX control. The third

column is the object class name, which is usually a period-delimited string giving the vendor name,

object class name and optionally the version number, for example 'Excel.Application'. (The fourth
column is reserved for future use).

You can use any of these as the class name to identify the control to APLX, but we recommend that
you use the third.

Under MacOS and Linux, this property always returns an empty matrix because OLE is not
implemented.

Example

Retrieve the list of OLE server applications installed on the system:

 OLE←'#' ⎕WI 'oleclasses'
 ⍴OLE
70 4

In this case there are a total of 70 OLE server applications installed.

If Microsoft Word is installed on the system, it should appear in the list returned by the oleclasses
property:

 OLE[;1]⍳⊂'Microsoft Word'
2
 OLE[2;]
 Microsoft Word {000209FF-0000-0000-C000-000000000046} Word.Application

APLX System Classes & User-Interface Programming 247

You can use any of the three strings to identify the control. The following sequences are all equivalent

- they each invoke Microsoft Word and create an APLX object called 'WORD' which has properties
and methods associated with it:

(a) Use the plain name to identify the OLE Server Application:

 WORD←'⎕' ⎕NEW 'Microsoft Word'

(b) Use the unique class ID:

 WORD←'⎕' ⎕NEW '{000209FF-0000-0000-C000-000000000046}'

(c) Use the object class name (recommended):

 WORD←'⎕' ⎕NEW 'Word.Application'

The 'oledoctypes' property

Read-only, 4-column nested matrix of character vectors

Valid for: System object

The oledoctypes property of the System object returns a nested matrix which gives details of the

OLE document types available on your system. These are classes of document which can be placed in

an OLEContainer object and thus activated in one of your windows. (The same information is also
shown in the Control Browser on the Tools menu).

The returned array has one row for each OLE document type available. However, not all of these will

necessarily be usable from APLX, since they may be private document types which are not designed
for use by other applications.

The first column is the plain text name, for example 'Microsoft Document'. The second column is

an alphanumeric string enclosed in curly brackets, which is the unique ID of the OCX control. The

third column is the programmatic class name, which is usually a period-delimited string giving the

vendor name, object class name and optionally the version number, for example 'Word.Document'.

(The fourth column is reserved for future use).

The third of these is the name which corresponds to the progid property of the OLEContainer object,
which can be used to create an empty document of a particular type.

Under MacOS and Linux, the oledoctypes property always returns an empty matrix because OLE is

not implemented.

APLX System Classes & User-Interface Programming 248

Example

Retrieve the list of OLE document types installed on the system:

 OLE←'#' ⎕WI 'oledoctypes'
 ⍴OLE
25 4

In this case there are a total of 25 types of OLE document known to the system.

On most Windows systems, one of the valid OLE document types is a Bitmap Image, editable using

Microsoft Paint. If it is available on the system, it should appear in the list of classes returned by the

oledoctypes property:

 OLE[;1]⍳⊂'Bitmap Image'
24
 OLE[24;]
 Bitmap Image {D3E34B21-9D75-101A-8C3D-00AA001A1652} Paint.Picture

We can use this information to create a new bitmap image in an OLE container inside an APLX
window:

 MYWIN←'⎕' ⎕NEW 'Window'
 MYWIN.OLE.New 'OLEContainer' ⊦ MYWIN.OLE.align←¯1
 MYWIN.OLE.progid←'Paint.Picture'

The 'opened' property

Boolean scalar

Valid for: All objects

The opened property is 1 if the object is currently open, and 0 if it is closed. For all objects except the

System object, you can set the value of opened in order to force the object to open or close. Setting it

to 1 is equivalent to calling the Open method, and setting it to 0 is equivalent to calling the Close
method with an argument of 1 (unconditional close).

APLX System Classes & User-Interface Programming 249

The 'openvalues' property

Numeric Vector

Valid for: Series

The openvalues property sets the data used for the opening values of a Series object displayed on a

High-Low-Open-Close or Candlestick chart. It is a numeric vector.

You should normally provide the same number of values for each of the openvalues, closevalues,

highvalues and lowvalues properties. However, the openvalues and closevalues properties are
optional, and can be left as an empty vector.

The 'order' property

Integer scalar

Valid for: Menu, Check, Radio, Button, Progress, Trackbar, Spinner, Scrollbar, List, Combo, Edit,
RichEdit, Movie, Splitter, Selector, Page, Tree, Frame

The order property defines the logical position of a child control amongst the controls of its parent.

As each control is created, it is assigned the next integer value, starting at 1. You can change the order

by assigning a new integer or fractional value; the other controls will be re-ordered accordingly. This
can be used to specify the sequence in which controls on a window are selected using the Tab key.

Menu and Page controls are displayed in the sequence defined by the order property. For example, in

a sub-menu, the first item has order 1, the second has order 2, etc.

Note: Under MacOS, the order property is ignored for Menu controls. Menu items cannot be re-
ordered once they have been created.

APLX System Classes & User-Interface Programming 250

The 'orientation' property

Boolean scalar

Valid for: Printer

The orientation property is 0 for printing Portrait and 1 for Landscape. It is usually chosen by the

user in the print Setup dialog. Alternatively, you can set it under program control (you must do this

before calling the Open method).

The 'overlays' property

Implemented under Windows only

Integer vector of up to four elements

Valid for: ImageList

The overlays property allows you to specify the index positions (in origin 1) of up to four images in

the ImageList which will be used to overlay other images. These overlays can then be used in a Tree
object.

The 'page' property

Read-only, integer scalar

Valid for: Printer

The page property contains the current page number during a print job. It is incremented automatically
whenever a new page is started.

APLX System Classes & User-Interface Programming 251

The 'password' property

Character Vector

Valid for: GetMail, SendMail, HTTPClient

Before you can use the GetMail or SendMail objects to retrieve or send mail, you need to call the Open

method to connect to the mail server which you specify using the host property. Depending on how

the server is set up, you will probably need to set a user name and password before calling Open. The

password to use will normally be supplied by your Internet Service Provider (ISP) or network
administrator.

For an example, see the description of the host property.

For the HTTPClient object, the password property should be set to access pages which require a user
name and password.

The 'path' property

Character Vector

Valid for: GetMail

When you use the GetMessage method of the GetMail object to retrieve an e-mail from the POP3

server, any attachments are saved as files. The path property allows you to specify the directory in
which you want attachments to be saved. An empty vector means the user's home directory.

The 'pen' property

Synonym for pensize

APLX System Classes & User-Interface Programming 252

The 'pensize' property

Alternative name: pen

Two-element integer vector

Valid for: Line, Rectangle, RoundRect, Arc

The line width in pixels is determined by the pensize property. It comprises two integers,

representing the height and width of the imaginary 'pen' used to draw lines. The default is 1 1. For
example, if you change the pen size for a rectangle like this:

 Win1.Rect.pensize←1 2

then the sides of the rectangle will be twice as thick as the top and bottom lines.

Note: Under Windows and Linux, the height and width of the pen cannot be set independently. You

can specify either a single number or two numbers, but only the first is used. If you read the property,

a two-element vector is returned but the two elements will be the same.

The 'picture' property

Not implemented under Linux

An integer vector containing graphic data

Valid for: Picture, System, Chart

The picture property contains the commands which display the graphic in a Picture object. The

commands are encoded in an integer vector, and comprise a PICT or JPEG image (under MacOS) or a

Windows Enhanced Metafile (under Windows). You can obtain a picture vector in a number of ways.

For example, you can fetch a picture from the Clipboard by reading the picture property from the

System object. Under MacOS, you can also create your own PICT variable using the functions in the

QUICKDRAW workspace. Under Windows, you can read a metafile (.emf) from disk, using ⎕NREAD to
convert it to an integer vector (conversion type 2).

Generally, pictures look best if they are displayed at this original size (or an integral multiple of the

original size). You can, however, change the size of the picture to stretch or compress it, but to do this

you must change the size after setting the picture property.

APLX System Classes & User-Interface Programming 253

For the System object, the picture property represents a graphic image on the Clipboard. Reading the

picture property returns an integer vector representing the picture currently in the Clipboard, or an

empty vector if there is no picture in the Clipboard. Writing an integer vector to the System picture

property places a picture on the Clipboard. The data written must be a valid graphic, i.e. a PICT or
JPEG image under MacOS, or a metafile under Windows.

This Windows example creates a picture object, and displays a metafile image from disk. It then reads

the picture property and places it on the Clipboard:

 MYWIN←'⎕' ⎕NEW 'Window'
 MYWIN.PIC.New 'Picture'
 FILE←'C:\Program Files\Microsoft Works\workscor\j0160036.wmf'
 MYWIN.PIC.file←FILE
 METAFILE←MYWIN.PIC.picture
 ⍴METAFILE
14771
 '#' ⎕WI 'picture' METAFILE

For a Chart object, the picture property is read-only. It contains the drawing commands (vector

graphics) which will reproduce the chart on the current platform.

See also the bitmap property, which allows you to retrieve or set an image as an array of pixel color
values.

The 'pitch' property

Numeric scalar

Valid for: Printer

When you print text using the Print method of a Printer object, APLX usually prints each character in

its standard width, as set by the current font. This behavior applies if the pitch property is set to its
default value of ¯1

If you want to specify a different character spacing, you can set the pitch property to be a positive

value, expressed in the current scale of the object. This will then be used as the fixed width of each
character cell.

APLX System Classes & User-Interface Programming 254

The 'placelegend' property

Character Vector

Valid for: Chart

The placelegend property determines where the chart legend is drawn. The legend shows, for each

series which has a non-empty caption (or title) property, a sample line, marker, or filled rectangle

as appropriate, next to the caption. (If a given series has no caption, it will not appear in the legend).

This property is a text string, which can be one of the values 'top', 'left', 'right', 'none', or an

empty vector. If it is 'none' or an empty vector, the legend is not shown. The default is 'top'.

The 'placenote' property

Character Vector

Valid for: Chart

The placenote property determines where the Chart's note (if any) is drawn. It is a text string, and

can be one of the values 'top', 'topleft', 'topright', 'bottom', 'bottomleft', 'bottomright'.

The default is 'bottomright'.

The 'placetitle' property

Character Vector

Valid for: Chart

The placetitle property determines where the Chart's title (or caption) and subtitle (if any) are

drawn. It is a text string, and can be one of the values 'top', 'topleft', 'topright', 'bottom',

'bottomleft', 'bottomright'.

The default is 'top', meaning the title is centered above the chart.

APLX System Classes & User-Interface Programming 255

The 'playing' property

Read-only: Integer scalar

Valid for: Movie

The playing property is a read-only property which allows you to find out whether a movie is playing

(see also the onMovieEnd callback which can be invoked when a movie ends). The possible values

returned are:

¯2 Movie file selected, and playing is handled by a controller.
¯1 Movie file not yet specified (or user chose Cancel in the movie
 selection dialog, or an error occurred in trying to open the file)
 0 Movie file selected but not yet playing (either not started or
 rewound under program control)
 1 Movie playing or stopped in the middle of the movie
 2 Movie ended

The 'pointer' property

Valid for: All visible controls, and the System object

The 'pointer' property determines the type of mouse cursor which will display over the control. It is an
integer scalar, one of:

0: Default
1: Arrow
2: Cross
3: IBeam
5: Size
6: SizeNESW
7: SizeNS
8: SizeNWSE
9: SizeWE
10: UpArrow
11: HourGlass
12: No
13: AppStart
14: Help
30: Drag
31: NoDrop
32: HSplit
33: VSplit
34: SQLWait
35: HandPoint
100-119: User-defined pointer (See the Loadpointer method of the System object for
more details).

APLX System Classes & User-Interface Programming 256

If you change the pointer property of the System object, the cursor will change wherever it is on the
screen.

The 'port' property

Integer Scalar

Valid for: Socket, GetMail, SendMail, APL (Child task)

The port property determines the TCP/IP port used for communication by a Socket object. You need

to set it before calling the Open or Listen methods.

Port numbers are usually associated with specific protocols. For example, port 80 is used for the
HTTP protocol used by web browsers.

The port property can also be used to alter the default port used by the GetMail and SendMail objects.

You need to set it before calling the Open method.

For an APL (Child Task) object in a Client-Server version of APLX, the port property determines the

TCP/IP port number used to communicate between the Client and the APLX Server. Normally you

should leave this at the default value 1134, the port number allocated to APLX by IANA, the Internet

Assigned Numbers Authority. If, exceptionally, your APLX Server is listening on a different port
number, you can set this property before opening the task.

The 'position' property

Two-element numeric vector (Integer scalar for Movie object)

Valid for: Printer, Movie

For a Printer object, the position property is a two-element numeric vector containing the Y and X

print position, in the current scale units. The position is relative to the top, left margins of the page as

set by the margin property. It is updated automatically as you print text using the Print method, or if

a page throw occurs. You can change the position property to cause printing to occur at a particular
place on the page.

For a Movie object, the position property is an integer scalar containing the point reached in the

movie. This will be a value between the two elements in the range property.

APLX System Classes & User-Interface Programming 257

The 'printername' property

Currently implemented under Windows only

Character vector

Valid for: Printer

The printername property contains the device name of the currently-selected printer. Usually this can

be chosen by the user in the printer dialogs (see the Setup and Job methods). Alternatively, you can

select the printer under program control by writing the name to the printername property (you must

do this before calling the Open method). If you write an empty vector, the system default printer is
selected.

The printers property contains the list of available printers.

The 'printers' property

Not implemented under MacOS

Read-only, Nested vector of character vectors

Valid for: System and Printer

The printers property allows you to determine the names of the printers available on the system on

which APLX is running. It returns a nested vector, where each element is a character vector containing
the name of a printer.

Under Windows, you can use the printername property to set or query which of these printers is
currently selected for printing.

APLX System Classes & User-Interface Programming 258

The 'progid' property

Character vector

Valid for: OLEContainer, OCX controls, and OLE server application (Implemented under Windows
only)

The progid property contains the programmatic class name of the external OCX control or

application.

For an OLEContainer, progid refers to the class of the document in the container (for example,

whether it is a Word document or a Pinnacle Chart). It is of the same form as the third column of the

System object's oledoctypes property. If there is a document loaded, reading the progid property

allows you to find out what the document type is. Writing to the progid property creates a new empty

document of the appropriate class. If you write an empty vector, a dialog is displayed allowing the
user to choose.

For an OCX control or OLE server application, progid is a read-only property. It returns the

programmatic class name in the same form as the third column of the System object's xclasses or

oleclasses property.

The 'properties' property

Read-only, Nested vector of character vectors

Valid for: All objects

The properties property returns a nested vector of the names of the properties which are valid for a

particular object.

Under Windows, for an OCX/ActiveX control, OLEContainer, or OLE Server Application, properties
defined by the external software will be included in the list, preceded by 'x'.

APLX System Classes & User-Interface Programming 259

The 'protocol' property

Integer scalar

Valid for: Socket

The protocol property determines the protocol used by the socket. For details, see the documentation

on Windows or Unix sockets.

The default is 0, meaning the protocol used should be the default for the address family selected using

the family property. You normally do not need to change this.

The 'proxy' property

Nested Vector

Valid for: HTTPClient

If you are accessing the Internet from a corporate network, you may have to use a 'proxy' server when

you retrieve web pages. This property allows you to specify the proxy server, as a nested vector of

(Proxy Address) (Port). The Proxy Address is a character vector (the Internet address of the server),

and the Port is an integer scalar (the TCP/IP port to use). Your Network Administrator should be able
to provide you with the values you need for these parameters.

If you set this property to an empty vector, no proxy server will be used. This is the default.

The 'quality' property

Integer Scalar

Valid for: Image

Some image formats allow you to specify an image quality parameter, where higher values give a

better-quality image but require a larger file size. This property allows you to set or retrieve the quality

parameter. The exact meaning depends on the image format. See the ImageMagick documentation for
more details.

APLX System Classes & User-Interface Programming 260

The 'range' property

Two-element numeric vector, or empty vector

Valid for: Progress, Spinner, Trackbar, ChooseFont, Movie, RichEdit

For a Progress, Spinner or Trackbar control, the range property is a two-element integer vector. The

first element is the minimum value of the control, and the second is the maximum value. Writing an
empry vector this property restores the default value: 0 100.

For a ChooseFont pre-defined dialog under Windows, the range property allows you to set the

smallest and largest font sizes which the user can select (in the current scale units). An empty vector

indicates that there is no pre-set limit on the font size. Remember that the default scale is character

units - you will normally find it easier to select scale 3, point units, for the ChooseFont dialog.

For a Movie object, range is a read-only property. It returns the start position (usually 0) and end

position of the movie or other media file, in units which depend on the particular type of file. The

position property represents the current position within this range.

For a RichEdit control, the range property is read-only, and is a two-element integer vector. The first

element is the line number of the first visible line, and the second is the count of lines visible in the

control.

The 'referrer' property

Character Vector

Valid for: HTTPClient

This property contains the Referrer URL which will be passed to the web server when you access a

page using the HTTPClient object. It is typically used by web administrators to keep track of the page

which contained the link by which a given user reached the web-site.

APLX System Classes & User-Interface Programming 261

The 'replyto' property

Character Vector

Valid for: GetMail, SendMail

The replyto property contains the e-mail address to which any reply to an e-mail should be sent. It is

a simple character vector.

For the SendMail object, you should set this property before calling the SendMessage method. The
default is an empty vector, which means that the reply address is the same as the 'From' address.

For the GetMail object, this property is read-only, and is valid only after you have called the

GetMessage method to retrieve an e-mail from the POP3 server.

The 'rounding' property

Length 2 integer vector

Valid for: RoundRect

The rounding property determines the curvature of the corners of a round rectangle, in the current

scale of the object. The first element is the vertical rounding, and the second is the horizontal
rounding. The default is 8 pixels for both elements.

The 'row' property

Integer Scalar

Valid for: Grid

The Row number (in index origin 1) of the currently-active cell. You can write to this property to

change the current cell.

APLX System Classes & User-Interface Programming 262

The 'rows' property

Integer Scalar

Valid for: Grid

The number of data (scrolling) rows in the Grid control. You typically set this property when you

create the Grid to fit the size of the data you want to display.

The 'rowsize' property

Valid for: Grid (Special syntax applies)

You can set the size of the rows of a Grid control using the syntax:

 WindowRef.ControlName.rowsize Rows Sizes
or:
 'WindowName.ControlName' ⎕WI 'rowsize' Rows Sizes

where Rows is a scalar or vector list of row numbers, and Sizes is a matching vector (or scalar) of the

row sizes, in pixels. A row number of 0 sets the default size for all rows which are not explicitly set.

Note: At least one of the Rows and Sizes parameters must be a vector, otherwise the statement will be
interpreted as an attempt to read back the current sizes.

You can read back the current sizes using the syntax:

 R ← WindowRef.ControlName.rowsize Rows
or:
 R ← 'WindowName.ControlName' ⎕WI 'rowsize' Rows

Note that, depending on the flags you have set in the style property, the user may be able to resize

the rows.

APLX System Classes & User-Interface Programming 263

The 'rtf' property

Implemented under Windows only

Character vector

Valid for: RichEdit

Internally, Windows RichEdit controls hold information about the contents and appearance of text in

Rich Text Format (RTF). The rtf property allows you to retrieve or change the entire contents of the
control as RTF directly, including the text contents, font face, size, style and color.

If you want just the raw text without any formatting information, use the text property instead. If you

want to retrieve or change just the currently-selected text in RTF format, use the selrtf property.

The 'scale' property

Scalar integer in the range 1 to 6

Valid for: All displayable objects, and the Printer and System objects

The scale property sets the units which apply to dimensions of an object. The supported values are:

1. Use 'character' units. A character unit has the same height as a line of text in the default system

font (16 points), and the width of a typical character (8 points). However, because the system

font is a proportional font, the width of a given string of characters is not in general an exact

multiple of character units. Note that this case has the unfortunate characteristic that the
vertical and horizontal scales are different, so it is best to avoid using it.

2. Use 'dialog' units, (1/8 system-font high, 1/4 system-font wide)

3. Use point units (nominally 72 points per inch)

4. Use 'twips' units (nominally 1440 twips per inch)

5. Use pixel units (also usually 72 per inch on the Macintosh), but this depends on the resolution

and screen size.

6. Use nominal millimetres. Depending on the screen size, this may not be accurate for controls

displayed on a screen, but it should be accurate when printing on paper (provided the printer
driver is set up correctly).

APLX System Classes & User-Interface Programming 264

Changing the scale property on an object has no immediate visible effect, but sets the units for

subsequent reading or setting of dimensional properties such as size. It is important to remember that

the size property uses the units of the object to which it applies, but the where and extent properties

use the units of the parent object. For compatibility with other APL systems, the default value for

scale is 1, character units. However, it is usually much better to use scale 5, pixel units, in your

applications.

Note that, in APLX, the parent control's scale property is inherited by any children at the time the

child is created. Thus, if you set the scale of the System object to 5 before creating any windows, all
subsequently-created objects will inherit this value.

Scale used for the Draw method

When you use the Draw method to draw geometric shapes and text on a control or window, a separate

scale (specific to the Draw method operations) is used. This is initially set to be the same as the

control's scale property value, but can be changed using the 'Scale' operation of the Draw method.

This does not affect the scale property of the control.

In addition to the values shown above, you also have the option of using a Draw-method scale which
is proportional to the window or control size.

The 'searchstring' property

Implemented under Windows only

Read-only, character vector

Valid for: Tree

As the user uses the keyboard to enter the first few characters of a name in a Tree object, the

searchstring property contains the string which has been typed and which will be used to find the
node.

APLX System Classes & User-Interface Programming 265

The 'selalign' property

Character vector, one of 'left' 'right' 'center' (or 'centre')

Valid for: RichEdit

The selalign property determines whether the paragraph containing the current selection point is

left-aligned, right-aligned, or centered within the control.

The 'selbullet' property

Character vector, one of 'none' or 'bullet', or a boolean scalar

Valid for: RichEdit

The selbullet property determines whether the paragraph containing the current selection point is

has a 'bullet point' indicator. You can set this property to 'bullet' or 1 to switch on the bullet, or 'none'

or 0 to switch it off.

The 'selcolor' property

Color value, expressed as an integer scalar or 3-element vector

Valid for: RichEdit

The selcolor property determines the foreground color of the selected text. Colors can be specified

in one of two ways. In the first way, you specify a vector of three integers (Red, Green and Blue), each

in the range 0 to 255. For example 255 0 0 is pure red and 255 255 255 is white. In the second way,

you specify a single integer which encodes the three values in base 256 as 256 ⊥ Blue Green Red. In

addition, two special values are recognised; ¯1 means use the parent's foreground or background color
as appropriate, and ¯2 means use the default color for the rich-edit control's text (usually black).

When you read this property, APLX returns the single-integer form.

APLX System Classes & User-Interface Programming 266

The 'selection' property

A two-element integer vector, or four-element integer vector for a Grid

Valid for: Edit, RichEdit, Document, Combo (except under MacOS), Grid

For an Edit, RichEdit, Combo or Document object, the selection property determines the position of

the insertion point and the length of the selected (highlighted) text. The first element is the position of

the insertion point (or start of the selected text) in index origin 0. The second is the length of the

selection, or 0 if there is none. Setting the selection length to ¯1 selects from the start position to the
end of the text.

You can set this property under program control, or it can be changed by the user (you can detect that

this has happened by means of the onClick callback).

For a Grid object, the selection property is a four-element integer vector, comprising the Row and

Column of the top-left of the selected cell range, followed by the number of rows selected and the

number of columns selected. If the style property is set so that only single-selection is possible

(which is the default), the last two elements will both be one. You can write to this property to change
the selection under program control.

The 'self' property

Read only, character vector

Valid for: All objects

The self property returns the fully-qualified name of an object, including the parent (or parents)

separated by period. This contrasts with the name property which returns just the object name without
the parent(s).

Note: The self property is unusual in that it can be referenced for a non-existent object without

giving an error. In this case, it returns an empty vector. It can thus be used to test for the existence of a

particular object.

APLX System Classes & User-Interface Programming 267

The 'selfont' property

Nested vector or character vector

Valid for: RichEdit

The selfont property represents the font of the current selection in a RichEdit control. This allows

you to set the font of a particular existing part of the text, or to set the font for text which will

subsequently be inserted.

See the description of the font property for details on how the font is described.

The 'selindents' property

Three-element numeric vector

Valid for: RichEdit

The selindents property contains the left, 'bullet' and right indents for the currently-selected

paragraph, in the current scale units for the control.

The 'selrtf' property

Implemented under Windows only

Character vector

Valid for: RichEdit

Internally, Windows RichEdit controls hold information about the contents and appearance of text in

Rich Text Format (RTF). The selrtf property allows you to retrieve or change the currently-selected
text as RTF directly, including the text contents, font face, size, style and color.

If you want just the raw text without any formatting information, use the seltext property instead. If

you want to retrieve or change the entire contents of the control in RTF format, use the rtf property.

APLX System Classes & User-Interface Programming 268

The 'selstyle' property

5-element boolean (or integer) vector

Valid for: RichEdit

The selstyle property contains the style of the currently-selected text as a 5-element vector: bold,

italic, underline, strikeout, and protected. For each element, you can write: 1 = Set, 0 = Clear, ¯1 =
Leave unchanged

Note that the 'protected' attribute means that the text cannot be changed, even under program control.

Thus, if you want to use this attribute, you must write out the text first, then select the part you want to

protect, and then set this attribute. The 'protected' attribute is ignored under MacOS and Linux. If you

want to make the whole of the text read-only, use the style property.

The 'seltabs' property

Implemented under Windows only

Numeric vector of up to 32 elements

Valid for: RichEdit

The seltabs property determines the tab-stop positions for the currently-selected paragraph,

expressed in the scale units of the control.

Under MacOS and Linux, the tab stops of a rich-edit control are fixed at four-character intervals.

APLX System Classes & User-Interface Programming 269

The 'seltext' property

Character vector

Valid for: Browser, Edit, RichEdit, Document, Combo (except under MacOS)

When you read the seltext property, the contents of the currently-selected text will be returned as a

character vector. If there is no current selection, an empty vector will be returned.

When you write to the seltext property, the current selection (if any) will be erased, and the text you

write will be displayed in the edit control at the selection point. For a RichEdit control, this text will be

formatted according to the selfont, selcolor, selalign, selbullets and selindents properties.

The seltext property is read-only for a Browser object.

The 'separator' property

Boolean scalar

Valid for: Menu

The separator property is 1 if this menu item is a separator (i.e. a line which is not selectable), and 0
otherwise.

The 'serverreply' property

Read-Only, Character Vector

Valid for: GetMail, SendMail

When you have called the GetMessage, GetSummary or SendMessage method, the serverreply

property will contain the reply sent by the server. If all is well this will usually begin "+OK...". It can

comprise several lines, delimited by carriage-return characters. It is mainly useful for diagnosing

problems with the mail protocol.

APLX System Classes & User-Interface Programming 270

The 'shortcut' property

Two-element vector

Valid for: Menu

The shortcut property is used to make a menu item selectable via a shortcut key. The first element is

the virtual key code of the key, or the character corresponding to the key. For the main letter and

number keys, the virtual key code is the same as the ASCII code for the key, eg 65 for 'A' and 49 for

'1'. You can specify either the virtual key code as an integer, or (for keys on the main keyboard) as a
character scalar.

Under Windows and Linux, the second element determines the modifier keys which apply: 0 (Plain), 1

(Shift), 2 (Ctrl), 4 (Alt) and sums thereof. If you omit the second element, the default is 2 (Ctrl). Note:

Some of these modifiers may not be useful in practice because the operating-system intervenes before

APLX sees the keystroke; in Windows, for example, this happens with the Alt key.

Under MacOS, the second element is ignored since the Command key is always used for menu
shortcuts.

Thus, these three lines all do the same thing, and specify Ctrl-C as the shortcut (or Cmd-C under

MacOS):

 DEMO.EditMenu.Copy.shortcut←'C' 2
 DEMO.EditMenu.Copy.shortcut←67 2
 DEMO.EditMenu.Copy.shortcut←'C'

APLX automatically changes the displayed text in the menu to show the shortcut key.

When you read the shortcut property, APLX always returns the two-integer form.

The 'size' property

Two-element numeric vector

Valid for: All displayable objects and System

The size property determines the height and width of an object. The units depend on the setting of the

object's scale property, but default to Character units (16 pixels high and 8 pixels wide), which are

the height and typical width of a character in the System font. The first element of the size property is

APLX System Classes & User-Interface Programming 271

the height, and the second the width of the object. (See also the extent property, which is the same
except that it is expressed in the scale of the object's parent.)

This example resizes an Edit box to be 1.5 units high and 20 wide:

 MyWin.Ed.size←1.5 20

The precise meaning of the size property depends on the object class, but in general is the size of the

enclosing rectangle. For a Line, the size property determines the offset from the start point to the end
point of the line.

For the System object, the size property is read-only, and returns the height and width of the screen.

See also the workarea property which returns the rectangle within the screen size which is available
for application use.

The 'sizemode' property

Integer scalar

Valid for: OLEContainer (Implemented under Windows only)

The sizemode property determines how the document fits in an OLEContainer control. The possible
values are:

0 = Displays the OLE object at its normal size, clipping any parts that don't
 fit within the container.
1 = Displays the OLE object at its normal size, centering it within the container.
2 = Scales or shrinks the view of the OLE object to fit within the container,
 by scaling width and height proportionally.
3 = Scales or shrinks the view of the OLE object to fill the OLE container,
 without regard to preserving the proportions of the OLE object.
4 = Displays the OLE object at its normal size and automatically resizes the
 container to fit the size of the OLE object.

The default is 0.

APLX System Classes & User-Interface Programming 272

The 'sliderlen' property

Implemented under Windows only

Numeric scalar

Valid for: Trackbar

The sliderlen property determines the length of the slider part of a Trackbar control, in the current

scale units. Setting this property to 0 makes the slider invisible.

The 'sliderwhere' property

Implemented under Windows only

Read-Only, Four-element numeric vector

Valid for: Trackbar

This property returns a four element vector giving the top, left, height and width of the slider part of

the trackbar, in the current scale of the object. The top and left values are relative to the top left
corner of the Trackbar control.

The 'sourceformats' property

Valid for: All visible controls

Character vector or nested vector of character vectors

The sourceformats property is used to control drag-and-drop operations. It determines the names of

the drag-and-drop formats which the control can provide. If there is only one format, it is a simple

character vector. If the control can provide more than one format, it is a nested vector of character
vectors.

When the user attempts a drag-and-drop operation, the names in the source control's sourceformats

property are matched against the names in the target control's targetformats property. If any of the

APLX System Classes & User-Interface Programming 273

names match, the cursor changes to indicate that drag-and-drop is potentially valid, and one or more of

the drag-and-drop callbacks (onDragOver, onDragEnter, onDragLeave, onDragDrop) are invoked.

Drag-and-drop format names can be anything you choose. However, by convention, you should use

'TEXT' for controls which support dragging of text.

The 'state' property

Read-only, Nested 2 by N matrix

Valid for: All objects

The state property returns a two-column nested matrix. The first column is the name of each property

which has been set to a non-default value. The second column is the corresponding value of the

property. Read-only properties are not included.

Although you cannot set the state property directly, you can use it to re-create or clone an object by

passing the property names and values to the New or Set method of another control.

The 'status' property

Read-only. Integer vector or scalar

Valid for: Browser, GetMail, SendMail, HTTPClient, Socket and APL (child task) object

GetMail, SendMail, HTTPClient, Socket

For these networking classes, the status property is a two-element integer vector. The first element is

0 if the object is not connected, 1 if the object is connected, 2 if it is listening for connections. The
second element is the latest error code reported by the underlying operating system.

Browser

For a Browser object, the status property returns a three-element Boolean vector of (IsBusy)

(CanGoback) (CanGoForward).

APL Object

The status read-only property of an APL (child task) object indicates the execution state of the task.
It returns one of the following codes:

APLX System Classes & User-Interface Programming 274

¯1 The task is not running (i.e. it has not been opened, or has terminated)

 0 The task is busy executing an APL expression or command

 1 The task is in desk-calculator mode, awaiting input

 2 The task is awaiting ⍞ input

 3 The task is awaiting ⎕ input

 4 The task is awaiting ⎕CC input

The 'style' property

An integer scalar

Valid for: Bevel, Button, ToolButton, Combo, Edit, Frame, Grid, HTTPClient, Image, ImageList,

Label, List, Menu, Movie, OLEContainer, Picture, Progress, RichEdit, Scroll, Selector, Spinner,
Splitter, Trackbar, Tree, ChooseColor, ChooseFont, OpenFile, SaveFile, MsgBox

The meaning of the style property depends on the object. Usually it comprises one or more basic
styles, plus a set of optional flags which govern the behavior or appearance of the control.

See the entry for the particular object class for details of how style is interpreted for that object.

The 'subject' property

Character Vector

Valid for: GetMail, SendMail

The subject property contains the subject of an e-mail, as a character vector.

For the SendMail object, you should set this property before calling the SendMessage method.

For the GetMail object, this property is read-only, and is valid only after you have called the

GetMessage or GetSummary method to retrieve an e-mail (or summary of an e-mail) from the POP3
server.

APLX System Classes & User-Interface Programming 275

The 'subtitle' property

Character Vector

Valid for: Chart

The subtitle property is one of three labels which you can associate with a Chart (the others are

title and note). It is displayed just below the title, in a slightly smaller font, and is intended as a

sub-title for the whole chart. However, you can use it in any way you wish, or omit it altogether by
leaving it as an empty vector.

You can specify the position, color and font of the displayed text by using the placetitle,

colortitle and fonttitle properties.

The 'svg' property

Character Vector (read-only)

Valid for: Chart

This read-only property returns the representation of the chart in Scalable Vector Graphics (SVG)

format. This format is ideal for publishing your charts, since SVG will retain high-quality output on
high-resolution devices.

The 'tabgroup' property

Not currently implemented

APLX System Classes & User-Interface Programming 276

The 'tabparent' property

Not currently implemented

The 'tabrows' property

Implemented under Windows only

Read-only, Integer Scalar

Valid for: Selector

Returns the number of rows used for the tabs of a multi-row Selector control.

The 'tabstop' property

Boolean scalar

Valid for: Check, Radio, Button, Progress, Trackbar, Spinner, Scroll, List, Combo, Edit, RichEdit,
Movie, Splitter, Selector, Page, Tree, Frame

If the tabstop property for a control is 1, the user can move the focus to the control using the Tab key

(the sequence is determined by the order property, and defaults to the order of creation). If the

tabstop property is 0, the control cannot be tabbed to.

Note: Under MacOS, only a control which can accept keyboard focus (such as an Edit or RichEdit
control) can be tabbed to. This is because of the user-interface conventions which apply in MacOS.

APLX System Classes & User-Interface Programming 277

The 'targetformats' property

Valid for: All visible controls

Character vector or nested vector of character vectors

The targetformats property is used to control drag-and-drop operations. It determines the names of

the drag-and-drop formats which the control can accept if the user drags another control on to it. If

there is only one format, it is a simple character vector. If the control can accept more than one format,
it is a nested vector of character vectors.

When the user attempts a drag-and-drop operation, the names in the source control's sourceformats

property are matched against the names in the target control's targetformats property. If any of the

names match, the cursor changes to indicate that drag-and-drop is potentially valid, and one or more of

the drag-and-drop callbacks (onDragOver, onDragEnter, onDragLeave, onDragDrop) are invoked.

Drag-and-drop format names can be anything you choose. However, by convention, you should use

'TEXT' for controls which support dragging of text.

The 'taskid' property

Read-only, Integer scalar

Valid for: System, APL (child task) object

Every task has a unique identifier. You can read the task identifier of a child task using the read-only

taskid property. It is a scalar integer, and can be used in event handling to identify the task:

 ChildTask.taskid
53429272

The taskid property will be zero if the task is not running.

A task can read its own task identifier using the taskid property of its System object.

APLX System Classes & User-Interface Programming 278

The 'text' property

A character vector
For a Grid, a character vector for each cell

Valid for: Browser, Combo, Edit, RichEdit, Document, System, MsgBox, APL (child task) object
Cell property for Grid object

The text property contains the text displayed in an Edit box, Combo, RichEdit control, or Document

window, as a character vector possibly containing embedded carriage returns. By setting this property,

you can change the contents of the object under program control, but it also changes as a result of user

keyboard input (you can detect that this has happened by means of the onChange callback).

For a MsgBox, the text property determines the text displayed in the dialog.

For an APL (child task) object the text property contains the text in the task's session window, if any.

It is a text vector, usually with embedded carriage return (⎕R) characters. The text property returns

the logical contents of the session window, even if the session window is not visible (however it is

always an empty vector for a background task, which does not have a session window). You can also
write to this property to change the text in the session window of a child task.

For the System object, the text property contains the text (if any) in the Clipboard. If there is no text

in the Clipboard, it is an empty vector. Writing to this property places (unformatted) text in the
Clipboard, ready for pasting into an APLX window or another application.

For a Browser object, the text property is read-only. It contains the text displayed in the Browser, with

HTML tags stripped out. (See also the contents property, which contains the text including the

HTML tags).

Grid object text cell property

When you read this cell property for a Grid object, it returns a character vector containing the text

displayed in the cell, irrespective of the cell∇s type, for each cell in the list of rows and columns

specified. For multiple cells, it will therefore return a nested array of character vectors.

When you write to this cell property for a Grid object, the text displayed in the cell is set to the text

you supply. To set multiple cells in one operation, provide a nested array of character vectors. The

type of the cell, and the cell∇s valid property, are not changed. If the cell is Numeric, it will remain

so, and its value will not change.

Although text is a cell property for a Grid object, as a convenience you can also read (but not write

to) text as a simple property of the Grid object. It returns the text of the currently-active cell.

APLX System Classes & User-Interface Programming 279

The 'textalign' property

Cell property of Grid object

Each cell element is an integer scalar

Determines how the text is aligned within the cell.

The value is the sum of two numbers. The horizontal alignment is 1 for left, 2 for right, or for 4 center.
The vertical alignment is 8 for top, 16 for bottom, or 32 for center.

The default value depends on the type of the cell. Header cells default to centered in both directions (4

+ 32 = 36). Text cells in the data area default to top, left (1 + 8 = 9). Numeric cells default to top, right
(2 + 8 = 10).

The 'tickinterval' property

Not implemented under MacOS

Integer scalar

Valid for: Trackbar

The tickinterval property determines the interval between the tick marks on a Trackbar control.

The default is 10, corresponding to 10 intervals between the default minimum and maximum values of

0 and 100 (as set by the range property).

If you set this value to 0, the ticks will not be displayed (unless you set them explicitly using the

ticks property).

Under MacOS, this property is not implemented. The control will always display with a fixed number
of tick marks.

APLX System Classes & User-Interface Programming 280

The 'tickpos' property

Implemented under Windows only

Read-only, Two-column numeric matrix

Valid for: Trackbar

The tickpos property returns a two column matrix, with one row for each tick mark in the control.

The first column gives the logical value associated with each tick, the second column gives the

physical position of the tick marks within the client area of the control, in the current scale of the

object. For vertical trackbars, the vertical position of the ticks is returned, and for horizontal trackbars,
the horizontal position of the ticks is returned.

The 'ticks' property

Implemented under Windows only

Integer vector

Valid for: Trackbar

Usually, a Trackbar control includes tick marks at regular intervals set by the tickinterval property.

If you want to show tick marks at a different set of values (for example, to indicate a logarithmic

scale), you can do so by assigning a vector of integers to the ticks property. These values should be

within the minimum and maximum values set by the range property.

The 'tie' property

An integer scalar

Valid for: All objects

The tie property is mainly used for compatibility with the older APL.68000 method of creating

windows using the NEWWINDOW function, where windows are identified by tie numbers. However, it

can also be used to hold any integer scalar value you choose, and is available in event records returned

by ⎕EV. If you use the NEWWINDOW function to create a window, the tie property will be set to the tie

APLX System Classes & User-Interface Programming 281

number passed as the first element of the right argument of NEWWINDOW. Objects created with ⎕NEW or
⎕WI will be assigned a unique default tie value by the system, using the following convention:

10 - 99 Window, Form or Dialog

10000+ Control created using ⎕NEW or ⎕WI

Thus, if you wish to use the tie property to identify objects, and you are also using the NEWWINDOW

function, it is a good idea to use the range 100 to 9999 for your own tie numbers to ensure uniqueness,
but you are not compelled to do so.

The 'timeout' property

Integer Scalar

Valid for: GetMail, SendMail, HTTPClient, Socket

The timeout property sets the timeout (in milliseconds) before the communication will be abandoned

if no reply is received. A value of ¯1 means 'wait for ever'.

The 'title' property

An alternative name for the caption property.

The 'to' property

Character Vector

Valid for: GetMail, SendMail

The to property contains a list of recipients of an e-mail. The recipients are specified as a comma-
delimited list of e-mail addresses.

For the SendMail object, you should set this property before calling the SendMessage method. The
default is an empty vector.

APLX System Classes & User-Interface Programming 282

For the GetMail object, this property is read-only, and is valid only after you have called the

GetMessage method to retrieve an e-mail from the POP3 server.

The 'tooltip' property

A character vector

Valid for: Most visible controls

A character vector which gets displayed as help text when the user moves the mouse pointer over the

control and pauses. You normally use this to provide information about what the control does. (It will

be suppressed if you set the tooltipenabled property of the system object to 0).

The 'tooltipenabled' property

An boolean scalar

Valid for: System object

This property determines whether tooltips are displayed in the application. If it is set to 1 (the default),

the tooltip property (if set) of a control will be used to display help text when the mouse hovers over
the control. If it is set to 0, tooltips are suppressed.

The 'type' property

Character Vector (For Chart and Series), Integer Scalar (for Socket)

Valid for: Chart, Series, Socket

Chart Object

The type property for a Chart object determines the type of graph which will be drawn. It is one of:
'line' 'stair' 'area' 'scatter' 'bar' 'stackedbar' 'horizbar' 'horizstackedbar' 'hilo'

'candle' 'pie' or 'mixed'. See the separate section on properties of the Chart object for details.

APLX System Classes & User-Interface Programming 283

Series Object

Where a Chart object is of type 'mixed', each Series displayed on the chart will be displayed

according to its own type property. The valid values are 'line' 'stair' 'area' 'scatter' 'bar'

'hilo' and 'candle'

Socket Object

For a Socket object, the type property is an integer which determines the type of socket connection

required. The valid values are: 1 = Stream socket, 2 = Datagram socket, 3 = Raw-protocol interface, 4
= Reliably-delivered message, 5= Sequenced packet stream.

The default is 1.

The 'unicode' property

Integer vector (can also be written as a character vector)

Valid for: System object

Unicode is a worldwide standard which encodes characters in two bytes, thus providing a total of

65,536 possible characters. This is enough to represent all the international and special characters used

in modern computer applications. APL characters, including all those used in APLX, are defined in
the Unicode standard.

The unicode property of the System object allows your program to exchange Unicode text with other

applications via the clipboard. When you read the property, any Unicode text in the clipboard is

returned as a vector of integers. (You can translate it to the APLX internal text representation by using

⎕UCS). You can write either a vector of integers, each representing a valid Unicode character in the

range 0 to 65535, or a character vector. If you write a character vector to this property, it is translated
to Unicode and placed on the clipboard.

The 'units' property

Read-only: Numeric 6 by 2 matrix

Valid for: All displayable objects, and the Printer and System objects

The units property returns the number of pixels per unit, for each of the possible values of the scale

property. The first column refers to the vertical axis, and the second refers to the horizontal axis. Each

APLX System Classes & User-Interface Programming 284

row refers to one of the possible scale values (1 = character units, 2 = dialog units, 3 = points, 4 =
twips, 5 = pixels, 6 = millimetres). The values depend on the resolution of the output device.

For example:

 '⎕' ⎕WI 'units'
16 8
 2 2
 1.333333333 1.333333333
 0.06666666667 0.06666666667
 1 1
 3.779527559 3.779527559

This means that, for character units on the current device (the screen), there are 16 pixels per unit in
the vertical direction and 8 in the horizontal direction.

The 'update' property

Boolean Scalar

Valid for: Chart, Picture

Normally, when you change a property or invoke a method which has a visual effect, the screen is

immediately updated to reflect the change. For example, if you change the title of a Chart, it is

immediately redrawn. Sometimes, however, you may wish to suppress re-drawing temporarily - for

example, if you are making lots of changes to a Chart, or to an Image object which is displayed in a

Picture, and you do not want to redraw it until all the changes have been made. The update property
can be used to suppress and enable redraws.

The default value for update is 1, meaning that updates take place immediately (when events are next

handled). If you set it to 0, no drawing or re-drawing will take place. When you set it to 1 again, the
whole control will be redrawn, and from then on updates will be processed as normal.

Changing the update property should be done with care, since if you set it to 0 and do not set it back
to 1, the control will not respond to update events and will not display correctly.

APLX System Classes & User-Interface Programming 285

The 'url' property

Read-only, Character Vector

Valid for: Browser, HTTPClient

The url property can be read after you have successfully loaded a web-page in a Browser or

HTTPClient object. It contains the actual Uniform Resource Location (i.e. web page address) which

has been retrieved. This may not be the same as the page you requested, because the request may have
been re-directed.

The 'usealtscale' property

Boolean Scalar

Valid for: Series

This property is a Boolean scalar. It defaults to 0, meaning that the Series should be drawn using the

main Y scale of the parent Chart object (i.e. the left axis). If you set it to 1, the Series will instead be
drawn using the alternate Y scale (i.e. the right axis).

The 'user' property

Character Vector

Valid for: GetMail, SendMail, HTTPClient

Before you can use the GetMail or SendMail objects to retrieve or send mail, you need to call the Open

method to connect to the mail server which you specify using the host property. Depending on how

the server is set up, you will probably need to set a user name and password before calling Open. The
user name will normally be supplied by your Internet Service Provider (ISP) or network administrator.

For an example, see the description of the host property.

For the HTTPClient object, the user property should be set to access pages which require a user name

and password.

APLX System Classes & User-Interface Programming 286

The 'valid' property

Read-only Cell property of Grid object

Each cell element is a Boolean scalar

Returns 1 if the cell is valid, and 0 if it is invalid. Text cells are always valid. Numeric cells may be
invalid if the user has edited the cell contents.

The 'value' property

0 or 1 for Check, Radio ToolButton or Menu

An integer scalar or vector for a List or Combo

An integer scalar for a Selector, Spinner or Trackbar

An integer vector for Scroll or Progress

An integer scalar for a Tree
For a Grid, a character vector or numeric scalar for each cell.

Valid for: List, Combo, Check, Radio, ToolButton, Menu, Scroll, Progress, Selector, Tree

Cell property for a Grid object

The value property contains the current selected value of the control to which it relates. For a Menu

item, Check box, Radio button or ToolButton, this is 0 if the control is not selected and 1 if it is

selected. If you set a Radio button's or ToolButton's value to 1, any other Radio button or ToolButton

in the same group is switched off, and an onClick event is generated. Setting the value property of a

Check box to 0 or 1 also generates an onClick event.

For a List or Combo, the value property contains the number (in index origin 1) of the selected item

or items (if any). For a single-select list box, it is a vector of length 0 (if no item is selected) or 1 (if an

item is selected). For a multi-select list box, it is a vector of arbitrary length. Again, setting the value

property of a List generates an onClick event.

For a Spinner or Trackbar, the value property is an integer scalar representing the currently-selected

value.

For a Selector, the value property holds the index (starting at 1) of the currently-displayed page, or 0 if
none.

For a Tree object, the value property holds the ID of the currently-selected node

For a Progress or Scroll bar, the value property is a four- or five-element vector, as follows

APLX System Classes & User-Interface Programming 287

[1] Current value (initially 0)

[2] Maximum value (default 100)

[3] 'Page' increment (default 1)

[4] Minimum value (default 0)
[5] Scroll bar only (Reserved: 0)

When setting this property, you do not have to set all elements.

Grid object value cell property

When you read this cell property for a Grid object, it returns a character vector for each Text cell and a

numeric scalar for each Numeric cell, for each cell in the list of rows and columns specified. If a

Numeric cell is invalid, it will return the current conversionerrorvalue. If you read a set of cells

some of which are Numeric and some Text, it will return a nested array containing a mixture of

character vectors and numeric scalars. If you read a set of cells all of which are Numeric, it will return
a simple numeric array.

When you write to this cell property for a Grid object, it sets the value for each cell in the list of rows

and columns specified. If you supply a number for a cell, that cell becomes a Numeric cell. If you

supply a character vector or scalar, it becomes a Text cell. Writing to a cell also causes its valid
property to be set to 1.

Although value is a cell property for a Grid object, as a convenience you can read (but not write to)

value as a simple property of the Grid object. It returns the value of the currently-active cell. If the

cell is a text cell, it will return a character vector. If it is a numeric cell, it will return the numeric value

of the cell, or (if the cell is invalid) the current conversionerrorvalue.

The 'values' property

Numeric vector or matrix

Valid for: Series

The values property provides a quick way of specifying the X and Y values of a Series in one

operation. You can assign to it in the following ways (they are tested for in this order):

(a) 2 by N numeric matrix:

In this case the first row is assumed to contain the X values, and the second row the Y values.

(b) N by 2 numeric matrix:

In this case the first column is assumed to contain the X values, and the second row the Y values.
(Note: for a 2 by 2 matrix, case (a) applies).

APLX System Classes & User-Interface Programming 288

(c) Numeric scalar, vector, 1 by N matrix, or N by 1 matrix:,

In this case the data provided is assumed to represent the Y values of the series, and the X values are
implicitly set to 0, 1, 2....N-1

If you read back this property, the data is always returned in format (a), i.e. as a 2 by N matrix of X

values, Y Values

Note that you can also set the X and Y values separately using the xvalues and yvalues properties.

The 'verbs' property

Read-only, nested vector of character vectors

Valid for: OCX controls and OLEContainer (Implemented under Windows only)

The verbs property returns a nested vector of the application-specific 'verbs' which the server

application defines. Each verb is a character string giving the name of an action which the control can
perform (possibly with an ampersand character to indicate a menu mnemonic character).

You can use this information to instruct the external control to carry out a specific operation, using the

DoVerb method. The parameter which you pass to DoVerb corresponds to the position (in index origin

1) of the name of the operation in the verbs property.

There are also pre-defined standard verbs identified by 0 or negative IDs. These do not appear in the

verbs property.

See the DoVerb method for more information.

The 'version' property

Read-only, Integer vector

Valid for: System object

Reading the version property of the System object returns information about the operating system

and APLX GUI sub-system. It returns a five-element integer vector containing:

 [1] Version number for the System Class sub-system
 [2] GUI environment code 0 = MacOS 1 = Windows, 2 = X-Windows, 4 = Console

APLX System Classes & User-Interface Programming 289

 [3] OS Family code. For MacOS: 0 = Classic, 1 = OSX
 For Windows: 0 = 95/98/ME, 1 = NT/2000/XP/Vista
 For X-Windows: 0 = Linux
 [4] OS Major version
 [5] OS Minor version

On Windows systems, the values returned for the last three elements are:

 Windows 95: 0 4 0
 Windows 98: 0 4 10
 Windows ME: 0 4 20
 Windows NT4: 1 4 0
 Windows 2000: 1 5 0
 Windows XP: 1 5 1
 Windows Vista: 1 6 0

The 'view' property

Four-element Integer Vector

Valid for: Grid

Determines the visible portion of a Grid control. The four elements are the First visible row, First

visible column, Number of visible Rows, Number of visible columns. You can write to this property to

scroll the grid under program control (only the first two elements are required).

The 'visible' property

Boolean scalar, or integer for Window, Dialog or Form

Valid for: All displayable objects, and Series

The visible property determines whether an object is shown on the screen or not. The default is 1,

which means that it is visible (provided it is open, and its parent object if any is also visible and open).
Setting this property to 0 will hide the object. For example:

 MyWin.visible←0 ⍝ Hide a window
 MyWin.Ln.visible←0 ⍝ Hide a control on a window

For a Window, Form or Dialog object, you can set the visible property to one of the following, for
compatibility with other APL systems:

 Any negative value Hide window
 0 Hide window
 1 Show window at its normal size
 2 Show window, minimized (icon only)
 3 Show window, maximized (full-screen)

APLX System Classes & User-Interface Programming 290

The 'volume' property

Implemented under MacOS only

Scalar number in the range ¯1.0 to +1.0

Valid for: Movie

Set movie volume in range ¯1.0 to +1.0. Values between 1.0 and 0.0 cause sound to be reduced

proportionately. Negative values mute the sound and can be used to stop the sound temporarily whilst
retaining information about the volume previously chosen.

The 'where' property

Two- or four-element numeric vector

Valid for: All displayable objects

The where property determines the position of the top left corner of an object relative to its parent, in

the scale set for the parent object (by default, character units). It optionally also sets the size of an

object. If set to a two-element vector, the first element is the vertical position and the second the

horizontal position (0,0 being the Top, Left of the parent). If set to a four-element vector, the third and

fourth elements are the height and width of the object. When referenced, where returns a four-element

vector.

APLX System Classes & User-Interface Programming 291

The 'winptr' property

Synonym: hdc

Read-Only, Integer Scalar

Valid for: Window, Document, Dialog. Under Windows, also valid for Check, Radio, Button,

Progress, Trackbar, Spinner, Scroll, List, Combo, Edit, RichEdit, Movie, Selector, Page, Treeview,

Frame, Grid

The winptr property is used for low-level programming only. Under MacOS, its value is the GrafPtr

pointer to window. It can be passed to MacOS calls which require a GrafPtr argument. You can also

retrieve the WindowPtr as the handle property.

Under Windows, the winptr property represents the device context (HDC) of the window or control. It
can be passed to Windows calls which perform graphics operations.

The 'workarea' property

Read-only, Four-element numeric vector

Valid for: System

The workarea property of the System object returns the rectangle of the usable screen size, in System

object's current scale (by default, character units). The first two elements are the Top and Left of the
usable area. The third and fourth elements are the Height and Width of the usable area.

The distinction between the 'usable' screen rectangle and the full screen size (as returned by the size

property of the System object) is that the usable screen rectangle takes account of any space reserved

by the operating system (for example, for the Windows 'taskbar' or the MacOS 'dock'). When creating

windows, you should normally ensure that they fit within the rectangle returned by the System

workarea property.

Under Linux, the workarea property may return the full size of the screen rather than the area which is

truly usable by applications. This is because the usable area depends on the particular X Window
manager which is in use.

APLX System Classes & User-Interface Programming 292

The 'wrap' property

Boolean scalar

Valid for: Spinner

The wrap property for a Spinner object is 1 if the value wraps round to the minimum value when the

maximum value is reached (and vice versa), or 0 otherwise. The default is 0.

The 'wssize' property

Integer scalar

Valid for: APL (child task) object

By default, a new child task is allocated the amount of workspace which you have set as the default

using the Preferences dialog. The wssize property allows you to specify a different size, as a value in

bytes. If you ask for a very small value, a minimum value of around 100KB will be allocated. If you

ask for a very big value, the operating system may allocate a smaller value. A value of 0 means 'use

the default'. You must set the wssize property before calling the Open method, but you can read it
back at any time.

Note for users of APLX64: Because the System Class sub-system runs as a 32-bit application even

under APLX64, special provisions apply if you are creating a 64-bit workspace bigger than 2 GB. In

this case, the workspace size in bytes cannot be expressed as a 32-bit integer, so the wssize property
becomes internally represented as a floating-point number. It still has to be a whole number, of course.

The 'xaltintercept' property

Read-only, Numeric Scalar

Valid for: Chart

Returns the X position where the alternate Y axis (if any) crosses the X axis. Because the alternate Y
axis is always drawn on the right-hand edge of the chart, this property is read-only.

APLX System Classes & User-Interface Programming 293

The 'xaxislabel' property

Character Vector

Valid for: Chart

This property allows you to specify a label for the X axis, such as 'Year' or 'Velocity (km/sec)'

The 'xclasses' property

Read-only, 4-column nested matrix of character vectors

Valid for: System object

The xclasses property of the System object returns a nested matrix which gives details of the OCX

controls installed on your system. These are external controls which are separate from APLX, but

which you can place in your APLX windows and use just as you would a built-in APLX control.

(Information about OCX controls is also shown in the Control Browser on the Tools menu).

The returned array has one row for each OCX control installed. However, not all of these will

necessarily be usable from APLX, since they may be private controls which are not designed for use
by other applications.

The first column is the plain text name, for example 'Chart FX'. The second column is an

alphanumeric string enclosed in curly brackets, which is the unique ID of the OCX control. The third

column is the object class name, which is usually a period-delimited string giving the vendor name,

object class name and optionally the version number, for example 'SoftwareFX.ChartFX.20'. (The

fourth column is reserved for future use).

You can use any of these as the class name to identify the control to APLX, but we recommend that

you use the third.

Under MacOS and Linux, this property always returns an empty matrix because OCX controls are not
implemented.

Example

Retrieve the list of OCX controls installed on the system:

 OCX←'#' ⎕WI 'xclasses'
 ⍴OCX
183 4

APLX System Classes & User-Interface Programming 294

In this case there are a total of 183 OCX controls installed.

'Formula One' is an OCX control written by Visual Components, Inc. If it is installed on the system, it

should appear in the list of classes returned by the xclasses property:

 OCX[;1]⍳⊂'VCI Formula One Workbook'
8
 OCX[8;]
 VCI Formula One Workbook {042BADC5-5E58-11CE-B610-524153480001} VCF1.VCF1Ctrl.1

You can use any of the three strings to identify the control. The following sequences are all equivalent
- they each create a window and place a Formula One control on it:

(a) Use the plain name to identify the OCX class:

 MYWIN←'⎕' ⎕NEW 'Window'
 MYWIN.F1.New 'VCI Formula One Workbook'

(b) Use the unique class ID:

 MYWIN←'⎕' ⎕NEW 'Window'
 MYWIN.F1.New '{042BADC5-5E58-11CE-B610-524153480001}'

(c) Use the object class name:

 MYWIN←'⎕' ⎕NEW 'Window'
 MYWIN.F1.New 'VCF1.VCF1Ctrl.1'

The 'xintercept' property

Numeric Scalar

Valid for: Chart

Determines the X position where the main Y axis of a Chart crosses the X axis. By default, this will be
the left edge of the chart, or 0 if the X axis ranges from negative to positive values.

APLX System Classes & User-Interface Programming 295

The 'xlabels' property

Nested Vector of Character Vectors (or simple Character Vector/Matrix - see text)

Valid for: Chart

The xlabels property can be used to change the labels written next to the major tick marks on the X

axis. By default, the Chart object labels the major ticks with the corresponding numeric value. If you

specify this property, then your labels will be used instead. However, (except for a bar chart or pie

chart), you must also specify the corresponding major tick positions using the xmajorticks property,
otherwise the Chart object will not know where the labels should be placed.

The labels can be specified either as a character vector with embedded carriage returns, or as a text

matrix, or as a nested vector of character vectors. The first label is used for the first major tick

position, and so on. If there are more labels specified than tick positions, the surplus labels are

ignored. If there are fewer, the ticks which do not have user-defined labels are labelled with the default
numeric value.

When you read this property back, APLX always returns a nest of character vectors.

The 'xlogscale' property

Boolean Scalar

Valid for: Chart

If this property is set to 0 (which is the default), a normal linear scale applies for the X axis. If set to 1,

a logarithmic scale is used for the X axis.

Note: You cannot set a logarithmic scale for an axis where any data point (or intercept) is 0 or

negative. If this situation occurs, the scale will revert to linear.

APLX System Classes & User-Interface Programming 296

The 'xmajorticks' property

Numeric Vector

Valid for: Chart

This property allows you to specify the positions for the major ticks along the X axis, overriding the

Chart object's automatic selection of tick positions. You can label the ticks using the xlabels

property.

The 'xminorticks' property

Numeric Vector

Valid for: Chart

This property allows you to specify the positions for the minor ticks along the X axis, overriding the

Chart object's automatic selection of tick positions.

The 'xscale' property

Read-only, Two-Element Numeric Vector

Valid for: Chart

This property returns the lower and upper values of the X scale, which will either have been chosen

automatically by the Chart object based on the data, or will be determined by the lowest and highest

user-defined tick positions.

APLX System Classes & User-Interface Programming 297

The 'xvalues' property

Numeric Vector (or one-row matrix)

Valid for: Series

This property can be written as a numeric scalar, vector, or one-row matrix. It allows you to specify

the X values for points on the series (see the values property for an alternative method). If left as an

empty vector, the X values are implicitly assumed to be 0, 1, 2...

The 'yaltaxislabel' property

Character Vector

Valid for: Chart

This property allows you to specify a label for the alternate Y axis, such as 'Smokers (% of adult

population)'.

The 'yaltlabels' property

Nested Vector of Character Vectors (or simple Character Vector/Matrix - see text)

Valid for: Chart

The yaltlabels property can be used to change the labels written next to the major tick marks on the

alternate (right-hand) Y axis, if any. By default, the Chart object labels the major ticks with the

corresponding numeric value. If you specify this property, then your labels will be used instead.

However, you must also specify the corresponding major tick positions using the yaltmajorticks
property, otherwise the Chart object will not know where the labels should be placed.

The labels can be specified either as a character vector with embedded carriage returns, or as a text

matrix, or as a nested vector of character vectors. The first label is used for the first major tick

position, and so on. If there are more labels specified than tick positions, the surplus labels are

ignored. If there are fewer, the ticks which do not have user-defined labels are labelled with the default
numeric value.

APLX System Classes & User-Interface Programming 298

When you read this property back, APLX always returns a nest of character vectors.

The 'yaltlogscale' property

Boolean Scalar

Valid for: Chart

If this property is set to 0 (which is the default), a normal linear scale applies for the alternate Y axis.
If set to 1, a logarithmic scale is used for the alternate Y axis.

Note: You cannot set a logarithmic scale for an axis where any data point (or intercept) is 0 or
negative. If this situation occurs, the scale will revert to linear.

The 'yaltmajorticks' property

Numeric Vector

Valid for: Chart

This property allows you to specify the positions for the major ticks along the alternate Y axis (if any),

overriding the Chart object's automatic selection of tick positions. You can label the ticks using the

yaltlabels property.

The 'yaltminorticks' property

Numeric Vector

Valid for: Chart

This property allows you to specify the positions for the minor ticks along the alternate Y axis (if any),
overriding the Chart object's automatic selection of tick positions.

APLX System Classes & User-Interface Programming 299

The 'yaltscale' property

Read-only, Two-Element Numeric Vector

Valid for: Chart

This property returns the lower and upper values of the alternate Y scale (if any), which will either

have been chosen automatically by the Chart object based on the data, or will be determined by the

lowest and highest user-defined tick positions.

The 'yaxislabel' property

Character Vector

Valid for: Chart

This property allows you to specify a label for the main Y axis, such as 'Share Price (US $)'

The 'yintercept' property

Numeric Scalar

Valid for: Chart

Determines the Y position where the X axis of a Chart crosses the X axis. By default, this will be the
bottom edge of the chart, or 0 if the Y axis ranges from negative to positive values.

APLX System Classes & User-Interface Programming 300

The 'ylabels' property

Nested Vector of Character Vectors (or simple Character Vector/Matrix - see text)

Valid for: Chart

The ylabels property can be used to change the labels written next to the major tick marks on the

main Y axis. By default, the Chart object labels the major ticks with the corresponding numeric value.

If you specify this property, then your labels will be used instead. However, you must also specify the

corresponding major tick positions using the ymajorticks property, otherwise the Chart object will
not know where the labels should be placed.

The labels can be specified either as a character vector with embedded carriage returns, or as a text

matrix, or as a nested vector of character vectors. The first label is used for the first major tick

position, and so on. If there are more labels specified than tick positions, the surplus labels are

ignored. If there are fewer, the ticks which do not have user-defined labels are labelled with the default
numeric value.

When you read this property back, APLX always returns a nest of character vectors.

The 'ylogscale' property

Boolean Scalar

Valid for: Chart

If this property is set to 0 (which is the default), a normal linear scale applies for the main Y axis. If

set to 1, a logarithmic scale is used for the Y axis.

Note: You cannot set a logarithmic scale for an axis where any data point (or intercept) is 0 or

negative. If this situation occurs, the scale will revert to linear.

APLX System Classes & User-Interface Programming 301

The 'ymajorticks' property

Numeric Vector

Valid for: Chart

This property allows you to specify the positions for the major ticks along the Y axis, overriding the

Chart object's automatic selection of tick positions. You can label the ticks using the ylabels

property.

The 'yminorticks' property

Numeric Vector

Valid for: Chart

This property allows you to specify the positions for the minor ticks along the Y axis, overriding the

Chart object's automatic selection of tick positions.

The 'yscale' property

Read-only, Two-Element Numeric Vector

Valid for: Chart

This property returns the lower and upper values of the main Y scale, which will either have been

chosen automatically by the Chart object based on the data, or will be determined by the lowest and

highest user-defined tick positions.

APLX System Classes & User-Interface Programming 302

The 'yvalues' property

Numeric Vector (or one-row matrix)

Valid for: Series

This property can be written as a numeric scalar, vector, or one-row matrix. It allows you to specify

the Y values for points on the series (see the values property for an alternative method).

∆.. Delta property

Any APL array or overlay

Valid for: All objects

Any property name which starts with the delta character ∆ can be used to store your own data in the

object. Subject to available memory, you can have as many such properties as you like, and you can

store any simple or nested array, or overlay, in the property. Referencing a delta property to which no
data has been assigned generates a VALUE ERROR, just like a standard APL variable:

 W←'⎕' ⎕NEW 'Window'
 W.∆TYPE←'SCATTER'
 W.∆VALS←13.4 66.7 12.2
 W.∆TYPE
SCATTER
 W.∆VALS
13.4 66.7 12.2
 W.∆XPOS
VALUE ERROR
 W.∆XPOS
 ^

Using Delta properties to share data between tasks

Delta properties work in a special way for APL (child task) objects. A delta property for the System

object of a child task is the same as the delta property of the same name in the parent task∇s APL

(child task) object. Thus the parent task can assign arbitrary data to a delta property, and the child task

can access it through its own System object. If the child task writes to a delta property of its System
object, the parent can see the data which has been assigned in the child task object:

 Task1←'⎕' ⎕NEW 'APL' ⊦ Task1.wssize←200000 ⊦ Task1.background←1
 Task1.∆MESSAGE←'Startup'
 Task1.Open
 Task1.Execute "'#' ⎕WI '∆MESSAGE' 'OK'"
 Task1.∆MESSAGE
OK

APLX System Classes & User-Interface Programming 303

This feature can be used in a number of ways. When starting a task, it can be used to pass an overlay

containing all the functions and variables which the child task will need to run. When the task is

running, delta properties can be used to share state information, parameters and results between the
parent and the child.

The delta property persists for as long as the child task object exists in the parent task. This means

that a child task can write to a delta property, and then terminate. The data will still be available to
the parent.

Special considerations for Client-Server versions of APLX

Because the whole System Class sub-system runs on the Client machine, the data contained in a delta

property is held (in memory) on the Client machine, as a variable in APLX 32-bit format (even if the

APL session which wrote the variable is a 64-bit implementation of APLX). The data must therefore

be representable as a 32-bit object, which means it must be smaller than 2GB and must not contain

more than 2147483647 elements. An array which contains 64-bit integer numbers of magnitude bigger
than 2*31 will be converted to float data, and precision may be lost.

APLX System Classes & User-Interface Programming 305

Section 4. System Classes: Methods

APLX System Classes & User-Interface Programming 307

The 'Abort' method

Argument: None
Result: None

Valid for: Printer

Call the Abort method if you want to abort a current print job. It has the effect of stopping printing,

throwing away any pending printer output, and closing the Printer object. It takes no arguments.

The 'Accept' method

Argument: None
Result: Integer Scalar

Valid for: Socket

This method should be called for a Socket object which is acting as a server. You first call the Listen

method, which causes the underlying socket to be linked to a specific port. You then typically loop

round calling the Accept method. This will cause your task to block until a remote client tries to

connect to your socket (or until the timeout property has expired, if this is sooner). When the client

connects, a new socket is created and linked to the client. The Accept method returns the handle of

this new socket. Your APL application can then create a new Socket object, and write the returned

handle to the handle property of the newly created object, which can then be used to communicate

with the client. (You will probably want to create the new Socket object in a different APLX task, so
that the main server task can loop round and wait for another client connection).

The return value from the Accept method is a positive integer if a client connected (this is the handle

you should use for further communication). It is 0 if the method timed out or was interrupted. It is ¯1
if an error occurred.

APLX System Classes & User-Interface Programming 308

The 'Addimages' method

Argument: See below
Result: None

Valid for: ImageList (Not implemented under MacOS)

The Addimages method adds one or more images to the ImageList object. It accepts any of the

following data forms:

 A character vector giving an image file name (a bitmap, cursor, or icon file).

 An integer matrix of N by M pixel COLORVAL color values.

 A pair of character vectors, the first giving an image file name, the second giving a

transparency mask image file name.

 A pair of data items, the first a character vector giving an image file name, the second

indicating which color should be regarded as transparent. The format of the second element

can be either ('color' COLORVAL) or ('color' R G B).

 A pair of integer matrices, the first giving pixel color values, the second giving a transparency
mask.

 A pair of data items, the first an integer matrix of pixel color values, the second indicating a

transparency color in the form ('color' COLORVAL) or ('color' R G B).

 A nested vector of multiple instances of the above.

In the above descriptions, R G and B are individual Red, Green and Blue color values, each in the

range 0 to 255. COLORVAL is a single integer encoding the color as 256 ⊥ Blue Green Red.

A single bitmap can optionally contribute multiple images to the ImageList, laid side by side. To do

this, you need first to set the imagesize property to be the size of the image. Any bitmap of a width N

times the width specified in imagesize will then contribute N images to the list.

Note: The Addimages method and the imagenames property are alternative ways of setting the list of

images. Images added by the Addimages method are not persistent if other properties (such as

imagesize) are subsequently changed.

APLX System Classes & User-Interface Programming 309

The 'Addrows' method

Not currently implemented

The 'Arrange' method

Not currently implemented

The 'Back' method

Argument: None
Result: None

Valid for: Browser

This method causes the Browser to go back to the previously-displayed web page. (You can tell

whether this is valid by reading the status property).

The 'Beginlabeledit' method

Implemented under Windows only

Argument: Integer scalar
Result: None

Valid for: Tree

The Beginlabeledit method begins user-editing of the label of a node in a Tree object. The

argument is the node ID. The effect is to move the focus to the label so that the user can starting
editing the text.

For this to be possible, you must have set the style property of the Tree to allow editing (value 16).

APLX System Classes & User-Interface Programming 310

The 'Cancellabeledit' method

Implemented under Windows only

Argument: Boolean scalar
Result: None

Valid for: Tree

The Cancellabeledit method ends editing of the label of a tree item. It takes a single boolean
argument: 0 = keep changes so far, 1 = revert to text before edit

The 'Chartalttopoint' method

Argument: 2-element Numeric Vector
Result: 2-element Numeric Vector

Valid for: Chart

This method converts from Chart coordinates (using the Alternate Y scale) to coordinates of the

visible control on the screen. It can be useful if you are adding your own annotations or other graphic

elements using the Draw method, and want to relate these to points of a Series which uses the Alternate
Y Scale.

The argument is a two-element vector of Y value (using the Alternate Y scale) and X value. The result

is a two-element vector of the corresponding vertical and horizontal position within the visible control

(remembering that top, left is 0, 0). The result is expressed in the current scale of the control; you

will probably want to set the scale property to 5 for pixels before calling this method.

APLX System Classes & User-Interface Programming 311

The 'Chartoline' method

Argument: Integer scalar
Result: Integer scalar

Valid for: RichEdit

The Chartoline method allows you to determine the line number corresponding to a particular

character in a RichEdit control. The argument is the character position (in index origin 0) of the

character, relative to the start of the text in the control. The result is corresponding line number (also
in index origin 0).

The 'Charttopoint' method

Argument: 2-element Numeric Vector
Result: 2-element Numeric Vector

Valid for: Chart

This method converts from Chart coordinates (using the main Y scale) to coordinates of the visible

control on the screen. It can be useful if you are adding your own annotations or other graphic

elements using the Draw method, and want to relate these to points of a Series which uses the main Y
Scale.

The argument is a two-element vector of Y value (using the main Y scale) and X value. The result is a

two-element vector of the corresponding vertical and horizontal position within the visible control

(remembering that top, left is 0, 0). The result is expressed in the current scale of the control; you

will probably want to set the scale property to 5 for pixels before calling this method.

APLX System Classes & User-Interface Programming 312

The 'Clear' method

Argument: None
Result: None

Valid for: Edit, RichEdit, Document, SendMail

For the Edit, RichEdit, and Document classes, the Clear method deletes the currently selected text (if

any) from the object. If there is no text currently selected, it does nothing. This is what normally

should happen when Clear is selected from the Edit menu. The onChange and onClick callbacks (if
any) are triggered if text was deleted.

For the SendMail class, the Clear method clears all the properties associated with a specific e-mail

(subject, body, attachments, and so on). If you are sending a series of e-mails, you should normally

call this method in between each one, in order to ensure that you do not accidentally send the wrong
information to the next recipient.

The 'Click' method

Argument: None
Result: None

Valid for: Any visible object, but usually applies only to Buttons

Invoking the Click method for an object invokes its onClick callback (if any). It is normally used for

triggering the same action as would be invoked if the user clicked in a button. It is useful for avoiding

duplication of code in cases where some other part of your program needs to be able to carry out the
same action as happens when a button is clicked.

APLX System Classes & User-Interface Programming 313

The 'Clienttoscreen' method

Argument: 2-element integer vector
Result: 2-element integer vector

Valid for: Any visible control

This method converts coordinates within the client area of a control to cooordinates relative to the

whole screen. Both the argument and the result are two-element vectors of Row position, Column

position (i.e. Y, X), always expressed in pixels. The scale properties of the control and System
objects are ignored.

The 'Close' method

Argument: Optional boolean scalar - see text
Result: None

Valid for: Any object except System, but usually applies only to Form, Window, Document, Dialog,

APL, SendMail, GetMail, Socket, and Printer objects

The Close method is used to request an object to close itself.

Window-level and other visible objects

For a Window, Form, Dialog or Document, and for other visible objects, the exact behavior depends

on the event handler state and the argument to the Close method.

 If the Close method is invoked with an argument of 1, the object is closed unconditionally (but

not destroyed), and the onClose callback (if any) is not invoked.

 If the Close method is invoked without an argument (or with an argument of 0), and if an

onClose callback has been defined for the object, the onClose callback will be triggered. This

callback function - which you supply - will normally do any processing necessary when the

object is closed (such as saving the state of the window), and then actually close the object by

invoking the Close method again with an argument of 1, or alternatively destroy it altogether

using the Delete method. In some cases, however, the object may 'refuse' to close itself; for

example, the onClose callback function might put up a dialog box to ask the user to confirm
that he wishes to close the window, and if not then the window is not closed.

 If no onClose callback has been defined for an object, the default behavior is to close the

object immediately, whether or not an argument was supplied to the Close method.

 If the object is already in the closed state the Close method has no effect at all.

APLX System Classes & User-Interface Programming 314

When an object is closed it is no longer visible, but it still exists. You can still read or set its

properties, and it can subsequently be re-opened in the same state by using the Open method.

However, you should remember that a closed object continues to use system memory, and therefore if

an object is not going to be needed again you should destroy it altogether (using the Delete method)

as soon as you can, for example at the end of the onClose callback function.

For a Form, Dialog, Window or Document object, invoking the Close method without an argument
has the same effect as the user clicking in the close box in the window's title bar.

Printer object

For a Printer object, the Close method has a special effect. The current print job is closed, and
submitted to the printer. The method takes no argument.

APL (child task) object

For an APL object, the Close method terminates the child task, closing any windows belonging to the
task and freeing the workspace memory. The method takes no argument.

Networking objects

For the SendMail, GetMail and Socket objects, the Close method closes the connection and releases

resources at the other end. It takes no arguments. You should always ensure you call the Close
method when the communications session is complete.

The 'Closedocument' method

Argument: None

Result: None

Valid for: OLEContainer (Implemented under Windows only)

The Closedocument method closes the document in an OLEContainer, remembers its state, and

disconnects from the server application. You can still read the contents property to retrieve the

document contents.

APLX System Classes & User-Interface Programming 315

The 'Copy' method

Argument: None
Result: None

Valid for: Edit, RichEdit, Document, Browser, Chart, Image

For an Edit, RichEdit, Document, or Browser contol, the Copy method copies the currently selected

text (if any) to the clipboard. If there is no text currently selected, it does nothing. This is what

normally should happen when Copy is selected from the Edit menu. (For a RichEdit control, the text
written to the clipboard includes formatting information such as the font and text color.)

For a Chart or Image object, the Copy method copies the current image to the clipboard, as a resizeable
picture.

The 'Create' method

Argument: See text

Result: None

Valid for: Any class of object except the System object

The Create method is identical to the New method, except that if an object of the same name already

exists, it is automatically deleted before the new object is created.

The 'Cut' method

Argument: None
Result: None

Valid for: Edit, RichEdit, Document

The Cut method copies the currently selected text (if any) to the clipboard, and then deletes the

selected text from the object. If there is no text currently selected, it does nothing. This is what

normally should happen when Cut is selected from the Edit menu. The onChange callback (if any) is
triggered.

APLX System Classes & User-Interface Programming 316

For a RichEdit control, the text written to the clipboard includes formatting information, such as the
font and color.

The 'Delete' method

Argument: None

Result: None

Valid for: Any object except the System object, but usually applied to a Window, Document or
Dialog.

The Delete method destroys an object and releases all the memory it uses. After you have deleted an

object, it can no longer be re-opened and you can no longer read or set its properties. If the object

contains other objects, they are also destroyed, so normally you do not need explicitly to destroy child

objects. You should always delete a window which will no longer be needed, since otherwise the

object continues to use system memory (until APLX terminates execution, when all objects are deleted

automatically). If you created it using ⎕NEW, it will automatically be deleted when the last reference to
it is erased from the workspace.

When an object is deleted, the onDestroy callback of the object is invoked,

The 'Deletecols' method

Argument: Integer vector

Result: None

Valid for: Grid

The Deletecols method takes an argument which is a vector of columns to be deleted from a Grid

object. After they have been deleted, the remaining columns are re-numbered to form an integer

sequence starting at 1.

APLX System Classes & User-Interface Programming 317

The 'Deletemessage' method

Argument: Integer Scalar
Result: None

Valid for: GetMail

This method can be called to mark a message on the POP3 server for deletion. It takes a single

argument, which is the index of the message to be deleted, in the range 1 to N, where N is the number

of messages on the server (as returned by the count property, or the number of rows in the messages
property).

The server will not actually delete the message until the session is successfully completed and you call

the Close method. If an error occurs, or if the connection is lost, the message will be left untouched.

See also the deleteonread property, which allows you to specify that messages should automatically
be marked for deletion when they are downloaded.

The 'Deletenodes' method

Argument: Integer vector
Result: None

Valid for: Tree

The Deletenodes method deletes one or more nodes from a Tree object. The argument is an integer

vector of the node IDs to be deleted.

APLX System Classes & User-Interface Programming 318

The 'Deleterows' method

Argument: Integer vector
Result: None

Valid for: Grid

The DeleteRows method takes an argument which is a vector of rows to be deleted from a Grid object.

After they have been deleted, the remaining rows are re-numbered to form an integer sequence starting
at 1.

The 'Doverb' method

Argument: Integer scalar
Result: None

Valid for: OCX controls and OLEContainer (Implemented under Windows only)

The DoVerb method takes an integer argument which is the ID of a 'verb' to perform. This can either

be a positive integer representing one of the application-specific verbs (see the verbs property), or one
of the following standard verbs:

0 Specifies the action that occurs when an end-user
 double-clicks the object in its container.
¯1 Instructs an object to show itself for editing or viewing.
¯2 Instructs an object to open itself for editing in a window
 separate from that of its container.
¯3 Causes an object to remove its user interface from the view.
 Applies only to objects that are activated in-place.
¯4 Activates an object in place, along with its full set of
 user-interface tools, including menus,
 If the object does not support in-place activation, gives domain error
¯5 Activates an object in place without displaying tools, such as menus
 and toolbars, that end-users need to change the behavior or appearance
 of the object.
¯6 Used to tell objects to discard any undo state
 that they may be maintaining without deactivating the object.

APLX System Classes & User-Interface Programming 319

The 'Draw' method

Argument: Nested array
Result: Depends on operation

Valid for: All visible controls and the Image and Printer objects

The Draw method allows you to draw text, lines, patterns, pictures and geometric shapes on windows,

controls, charts, images and printer pages. It takes an argument which comprises one or more phrases

which each start with a keyword indicating the operation to perform, followed by the arguments to that
operation.

As well as drawing on the screen or printer, it can also be used to draw on an off-screen bitmap using

an Image object. This can then be saved in many different formats, such as JPEG, GIF, PDF, BMP,

and PNG. In addition, the Draw method can be used in conjunction with the Chart object to add extra

graphics elements to charts.

Drawing takes place using a current Pen (for foreground drawing) and Brush (for background

drawing). You can also set the Mode which determines how drawing interacts with what is already on
the screen.

APLX automatically handles window refreshing for you if the window is uncovered or resized (you

can switch this off using the autoredraw property). It does this by storing the sequence of Draw

commands applicable to the window or control, and replaying them when an update is required. You

can also group a series of commands together, and selectively enable or disable them (for example, to

temporarily hide the labels on a graph), or delete them altogether from the saved sequence. This is
useful for animation effects.

The general syntax of the Draw method is:

 Control.Draw '<Keyword>' Arg1 Arg2...

where Control is usually the Window into which you want to draw, or a Printer, Image, Chart, Frame
or Picture control.

You can also supply multiple sequences of commands on one line:

 Control.Draw ('<Keyword1>' Arg1) ('<Keyword2>' Arg1 Arg2)...

See the separate section on Using the Draw method for full details.

APLX System Classes & User-Interface Programming 320

The 'Editstart' method

Argument: None
Result: None

Valid for: Grid

The Editstart method takes no arguments. It initiates an editing session on the currently-active cell.

It is useful mainly if you have set the autoeditstart property to 0. For example, you might initiate

an edit session for certain cells only (in response to an onSelChange event).

The 'Eject' method

Argument: None
Result: None

Valid for: Printer

Call the Eject method if you want to start a new page in the current print job.

The 'Ensurevisible' method

Argument: Integer scalar
Result: None

Valid for: Tree

The Ensurevisible method ensures that a given node is visible, expanding and/or scrolling the tree if
necessary. The argument is the node ID to be shown.

APLX System Classes & User-Interface Programming 321

The 'Execute' method

Argument: Character vector
Result: None

Valid for: APL (child task) object

The Execute method allows the parent to cause the child task to execute an APL expression or system

command. It takes as an argument a character string which is the command to be executed (or passed
as input to ⍞ or ⎕).

The child task should be awaiting input (you can tell whether this is the case by reading the status

property, or by using the onReady callback). If it is not, the command will be placed in a buffer and

will be executed when the child task next asks for input. However, there is no queue of commands

held; any existing command already in the buffer will be over-written if the child task has not yet

executed it. The Execute method returns immediately; it does not wait for the command to complete.

In this example, the child task is initially ready for input. It then executes the)LOAD command, and is

busy for a short time (status property is 0). The status property then changes back to 1 when it is
ready for further input:

 ChildTask.status
1
 ChildTask.Execute ')LOAD 10 SAMPLEEXCEL'
 ChildTask.status
0
 ChildTask.status
1

Note that in a real multi-tasking APLX application you would typically use the Signal method and

onSignal events to allow the parent and child tasks to communicate with each other and synchronize

their operations. The Execute method would typically be used only when starting up the child task.

APLX System Classes & User-Interface Programming 322

The 'Expand' method

Argument: Two-element nested vector
Result: None

Valid for: Tree

The Expand method is used to expand or collapse a given node. The argument is a two element nested

vector, comprising a character vector which indicates the action to be taken, and the node ID. The
supported actions are:

 'expand' Open node to display children
 'collapse' Close node to hide children
 'toggle' Expand if closed or Collapse if open
 'expandbranch' Open node to display children, recursively
 'collapsebranch' Close node to hide children (recursively)
 'collapsereset' Remove all children (not implemented under MacOS)

The 'Find' method

Not currently implemented

The 'Findnode' method

Argument: Character vector or two-element nested vector
Result: Integer scalar or vector vector

Valid for: Tree

The Findnode method return the node identifier (or a vector of IDs) for nodes matching the specified

characteristic. The first argument is a character vector giving the operation name. Some forms require

a second (integer) argument, the node ID. The result is usually an integer scalar node ID, or 0 if none

is found. For the 'children' operation, a vector of IDs is returned.

Operations which do not require a second argument are:

'root' The first top-level node
'firstvisible' The first visible node
'drop' The current drag-and-drop target
'select' The currently-selected node

APLX System Classes & User-Interface Programming 323

Operations which do require a second argument, a node ID, are:

'children' All children of specified node (a vector is returned)
'parent' Parent of specified node
'child' First child of specified node
'next' Next sibling of specified node
'prev' Previous sibling of specified node
'nextvisible' Next visible node after the specified node
'prevvisible' Previous visible node before the specified node

The 'Focus' method

Argument: None

Result: None

Valid for: Window object (Window, Form, Document, Dialog) and controls which can receive the

input focus. Under Windows, these are the Check, Radio, Button, Progress, Trackbar, Spinner, Scroll,

List, Combo, Edit, RichEdit, Movie, OLEContainer, Splitter, Selector, Page, Tree, and Frame controls.
Under MacOS, these are the List, Edit, RichEdit and Tree controls.

The Focus method sets the input focus to an object under program control. In the case of a top-level

object, this means activating the window. In the case of a control such as an Edit object, this means the

input cursor will be placed in the control (provided the window on which the control is placed is itself

activated).

The 'Forward' method

Argument: None
Result: None

Valid for: Browser

This method causes the Browser to go forward one page in the history of previously-displayed web

pages. (You can tell whether this is valid by reading the status property).

APLX System Classes & User-Interface Programming 324

The 'Get' method

Argument: Character Vector
Result: 3-element Nested Vector

Valid for: HTTPClient

The Get method retrieves a page or other file from a web-server. The argument is a character vector

which is the URL to retrieve (e.g. 'http://www.microapl.co.uk/apl/index.html').

The result is a three element vector.

The first element is the HTTP return code, which is an integer scalar. A number in the range 200 to

299 indicates success. A number in the range 400 to 499 indicates an error, such as 404 meaning 'page

not found'. (See the documentation on the HTTPClient object for a list of codes)

The second element is a character vector indicating the MIME type of the returned data, such as

'text/plain'.

The third element is a character vector containing the data - this will usually be the HTML text of the

web page (possibly with embedded carriage returns). If the MIME type begins with 'text', the data will
have been translated to the APLX character set.

For example:

 H←'⎕' ⎕NEW 'HTTPClient'
 R←H.Get 'http://www.microapl.co.uk/apl/index.html'
 1⊃R
200
 2⊃R
text/html
 3⊃R
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">

<!-- $$PAGE_TITLE$$='APLX^{<small>TM</small>} The exciting cross-platform
APL' -->
<!-- $$SITE_ROOT$$='..' -->

<HTML>
<HEAD>
 <TITLE>APLX: The exciting cross-platform APL</TITLE>
... etc

APLX System Classes & User-Interface Programming 325

The 'Getinfo' method

Argument: Two- or three-element nested vector
Result: See text

Valid for: Tree

The Getinfo method returns information about one or more nodes in the tree.

The first argument is a character vector giving the attribute name you are interested in, one of:
'forceparent' 'highlightbold' 'highlightcut' 'highlightdrop' 'highlightselect'
'expanded' 'expandedonce' 'haschildren' 'wherelabel' 'whererow' 'list' 'label'

'images' or 'handle'.

The second argument is a node ID or vector of node ids to query.

The optional third argument specifies the depth of children to query. 0 means return information about

the node itself only. 1 means return information about the node and its immediate children, 2 means

return information about the node, its children, and grandchildren, and so on. You can also specify ¯1
to indicate that information about all descendants (to any depth) should be returned.

The result is a vector or matrix (depending on attribute), with one item/row for each node. If the

optional third argument is given, the result is a matrix with the first column giving node IDs, the

second column giving relative depth, and remaining column(s) giving attribute values. The returned
values are as follows:

Querying the state of the node(s)

Keywords: 'forceparent' 'highlightbold' 'highlightcut' 'highlightdrop'
'highlightselect' 'expanded' 'expandedonce' 'haschildren'

These each return a single boolean value for each node, indicating whether the specified attribute is
true or false for each node.

Querying the labels associated with the node(s)

Keyword: 'label'

This keyword returns a character vector for each node, containing the label.

Querying the images associated with the node(s)

Keyword: 'images'

APLX System Classes & User-Interface Programming 326

In this case a matrix is returned, with one row for each node. The matrix has four columns, containing

the indices in the Tree object's imagelist of the non-selected image, selected image, overlay image,

and user-state image. In each case, 0 is returned if there is no corresponding image associated with the

node. (If the optional third argument was supplied, a 6-column matrix is returned. The first two
columns are the node ID and depth, and the subsequent columns are the image indices).

Querying all the data used to set up the node(s)

Keyword: 'list'

In this case a matrix is returned, with one row for each node. The matrix has three columns, containing

values of the third, fourth and fifth columns of the list property corresponding to the node. These are

the label, the image indices vector, and the state keywords. (If the optional third argument was

supplied, a 5-column matrix is returned. The first two columns are the node ID and depth, and the
subsequent columns are the above data).

Querying the position and size of the node(s)

Keywords: 'wherelabel' or 'whererow'

In these cases a matrix is returned, with one row for each node. The matrix has four columns,

corresponding to the top, left, height and width of the rectangle occupied by the whole node (for

'whererow') or just its label (for 'wherelabel'). The values are expressed in the current scale of

the Tree object. Coordinates of all 0s are returned if the node is not visible because it is not expanded.

Note that the coordinates may be negative or greater than the client area of the Tree control if the node

is not currently scrolled into view. (If the optional third argument was supplied, a 6-column matrix is

returned. The first two columns are the node ID and depth, and the subsequent columns are the top,
left, height, width values).

Retrieving the internal handle of the node(s)

Keyword: 'handle'

Under Windows, this keyword returns an integer value for each node, containing a handle of type

HTreeItem which Windows uses to identify the node internally. It can be used for low-level
programming. Under MacOS and Linux, this keyword returns 0 for each node.

APLX System Classes & User-Interface Programming 327

The 'Getmessage' method

Argument: Integer Scalar
Result: None

Valid for: GetMail

Once you have connected to a mail server, you can retrieve the full contents of an individual e-mail

message (into properties of the GetMail object) by calling the GetMessage method. It takes an integer

scalar argument, which is the index (in origin 1) of the message you want to retrieve. (This will be a

number in the range 1 to the value of the count property, or the number of rows in the messages

property). If successful, it will also retrieve any attachments and write them to files, in the directory

specified by the path property.

Having successfully called GetMessage, you can then access various properties (such as subject to

from date body and attachments) to access the content of the retrieved e-mail message.

The 'Getsummary' method

Argument: Integer Scalar
Result: None

Valid for: GetMail

Once you have connected to a mail server, you can retrieve partial details of an individual e-mail

message (into properties of the GetMail object) by calling the GetSummary method. This takes an

integer scalar argument, which is the index (in origin 1) of the message you want to retrieve. (This will

be a number in the range 1 to the value of the count property, or the number of rows in the messages
property).

Having successfully called GetSummary, you can then read the following properties for information

about the e-mail: subject from id header and size.

APLX System Classes & User-Interface Programming 328

The 'Head' method

Argument: Character Vector
Result: 3-element Nested Vector

Valid for: HTTPClient

The Head method retrieves information about a page or other file from a web-server. The argument is

a character vector which is the URL (e.g. 'http://www.microapl.co.uk/apl/index.html').

The result is a three element vector.

The first element is the HTTP return code, which is an integer scalar. A number in the range 200 to

299 indicates success. A number in the range 400 to 499 indicates an error, such as 404 meaning 'page

not found'.

The second element is a character vector indicating the MIME type of the returned data, such as

'text/plain'.

The third element is a character vector containing the HTTP header associated with the page.

For example:

 (errcode mimetype text) ← HTTP.Head 'http://www.microapl.co.uk/apl'
 errcode
200
 mimetype
text/html
 text
Server: Zeus/4.2
Date: Wed, 09 Feb 2005 12:19:41 GMT
Content-Type: text/html
Content-Length: 10437
Accept-Ranges: bytes
Last-Modified: Thu, 07 Oct 2004 11:35:34 GMT

APLX System Classes & User-Interface Programming 329

The 'Hide' method

Argument: None
Result: None

Valid for: Any displayable object

Calling the Hide method is equivalent to setting the object's visible property to 0; it removes the

object from the screen. You can make the object visible again by calling the Show method, or by

setting the visible property to 1.

The 'Hittest' method

Implemented under Windows only

Argument: Two-element numeric vector
Result: Two-element nested vector

Valid for: Tree

The Hittest method takes a coordinate of a point in the Tree object, and determines whether the

point is on a node and if so which node. It also returns information about which area of the node it
corresponds to.

The argument is a two-element vector containing the vertical and horizontal coordinates of the point,

relative to the top left of the control and expressed in the object's current scale.

The result is a two-element nested vector. The first element is an integer, which is the ID of the node

at the given point, or 0 if the point does not correspond to a node. The second element is a character

vector, indicating which area of the node the point corresponds to. It is one of the strings: 'image',

'button', 'label', 'imageuser', 'indent', 'noderight', 'above', 'below', 'toleft',

'toright', 'aboveleft', 'aboveright', 'belowleft', 'belowright' or 'nowhere', or an empty
vector if the position is unknown.

APLX System Classes & User-Interface Programming 330

The 'Insertcols' method

Argument: Integer vector
Result: None

Valid for: Grid

The Insertcols method takes an argument which is a vector of positions at which you wish to insert

new columns in a Grid object. You can specify integers (for example 5 means 'insert before the current

column 5'), or non-integers (for example 4.5 means 'insert between the current columns 4 and 5').

After the insertion, the columns are re-numbered to form an integer sequence starting at 1. Thus, if

you insert at 5 and 6, the new columns become numbers 5 and 7. To insert three new columns before
the current second one, specify 2 2 2.

The 'Insertnodes' method

Argument: 3-element nested vector
Result: None

Valid for: Tree

The Insertnodes method inserts one or more new nodes into a Tree object.

The argument is a nested vector of 3 elements. The first element is an integer scalar, representing the

node ID into which the new node(s) should be placed. (You can alternatively specify the keyword

'root' to indicate that the new node(s) should appear at the top level). The second element is an integer

scalar which indicates the node after which the new nodes should be placed. (You can alternatively

specify a character vector, being one of 'first' 'last' or 'sort'). The third element is a 3, 4 or 5 column

matrix (or vector if just one node is being added), with the same structure as for the list property.
Each row has fields: id depth label [image_indices [state]]

APLX System Classes & User-Interface Programming 331

The 'Insertrows' method

Argument: Integer vector
Result: None

Valid for: Grid

The Insertrows method takes an argument which is a vector of positions at which you wish to insert

new rows in a Grid object. You can specify integers (for example 5 means 'insert before the current

row 5'), or non-integers (for example 4.5 means 'insert between the current rows 4 and 5'). After the

insertion, the rows are re-numbered to form an integer sequence starting at 1. Thus, if you insert at 5

and 6, the new rows become numbers 5 and 7. To insert three new rows before the current second one,
specify 2 2 2.

The 'Interrupt' method

Argument: None
Result: None

Valid for: APL (child task) object

If a child task is executing (status property is 0), the Interrupt method can be called to interrupt it.
It is equivalent to a keyboard interrupt (break).

The 'Job' method

Argument: None

Result: Boolean scalar

Valid for: Printer

The Job method displays the standard print job dialog, which allows the user to specify print

parameters such as the number of copies and the collation sequence. (This is the dialog which is

normally displayed when the user selects Print.. from the File menu of a typical application). It

updates the current print record of the printer object, and should be called before calling the Open
method which starts the print job.

APLX System Classes & User-Interface Programming 332

The return value indicates how the user ended the dialog. If the user pressed the OK button, it returns
1. A return value of 0 indicates that the Cancel button was pressed, so printing should not take place.

See also the Setup method which displays the standard dialog for selecting document-specific
parameters such as the paper size, paper source, and orientation.

The 'Linelength' method

Argument: Integer scalar
Result: Integer scalar

Valid for: RichEdit

The Linelength method allows you to determine the length of a given line of the text in the control.

The argument is the line number (in index origin 0). The result is length of the line in characters.

The 'Linetochar' method

Argument: Integer scalar

Result: Integer scalar

Valid for: RichEdit

The Linetochar method allows you to determine the position within the text corresponding to the

start of a particular line. The argument is the line number (in index origin 0). The result is the position
(also in index origin 0) of the first character of the line, relative to the start of the text in the control.

The 'Listen' method

Argument: None
Result: None

Valid for: Socket

The Listen method is used for sockets at the server end of a network connection. It sets up the socket

so that it is associated with the port specified in the port property.

APLX System Classes & User-Interface Programming 333

See the description of the Socket class for details.

The 'Load' method

Argument: Character vector

Result: None

Valid for: RichEdit, Image, Browser

RichEdit

The Load method of a RichEdit control causes APLX to load the contents of a text file into the control

(any existing contents are overwritten). The argument is the full pathname of the file you wish to load.

This can be either a plain text file, or (under Windows) a Rich Text (.rtf) file, with embedded

formatting information. If you specify an empty vector as the file name, a dialog is displayed to allow

the user to select a file.

Image

For an Image control, the Load method causes APLX to load the image (or sequence of images) from

the specified file into the Image. The file format can be any of those supported by ImageMagick. If

you specify an empty-vector argument, a dialog is displayed to allow the user to select a file.

Browser

For the Browser object, the Load method takes as argument a URL. The Browser will start loading the
requested page from the internet or local file.

The 'New' method

Argument: See text

Result: None

Valid for: Any class of object except the System object

Using the New method with dot notation

The New method is used to create new objects which are children of existing objects. It is thus special

in that it can be invoked on an object which does not yet exist. The basic syntax is:

 ParentRef.ObjectName.New ClassName

APLX System Classes & User-Interface Programming 334

where ObjectName is the name of the object you want to create, and ClassName is the class of object

you want to create, as a character vector. The name of the object must not already be in use for another

object, and the class must be one of the standard APLX object class names, such as 'Button' or 'Edit'.
Objects are created initially with all properties having the default values for the class of object.

For example, the following sequence creates a window containing an 'OK' button:

 W←'⎕' ⎕NEW 'Window'
 W.size←8 12 ⊦ W.title←'Demo'
 W.But.New 'Button'
 W.But.where←5 9 ⊦ W.But.title←'OK'

Once the object has been created, and any properties specified have been set, the object is usually

automatically opened, except in the case of the Printer and APL (child task) classes where you need to

call the Open method explicitly. In addition, visual objects are automatically displayed (unless you

have set the visible property to 0), except for the pre-defined dialog classes (ChooseFont,

ChooseColor, ChooseDir, OpenFile, SaveFile and MsgBox) where the dialog does not appear until

you call the Show method. However, for a window object (Window, Form, Document or Dialog), the
window is not actually opened until the first of the following occurs:

↖ APL desk-calculator mode is reached

↖ Your program checks for events using ⎕WE.

↖ Your program creates another top-level object using the New method.

↖ Your program invokes the Open or Show method for the window.

The reason for deferring the actual display of a window in this way is so that your program can build

up the objects in the window after creating it, without the user seeing objects being created, moved,
resized etc as the objects are defined.

Using the New method with ⎕WI

Using ⎕WI syntax, the New method can be used to create either top-level or child objects. It can also

can optionally set one or more properties for the newly-created object, by following the Class name

with a list of Property-Value pairs. The following sequence is equivalent to the dot-notation example
above; it creates a window containing an 'OK' button:

 'Win' ⎕WI 'New' 'Window'
 'Win' ⎕WI 'size' 8 12
 'Win' ⎕WI 'title' 'Demo'
 'Win.But' ⎕WI 'New' 'Button'
 'Win.But' ⎕WI 'where' 5 9
 'Win.But' ⎕WI 'title' 'OK'

You could achieve the same result as follows:

 'Win' ⎕WI 'New' 'Window' ('size' 8 12) ('title' 'Demo')
 'Win.But' ⎕WI 'New' 'Button' ('where' 5 9) ('title' 'OK')

APLX System Classes & User-Interface Programming 335

If an object of the same name already exists when you try to use the New method, a DOMAIN ERROR will

be generated. As an alternative, you can use the Create method, which is identical except that any
object of the same name is automatically deleted before the new object is created.

The 'Open' method

Argument: None

Result: None

Valid for: Any object except the System object

The Open method explicitly opens an object, which normally makes it appear on the screen (provided

its visible property is not zero, and also its parent is open and visible). For most ordinary visual

controls, you do not normally need to use the Open method when an object is created, because New

automatically opens it for you. The Open method is most useful for re-opening an object which has

been closed, or for making a top-level object appear immediately after creation if your program has

further processing to do (see the description of the New method). If the object is already open, this

method does nothing.

For certain objects, the Open method has a special meaning:

For a Printer object, it starts a new print job, and printing commands (such as the Print method) will

be appended to the open print job until the Close or Abort method is called.

For an APL (child task) object, the Open method allocates memory for the workspace and starts the
task running.

For the networking objects GetMail, SendMail and Socket, the Open method establishes the
connection to the remote host. See the descriptions of these objects for more details.

Note: Although you can use the Open method for the pre-defined dialogs such as ChooseColor and

OpenFile, it has no useful effect for these object types.

APLX System Classes & User-Interface Programming 336

The 'Overlay' method

Argument: Nested or integer vector (see text)
Result: None

Valid for: Image

The Overlay method allows you to overlay one image (the foreground image) on to another (the

background image). If the foreground image is transparent, the background image will be partially
visible through the foreground image.

The background image should first be loaded into an Image object. You then copy the foreground

image to a specified location on the background image. The foreground image usually comes from a
file, but it can come from another Image object.

To load a foreground image from file, call the Overlay method with this syntax:

 Image.Overlay 'file_name' Top Left <Mode>
or
 'ImageName' ⎕WI 'Overlay' 'file_name' Top Left <Mode>

where file_name is the name of the file to load (one of the standard formats supported by

ImageMagick), and Top and Left are the positions in the Image control where it should be loaded

(these can be omitted, in which case 0 0 is assumed). If the file name is an empty vector, a dialog will

be invoked to allow the user to select a file. The last parameter Mode is normally not needed - see
below.

To load a foreground image from another Image object, call the Overlay method with this syntax:

 Image.Overlay Handle Top Left <Mode>
or
 'ImageName' ⎕WI 'Overlay' Handle Top Left <Mode>

where the Handle parameter is an integer representing the handle property of the source Image object.

This is very useful if you want to create the foreground image dynamically, or load a non-transparent
image and make it transparent (see the Setopacity method)

This function loads a background image from file, and places a foreground image (also from file) over
it:

 ↔DEMO_Overlay;Win
[1] '⎕' ⎕wi 'scale' 5
[2] Win←'⎕' ⎕NEW 'form' ⊦ Win.title←'Transparency' ⊦ Win.where←1 1 420 700
[3] Win.Pic.new 'Picture'
[4] Win.Pic.Img.new 'Image' ⊦ Win.Pic.Img.scale←5 ⊦ Win.Pic.align←¯1
[5] Win.Pic.Img.file←'c:\pictures\background.jpg'
[6] Win.Pic.Img.Overlay 'c:\pictures\foreground.png' 200 120
[7] ⊣1 ⎕WE Win
 ↔

APLX System Classes & User-Interface Programming 337

This version of the function does the same, but uses a second Image object to hold the foreground
image and transform it, before copying it into the background:

 ↔DEMO2_Overlay;Win;Img2;handle
[1] '⎕' ⎕wi 'scale' 5
[2] Win←'⎕' ⎕NEW 'form' ⊦ Win.title←'Transparency' ⊦ Win.where←1 1 420 700
[3] Win.Pic.new 'Picture'
[4] Win.Pic.Img.new 'Image' ⊦ Win.Pic.Img.scale←5 ⊦ Win.Pic.align←¯1
[5] Win.Pic.Img.file←'c:\pictures\background.jpg'
[6] ⍝ Create a second (invisible) image object:
[7] Img2←'⎕' ⎕new 'Image'
[8] Img2.file←'c:\pictures\foreground.png'
[9] Img2.Transform 'Flip'
[10] handle←Img2.handle
[11] Win.Pic.Img.Overlay handle 200 120
[12] ⊣1 ⎕WE Win
 ↔

The 'mode' parameter

The underlying ImageMagick call which does the copying is MagickCompositeImage(). If you omit

the final Mode parameter, this is called with the 'compose' type set to AtopCompositeOp, which means

that the foreground image is placed over the background image. This is the most common

requirement. However, there are other possible values which you can specify as the Mode parameter.

These are defined in an 'enum' called CompositeOperator in the ImageMagick source; unfortunately,

the exact values of the mode parameter may vary from one release of ImageMagick to another, so you

will need to check the ImageMagick include files (composite.h) to get the numeric values for the

particular version you are using - they start with UndefinedCompositeOp = 0.

Useful values include:

OverCompositeOp
The result is the union of the the two image shapes with composite image obscuring image in the

region of overlap. If the foreground pixel is part or all transparent, the corresponding background pixel

will show through.

InCompositeOp

The result is simply the foreground image cut by the shape of the background. None of the image data
of the background image is included in the result.

OutCompositeOp
The resulting image is foreground image with the shape of image cut out.

AtopCompositeOp
Same as OverCompositeOp, except the portion of the foreground image outside of the background
image's shape does not appear in the result.

XorCompositeOp
The result is the image data from both the foreground and background images that is outside the
overlap region. The overlap region will be blank.

APLX System Classes & User-Interface Programming 338

PlusCompositeOp
The result is just the sum of the image data. Output values are cropped to 255 (no overflow). This
operation is independent of the matte channels.

MinusCompositeOp

The result of foreground image - image, with overflow cropped to zero. The matte chanel is ignored
(set to 255, full coverage).

AddCompositeOp
The result of foreground image + image, with overflow wrapping around (mod 256).

SubtractCompositeOp

The result of foreground image - image, with underflow wrapping around (mod 256). The add and
subtract operators can be used to perform reversable transformations.

DifferenceCompositeOp
The result of abs(foreground image - image). This is useful for comparing two very similar images.

MultiplyCompositeOp
Multiplies the color of each target image pixel by the color of the corresponding foreground image
pixel. The result color is always darker.

BumpmapCompositeOp
The result image shaded by the foreground image.

ReplaceCompositeOp
The resulting image is image replaced with foreground image. Transparency is ignored.

CopyCompositeOp
Replace the target image with the foreground image.

CopyRedCompositeOp
Copy the red channel from the foreground image to the target image.

CopyGreenCompositeOp
Copy the green channel from the foreground image to the target image.

CopyBlueCompositeOp
Copy the blue channel from the foreground image to the target image.

ClearCompositeOp
Make the background image transparent. The contents of the foreground image are ignored.

DissolveCompositeOp
Use to foreground image to 'dissolve' the background it overlays.

DarkenCompositeOp
Replace target image pixels with darker pixels from the foreground image.

APLX System Classes & User-Interface Programming 339

LightenCompositeOp
Replace target image pixels with lighter pixels from the foreground image.

HueCompositeOp
Each pixel in the result image is the combination of the hue of the target image and the saturation and

brightness of the foreground image.

SaturateCompositeOp
Each pixel in the result image is the combination of the saturation of the target image and the hue and
brightness of the foreground image.

ColorizeCompositeOp

Each pixel in the result image is the combination of the brightness of the target image and the
saturation and hue of the foreground image. This is the opposite of LuminizeCompositeOp.

LuminizeCompositeOp
Each pixel in the result image is the combination of the brightness of the foreground image and the
saturation and hue of the target image. This is the opposite of ColorizeCompositeOp.

ScreenCompositeOp
Multiplies the inverse of each image's color information.

CopyCyanCompositeOp
Copy the cyan channel from the foreground image to the target image.

CopyMagentaCompositeOp
Copy the magenta channel from the foreground image to the target image.

CopyYellowCompositeOp
Copy the yellow channel from the foreground image to the target image.

CopyBlackCompositeOp
Copy the black channel from the foreground image to the target image.

ColorDodgeCompositeOp
Brightens the destination color to reflect the foreground color. Painting with black produces no
change.

HardLightCompositeOp
Multiplies or screens the colors, dependent on the source color value. If the foreground color is lighter

than 0.5, the destination is lightened as if it were screened. If the foreground color is darker than 0.5,

the destination is darkened, as if it were multiplied. The degree of lightening or darkening is

proportional to the difference between the foreground color and 0.5. If it is equal to 0.5 the destination
is unchanged. Painting with pure black or white produces black or white.

SoftLightCompositeOp
Darkens or lightens the colors, dependent on the foreground color value. If the source color is lighter

than 0.5, the destination is lightened. If the foreground color is darker than 0.5, the destination is

darkened, as if it were burned in. The degree of darkening or lightening is proportional to the

APLX System Classes & User-Interface Programming 340

difference between the foreground color and 0.5. If it is equal to 0.5, the destination is unchanged.

Painting with pure black or white produces a distinctly darker or lighter area, but does not result in
pure black or white.

The 'Paint' method

Argument: None

Result: None

Valid for: Any displayable object

The Paint method forces an object to be re-drawn immediately. You do not normally need to call this,
since any changes made to an object automatically trigger a re-draw event.

The 'Paste' method

Argument: None
Result: None

Valid for: Edit, RichEdit, Document, Image

The Paste method pastes text from the clipboard into the Edit or Document object at the current

insertion point, replacing the currently selected text (if any). This is what normally should happen

when Paste is selected from the Edit menu. The onChange callback (if any) is triggered.

For a RichEdit control, the pasted text will include formatting information such as the font and text
color.

For an Image object, the Paste method copies a picture from the clipboard into the Image object.

APLX System Classes & User-Interface Programming 341

The 'Play' method

Argument: None
Result: Integer scalar - see text

Valid for: Movie

The Play method starts the current movie from the current position. If the movie is already playing, it

has no effect. If the movie has ended, the current position will be at the end of the movie, so the Play

method will have no visible effect unless the Rewind method is first called.

You typically use the Play method for a Movie object which does not have a controller (i.e. the style
property is 1 or 2), in three main circumstances:

 For a movie which has been newly opened, to begin the movie;

 For a movie which has been paused using the Stop method, to resume playing from the current

position;

 For a movie which has ended and which you want to repeat, you invoke the Rewind method

and then the Play method.

The Play method returns a result which is a code as follows:

 ¯1 Movie file not yet specified (or user chose Cancel in the movie
 selection dialog, or an error occurred in opening the file)
 1 Movie playing
 2 Movie not playing because it has ended

The 'Pointtocell' method

Argument: 2-element Numeric Vector
Result: 2-element Numeric Vector

Valid for: Grid

This method converts from coordinates of the grid control on the screen to a cell position. It is

particularly useful for respondng to mouse-down events on the grid, if you need to know which cell
the user has clicked in.

The argument is a two-element vector of the vertical and horizontal position within the visible control

(remembering that top, left is 0, 0). It is expressed in the current scale of the control; you will

probably want to set the scale property to 5 for pixels before calling this method.

APLX System Classes & User-Interface Programming 342

The result is an integer pair of Cell Row, Cell Column. For each element of pair, it returns -N if the
point is in a header row or column, 0 if not in any row or column, +N if in normal row or column

The 'Pointtochart' method

Argument: 2-element Numeric Vector

Result: 2-element Numeric Vector

Valid for: Chart

This method converts from coordinates of the visible control on the screen to Chart coordinates (using

the main Y scale). It is particularly useful for respondng to mouse-down events on the chart, for
example if you want to allow the user to select a point on the graph.

The argument is a two-element vector of the vertical and horizontal position within the visible control

(remembering that top, left is 0, 0). It is expressed in the current scale of the control; you will

probably want to set the scale property to 5 for pixels before calling this method.

The result is a two-element vector of the corresponding Y value (using the main Y scale) and X value
of the Chart.

The 'Pointtochartalt' method

Argument: 2-element Numeric Vector

Result: 2-element Numeric Vector

Valid for: Chart

This method converts from coordinates of the visible control on the screen to Chart coordinates (using

the alternate Y scale). It is particularly useful for respondng to mouse-down events on the chart, for

example if you want to allow the user to select a point on the graph, where the Series containing the
point uses the Alternate Y scale.

The argument is a two-element vector of the vertical and horizontal position within the visible control

(remembering that top, left is 0, 0). It is expressed in the current scale of the control; you will

probably want to set the scale property to 5 for pixels before calling this method.

The result is a two-element vector of the corresponding Y value (using the alternate Y scale) and X
value of the Chart.

APLX System Classes & User-Interface Programming 343

The 'Popup' method

Argument: Either None, or a 2-element numeric vector
Result: None

Valid for: Menu

The Popup method is used for pop-up menus (i.e. menus which are not children of a window, and

which thus do not appear in the window's menu bar). The Popup method displays the pop-up menu,

and is typically called in response to a user action such as a right-mouse click.

If Popup is called without an argument, the menu pops up at the current mouse position. It can

alternatively be called with a two-element numeric vector argument, specifying the Y and X position

at which the menu should pop up on the screen. These values are expressed in the current scale units
of the System object.

The 'Post' method

Argument: Character Vector
Result: 3-element Nested Vector

Valid for: HTTPClient

The Post method is similar to Get, and has the same syntax, arguments, and result structure. Post is

used for HTML forms and pages where you need to send data to the web server; the argument has the

data appended to the URL separated by a question mark, with & substituted for space (for example,

'http://www.blah.com?request=doit&code=101').

See the documentation on Get for more information.

APLX System Classes & User-Interface Programming 344

The 'Poster' method

Argument: None
Result: None

Valid for: Movie

Under MacOS, movies can have a 'poster' defined for them, i.e. a still picture which represents the

movie. The Poster method causes this picture to be displayed. It the movie is running, it will be
stopped first.

Under Windows and Linux, this method simply displays the first frame of the movie.

This method should not be used for a Movie with controller (style 0).

The 'Preview' method

Argument: None
Result: None

Valid for: Movie

Under MacOS, movies can have a preview sequence defined, i.e. short extracts from the movie. The

Preview method causes this to be played.

Under Windows and Linux, Preview simply plays the start of the movie.

This method should not be used for a Movie with controller (style 0).

APLX System Classes & User-Interface Programming 345

The 'Print' method

Argument: See below for RichEdit
Result: None

Valid for: Printer, RichEdit, Browser, Chart

Printer object

Once you have started a print job using the Open method, you can cause text to be output to the printer

by calling the Print method. The argument can be either a character vector (possibly with embedded

carriage returns), or a text matrix. If you supply a matrix, a new line will be thrown at the end of each
line of the matrix.

Printing takes place starting at the current value of the position property (relative to the top, left

margin of the page). The position property is automatically updated after the method is called. If the

bottom of the page is reached, a new page will automatically be started and printing will resume at the
top of the next page. Note that text will not wrap round at the right margin.

The appearance of the text will depend on the current values of the font and color properties of the
Printer object.

See also the Draw method which provides an alternative way of printing text as well as shapes and

pictures.

RichEdit, Chart and Browser objects

For these controls, the Print method provides a quick way of printing the contents of the control.

Usually it takes no argument, but (in the case of RichEdit) you can optionally provide a character
vector which is the name of the print job.

The 'Receive' method

Argument: None
Result: Character vector

Valid for: Socket

The Receive method is used by client sockets to receive data from the server. It takes no arguments,

and returns a character vector, which is the data received (as an untranslated sequence of raw bytes).

APLX System Classes & User-Interface Programming 346

The APL task will block until the data has been received, or the time specified in the timeout
property has elapsed.

If you do not want the task to be blocked waiting for data, use the onReceive event to ensure that

Receive is called only when there is data already waiting.

If an error occurs, or the timeout expires, an empty vector will be returned. The status property can
be used to find out more about the error,

The 'Refresh' method

Argument: None
Result: None

Valid for: Picture, Browser, OLEContainer

For a Browser, the Refresh method causes the current page to be re-loaded from the internet or from
file.

For a Picture which is being used to display an Image (as a child object), the Refresh method causes

the picture shown on screen to be updated from the off-screen bitmap of the Image object. Usually,
this is automatic, unless you have changed the underlying ImageMagick object using ⎕NA.

For an OLEContainer control (Windows only), the Refresh method is used when the control is being

used to display a linked document. It causes the display to be updated to reflect any changes to the
source document.

The 'Reset' method

Argument: None

Result: None

Valid for: System object, GetMail

For the System object, the Reset method deletes all objects and resets the System Class sub-system to
its initial state. The event queue is cleared.

For the GetMail object, the connection to the POP3 server is reset. Any pending deletes of e-mails on

the server are aborted.

APLX System Classes & User-Interface Programming 347

The 'Resize' method

Argument: None
Result: None

Valid for: Any object

The Resize method invokes the onResize callback (if any) for an object. It does not actually resize

the object. Its main use is to trigger recalculation of dimensional information in your program, for

example if the number of items displayed has changed and you want to ensure they are still evenly
spaced.

The 'Rewind' method

Argument: None
Result: None

Valid for: Movie without controller

Where a Movie object does not have a controller (i.e. the style property is 1 or 2), the Rewind

method resets the current position to the start of the movie. The movie can be restarted using the Play
method.

The 'Save' method

Argument: Character vector, or a two-element nested vector
Result: None

Valid for: Chart, Image, RichEdit

Image

The Save method for an Image takes a character vector argument, which is the file name under which

you want to save the image. You can specify the format in which you want to save it by setting the

format property before calling this method, or alternatively allow the format to be determined

automatically from the file extension. If you specify an empty vector for the filename, APLX displays
a dialog allowing the user to specify the file name and type.

APLX System Classes & User-Interface Programming 348

Chart

The Save method for a Chart causes the chart to be saved to a graphics file. The argument is the full

path of the file to be written. Alternatively, it can be an empty vector, in which case a standard file

dialog is displayed to allow the user to choose the name. The optional second parameter can be 0,

meaning write the file using a platform-specific vector graphics format, or 1, meaning write the file in

a bitmap format, or 2, meaning write the file in Scalable Vector Graphics (SVG) format. The default is
0.

If you want to save the chart in a format not supported by the Chart object, for example as a GIF, you

can do this using an Image object. To do this, you need to read the bitmap property of the Chart, write

this to the bitmap property of the Image, set the Image format, and then call the Save method of the
Image.

RichEdit

The Save method causes APLX to save the contents of a RichEdit control to a file. The argument can

be either a character vector containing the pathname of the file you wish to save to, or a nested vector

where the first element is the file name and the second is a file type code. A type code of 0 (or

omitting the type code) indicates that the contents should be saved as a plain text file. Under

Windows, a type code of 1 can be used, to indicate that the contents should be saved as a Rich Text

(.rtf) file, with embedded formatting information. Under MacOS, a type code of 2 means save as
Styled text.

If you specify an empty vector as the file name, a dialog is displayed to allow the user to specify the

file name and type.

The 'Screentoclient' method

Argument: 2-element integer vector
Result: 2-element integer vector

Valid for: Any visible control

This method converts coordinates relative to the whole screen to coordinates relative to the client area

of the control. Both the argument and the result are two-element vectors of Row position, Column

position (i.e. Y, X), always expressed in pixels. The scale properties of the control and System
objects are ignored.

This method is particularly useful for relating mouse position coordinates reported in ⎕EV to
coordinates within the control.

APLX System Classes & User-Interface Programming 349

The 'Send' method

Argument: None (Character Vector for Socket Object)
Result: None (Integer Scalar for Socket object)

Valid for: Any object, special meaning for Socket.

The Send method invokes the onSend callback (if any) for an object. The onSend callback is never

invoked by APLX except in response to this method, so it can be used in any way which makes sense
for your APL application.

For a Socket, the Send method has a special meaning. It takes a character vector argument, which is

transmitted to the other end of the network connection. The data is sent exactly as it, without any

character translation (i.e. the character vector is treated as a sequence of raw bytes). The return code is

0 for success, or 3 if an error occurs.

The 'Sendmessage' method

Argument: None
Result: Integer Scalar

Valid for: SendMail

Once you have set up the properties of an e-mail using properties of the SendMail object, you send it

by calling the SendMessage method (you must be connected to the SMTP server to do this). This

method takes no argument; it returns an error code as follows: 0 = No error, 1 = Host not found, 2 =

Authentication error, 3 = General or comms error, 4 = Attachment not found, 4 = Incomplete header

(e.g. 'to' property not set), 5 = Recipient not found.

APLX System Classes & User-Interface Programming 350

The 'Set' method

Argument: Nested vector of property-value pairs
Result: None

Valid for: Any object

The Set method allows you to set multiple property values in a single statement, using ⎕WI syntax (it

cannot be used with dot notation). The argument is a nested vector of property names and values.

For example, the following sequence sets three properties for an 'OK' button:

 'Win.But' ⎕WI 'where' 5 9
 'Win.But' ⎕WI 'title' 'OK'
 'Win.But' ⎕WI 'enabled' 0

You can achieve the same result in one statement using the Set method as follows:

 'Win.But' ⎕WI 'Set' ('where' 5 9) ('title' 'OK') ('enabled' 0)

The 'Setimages' method

Not currently implemented

The 'Setinfo' method

Argument: Nested vector
Result: None

Valid for: Tree

The Setinfo method allows you to set the display attributes of one of more nodes in a Tree object.

The first element of the argument is a character vector giving the attribute name, and should be one of
'label' 'list' 'images' 'forceparent' 'highlightbold' 'highlightcut'

'highlightdrop' 'highlightselect' 'expanded' or 'expandedonce'. (Note: The

'highlightcut', 'highlightdrop' and 'forceparent' keywords apply to Windows only, and are
ignored under MacOS.)

APLX System Classes & User-Interface Programming 351

The remaining elements(s) give node identifiers and attribute values for those nodes. There are two
possible ways to specify these:

(a) Element 2 is a vector of node identifiers, and element 3 is a vector/matrix of new values:

 Mywin.Tree1.SetInfo 'highlightbold' (1 5 10) (1 0 1)

(b) Element 2 is a matrix where the first column contains the node identifiers and the remaining
column(s) are the new values:

 Mywin.Tree1.SetInfo 'highlightbold' (3 2 ⍴ 1 1 5 0 10 1)

The 'Setopacity' method

Argument: Scalar number between 0.0 and 1.0

Result: None

Valid for: Image

The Setopacity method allows you to specify that an image is semi-transparent. Making an image

semi-transparent means that, when you place it on top of another image using the Overlay method, the

background image will still be partially visible through the foreground image. The method takes a

single argument, which is a number between 0.0 (completely transparent) to 1.0 (fully opaque, i.e. the
background is not visible at all).

Note that some file formats, such as PNG, allow specific parts of the image to be transparent. In this
case you don't need to set the opacity directly.

The 'Setpos' method

Not currently implemented

APLX System Classes & User-Interface Programming 352

The 'Setup' method

Argument: None or Boolean Scalar
Result: Boolean scalar

Valid for: Printer

The Setup method displays the standard page-setup dialog, which allows the user to specify

document-specific print parameters such as the paper size, paper source, and orientation. (This is the

dialog which is normally displayed when the user selects Page Setup.. from the File menu of a typical

application). It updates the current print record of the printer object, and should be called before

calling the Open method which starts the print job.

Under Windows, there are two versions of this dialog. The default (invoked if you specify no

argument, or an argument of 0) is simpler, and does not allow the user to set the page margins. The

second (invoked if you specify an argument of 1) does allow the margins to be set by the user. Under
MacOS or Linux, the same dialog is shown in both cases.

The return value indicates how the user ended the dialog. If the user pressed the OK button, it returns
1. A return value of 0 indicates that the Cancel button was pressed.

See also the Job method which displays the standard dialog for selecting print-job parameters such as
the number of copies.

The 'Show' method

Argument: None
Result: None, or Integer scalar for pre-defined dialogs

Valid for: Any displayable object

For standard visible objects other than a Window, Form, Dialog, or Document, the Show method is

equivalent to setting the visible property of an object to 1, i.e. it makes it visible if it was previously

hidden. For a window-type object, it also makes the window come to the front if it was previously

obscured by other windows.

For the pre-defined dialogs (ChooseColor, ChooseFont, ChooseDir, OpenFile, SaveFile, and

MsgBox), the Show method displays the dialog in the modal state. The dialog remains open until the

user selects a button which closes the dialog. The result of the Show method indicates which button
was pressed.

APLX System Classes & User-Interface Programming 353

For the ChooseColor, ChooseFont, ChooseDir, OpenFile, and SaveFile dialogs, the Show method

returns 1 to indicate the OK button was pressed, or 0 to indicate the Cancel button. If the return value

is 1, you should read the object's properties (such as the color property of the ChooseColor dialog) to
find out what the user selected.

The possible return values for the MsgBox dialog depend on the style property which determines
which of the buttons are displayed. The result will be one of:

 1 = OK
 2 = Cancel
 3 = Abort
 4 = Retry
 5 = Ignore
 6 = Yes
 7 = No

The 'Showaboutbox' method

Argument: None

Result: None

Valid for: OCX controls (Implemented under Windows only)

The Showaboutbox method causes an OCX control to display its About... dialog (if any), typically
giving copyright and version information about the control.

The 'Shownode' method

Argument: 2-element nested vector
Result: None

Valid for: Tree

The Shownode method scrolls the tree so that a particular node is displayed at the top, or (under
Windows) makes a particular node the currently-selected one or the drag-and-drop target.

The argument is a two-element nested vector. The first element is a character vector, one of 'select'

'drop' or 'firstvisible'. The second element is the node identifier (or 0 or 'none' to remove the

attribute from the currently selected node or drag-drop target).

APLX System Classes & User-Interface Programming 354

The 'Showproperties' method

Argument: None
Result: Boolean scalar

Valid for: OCX controls and OLEContainer (Implemented under Windows only)

The Showproperties method causes an OCX control or the application associated with a document in

an OLEContainer to display a dialog which allows the user to set properties associated with it. For

example, if the OCX control displays a chart, the properties dialog would typically allow the user to

select the type of chart, the scale, colors etc. (These properties would probably also be exported by the
control, and thus could be changed directly by your APLX program).

The result returned is 1 if the user pressed OK, and 0 if the user pressed Cancel. However, due to a

limitation in the Windows automation interface, a 1 will sometimes be returned even if the user

pressed Cancel.

The 'Signal' method

Argument: Any
Result: None

Valid for: System and APL (child task) object

The Signal method allows the child task to send a message to the parent, and vice versa. It is used in

conjunction with the onSignal event, as follows:

 If the parent wants to send a signal to the child, it invokes the Signal method in the APL

(child task) object. This causes an onSignal event to trigger in the System object of the child
task.

 Conversely, if the child task wishes to send a signal to the parent, it invokes the Signal

method in its own System object. This causes an onSignal event to trigger in the APL (child

task) object of the parent.

In both cases, the Signal method optionally takes an argument, which can be any APL array (or an

APLX overlay created using ⎕OV). This is typically used to send a command to the other task, or to

return a result to it. Any argument to the Signal method is available to the receiving task as the ⎕WARG

system variable during the execution of the callback.

See the section on APLX Multi-tasking for more details.

APLX System Classes & User-Interface Programming 355

The 'Sortchildren' method

Implemented under Windows only

Argument: See text
Result: None

Valid for: Tree

The Sortchildren method causes the children of a particular node to be sorted.

The argument is a two-element nested vector, or a character vector or integer scalar. The first element

identifies the node, and can be a node ID or the character vector 'root'. The second element is

optional. If supplied, it should be 'recurse' to indicate that the operation should be applied
recursively to the children of the node.

The 'Stepit' method

Argument: None, or integer scalar
Result: None

Valid for: Progress

The Stepit method increments the current value of a Progress bar, increasing the length of the bar

showing progress of the operation. If no argument is supplied, the value is incremented by the

increment property. If an integer scalar argument is supplied, it is used as the increment.

APLX System Classes & User-Interface Programming 356

The 'Stop' method

Argument: None
Result: None

Valid for: Movie, Browser

Where a Movie object does not have a controller (i.e. the style property is 1 or 2), the Stop method

can be used to cause the playing of the movie to stop. If the movie is already stopped, it has no effect.

The movie can be restarted from the same position by using the Play method.

For a Browser object, the Stop method aborts any pending page load which has not yet completed.

The 'Transform' method

Argument: See text
Result: None

Valid for: Image

The ImageMagick package which is accessed from the APLX Image object includes a very wide range

of functions for transforming an image. For example, you can shear, scale, crop, rotate or skew the

image, sharpen edges, adjust colors and intensity, and filter out noise. You can also apply special

effects to the image, such as making it look like a charcoal drawing or an oil painting. The Transform

method of the APLX Image object allows you to use many of these functions directly.

The syntax of the Transform method is:

 ControlName.Transform 'Keyword' Arg1 Arg2...
or
 'ControlName' ⎕WI 'Transform' 'Keyword' Arg1 Arg2...

where Keyword selects the transformation you want to carry out, and the remaining arguments depend

on the transformation (they are all numeric, with the scale always being pixels). Keywords are not

case-sensitive. The following is a list of the supported transformations and arguments, together with

the name of the underlying ImageMagick operation. See the ImageMagick documentation for full
details of the operations and parameters.

APLX System Classes & User-Interface Programming 357

Geometric transformations and scaling

Flip image about horizontal axis: (MagickFlipImage)

 Object.Transform 'Flip'

Flip image about vertical axis: (MagickFlopImage)

 Object.Transform 'Flop'

Scale image to twice current size: (MagickMagnifyImage)

 Object.Transform 'Magnify'

Scale image to half current size: (MagickMinifyImage)

 Object.Transform 'Minify'

Scale image to specified X Y size: (MagickScaleImage)

 Object.Transform 'Scale' x y

Roll image: (MagickRollImage)

 Object.Transform 'Roll' x_offset y_offset

Extract a rectangular region from the image: (MagickCropImage)

 Object.Transform 'Crop' width height x y

Rotate image clockwise by specified number of degrees: (MagickRotateImage)

 Object.Transform 'Rotate' degrees

Shear the image along X or Y axis, or both: (MagickShearImage)

 Object.Transform 'Shear' x_shear y_shear

Image enhancement and adjustment

Reduce the speckle noise in an image: (MagickDespeckleImage)

 Object.Transform 'Despeckle'

Apply digital filter to improve noisy image: (MagickEnhanceImage)

 Object.Transform 'Enhance'

APLX System Classes & User-Interface Programming 358

Apply Median filter to improve noisy image: (MagickMedianFilterImage)

 Object.Transform 'MedianFilter' radius

Equalize the image color histogram: (MagickEqualizeImage)

 Object.Transform 'Equalize'

Enhance the contrast of a color image: (MagickNormalizeImage)

 Object.Transform 'Normalize'

Sharpen an image: (MagickSharpenImage)

 Object.Transform 'Sharpen' radius sigma

Sharpen image with a Gaussian operator: (MagickUnsharpMaskImage)

 Object.Transform 'UnsharpMask' radius sigma amount threshold

Enhance edges using a convolution filter of the given radius: (MagickEdgeImage)

 Object.Transform 'Edge' radius

Smooth contours of image, preserving edge information: (MagickReduceNoiseImage)

 Object.Transform 'ReduceNoise' radius

Adjust brightness, saturation, and hue of the image: (MagickModulateImage)

 Object.Transform 'Modulate' brightness saturation hue

Gamma-correct an image: (MagickGammaImage)

 Object.Transform 'Gamma' gamma

Special effects

Implode pixels by specified amount: (MagickImplodeImage)

 Object.Transform 'Implode' amount

Make image look like an oil painting: (MagickOilPaintImage)

 Object.Transform 'OilPaint' radius

Make image look like a charcoal drawing: (MagickCharcoalImage)

 Object.Transform 'Charcoal' radius sigma

APLX System Classes & User-Interface Programming 359

Add three-dimensional effect to grayscale image: (MagickEmbossImage)

 Object.Transform 'Emboss' radius sigma

Randomly displace each pixel in a block: (MagickSpreadImage)

 Object.Transform 'Spread' radius

Swirl the pixels about the center of the image: (MagickSwirlImage)

 Object.Transform 'Swirl' degrees

Change pixel values depending on intensity relative to threshold: (MagickThresholdImage)

 Object.Transform 'Threshold' threshold

Apply effect similar to exposing photo paper to light: (MagickSolarizeImage)

 Object.Transform 'Solarize' threshold

Blur image: (MagickBlurImage)

 Object.Transform 'Blur' radius sigma

Blur image (Gaussian blur): (MagickGaussianBlurImage)

 Object.Transform 'GaussianBlur' radius sigma

Blur image radially: (MagickRadialBlurImage)

 Object.Transform 'RadialBlur' angle

Simulate motion blur: (MagickMotionBlurImage)

 Object.Transform 'MotionBlur' radius sigma angle

Create ripple effect in image: (MagickWaveImage)

 Object.Transform 'Wave' amplitude wave_length

Adjust levels of image: (MagickLevelImage)

 Object.Transform 'Level' blackpoint gamma whitepoint

Force all pixels below threshold to black: (MagickBlackThresholdImage)

 Object.Transform 'BlackThreshold' threshold

Force all pixels above threshold to white: (MagickWhiteThresholdImage)

 Object.Transform 'WhiteThreshold' threshold

APLX System Classes & User-Interface Programming 360

Examples of image transformations

Original image

Obj.Transform 'Flop'

Obj.Transform 'Implode' 1

Obj.Transform 'Solarize' 0.3

The workspace 10 HELPTRANSFORM has a demonstration of these and other image transformations.

APLX System Classes & User-Interface Programming 361

The 'Trigger' method

Argument: Character vector containing a callback property name
Result: None

Valid for: Any control

The Trigger method provides a general way for invoking a callback function, and thus in a sense can

be used to simulate any event. It allows your program to cause a callback associated with a particular

object and event to run. It takes as an argument the name of an event, and triggers the callback (if any)

for that event. For example, to invoke the Double Click handler callback for a List object, you could
enter:

 MyWin.List.Trigger 'onDblClick'

Note that running this method invokes the callback function, but does not otherwise affect the object

concerned. Using the Trigger method can help avoid duplication of code. It also allows you to create

custom controls by taking over event handling, and triggering higher-level events where appropriate

(see the next chapter for further information on this subject). For example, you might want to achieve

the effect of a custom Check box control which changed color when selected. To do this, you might

define an onMouseDown callback function, which handled the color change, and which then called the

Trigger method to create an onClick event for the object.

The 'Undo' method

Argument: None
Result: None

Valid for: Edit, RichEdit, Document

The Undo method undoes the last change made by the user. If there is no change which can be undone,

it does nothing. (See also the canundo property).

APLX System Classes & User-Interface Programming 362

The 'Valueof' method

Argument: Character vector
Result: Usually integer, but can be any type

Valid for: OCX controls, OLE server applications and OLEContainer (Implemented under Windows
only)

Many OCX controls and OLE servers define named constant values or 'enums' as valid arguments for

properties and methods. Often the documentation will refer to the names of these constants without

giving the values, which you need to use them from APL. (The APLX Control Browser window
shows constant values by category for controls and servers which publish them.)

The Valueof method allows you to determine the value of a constant associated with the control or

server at runtime. It takes a character vector argument which is the name, and returns the value. For

example, Formula One defines a set of enumerated values for file formats. To select the Formula One

Version 3 format, you need the constant F1FileFormulaOne3. You can determine it from within
APLX as follows:

 W.F1.ValueOf 'F1FileFormulaOne3'
5

The 'Wait' method

Argument: None

Result: None

Valid for: Window, Form or Dialog

The Wait method is used to make a Window or Dialog modal, i.e. to disable all other application

windows until the user has responded to the dialog. The modal state remains in force until the window

is closed, hidden or destroyed. If the window is closed or hidden when the Wait method is called, it

will first be opened and/or made visible. Note that your program still continues execution, and

continues to handle events (via ⎕WE) as usual. If you want your program to wait for the modal dialog

to complete, then immediately after invoking the Wait method you should call ⎕WE with a character
right argument which is the name of the window.

The session window and other APL debugging windows are not disabled by this method, so you can

interrupt the APL program as usual.

APLX System Classes & User-Interface Programming 363

Section 5. System Classes: Callbacks

APLX System Classes & User-Interface Programming 365

The 'onAboutMenu' callback

Event generated under MacOS only

Event number: 37
Generated for: System

When you create a packaged application from your APLX workspace, your code will normally use

System Classes to create windows and the menus associated with them. However, under MacOS, the

'About..' menu item resides in the System menu (or application menu under MacOS X), so it is outside
the scope of the user-defined menus.

The onAboutMenu callback allows your packaged APL application to be notified when the user has

selected the 'About..' menu item, so that you can display an appropriate information window. This will

typically contain information about the application, any copyright notice, and a version number.

Under Windows, this callback will never be triggered. Instead, you should create your own 'About..'
menu item, usually in your own 'Help' menu.

See also the onPreferencesMenu and onQuitMenu callbacks.

The 'onActivate' callback

This is a synonym for onFocus.

The 'onChange' callback

Event number: 23
Generated for: Combo, Edit, RichEdit, Document, Scroll, Selector, Splitter, Spinner, Trackbar, Grid

The onChange callback is generated when the text of an Edit, Combo, RichEdit or Document object

has changed. This may be either because the user has typed something, or because your application

has changed the text under program control. Generally, in your onChange callback handler you will

read the text property of the object, and take action according to the new value (for example, disable

the OK button if the text is not currently valid). Note that the onChange callback will be triggered

every time the user types when the object concerned has focus. If you wish to validate the user's input

only when it is complete, it is better to do this by means of an onUnfocus callback.

APLX System Classes & User-Interface Programming 366

For a Scroll, Spinner or Trackbar control, the onChange callback is generated when the user changes

the control's value. For a Splitter, it is invoked when the user moves the Splitter so that the attached
controls are re-sized. For a Selector, it is invoked when the user selects a different Page.

For a Grid object, the onChange callback is triggered when the user has finished editing a cell. You

can use it to validate the new cell contents, or to recalculate other cells in the Grid. The event-specific
parameters in ⎕EV are (in index origin 1):

 ⎕EV[6] Row number of the edited cell
 ⎕EV[7] Column number of the edited cell
 ⎕EV[8] Flag to indicate whether the contents were valid

The 'onClick' callback

Event number: 24

Generated for: All visible controls

The onClick callback is run after the user has pressed the mouse button in the object (a MouseDown

event will be created first). It indicates that the object has been selected (or de-selected, in the case of a

Radio button). It is also triggered for a List if the user changes the selected item using the keyboard,

and for an Edit, RichEdit or Document object if the selection/insertion point changes as a result of user

input.

The 'onClose' callback

Event number: 10

Generated for: All objects, but usually applies to Window, Form, Document or Dialog, or an APL
(child task) object.

The onClose callback indicates a request to close an object (usually a window). It can be generated as

a result of the user clicking the close box of a window, or by the system. If you have defined an

onClose callback, the window is not closed automatically; your onClose callback should do this if

appropriate, by invoking the Close method with an argument of 1 to cause an unconditional close.
You might also wish to delete the window as well.

The onClose callback is treated specially in one way. Normally when an APL callback is defined for

an event, it is run after the system default handler for that event. The default handler for a Close event

is to close and delete the object, but doing this would make it impossible for your onClose handler to

suppress the close action. For this reason, setting the onClose callback property automatically disables
the default system handler for the close event on that object.

APLX System Classes & User-Interface Programming 367

For an APL (child task) object, the onClose callback is triggered when the child task is about to
terminate for any reason.

The 'onColMoved' callback

Event number: 45

Generated for: Grid

This event is triggered when the user has moved a column by dragging it to a different position in the

grid. (This is possible only if the style property includes the flag 1024, column moving allowed). The

event-specific parameters in ⎕EV are (in index origin 1):

 ⎕EV[6] Column number before the move
 ⎕EV[7] The position of the column after the move

The 'onConnectRequest' callback

Event number: 49

Generated for: Socket

This event occurs on a server-side socket, when you have called Listen and a client tries to connect.

It indicates that you should now call the Accept method to accept the connection.

The 'onDblClick' callback

Event number: 25
Generated for: All visible controls

If the user double-clicks in a control, the onDblClick callback will be run (a Click event is generated

first).

For example, your APL program might interpret a double-click on a List box in a dialog as being as
equivalent to pressing the OK button.

APLX System Classes & User-Interface Programming 368

The 'onDeactivate' callback

This is a synonym for onUnfocus

The 'onDestroy' callback

Event number: 27

Generated for: Any object except the System object

When an object is deleted, the onDestroy callback (if any) for it is triggered. However, the object

itself no longer exists when the callback function runs, and so it is too late to reference any properties

of the object. For the same reason, ⎕WSELF cannot be used in an onDestroy callback.

The 'onDisconnect' callback

Event number: 52
Generated for: Socket

This event occurs both on clients and servers. It indicates that the other end has closed the connection.

You should now call Close, and delete the socket.

The 'onDragDrop' callback

Event number: 34

Valid for: Any visible control

The onDragDrop callback is invoked for the target control when a successful drag-and-drop operation

has been completed, and the user releases the mouse over the target control. (For this to happen, the

sourceformats property of the source must be compatible with the targetformats property of the
target).

Under Windows, it will typically be preceded by an onDragEnter and several onDragOver events.

The source control will be notified by an onDragEnd event.

APLX System Classes & User-Interface Programming 369

The dragsource property will contain the name of the control being dragged.

The event-specific parameters in ⎕EV are (in index origin 1):

 ⎕EV[6] The 'tie' property value of the source control being dragged

The 'onDragEnd' callback

Event number: 32
Valid for: Any visible control

The onDragEnd callback occurs for the source control when a drag-and-drop operation has been

completed (the target control will receive an onDragDrop event).

The name of the target control (on to which the source control is being dragged) will be in the

droptarget property.

The event-specific parameters in ⎕EV are (in index origin 1):

 ⎕EV[6] The 'tie' property value of the target control to which
 the source control was dragged

The 'onDragEnter' callback

Event generated under Windows only

Event number: 35
Valid for: Any visible control

The onDragEnter callback is invoked for the target control when a potential drag-and-drop operation

begins and the mouse enters the target control. (A potential drag-and-drop operation occurs when the

user drags a source control onto a target control and the sourceformats property of the source is

compatible with the targetformats property of the target, but before the user releases the mouse to
complete the operation).

The callback will typically be followed by onDragOver events as the user moves the mouse, and

possibly an onDragLeave event if the mouse leaves the control. It may be followed by an onDragDrop

event if the user releases the mouse button over the target control.

The dragsource property will contain the name of the control being dragged.

APLX System Classes & User-Interface Programming 370

The event-specific parameters in ⎕EV are (in index origin 1):

 ⎕EV[6] The 'tie' property value of the source control being dragged

The 'onDragLeave' callback

Event generated under Windows only

Event number: 36
Valid for: Any visible control

The onDragLeave callback is invoked for the target control when a potential drag-and-drop operation

has begun, but the user moves the mouse out of the target control. (A potential drag-and-drop

operation occurs when the user drags a source control onto a target control and the sourceformats

property of the source is compatible with the targetformats property of the target, but before the

user releases the mouse to complete the operation).

The dragsource property will contain the name of the control being dragged.

The event-specific parameters in ⎕EV are (in index origin 1):

 ⎕EV[6] The 'tie' property value of the source control being dragged

The 'onDragOver' callback

Event generated under Windows only

Event number: 33
Valid for: Any visible control

The onDragOver callback is invoked for the target control when a potential drag-and-drop operation

has begun, and the user moves the mouse over the target control. (A potential drag-and-drop operation

occurs when the user drags a source control onto a target control and the sourceformats property of

the source is compatible with the targetformats property of the target, but before the user releases
the mouse to complete the operation).

It will typically be preceded by an onDragEnter event, and possibly followed by an onDragLeave or

onDragDrop event.

The dragsource property will contain the name of the control being dragged.

APLX System Classes & User-Interface Programming 371

The event-specific parameters in ⎕EV are (in index origin 1):

 ⎕EV[6] The 'tie' property value of the source control being dragged

The 'onDragStart' callback

Event generated under Windows only

Event number: 31
Valid for: Any visible control

The onDragStart callback is invoked for the source control when the user starts dragging the control.
At this stage, there is no target for the drag-and-drop operation.

The 'onDraw' callback

This is a synonym for the onPaint callback property.

The 'onDropDown' callback

This is a synonym for the onPopUp callback property.

The 'onError' callback

Event number: 41
Generated for: Browser and APL (child task) object

Browser

For a Browser object, the onError callback is invoked if an error occurs when the Browser tries to

load a page.

APLX System Classes & User-Interface Programming 372

APL Object

The onError callback is invoked in an APL object belonging to a parent task when an untrapped error

occurs during function execution in a child task. The error message (in the same format as ⎕ERM) will
be available in ⎕WARG during the callback.

The event-specific parameters in ⎕EV are (in index origin 1):

 ⎕EV[6] Task ID for the child task

See the section on APLX Multi-tasking for more details.

The 'onExecute' callback

Event number: 44

Generated for: APL (child task) object

The onExecute callback is invoked in an APL object belonging to a parent task when the child task is

about to execute an expression or command (either typed by the user, or invoked under program

control using the Execute method).

During the callback, ⎕WARG contains the command or expression which is about to be executed, as a

character vector. This can be used for example to write an APL tutorial application when the parent
task can see what the user is entering in the child-task session window.

The event-specific parameters in ⎕EV are (in index origin 1):

 ⎕EV[6] Task ID for the child task

See the section on APLX Multi-tasking for more details.

The 'onFocus' callback

Event number: 7

Generated for: Window, Dialog, Document, plus any control which can receive the input focus
Synonym: OnActivate

The onFocus callback is invoked when the object gets the input focus. For a Window, Form, Dialog or

Document, this means when the window is activated (for example, by the user clicking in it when it is

not the front window). In addition, when the window is activated, the currently-active control (if any)

APLX System Classes & User-Interface Programming 373

on the window will also receive a Focus event. This will also happen within a window if the user tabs
or clicks between controls.

The onFocus callback is invoked irrespective of whether the focus was gained through user action or

under program control (for example, by calling the Focus method).

The 'onHide' callback

Event number: 29
Generated for: Any visible object

The onHide callback will be run if an object (or its parent) is hidden using the Hide method or by

setting the visible property to 0.

The 'onKeyDown' callback

Event number: 1

Generated for: Any control which can receive the input focus

A Key Down event is generated when the user presses a key whilst the object has the input focus. The
event-specific parameters in ⎕EV are (in index origin 1):

 ⎕EV[6] Raw ASCII code for this key
 ⎕EV[7] APL's translated code for this key
 ⎕EV[8] Scan code (ie key number)
 ⎕EV[9] Modifiers:
 (0=unshifted, 1=shifted, 2=alt/option,
 4=control, 8=command, and sums thereof)

The 'onKeyPress' callback

Event number: 30
Generated for: Any control which can receive the input focus

A Key Press event is generated when the user presses a key which produces a character, whilst the

object has the input focus. (It is generated after the corresponding Key Down event). The event-

specific parameters in ⎕EV are (in index origin 1):

 ⎕EV[6] ASCII code for this key and modifier keys
 ⎕EV[7] APL's translated code for this key

APLX System Classes & User-Interface Programming 374

The 'onKeyUp' callback

Event number: 2
Generated for: Any control which can receive the input focus

A Key Up event is generated when the user releases a key whilst the object has the input focus. The

event-specific parameters in ⎕EV are (in index origin 1):

 ⎕EV[6] Raw ASCII code for this key
 ⎕EV[7] APL's translated code for this key
 ⎕EV[8] Scan code (ie key number)
 ⎕EV[9] Modifiers:
 (0=unshifted, 1=shifted, 2=alt/option,
 4=control, 8=command, and sums thereof)

The 'onLimit' callback

Event number: 22

Generated for: Edit

If the user attempts to enter more characters into an Edit field than you have specified using the limit

property, the onLimit callback will be run.

The 'onMenu' callback

Event number: 6
Generated for: Window, Form, Dialog, Document

The currently-active window receives a Menu event if the user selects a menu from the main menu

bar. This can be used as alternative way of detecting menu clicks, instead of using the menu item's

onClick callback. The event-specific parameters in ⎕EV are (in index origin 1):

 ⎕EV[6] Menu number in the menu bar
 ⎕EV[7] Item number within the menu

Menu and item numbers start at 1, and are in the sequence in which they appear (the same as the

order property of the Menu object). Invisible menu items, and separators, are counted in the

sequence. If you have a sub-menu, the item number is multiplied by 100 for each level down the
hierarchy.

APLX System Classes & User-Interface Programming 375

For example, if you have a File menu as the first menu in the menu bar, and it has two items Open and

Save, the Open menu will be reported as Menu 1 Item 1, and the Save item as Menu 1 Item 2. If the

Save menu has a sub-menu with items Final and Draft, these will be reported as Menu 1 Item 201 and
Menu 1 Item 202 respectively.

The 'onMouseDown' callback

Event number: 3

Generated for: Any visible, enabled object (except as described below)

When the user presses the mouse button in the enclosing rectangle of an object, the onMouseDown

callback (if any) is invoked (note that for standard controls such as Buttons and Lists, you should

normally rely on the Click event rather than the Mouse Down event to detect user input). It can be

used to make non-standard controls responsive to mouse input (for example, a Rectangle or Static
text). The event-specific parameters in ⎕EV are (in index origin 1):

 ⎕EV[6] Mouse vertical position in window coordinates
 ⎕EV[7] Mouse horizontal position in window coordinates
 ⎕EV[8] Button number (always 1 on the Macintosh)
 ⎕EV[9] Modifiers (as for Key Down)

Note: Under MacOS, this event is not generated for certain controls, including Button, Radio and

Check controls.

The 'onMouseMove' callback

Event number: 15
Generated for: Any visible control

A Mouse Move event is generated when the user moves the mouse over a control. The event-specific

parameters in ⎕EV are (in index origin 1):

 ⎕EV[6] Mouse vertical position in window pixel coordinates
 ⎕EV[7] Mouse horizontal position in window pixel coordinates
 ⎕EV[8] 0
 ⎕EV[9] Modifiers:
 (0=unshifted, 1=shifted, 2=alt/option,
 4=control, 8=command, and sums thereof)

APLX System Classes & User-Interface Programming 376

The 'onMouseUp' callback

Event number: 4
Generated for: Any visible, enabled object

When the user releases the mouse button in the enclosing rectangle of an object, the onMouseUp
callback (if any) is invoked. The event-specific parameters in ⎕EV are the same as for Mouse Down.

The 'onMove' callback

Event number: 11
Generated for: Form, Window, Document, Dialog

The onMove callback is invoked when the user moves a window. The event-specific parameters in ⎕EV
are (in index origin 1):

 ⎕EV[6] New top position
 ⎕EV[7] New left position

The 'onMovieEnd' callback

Event number: 21
Generated for: Movie without controller

When a Movie object is playing a movie and the end of the movie is reached, the onMovieEnd

callback is invoked (unless the movie is in continuous play mode in which case the movie never ends).

The onMovieEnd callback is not applicable for a movie with controller (style 0).

The 'onOpen' callback

Event number: 26

Generated for: Any object

The onOpen callback is invoked after an object has been opened.

APLX System Classes & User-Interface Programming 377

For the System object, the onOpen event has a special meaning. If you have packaged your APL

workspace into a standalone application, this event is triggered under MacOS when the user drags a

file icon on to your application icon, once the application is running. (It is not triggered when the

application first starts up, and is not triggered under Windows). The file and action properties
indicate what files you need to open or print.

The 'onPaint' callback

Event number: 9

Generated for: Any visible object
Synonym: onDraw

Normally, APL takes care of all drawing and updating of an object on the screen. However, the

onPaint callback can be used to supplement (or even to replace) the default drawing method for given

object. It is invoked whenever the object needs to be redrawn for any reason (for example, if a

property has been changed, or if the window was previously obscured and now has been uncovered).

The 'onPopup' callback

Event number: 19
Generated for: Menu

The onPopup callback is invoked when the menu is popped up.

The 'onPreferencesMenu' callback

Event generated under MacOS X only

Event number: 38
Generated for: System

When you create a packaged application from your APLX workspace, your code will normally use

System Classes to create windows and the menus associated with them. However, under MacOS X,

the 'Preferences' menu item resides in the application menu which MacOS X creates, so it is outside

the scope of the user-defined menus.

The onPreferencesMenu callback allows your packaged APL application to be notified when the user
has selected the 'Preferences' menu item, so that you can display an appropriate dialog.

APLX System Classes & User-Interface Programming 378

Under Windows and MacOS 8 or 9, this callback will never be triggered. Instead, you should create
your own 'Preferences' menu item.

See also the onAboutMenu and onQuitMenu callbacks.

The 'onQuitMenu' callback

Event generated under MacOS X only

Event number: 39
Generated for: System

When you create a packaged application from your APLX workspace, your code will normally use

System Classes to create windows and the menus associated with them. However, under MacOS X,

the 'Quit' menu item resides in the application menu which MacOS X creates, so it is outside the scope
of the user-defined menus.

The onQuitMenu callback allows your packaged APL application to be notified when the user has
selected the 'Quit' menu item, so that you can do any necessary cleaning up and exit the application.

Under Windows and MacOS 8 or 9, this callback will never be triggered. Instead, you should create
your own 'Quit' menu item, usually in the 'File' menu.

See also the onAboutMenu and onPreferencesMenu callbacks.

The 'onReady' callback

Event number: 42
Generated for: Browser and APL (child task) object

Browser

For a Browser object, the onReady callback is invoked when a new page has been loaded.

APL object

The onReady callback is invoked in an APL object belonging to a parent task when the state of the

child task changes from executing to ready for input.

The event-specific parameters in ⎕EV are (in index origin 1):

APLX System Classes & User-Interface Programming 379

 ⎕EV[6] Task ID for the child task

See the section on APLX Multi-tasking for more details.

The 'onReceive' callback

Event number: 50

Generated for: Socket

This event occurs both on clients and servers. It indicates that the other end has sent some data, which

you can now read using the Receive method.

The 'onResize' callback

Event number: 12
Generated for: Any visible object (usually windows)

The onResize callback is called when the user resizes a window, or when your program calls the

Resize method. The event-specific parameters in ⎕EV apply to a Window, Form, Dialog, or Document
only and are (in index origin 1):

 ⎕EV[6] New width in pixel units
 ⎕EV[7] New height in pixel units

Note that this callback is not invoked if your program changes an object's size by setting the size or

where property - you need to call the Resize method as well if you want the callback function to be
run.

In older APL systems, this callback was frequently used to re-arrange the controls in a window to

reflect the re-sizing. In APLX, you can often do this much more simply by specifying the align or

anchors properties of the controls in the window.

APLX System Classes & User-Interface Programming 380

The 'onRowMoved' callback

Event number: 47
Generated for: Grid

This event is triggered when the user has moved a row by dragging it to a different position in the grid.

(This is possible only if the style property includes the flag 512, row moving allowed). The event-
specific parameters in ⎕EV are (in index origin 1):

 ⎕EV[6] Row number before the move
 ⎕EV[7] The position of the row after the move

The 'onScroll' callback

Event number: 14

Generated for: Grid

The onScroll callback indicates that a Grid control has been scrolled. The visible position after the

scroll can be determined using the firstvisible or view properties.

The 'onSelChange' callback

Event number: 40
Generated for: RichEdit, Grid, Tree

For a RichEdit control, this event is triggered when the user changes the selection point.

For a Tree control, it is triggered when the user changes the selected node.

For a Grid control, this event is triggered when the user selects a new cell. The event-specific

parameters in ⎕EV are (in index origin 1):

 ⎕EV[6] Row number of the newly-selected cell
 ⎕EV[7] Column number of the newly-selected cell

APLX System Classes & User-Interface Programming 381

The 'onSelection' callback

Alternative name for the onClick callback

The 'onSend' callback

Event number: 20
Generated for: Any object

The onSend callback is used for inter-object or inter-task communication. It indicates that the Send

method has been invoked for the object.

The 'onShow' callback

Event number: 28
Generated for: Any object

The onShow callback will be run if an object (or its parent) is made visible using the Show method or

by setting the visible property to 1.

The 'onSignal' callback

Event number: 43

Generated for: System and APL (child task) objects

The onSignal callback allows Parent and Child tasks to send messages to each other, with associated

data. It is invoked in an APL object belonging to a parent task when the child task executes the Signal

method of its System object. Conversely, it is invoked in the System object of a child task when the

Parent executes the Signal method of its APL child task object.

During the callback, ⎕WARG contains the data (which can be any APL array or overlay) which the

calling task passed as the argument to the Signal method.

APLX System Classes & User-Interface Programming 382

The event-specific parameters in ⎕EV are (in index origin 1):

 ⎕EV[6] Task ID for the task which sent the signal

See the section on APLX Multi-tasking for more details.

The 'onStop' callback

Alternative name for the onMovieEnd callback

The 'onTimer' callback

Event number: 18
Generated for: Timer

The onTimer callback is run at regular intervals by a Timer object (the frequency being set by the

interval property).

The 'onUnfocus' callback

Event number: 8

Generated for: Window, Form, Dialog, Document, and any control which can have the input focus
Synonym: onDeactivate

The onUnfocus callback is called when an object loses the input focus (either because the user has
done something, or under program control). It is typically used to validate user input in Edit controls.

The 'onZoom' callback

Not implemented under Windows and Linux

Event number: 13
Generated for: Window, Document, Dialog

APLX System Classes & User-Interface Programming 383

When the user clicks in the Zoom box of a window, the default system action is to resize the window

appropriately and create a Resize event. However, if you wish to override this behaviour you can

define an onZoom callback which does something different (for example, zooms the window to a size
which you determine dynamically). The event-specific parameters in ⎕EV are (in index origin 1):

 ⎕EV[6] Current window width in pixels
 ⎕EV[7] Current window height in pixels
 ⎕EV[8] Reason code (1 for normal size, 2 for full size)

APLX System Classes & User-Interface Programming 385

Section 6. Using the Draw Method

APLX System Classes & User-Interface Programming 387

Using the Draw method

The Draw method allows you to draw text, lines, patterns, pictures and geometric shapes on windows,

controls, and printer pages. It takes an argument which comprises one or more phrases which each

start with a keyword indicating the operation to perform, followed by the arguments to that operation.

(see the workspace 10 HELPDRAW for examples).

Drawing takes place using a current Pen (for foreground drawing) and Brush (for background

drawing). You can also set the Mode which determines how drawing interacts with what is already on
the screen.

Coordinates are interpreted according to the current Draw-method Scale for the object. The first time

that the Draw method is used on a control, this is set to be the same as the scale property of the

control. However, you can change it to be either one of the standard fixed scales, or to be proportional
to the window size.

APLX automatically handles window refreshing for you if the window is uncovered or resized (you

can switch this off using the autoredraw property). It does this by storing the sequence of Draw

commands applicable to the window or control, and replaying them when an update is required. You

can also group a series of commands together, and selectively enable or disable them (for example, to

temporarily hide the labels on a graph), or delete them altogether from the saved sequence. This is

useful for animation effects.

The general syntax of the Draw method is:

 Control.Draw '<Keyword>' Arg1 Arg2...

where Control is usually the a reference to the Window into which you want to draw, or a Printer, or a

Frame, Picture or Image object, identified using dot notation (for example, Win.Pic.Image1). You
can also supply multiple sequences of commands on one line:

 Control.Draw ('<Keyword1>' Arg1) ('<Keyword2>' Arg1 Arg2)...

Alternatively, you can use the equivalent ⎕WI syntax:

 ControlName ⎕WI 'Draw' '<Keyword>' Arg1 Arg2...
 ControlName ⎕WI 'Draw' ('<Keyword1>' Arg1) ('<Keyword2>' Arg1 Arg2)...

where ControlName is a character vector containing the name of the window or control (including
parent if applicable), for example: 'Win' or 'Win.Pic.Image1'

The keywords are not case-sensitive, but it is recommended that you enter them in the case shown in

the following sections.

The operations you can carry out using the Draw method fall into four categories:

APLX System Classes & User-Interface Programming 388

 Operations which set the state of the drawing sub-system for the current control, defining how

subsequent drawing commands will work. These include commands to set the Pen, Brush, Font
and Scale.

 Operations which cause drawing to take place on the current control. These include commands

to draw lines, rectangles, arcs, and polygons, and to draw text (and find out what size rendered

text would require on the screen). You can also draw bitmaps and other images, either from

file or directly as an array of color values held in an APL variable.

 Operations which determine how drawing commands are replayed when a window update is

required. These include commands to group graphic elements together, to enable and disable

specific groups, and to delete commands from the saved list. You can also obtain a bitmap or

Scalable Vector Graphics (SVG) representation of the drawing, or copy it to the Clipboard.

In the descriptions which follow, optional parameters are shown in square brackets.

APLX System Classes & User-Interface Programming 389

Draw method: State commands

Default

Syntax: Control.Draw 'Default'

Sets the Font, Pen, Brush and Scale to the default values for further draw commands, but does not

delete the existing saved sequence of commands. The default Pen is a black solid line of 1 pixel width.

The default Brush is the window background color. The default Font is Arial 10 point, plain style. The

default text foreground color is black and the default text writing mode is transparent. The draw-

method scale is set to the scale of the parent object at the time when the Draw method was first used.

Scale

Syntax 1: Control.Draw 'Scale' Value

Syntax 2: Control.Draw 'Scale' Height Width

Syntax 3: Control.Draw 'Scale' Top Left Height Width
Syntax 4: Control.Draw 'Scale' 0 Top Left Height Width

Sets the Draw-method scale for further drawing commands.

When the Draw method is first used on a control or window, the Draw-method scale is set to be the

same as the scale property of the control or window. The top, left of the drawing area is at position 0

0, and the coordinates increase in the downwards and rightwards directions. Subsequent changes to the

scale property of the control or window have no effect on the Draw method, but you can use the

'Scale' keyword in the Draw method to select a different scale for subsequent Draw method
commands.

In the first syntax form shown above, the Value parameter selects one of the standard scales:

1. Use 'character' units. A character unit has the same height as a line of text in the default system

font (16 points), and the width of a typical character (8 points). In this case the vertical and

horizontal scales are different.

2. Use 'dialog' units, (1/8 system-font high, 1/4 system-font wide)

3. Use point units (nominally 72 points per inch)

4. Use 'twips' units (nominally 1440 twips per inch)

5. Use pixel units (also usually 72 per inch on the Macintosh), but this depends on the resolution

and screen size.

APLX System Classes & User-Interface Programming 390

6. Use nominal millimetres. Depending on the screen size, this may not be accurate for controls

displayed on a screen, but it should be accurate when printing on paper (provided the printer
driver is set up correctly).

7. (Applicable to Chart objects only) Use the same scale as the axes of the Chart. This is very

useful for applying Draw method commands to a chart, for example to add lines showing

confidence limits or annotate certain values with text. By using scale 7, you can ensure that the

Draw commands always match the chart even if it is resized or re-scaled.

In the remaining syntax forms, the scale is proportional to the window or control size. The Height and

Width parameters are used to indicate the number of units corresponding to the height and width of the

window or control. For example, if Height is 200 and Width is 400, then the scale will be such that

there are 200 vertical units between the top and bottom of the window, and 400 units across. This will

remain true even if the window is resized, i.e. the scale is proportional to the window size, so that the
graphic will be shrunk or stretched automatically when the window is re-drawn.

If the Top and Left parameters are supplied, the drawing origin is shifted such that these parameters
correspond to the top left point of the drawing area.

Note that you can specify negative parameters for any of Height Width Top or Bottom. If you use a

negative value for Height or Width, it changes the direction of the coordinate system. For example,
the command

 Win.Draw 'Scale' 100 0 ¯100 200

sets the bottom left of the window to be row 0 column 0. The top left of the window is row 100

column 0. The bottom right of the window is row 0 column 200. The direction of the vertical axis has
been reversed to be upwards.

Pen

Syntax: Control.Draw 'Pen' Style [[Color] Size]

Sets the Pen for further drawing commands.

The Style parameter is one of 0=Transparent, 1=Solid, 2=Insideframe, 3=Dash, 4=Dot, 5=DashDot,

6=DashDotDot. Default 1. Note: Under MacOS, dashed or dotted lines do not display consistently
unless they are either horizontal or vertical.

The Color parameter can either be a single integer being the RGB values encoded 256⊥Blue Green

Red where each color value is in the range 0 to 255, or separate Red Green Blue values in the range 0
to 255. Default 0 0 0 (Black)

The Size parameter is the pen width. (Default 1). If it is greater than 1, the Style must be 1.

APLX System Classes & User-Interface Programming 391

Brush

Syntax 1: Control.Draw 'Brush' Style [Color]

Syntax 2: Control.Draw 'Brush' ¯2 FileName

Sets the Brush for further drawing commands.

In the first form, the Style parameter is one of 0=Transparent, 1=Solid, 2=Horizontal grid pattern,

3=Vertical grid pattern, 4=Forward diagonal, 5=Backward diagonal, 6=Cross pattern, 7=Diagonal
cross patterns. Default 1.

The Color parameter can either be a single integer being the RGB values encoded 256⊥Blue Green

Red where each color value is in the range 0 to 255, or separate Red Green Blue values in the range 0
to 255. Default 0 0 0 (Black)

You can also set the Style parameter to ¯2, as shown in the second form above. In this case it should

be followed by the name of a bitmap file, which will be used as the background fill pattern. (Note:

APLX automatically caches this bitmap for you and releases it when it is no longer needed. There is
no need for the APL programmer to obtain a bitmap handle and free it explicitly).

Color

Syntax: Control.Draw 'Color' Color

Sets the foreground (and optionally background) color for further text drawing commands.

The Color parameter can either be a single integer being the RGB values encoded 256⊥Blue Green

Red where each color value is in the range 0 to 255, or separate Red Green Blue values in the range 0
to 255. The default is 0 0 0 (Black).

If you want to specify the background color as well, you can provide two encoded integers, or a length

6 vector of two sets of RGB values. In this case the text foreground color is the first color you specify,

and the background color is the second. Note that the background color will not be used if the current
text mode is transparent - see the Mode command.

Font

Syntax: Control.Draw 'Font' Name [[[[Size] Style] Charset] Angle]

Sets the font for further text drawing commands. The parameters are the same as for the normal font

property, with the addition of an optional drawing Angle. This is expressed in units of one tenth of a

degree, anticlockwise from the horizontal. (This parameter is ignored under MacOS 8 and 9.) If any
parameter is an empty vector, it is left unchanged.

APLX System Classes & User-Interface Programming 392

Mode

Syntax: Control.Draw 'Mode' Opaque [[Mode] PolyType]

Sets the drawing mode for further drawing and text commands.

The Opaque parameter is 0 for transparent text and 1 for opaque text, or ¯1 to indicate 'leave

unchanged'. The default is transparent. If you set Opaque to 1, text will be drawn with the background

color selected using the Color command.

The Mode parameter is an integer in the range 1 to 16, or ¯1 to indicate 'leave unchanged'. It

determines how pixels drawn using the Brush or Pen interact with the existing pixels in the window.

The exact meaning of the values depends on the system on which APLX is running; they are mapped

so that the most useful ones give rise to similar effects under MacOS, Windows and Linux. The
possible values and the resulting pixels which appear on the window are:

Value Effect under Windows/Linux Effect under MacOS

1 Pixels are replaced with Black Pixels are replaced with Black

2
Inverse of the logical OR of the drawn

pixel color and existing pixel color
Not implemented

3

Logical AND of the existing pixel

color and inverse of the drawn pixel

color

Not implemented

4 Inverse of drawn pixel color

Where the pen or brush pattern is 1, the existing

pixel is unchanged. Where it is 0, the pen or brish

color is used

5
Logical AND of the drawn pixel color

and inverse of the existing pixel color
Not implemented

6 Inverts the current pixel color Not implemented

7
Logical XOR of the drawn pixel color

and existing pixel color

Where the pen or brush pattern is l, the existing

pixel is inverted. Where it is 0, it is unchanged

8

Inverse of the logical AND of the

drawn pixel color and existing pixel

color

Not implemented

9
Logical AND of the drawn pixel color

and existing pixel color
Not implemented

10
Inverse of the XOR of the drawn pixel

color and existing pixel color

Where the pen or brush pattern is 1, existing pixel

is unchanged. Where it is 0, it is inverted

11 Existing pixels are unchanged Existing pixels are unchanged

12
Logical OR of existing pixel color and

inverse of drawn pixel color
Not implemented

13

(default)

Pixels are replaced with drawn pixel

color
Pixels are replaced with drawn pixel color

14
Logical OR of drawn pixel color and

inverse of existing pixel color
Not implemented

APLX System Classes & User-Interface Programming 393

15
Logical OR of drawn pixel color and

existing pixel color
Not implemented

16 Pixels are replaced with White Pixels are replaced with White

In practice, the values you are likely to find useful are:

 13 (default): Replace the destination pixel with the drawn pixel

 7: Draw using the XOR operation, which is reversible. Draw again, and the figure will be
removed. This is useful for 'rubber banding' or temporary outlines of shapes.

Under Windows, the PolyType parameter determines the algorithm used for filling of complex

polygon shapes. If it is 0, the 'alternate' algorithm is used. If 1, the 'Winding' algorithm applies. It is
ignored under MacOS and Linux.

APLX System Classes & User-Interface Programming 394

Draw method: Rendering commands

Clear

Syntax: Control.Draw 'Clear'

Erases the entire drawing area and fills it with the current Brush. (For a Printer object, it ejects the

page instead). Note that this command does not delete saved commands associated with the control, so

for efficiency and to avoid wasting memory you should not call this method repeatedly if the

autoredraw property is 1. Alternatively you should use the Reset keyword to delete saved commands

before calling Clear.

Bitmap (from file)

Syntax: Control.Draw 'Bitmap' Filename [[[Row Col] Height Width] Stretch]

Alternative keywords: 'Picture' or 'Icon'

Draws an image from a file on the control. The Filename parameter is the path to the file containing

the image. Under Windows, this can be a Bitmap (.bmp), Windows metafile (.wmf), Icon (.ico) or

JPEG (.jpg or .jpeg) image. Under MacOS, the supported formats include bitmaps and JPEGs, as well

as MacOS PICT files and usually other formats such as TIFF and GIF. Under Linux, the supported

types depend on the operating system version but will typically include .png .xpm .jpg .jpeg .ico and

.bmp files. (To display all formats, your Windows or MacOS system may need an appropriate

graphics converter or QuickTime module installed). APLX automatically caches the picture in

memory, and releases it when it is no longer needed. If you display multiple copies of the same
picture, only one copy will be loaded in memory.

The optional Row and Col parameters determine the top left corner on the control where the picture

will be displayed.

Usually the picture is displayed at its natural size. The optional Height and Width parameters allow

you to specify the size of the rectangle in which it is displayed. If the Stretch parameter is 0 or

omitted, the picture is clipped to this size. If it is 1, the picture is stretched or shrunk to fit the specified

height and width. (However, for Icons this parameter must be 0).

You can also draw multiple bitmaps with a single command by passing a nested vector of multiple

Filename...Stretch parameters.

Bitmap (from APL variable)

Syntax: Control.Draw 'Bitmap' Array [[[Row Col] Height Width] Stretch]

Alternative keywords: 'Picture' or 'Icon'

APLX System Classes & User-Interface Programming 395

This second form of the Bitmap command allows you to pass an APL array which contains the picture

as a set of RGB color values. The Array parameter is a two-dimensional integer array. Each element

contains a color value for the corresponding pixel. The color value is encoded as 256⊥Blue Green
Red where each color value is in the range 0 to 255.

The other parameters are as described above.

You can also draw multiple bitmaps with a single command by passing a nested vector of multiple

Array...Stretch parameters.

Circle

Syntax: Control.Draw 'Circle' Row Col Radius [[[[Aspect] StartAngle EndAngle]
Border] TiltAngle]

Draws a circle, ellipse, arc, or pie slice. The figure is drawn with the current Pen and filled with the
current Brush.

The Row and Col parameters determine the center of the circle or ellipse. The Radius parameter

determines the radius of the circle or ellipse. If the Aspect parameter is 1 (default), the figure drawn

will be a circle provided the current scale has the same units along both axes. If the Aspect

parameter is greater than 0, the Radius parameter determines the radius along the horizontal axis, and

the radius along the vertical axis is obtained by multiplying Radius by Aspect. If Aspect is less than

0, the Radius parameter determines the radius along the vertical axis and the radius along the

horizontal axis is obtained by multiplying Radius by the absolute value of Aspect.

The optional StartAngle and EndAngle parameters are used for pie slices and arcs. They are

measured in degrees, anti-clockwise from the right horizontal axis. The default is 0 360, i.e. a full
circle or ellipse.

The Border parameter determines which lines are drawn with the Pen. It is the sum of:

1 Draw the circumference
2 Draw the radius at the starting angle
4 Draw the radius at the end angle

The default is 1. If you don't want any line to be drawn, you can set Border to 0 or use a transparent

Pen. If you don't want the figure to be filled, use a transparent Brush.

The final optional parameter, TiltAngle, allows you to specify that you want the figure rotated from

the horizontal. It is expressed in degrees counter-clockwise from the right horizontal axis. The rotation

is applied after all of the other parameters have been evaluated, so the radius along what would have

been the horizontal axis becomes the radius along the line at TiltAngle degrees from the horizontal.

(If you specify this parameter, drawing may be slower and the figure less precise than it would be if
you omit it).

You can also draw multiple figures either by passing multiple enclosed vectors of 3 to 8 parameters, or
by passing a matrix of 3 to 8 columns.

APLX System Classes & User-Interface Programming 396

Chord

Syntax: Control.Draw 'Chord' Row Col Radius [[[[Aspect] StartAngle EndAngle]
Border] TiltAngle]

Draws a chord (ie the intersection of a circle and a line). The figure is drawn with the current Pen and
filled with the current Brush.

The parameters are the same as for Circle, except for the Border parameter, which is the sum of:

1 Draw the circumference
2 Draw the intersecting line

You can also draw multiple chords either by passing multiple enclosed vectors of 3 to 8 parameters, or
by passing a matrix of 3 to 8 columns.

Ellipse

Syntax: Control.Draw 'Ellipse' Row Col Height Width

Draws a circle or ellipse. The figure is drawn with the current Pen and filled with the current Brush.

This is similar to the Circle command, but only complete circles/ellipses can be drawn and the size of

the figure is expressed in a different way. The Row and Col parameters determine the top, left of the

rectangle which just contains the figure. The Height and Width parameters determine the size of the
containing rectangle.

You can draw multiple figures by passing a nested vector of 4-element parameters, or by passing an N
by 4 matrix.

Line

Syntax: Control.Draw 'Line' Points

Draws one or more connected lines using the current Pen.

The Points parameter is an N by 2 numeric matrix describing the points to be connected, where N is
at least 2. The first column represents the Rows, and the second column the Columns.

You can also draw multiple series of lines in one command by passing multiple sets of Points arrays.

Seg

Syntax: Control.Draw 'Seg' Array [Array, Array...]

Draws one or more sets of connected lines (without polygon fill) in one operation, using the current
Pen.

APLX System Classes & User-Interface Programming 397

The argument comprises one or more M by N matrices of: Y1 X1 Y2 X2... Each row of the matrix

corresponds to one set of connected lines. Points are taken in pairs from each row, so N must be even,
and the sets of lines in each array must have the same number of segments.

This method is provided mainly for compatibility with APL+Win. You can achieve the same effect in

a more flexible manner by supplying a nested argument to the Line keyword.

Poly

Syntax: Control.Draw 'Poly' Points

Draws a polygon using the current Pen, and fills the polygons using the current Brush.

The Points parameter is an N by 2 numeric matrix describing the points to be connected, where N is

at least 3. The first column represents the Rows, and the second column the Columns. APLX

automatically draws the last line to connect the last point to the first. For complex shapes, the Mode
command specifies the algorithm used to determine which regions of the polygon are filled.

If you don't want the polygon to be filled, use a transparent brush.

You can also draw multiple polygons in one command by passing multiple sets of Points arrays.

Rect

Syntax: Control.Draw 'Rect' Row Col Height Width [RoundingV RoundingH]

Draws a rectangle or round-cornered rectangle. The rectangle is drawn with the current Pen and filled
with the current Brush.

The Row and Col parameters determine the top, left of the rectangle, and the Height and Width

parameters determine its size. For a round-cornered rectangle, the RoundingV and RoundingH
parameters determine the diameter of the corners in the vertical and horizontal directions respectively.

You can also draw multiple rectangles in one command by passing a nested vector of 4- or 6-element

parameters, or by passing an N by 4 or 6 matrix.

Text

Syntax: Control.Draw 'Text' String Row Col

Draws a text string in the current Font.

The String parameter is a character vector or matrix containing the text to be written. It can contain

embedded carriage return (⎕R) characters. If it is a matrix, carriage returns are automatically inserted at

the end of each line. The Row and Col parameters determine the starting position. Text can be written

at an angle by setting the angle using the Font command.

APLX System Classes & User-Interface Programming 398

TextSize

Syntax: R ← Control.Draw 'TextSize' String [String, String..]

Alternative keyword: '?Text'

Determines the size required to render one or more text strings in the current Font.

The argument comprises one or more character scalars, vectors or matrices. If only one string is

supplied, the result is a 2-element numeric vector containing the height and width required to draw the

string with the currently-selected font, in the current Draw scale. If more than one string is supplied,

the result is a nested vector with one element per string. Each element is a two-element vector giving
the height and width required for the corresponding string.

APLX System Classes & User-Interface Programming 399

Draw method: Grouping and Control commands

Reset

Syntax: Control.Draw 'Reset'

Deletes all saved Draw command sequences associated with the control, and resets the Font, Pen and

Brush to default values. The default Pen is a black solid line of 1 pixel width. The default Brush is the

window background color. The default Font is Arial 10 point.

State

Syntax: R ← Control.Draw 'State'

Returns a nested array of the Draw commands which are associated with a control. This is the series of

commands which APLX automatically uses to redraw the control when a window update is needed.

You can use this to redraw the same image on a different control by passing it directly as the nested

argument of the Draw method. This is particularly useful for printing the contents of a window; simply

open a Printer object and pass the array to the Draw method of the printer.

GetBitmap

Syntax: R ← Control.Draw 'GetBitmap'

Returns an APL integer matrix, where each element contains an RGB color for the corresponding

pixel. The color value is encoded as 256⊥Blue Green Red, where each color value is in the range 0 to
255

GetSVG

Syntax: R ← Control.Draw 'GetSVG'

Returns a character vector containing a representation of the drawing in Scalable Vector Graphics

(SVG) format. This can be useful for creating high quality resolution-independent drawings suitable
for publication.

Copy

Syntax: Control.Draw 'Copy'

Places a copy of the drawing on the clipboard in the native format for the host

APLX System Classes & User-Interface Programming 400

Group

Syntax: Control.Draw 'Group' ID

Sets the Drawing group for further commands.

All drawing commands for a particular control belong to a group. (The default is group 0). Using this

command, you can cause a particular series of commands to be given a different group ID. The group

ID must be a non-negative integer. Subsequently, you can either temporarily enable and disable the

group (for example, to hide a particular part of the drawing), or delete the group altogether. You can
use this feature for animation effects.

DisableGroup

Syntax: Control.Draw 'DisableGroup' ID

Temporarily disables one or more Drawing groups for a particular control. The control is redrawn

without the commands in the disabled group(s) being executed. The ID parameter comprises one or
more integers containing the groups to be added to the list of disabled groups.

EnableGroup

Syntax: Control.Draw 'EnableGroup' ID

Re-enables one or more Drawing groups for a particular control. The control is redrawn. The ID

parameter comprises one or more integers containing the groups to be removed from the list of
disabled groups.

DeleteGroup

Syntax: Control.Draw 'DeleteGroup' ID

Removes one or more Drawing groups from the list of saved commands for a particular control. The

commands are removed entirely and the memory associated with them is released. The control is
redrawn.

APLX System Classes & User-Interface Programming 401

Section 7. Using the Chart and Series Objects

APLX System Classes & User-Interface Programming 403

Chart and Series Objects: Introduction

The Chart class is a control which can display a range of different business, statistical and scientific

graphs. The actual data which is displayed in the graph is held in one or more Series objects. (See

the workspace 10 SAMPLESCHART for examples).

Note: Using the Chart and Series objects, you have full control over the appearance of the graph.

However, if you do not need this, a simpler (but less flexible) way of drawing a graph is to use the

⎕CHART system function, or simply to right-click on the name of a suitable variable and select 'Display
as Chart' from the pop-up menu.

The Chart object can display the following types of graph:

Line

Scatter

Bar

Area

Stair

Stacked Bar

Hi Lo Open Close Candlestick Horizontal Bar

APLX System Classes & User-Interface Programming 404

Pie

Mixed

Stacked Horizontal Bar

Although you can customize many aspects of the display of a Chart object, it is designed so that it

automatically selects defaults which should give a good appearance for the chart with minimal

programming. For example, if a chart is re-sized, by default the font sizes are adjusted appropriately,
and reasonable values for the chart scale, tick positions, and labels are automatically chosen.

Charts by default are displayed in color. You can select your own colors for all the major elements of

a chart, or you can leave the Chart object to select defaults. You can also ask for the chart to be

displayed in monochrome.

As well as being displayed within your windows, charts can also be printed, copied to the clipboard,
and saved to file in various formats.

You can also customize a chart by adding your own graphics elements using the Draw method.

Except where noted below, the Chart object behaves identically on all of the APLX desktop platforms
(Windows, MacOS, and Linux).

APLX System Classes & User-Interface Programming 405

Using the Chart Object

The main steps you need to carry out to create a chart are as follows:

1. Create a Chart object, typically setting the chart type using the type property, and as

appropriate setting labels for the chart title, axis labels, etc.

2. Create one or more Series objects, as children of the Chart object, and use these to specify the

data which the chart will display. You can specify the data in various ways, typically using the

values property, or the xvalues and yvalues properties separately.

3. Optionally, customize the chart's appearance by setting various properties of the Chart object.

You can also set various properties of the child Series objects (for example, to set the colors
used to display each series).

The Chart object responds dynamically to each change you make. (You can switch this off using the

update property). So, having created a chart, you can for example convert a line chart to an area

chart by changing the type property.

Here is an example of a function which produces a simple chart showing two different series:

 ↔Chart_Microsoft;MS;data;years;revenue;income;⎕IO
[1] ⍝ Sample line chart
[2] MS←'⎕' ⎕NEW 'Window' ⊦ MS.title←'Sample chart'
[3] MS.Chart.New 'Chart' ⊦ MS.Chart.align←¯1 ⊦ MS.Chart.type←'line'
[4] MS.Chart.title←'Microsoft Financials FY 1985-2004'
[5] MS.Chart.yaxislabel←'$ Millions'
[6] ⍝
[7] MS.Chart.s1.New 'series' ⊦ MS.Chart.s1.caption←'Revenue'
[8] MS.Chart.s2.New 'series' ⊦ MS.Chart.s2.caption←'Net Income'
[9] ⍝
[10] ⍝ Set up data
[11] ⎕IO←0
[12] years←1985+⍳20
[13] revenue←140 198 346 591 805 1186 1847 2777 3786 4714 6075
[14] revenue←revenue,9050 11936 15262 19747 22956 25296 28365 32187 36835
[15] income←24 39 72 124 171 279 463 708 953 1146 1453
[16] income←income,2195 3454 4490 7785 9421 7346 5355 7531 8168
[17] ⍝
[18] MS.Chart.s1.yvalues←revenue ⊦ MS.Chart.s1.xvalues←years
[19] MS.Chart.s2.yvalues←income ⊦ MS.Chart.s2.xvalues←years
 ↔

This produces a window which contains the following chart:

APLX System Classes & User-Interface Programming 406

(Note that the number of ticks and labels shown may vary as the window is resized).

We can now customize the Chart object in various ways. For example, we can use the style

property to display a grid, the subtitle property to add a subtitle, and the note property to add a

note:

 MS.Chart.subtitle←'(since IPO)'
 MS.Chart.note←'Source: Microsoft Inc'
 MS.Chart.style←(1+8)

The graph will now look like this:

APLX System Classes & User-Interface Programming 407

We can also set attributes of the individual series. For example, we might want the 'Net Income' line to

be displayed as a dotted line, in green:

 MS.Chart.s2.linetype←2
 MS.Chart.s2.color←0 180 0

APLX System Classes & User-Interface Programming 408

APLX System Classes & User-Interface Programming 409

Axes, Coordinates and Scales

Apart from Pie charts, all the different chart types plot a dependent variable (known as Y) against

another variable (known as X). By convention, the X axis is along the horizontal, and the Y axis is

along the vertical, except for Horizontal Bar and Stacked Horizontal Bar charts, where the two are
reversed.

By default, the Chart Object will select the scale of the chart (i.e. the range from the minimum X and

Y coordinates to the maximum X and Y coordinates) automatically. It will also automatically choose

where to place tick marks and labels along the axes. There are two types of tick mark; major tick

marks (which are by default labelled), and minor tick marks (which are not labelled). The major tick

marks are slightly longer. The Chart object chooses the intervals between tick marks to give a

reasonable number of ticks depending on the size of the chart, and will place the marks at intervals
which mean that the labels are round numbers (multiples of 1, 2, 5 or 10 times integral powers of ten).

The Chart object will also choose the intercepts, i.e. the point where the axes cross each other. This

will usually be 0 if 0 is within the scale, else the lowest X or Y point on the scale. This means that the

Y axis is usually shown on the left of the chart, but you can change this by using an alternate Y scale

(see below), and you can also cause the Y axis to be drawn on both sides of the chart using the style

property.

For Bar and Stacked Bar charts (and the Horizontal versions of these), the bars are by default drawn
centred on integers 1, 2, 3.. etc.

The Alternate Scale

As well as the main Y scale, you can also specify that an alternate Y scale is used for one or more of

the series on the chart, by setting the usealtscale property of the Series object. The alternate Y

scale is shown on the right side of the chart, and has its own scale, ticks, and intercept. This is useful if

you are plotting two different types of quantity on the same chart, or if the ranges of numbers of two

series are very different. For example, in this chart, the left axis refers to cigarette consumption, and
the right scale to obesity:

 ↔Chart_ObesityTobacco;⎕IO;obesity;tobacco;Health
[1] ⍝ Sample line chart with two different scales
[2] Health←'⎕' ⎕NEW 'Window' ⊦ Health.scale←5 ⊦ Health.size←450 600
[3] Health.title←'Sample: Obesity and Tobacco'
[4] Health.Chart.New 'Chart' ⊦ Health.Chart.align←¯1
[5] Health.Chart.type←'line' ⊦ Health.Chart.style←1
[6] Health.Chart.title←'Tobacco Consumption and Obesity'
[7] Health.Chart.subtitle←'United Kingdom'
[8] ⎕IO←0
[9] ⍝ Set up the data
[10] obesity←1980 7 1991 14 1992 14 1993 15 1994 16 1995 16 1996 17
[11] obesity←13 2⍴obesity,1997 18 1998 19 1999 20 2000 21 2001 22 2002 22
[12] tobacco←1960 51.5 1970 49.5 1980 39 1990 30 1992 28
[13] tobacco←10 2⍴tobacco,1994 27 1996 28 1998 27 2000 27 2001 27
[14] Health.Chart.s1.New 'series'

APLX System Classes & User-Interface Programming 410

[15] Health.Chart.s1.marker←'⊦' ⊦ Health.Chart.s1.fillmarker←1
[16] Health.Chart.s1.caption←'Tobacco consumption (left axis)'
[17] Health.Chart.s1.values←tobacco
[18] Health.Chart.s2.New 'series'
[19] Health.Chart.s2.marker←'⊦' ⊦ Health.Chart.s2.fillmarker←1
[20] Health.Chart.s2.caption←'Obesity (right axis)'
[21] Health.Chart.s2.usealtscale 1
[22] Health.Chart.s2.values←obesity
[23] Health.Chart.yaxislabel←'% of population daily smokers'
[24] Health.Chart.yaltaxislabel←'% of population with BMI>30 kg/m2'
[25] Health.Chart.xmajorticks←1960 1970 1980 1990 2000
[26] ⍝
[27] ⍝ Wait until window is closed
[28] 0 0⍴⎕WE Health
 ↔

Line [15] of this function causes the second series to be drawn using the alternate scale, which is

unrelated to the main Y axis scale. The effect is as follows:

Specifying your own tick positions and intercepts

If you wish, you can choose your own positions for the tick marks along any of the axes. You specify

the values where major tick marks should be drawn by writing a vector of values to the Chart

properties xmajorticks, ymajorticks, or yaltmajorticks. (The previous chart shows an

example of this on line [19].). Similarly, you can select where minor tick marks should be drawn by

writing to the xminorticks, yminorticks, or yaltminorticks properties.

APLX System Classes & User-Interface Programming 411

If you specify your own tick positions, the final scale chosen will normally be from the lowest tick

mark you specify to the highest. However, the scale will be extended if any of the points in any
enabled Series is outside this range, so that the scale can represent all points on all the series.

In addition, you can change where the axes cross by specifying the xintercept,

xaltintercept, and yintercept properties.

Specifying your own tick labels

By default, the Chart object writes a label next to each major tick mark, showing the numeric value of

the point on the axis. If you wish, you can specify your own labels using the properties xlabels,

ylabels, or yaltlabels. You can write to these properties as a text matrix, carriage-return

delimited text vector, or as a nested vector of character strings. However, except for bar charts and pie

charts, your labels will be displayed only if you also specify the major tick positions along the same
axis (this is because otherwise the chart object would not know where you want the labels).

There are two special cases. For Bar charts (including the stacked and horizontal variants), there is no

need to specify the X tick positions, since the bars are always drawn at 1, 2, 3... For Pie charts, there

are no tick positions as such, but the xlabels strings (if any) will be used to label each pie.

Specifying axis labels

The xaxislabel, yaxislabel and yaltaxislabel properties allow you to specify a label for

the axis as a whole (such as '$ Millions' or 'Kg/m'). This is not the same as the tick labels, which label

individual ticks along the axis.

Logarithmic Scales

Sometimes the range of data contained in a series is so large that a logarithmic scale is more

appropriate. You can cause a logarithmic scale to be used for an axis by setting one of the

xlogscale, ylogscale or yaltlogscale properties of the Chart to 1. (This works only if a

logarithmic scale is valid, i.e. the values must all be greater than 0). For example, in the chart of the

Microsoft financial results shown previously, the values for the early years do not show clearly

because they are so tiny compared with the later values. A logarithmic scale shows the year-on-year
growth in a more even fashion:

 MS.Chart.ylogscale←1

APLX System Classes & User-Interface Programming 412

Note that, in this example, the minor ticks represent 2, 3, .. 9 times the power of ten shown at the

previous major tick.

APLX System Classes & User-Interface Programming 413

Chart Object Properties

Setting the chart type:

type

The type property determines the type of chart. It is a text string, which is one of the

following values (case is ignored when you assign the string):

'line' (default)

Selects a Line Chart. Each series is drawn as lines between successive X, Y

points. By default, markers are not shown at each point. (If you want markers,

set the marker property for the series). You can specify the color and line type

for each series individually, or leave the Chart object to select a default.

'stair'

Selects a Stair Chart. Same as a Line chart, except that instead of the line

being drawn directly from each X,Y point to the next, a horizontal line is drawn

first to the next X position, and then a vertical line is drawn to the next Y

position.

This sort of chart is useful for displaying series where the Y values change in

step-wise fashion (for example, a chart of interest rates set by a central bank

against time, or a chart showing a digital representation of an analog value).

'area'

Selects an Area Chart. Similar to a line chart, except that each series is drawn

as a filled area between the lines connecting the X,Y points, and the X axis. The

series are drawn in the order in which they were created, so a later series may

conceal some or all of an earlier series. You can specify the color and fill

pattern for each series individually, or leave the Chart object to select a default.

(Tip: If you want to avoid concealing one series underneath another, you can

set the fillpattern property of each series to be something other than

solid).

'scatter'

Selects a Scatter Chart. No line is drawn between the X,Y points of the series;

instead, a marker is drawn at each X,Y point. You can leave the Chart object to

choose a default marker type, or specify it yourself using the marker property

of each series.

APLX System Classes & User-Interface Programming 414

This sort of chart is useful for displaying experimental results. (Sometimes, you

will also want to include a separate line series showing a theoretical fit to the

experimental results, or a least-squares regression to show a trend. You can do

this using the mixed chart type).

'bar'

Selects a Bar Chart. The graph is drawn as a series of filled vertical bars from

the X axis. (The X values are ignored, except possibly to set labels for the bars).

If you have more than one series, the bars for each series are displayed side-by-

side. As with the other chart types, you can set the fill color and/or pattern

individually for each series, or leave the Chart object to choose defaults. You

can also set the thickness of each bar (relative to the available space) using the

barwidth property.

'stackedbar'

Selects a Stacked Bar Chart. Like a bar chart, but the bars for each series are

placed on top of each other at each data point, rather than side-by-side. This

type of chart is useful for showing both the total value of a quantity (for

example, total sales by quarter), and the contributions to the total (for example,

how much each region contributed to the total).

Normally, stacked bar charts are used only for series where all the Y data values

are positive. If there are negative Y values encountered at a given X value, there

will in effect be two stacked bars drawn; the positive ones will be stacked on

top of each other in the positive direction, and the negative ones will be stacked

on top of each other in the negative direction.

'horizbar'

Selects a Horizontal Bar Chart. Same as a Bar chart, except that the bars are

drawn horizontally.

'horizstackedbar'

Selects a Horizontal stacked bar chart. Same as a Stacked Bar chart, except

that the bars are drawn horizontally.

'hilo'

Selects a High-Low-Open-Close (HLOC) chart. Unlike the previous chart

types, for an HLOC chart you need to specify more than one Y value for each X

value for a series. As a minimum, you should specify the High and Low values

(using the properties highvalues and lowvalues). For a financial chart,

these typically represent the highest price and the lowest price reached by a

stock or commodity during a particular trading period. The chart is drawn as a

series of vertical bars between the High and Low values for each X value (thus

showing the price range for the period). You can optionally specify Open values

for the series (using the property openvalues), typically representing the

opening price for the period. These are drawn as a small tick to the left of the

vertical bar. You can also optionally specify Close values for the series (using

APLX System Classes & User-Interface Programming 415

the property closevalues, which is a synonym for yvalues). These are

drawn as a small tick to the right of the vertical bar.

Although primarily used for financial data, this type of chart can also be used

for other applications, such as displaying experimental results. In this case, the

Open and Close values would both be specified to represent the primary

experimental results, with the High and Low values representing the confidence

limits.

'candle'

Selects a Candlestick chart. This is a variant of the High-Low-Open-Close

chart. Again, a line is drawn between the High and Low values, but the

difference between the Open and Close values is shown by a rectangle. If the

Open value is greater than the Close, the rectangle is filled with the series

foreground color, otherwise it is filled with the background color.

This type of chart is often used to show price trends over time; the filled

rectangles make it very obvious whether the closing prices were higher or lower

than the opening prices for each trading period.

'pie'

Selects a Pie chart. Draws one or more circular areas, where each value is

shown as a slice of the circle representing the proportion of the total attributable

to each series. As such, they are rather like stacked bar charts, except that you

cannot tell the total value at each point, only the proportion contributed by each

series. Negative values are ignored. If there are multiple pie charts displayed,

they are automatically arranged in rows and columns to make the best use of the

available space. Each pie will have the same radius.

By default, the pie chart will be accompanied by a 'legend' which shows the

colors used for each series (provided you have specified a caption property

for the series). However, the pie chart often looks better if you disable the

legend (by setting the placelegend property of the Chart object to 'none'),

and use the style property to cause each pie slice to be labelled with the series

caption and a percentage value.

Caution: The Chart object displays one pie chart for each X value, with each

series contributing a slice to each pie (unless the value is zero or negative). It

does NOT display one pie per series. Thus, in the limiting case where you want

a single pie showing four segments, you need to create four separate series, each

with just one value. Although this may seem somewhat unnatural at first, it is

implemented in this way for consistency with other chart types (especially bars

and stacked bars). This means you can swap between the different chart types to

display the same data in different ways. This approach also allows you to set the

color, fill pattern and caption for each segment by setting properties of the

Series objects. The QUICKPIE function in the workspace 10 SAMPLESCHART can

be used if you want to create a simple pie chart from an APL array.

APLX System Classes & User-Interface Programming 416

You can label the individual pies by setting xlabels property of the Chart

object.

'mixed'

Selects a Mixed chart type, with different types for each Series. For all of the

Chart types above, each series in the chart in displayed in the same way.

Sometimes, however, you might want to mix different types of chart together.

For example, you might want to show experimental results as a Scatter chart,

and the prediction of a mathematical model of the data as a Line chart. Or you

might want to show monthly profit figures as a Bar chart, and the cumulative

year-to-date profit as a Line chart.

If you set the type property of the Chart object to 'mixed', then each series

will be drawn according to the type property of the individual Series object.

This can be any of the above types except for horizontal or stacked bars, or pies.

Setting titles and labels:

title or caption

subtitle
note

These properties are all text vectors, and are simply labels displayed around the chart.

Normally, the title property is displayed in the largest font, and is intended to represent the

title for the whole chart. The subtitle property is displayed below the title, in a slightly

smaller font, and is intended as a sub-title for the whole chart. The note property is typically

displayed in a small font, and is intended to represent additional information such as a

copyright notice or acknowledgement. However, you can use these labels in any way you wish,

or omit them altogether by leaving them as empty vectors.

xaxislabel
yaxislabel
yaltaxislabel

These properties are also text vectors, and are labels displayed adjacent to the axes. They are

usually used to indicate the units or meaning of the scale along the axis.

Specifying where labels and legends are drawn:

placetitle
placenote
placelegend

These properties determine where various labels of the chart are drawn.

APLX System Classes & User-Interface Programming 417

The placetitle property determines where the title and subtitle (if any) are drawn.

It is a text string, and can be one of the values 'top', 'topleft', 'topright', 'bottom',

'bottomleft', 'bottomright'. The default is 'top', meaning the title is centered above the

chart.

The placenote property determines where the note (if any) is drawn. It can have the same

values as the placetitle property. The default is 'bottomright'.

The placelegend property determines where the chart legend is drawn. The legend shows,

for each series which has a non-empty caption property, a sample line, marker, or filled

rectangle as appropriate, next to the caption. (If a given series has no caption, it will not appear

in the legend). This property is a text string, which can be one of the values 'top', 'left',

'right', 'none', or an empty vector. If it is 'none' or an empty vector, the legend is not

shown. The default is 'top'.

Choosing fonts:

font

The font property determines the base font used for the Chart object. By default, the Chart

object uses this base font for every text element it draws, with the size being chosen as a

proportion of the window size, and different sizes for the different elements (for example, the

title is drawn as the biggest). By changing the font property, you can change the font

family used to display all elements unless they are specifically altered using one of the specific

font properties described below. The font property uses the same form as the font property of

other controls, i.e. it is a nested vector of (Font name) (Size) (Style) (Character set). However,

the Size parameter is not used. The default is Arial, plain text.

Note: Take care when changing this property to use a font which displays well at a wide range

of sizes, unless the chart is not resizable. We recommend that you use a TrueType or

OpenType font in all cases.

fontaxis
fontlegend
fontnote
fonttitle

These properties allow you to specify the font for individual elements of the chart. Any

changes you make to these override the setting of the base font property.

These properties are specified in a similar way to ordinary font properties, as a nested vector

of (Font name) (Size) (Style) (Character set). However, the Size is defined in a special way. If

it is set to a value between 0 and 1, it means that the height of the font should be the specified

proportion of the window size, defined as the smaller of the window height and width. Values

in the region of 0.03 to 0.05 are reasonable. This is recommended for resizable charts, to

ensure that the labels remain in proportion to the chart as a whole. (If the font gets too small, a

lower limit is imposed). If the font size is specified as an integer greater than 1, it is interpreted

APLX System Classes & User-Interface Programming 418

as a font size in Points, and will be fixed irrespective of the size of the Chart. This is likely to

mean that the chart does not display well at very small or large sizes.

If the Font name is an empty vector, the base font family is used. If the Size or Style element is

¯1, the corresponding font attribute is left unchanged.

Specifying ticks, tick labels, and intercepts:

xmajorticks
ymajorticks
yaltmajorticks

xminorticks
yminorticks
yaltminorticks

By default, the Chart object chooses a suitable scale automatically, and chooses sensible major

and minor tick positions. It labels the major tick positions with the corresponding numeric

value.

These properties allow you to specify your own positions for the major or minor ticks along

the X axis, Y axis, and alternate Y axis (if used). Each property is a numeric vector, specifying

where each tick should be drawn. If both the major and minor tick vectors for a particular axis

are empty (which is the default), the Chart object will position the tick marks automatically. If

either the major or minor tick vector is not empty, ticks will be drawn only where you have

specified them.

If you specify your own tick positions, the scale for a particular axis will usually range from

the lowest tick mark you specify to the highest. However, it will be extended to include any

data point which would otherwise fall outside the range.

xlabels

ylabels
yaltlabels

These properties can be used to change the labels written next to the major tick marks. By

default, the Chart object labels the major ticks with the corresponding numeric value. If you

specify one of these properties, then your labels will be used instead. However, (except for the

X axis of a bar chart or pie chart), you must also specify the corresponding major tick

positions, otherwise the Chart object will not know where the labels should be placed.

The labels can be specified either as a character vector with embedded carriage returns, or as a

text matrix, or as a nested vector of character vectors. The first label is used for the first major

tick position, and so on. If there are more labels specified than tick positions, the surplus labels

are ignored. If there are fewer, the ticks which do not have user-defined labels are labelled with

the default numeric value.

xlogscale
ylogscale
yaltlogscale

APLX System Classes & User-Interface Programming 419

These are Boolean scalar properties. If set to 0 (which is the default), a normal linear scale

applies. If set to 1, a logarithmic scale is used for the corresponding axis.

You cannot set a logarithmic scale for an axis where any data point is 0 or negative. If this

situation occurs, the scale will revert to linear.

xintercept
yintercept

These properties can be used to specify where the X axis and main Y axis should cross the

other axis. By default the X axis is placed at the bottom edge of the graph, or at the Y value of

0 if the Y axis ranges from negative to positive values, but you can specify a different position

by changing the yintercept property. Similarly, the Y axis is by default placed at the left

edge of the graph, or at X value 0 if the X axis ranges from negative to positive values, but you

can specify a different value using the xintercept property.

xaltintercept

Returns the X position where the alternate Y axis (if any) crosses the X axis. Because the

alternate Y axis is always drawn on the right-hand edge of the chart, this property is read-only.

xscale
yscale
yaltscale

These are read-only properties, each comprising a two-element numeric vector. They return the

limits of the X, Y and Alternate Y axes respectively.

Changing the appearance of the chart:

style

The style property of a Chart object is the sum of a set of flags:

1 Draw box around graph drawing area (i.e. the axes or individual pie charts)

2 Draw grid lines on X major ticks

4 Draw grid lines on X minor ticks

8 Draw grid lines on X major ticks

16 Draw grid lines on Y minor ticks

APLX System Classes & User-Interface Programming 420

64 Draw the Y axis on the right as well as left

128 Label pie slices with the series name

256 Label pie slices with the percentage

512 Label pie slices with the actual value

The default is 0.

border

The border property is a Boolean scalar. If it is set to 1, a border is drawn around the whole

Chart object, including the titles and other labels.

monochrome

Normally, charts are drawn in color, with different series being drawn in different colors to

distinguish them. Sometimes, however, you may want the chart to be drawn in monochrome,

for example if you are printing it on a black-and-white printer. The monochrome property

allows this. If you set it to 1, all the elements of the chart will be drawn in the Chart object's

Foreground color (by default, black). Since this means that the different series cannot be

distinguished by color, they will instead be distinguished by line type (solid, dashed, dotted,

etc) or by fill pattern (vertical hatch, horizontal hatch etc). See the linetype and

fillpattern properties of the Series object for more information on these.

color or colour

The color property is defined in the same way as for other objects. It sets the Foreground and

Background color of the Chart as a whole. Colors can be specified in one of two ways. In the

first way, you specify a vector of three integers (Red, Green and Blue), so that for example 255

0 0 is pure red and 255 255 255 is white. In the second way, you specify a single integer which

encodes the three values in base 256 as 256 ⊥ Blue Green Red. In addition, three special

values are recognised; ¯1 means use the parent's foreground or background color as

appropriate; ¯2 means use the default color (black for foreground and white for background);

¯3 (valid only for the Background) means that the background of the Chart is transparent,

allowing you to draw the chart on top of a picture.

When the Chart is drawn, the control is first set to the Background color (unless it is

transparent), and then the various graphics elements are drawn. By default, the axes, grids,

APLX System Classes & User-Interface Programming 421

labels and titles are all drawn in the Foreground color, but you can change this using more

specific properties (see below). The data lines, markers, bars, or pie slices for each series are

drawn in the color associated with the series (or in the Foreground color if the monochrome

property is set to 1). Note that the Chart object chooses a default color for each series when it

is created; you can change this by setting the color property for the child Series object.

coloraxis or colouraxis

colorgrid or colourgrid

colorlegend or colourlegend

colornote or colournote

colortitle or colourtitle

These properties allow you to set specific colors for the various individual elements of the

chart. They are specified as a single color value (vector of three separate RGB values, or a

single integer encoding the three values). The default is ¯1, meaning use the Chart object's

foreground color. These properties are ignored if the monochrome property is set to 1.

linewidth

The linewidth property of the Chart is an integer scalar, which specifies the width in pixels

of lines drawn in the chart. The default is 1. The value set here is used for all lines (axes, grids,

and the data series lines), unless you specify a different value for a particular element using

one of the more specific properties described below. You can set the line width for a particular

data series by using the linewidth property of the child Series object.

axiswidth
gridwidth

These two properties allow you to specify the line width (in pixels) for the axis and grid lines

respectively, as an integer scalar. The default is ¯1, which means use the value set in the Chart

object's linewidth property.

barwidth

The barwidth property allow you to specify the width of the bars used in bar charts. It is an

integer scalar, in the range 0 to 100, representing the percentage of the available width used to

draw the bars at each X value. (For a Bar or Horizontal Bar chart with multiple series where

the bars for each series are placed side by side, this width is shared equally between the

different series). If the barwidth property is set to 100, then 100% of the available space is

used, so there will be no gaps between the bars. If it is set to a low value (say 20), then the bars

will be very narrow, with lots of white space between them. The default is 80.

margin

This property sets the space which the Chart object leaves around the chart. (In addition to this,

the Chart object automatically allows extra space for the titles, legend, axis labels, and tick

labels.) It is a numeric vector of four elements, representing the Left, Right, Top and Bottom

margins, in the units set by the standard scale property of the control (do not confuse this

with the X and Y scales used for plotting data). The default is 16 pixels for all four margins.

APLX System Classes & User-Interface Programming 422

When you use the Print method to print the chart, the values in this property are added to the

print margins specified on the Printing tab of the APLX Preferences dialog.

Other properties:

workarea

This is a read-only property. It returns a vector of four numbers, representing the Top Left

Bottom Right of the data area of the graph within the control (i.e. the area enclosed by the

axes, excluding any margin, titles, legend, or axis labels). It is expressed in the units set by the

standard scale property of the control. It can be used if you need to draw extra features on

the chart (see the notes on the Draw method below).

update

Normally, any changes you make to the chart take effect almost immediately (when events are

next processed). In some cases, this might give a flickering effect if the chart ends up being

redrawn several times because you are making a lot of changes to it. You can temporarily

disable redraws by setting the update property to 0, and then making a sequence of changes

to the chart. When you set the update property back to 1, the chart will be redrawn once,

with all of the changed properties.

bitmap

The bitmap property is read-only. It returns a numeric matrix, which represents the image of

the chart as an array of pixel values, with each pixel encoded as the RGB value. The image can

be displayed in a Picture object, or (using an Image object), manipulated further and saved to

file in any of the supported formats (such as JPEG or GIF).

picture

The picture property is read-only. It is similar to the bitmap property, in that it represents

the image of the chart. However, instead of representing each pixel of the chart it is currently

drawn, it contains the series of drawing commands (encoded in a platform-specific way into a

vector of integers). It is thus a vector-graphics version of the chart image, and can be re-drawn

in good quality at different sizes, typically in a Picture object. You can also write it to file, or

to the clipboard. (The picture property is not currently implemented under Linux).

svg

This read-only property returns the representation of the chart in Scalable Vector Graphics

(SVG) format. This format is ideal for publishing your charts, since SVG will retain high-

quality output on high-resolution devices.

APLX System Classes & User-Interface Programming 423

Chart Object Methods

Print

This is a method without arguments. It causes the chart to be printed on the currently-selected

printer. The chart will fill as much of the page size set using the APLX Page Setup dialog as it

can, within the margins set in the Preferences dialog and any extra margins set using the chart's

margin property, whilst keeping the same aspect ratio as the chart has on screen.

Copy

This is a method without arguments. It causes the chart to be copied to the clipboard as a

picture. Under Windows, it is copied as a Windows metafile, so for example you can paste it

into Microsoft Word as a resizable image. Under MacOS, it is copied as a PICT object. Under

Linux it is copied as a bitmap.

Save filename [type]

This method causes the chart to be saved to a graphics file. The filename parameter is the full

path of the file to be written. Alternatively, it can be an empty vector, in which case a standard

file dialog is displayed to allow the user to choose the name. The optional type parameter can

be one of the following:

0 : Write the file using the native vector graphics format of the host (not supported under

Linux):

Under Windows the vector format used is the Windows Enhanced Metafile (.emf).

Under Macintosh OS X the vector format used is a PICT file.

1 : Write the file in a bitmap format (not supported under MacOS).

The format used is a Windows-style bitmap file (.bmp).

2 : Write the file in Scalable Vector Graphics (SVG) format.

The default is 0 for Windows and Macintosh, 1 for Linux.

Note: If you want to save the chart in a different format, for example as a GIF, you can do this

using an Image object. To do this, you need to read the bitmap property of the Chart, write this

to the bitmap property of the Image, set the Image format, and then call the Save method of

the Image.

APLX System Classes & User-Interface Programming 424

Draw keyword param1 param2..

The Draw method is fully implemented for Chart objects, allowing you to customize the chart

by adding your own graphic elements and annotations. These are displayed after the main chart

has been drawn. You can also draw in the X and Y coordinate system of the chart. See the

section on Customising Charts below.

Pointtochart Y X
Pointtochartalt Y X

These two methods convert a point (Vertical and Horizontal values in the current scale of

the control), to the coordinates of the chart (either the equivalent Y and X value of the main

axis, or the Alternate Y and X axis). The argument is a two-element numeric vector of Y, X,

and a two-element numeric vector is returned.

These two methods are particularly useful for responding the mouse-down events on the chart.

For example, you might want to display an information panel if a point on the chart is clicked.

If you set the scale property to 5 (pixels), these methods directly convert the pixel position

on the control to the coordinates of the chart.

Chartalttopoint Y X
Charttopoint Y X

These methods carry out the inverse transformation, from chart coordinates to a point on the

control, expressed in the current scale of the control (you will probably want to set the

scale property to 5 for pixels). They can be useful if you are adding your own annotations or

other graphic elements using the Draw method.

APLX System Classes & User-Interface Programming 425

Series Object Properties

Setting the data for the series:

values

The values property provides a quick way of specifying the X and Y values of a series in

one operation. You can assign to it in the following ways (they are tested for in this order):

(a) 2 by N numeric matrix:

In this case the first row is assumed to contain the X values, and the second row the Y values.

(b) N by 2 numeric matrix:

In this case the first column is assumed to contain the X values, and the second row the Y

values. (Note: for a 2 by 2 matrix, case (a) applies).

(c) Numeric scalar, vector, 1 by N matrix, or N by 1 matrix:,

In this case the data provided is assumed to represent the Y values of the series, and the X

values are implicitly set to 0, 1, 2....N-1

If you read back this property, the data is always returned in format (a), i.e. as a 2 by N matrix

of X values, Y Values

xvalues
yvalues

These properties can be written as numeric scalars, vectors or one-row matrices. They provide

an alternative way of specifying the X and Y values respectively for points on the series. The

xvalues property can be omitted (i.e. left as an empty vector), in which case they are

assumed to be 0, 1, 2... up to the number of points specified in the yvalues property less 1.

Otherwise, you should always provide the same number of values for X and Y.

If you read back one of these properties, the data is always returned as a numeric vector.

highvalues
lowvalues
openvalues
closevalues

These set the data used for High-Low-Open-Close and Candlestick charts. They are numeric

vectors, each representing one of the four Y data points associated with each X value in the

xvalues property. You should normally provide the same number of values for each of these

properties, although openvalues and closevalues are optional.

APLX System Classes & User-Interface Programming 426

Note that the closevalues property is actually a synonym for yvalues, and contains the

same data.

Using the Alternate scale for the series:

usealtscale

This is a Boolean scalar. It defaults to 0, meaning that the series should be drawn using the

main Y scale (i.e. the left axis). If you set it to 1, the series will instead be drawn using the

alternate Y scale (i.e. the right axis).

If you want only one Y axis, but you want it to appear on the right instead of the left, set this

property to 1 for all the series in the chart, so they all use the alternate axis. Alternatively, if

you want only one axis, but you want it to be drawn on both the left and the right, leave this

property as 0 for all the series in the chart (so they all use the main axis), and use the style

property of the Chart object to specify that you want the main axis drawn on both sides (value

64).

Enabling/Disabling and Showing/Hiding the series:

enabled

This is a Boolean scalar. It defaults to 1, meaning that the series is enabled and should be

included in the chart.

If you set this property to 0, the series is not included in the chart at all. This means that it is

not displayed, and also that it takes no part in determining the scale used by the chart.

visible

This is also a Boolean scalar which defaults to 1, meaning that the series is visible (provided

the enabled property is also 1).

If you set this property to 0, the series is not displayed when the chart is drawn. However,

unless the enabled property is set to 0, the series will be taken into account when

determining the scale of the chart.

This is useful for two purposes. Firstly, you can temporarily hide a series without the scale of

the chart altering. Secondly, you can force the chart to extend the scale by including a dummy

series which is enabled but not visible.

You can also use the Show and Hide methods to make the series visible or not; these have the

same effect as changing the visible property.

APLX System Classes & User-Interface Programming 427

Labelling the series:

caption or title

This property is a text vector, which associates a label with the series. By default it is an empty

vector, which means the series has no label. If you give it a label using this property, then it

will appear in the legend for the chart, with a sample line, marker or filled rectangle to show

which series is which on the chart. (The legend will not be shown if the Chart object's

placelegend property is set to 'none' or to an empty vector.)

For a Pie chart, the caption can also be shown directly next to the Pie slice, if the Chart

object's style property includes the value 128.

Setting the appearance of the series:

marker

When a series is drawn as a Scatter chart, each point is denoted by a marker symbol. By

default, the symbol to use is selected when the series is created. By changing the marker

property, you can choose a particular marker symbol. In addition, if you specify a marker using

this property, the marker will be also be displayed if the series is shown as a Line chart.

The marker is specified by assigning a character scalar, which is one of the following APL

symbols: + × * ○ ⌽ ⊄ ↔ ∆ ⊦ ⎕ ↑ ↓ → ← It can also be a space or empty vector, in which

case no marker is drawn.

(The actual marker is drawn is not a character, but a shape similar to that of the corresponding

APL symbol. The APL font is not used to render the marker shape.)

fillmarker

Where a marker is drawn, by default it is drawn in outline only. If you set the fillmarker

property to 1, the marker will be filled with the current marker background color (as set by the

colormarker property), provided it is one of the following shapes: ○ ⌽ ⊄ ↔ ∆ ⊦ ⎕

color or colour

By default, the Chart object will choose a unique color for each Series object when it is

created, but this property allows you to select a particular color. It is specified as a single color

value (vector of three separate RGB values, or a single integer encoding the three values). It is

used for drawing lines, and filling bars or areas, associated with the data of the series.

The color property is ignored if the Chart's monochrome property is set to 1.

APLX System Classes & User-Interface Programming 428

colormarker or colourmarker

Usually, any marker associated with a series is drawn in the color set for the series as a whole

(i.e. the color property, which is either chosen automatically or set explicitly). If you wish,

you can display the marker in a different color by setting the colormarker property. You

can also specify a background color for filling the marker. It is specified either as a single color

value (vector of three separate RGB values, or a single integer encoding the three values), in

which case it is used for both the foreground and background colors, or as two color values

(length six vector of RGB values, or two integers encoding the color values), in which case the

foreground color is used to outline the marker, and the background color is used to fill it if the

fillmarker property is 1. The default values of ¯2 ¯2 mean use the same color as is used

for the series as a whole.

The colormarker property is ignored if the Chart's monochrome property is set to 1.

fillpattern

Normally, bars and pie slices associated with a series are filled with a solid block of color. If

you wish, you can specify a different fill pattern for the series, by assigning one of the

following values to the fillpattern property:

1=Solid, 2=Horizontal grid pattern, 3=Vertical grid pattern, 4=Forward diagonal, 5=Backward

diagonal, 6=Cross pattern, 7=Diagonal cross pattern

If the Chart's monochrome property is set to 1, and you haven't specified your own fill

pattern, a default pattern from one of the above will be assigned to the Series object to

distinguish it from other series on the chart.

linetype

Normally, lines associated with a series are drawn as a continuous (solid) line. If you wish, you

can specify a different line type for the series, by assigning one of the following values to the

linetype property:

1=Solid, 3=Dash, 4=Dot, 5=DashDot, 6=DashDotDot

If the Chart's monochrome property is set to 1, and you haven't specified your own line type

pattern, a default type from one of the above will be assigned to the Series object to distinguish

it from other series on the chart.

linewidth

This property is an integer scalar, which determines the width (in pixels) of lines drawn for the

series. By default, it is ¯1, which means that the width should be taken from the linewidth

property of the parent Chart object. By assigning a different value, you can specify a different

line width for this series only.

APLX System Classes & User-Interface Programming 429

Setting the series type for Mixed charts:

type

Normally, each series on the chart is shown in the same way, as determined by the type

property of the parent Chart object. For example, all the series are displayed as bars if the chart

type is set to 'bar'.

Sometimes, however, you may wish to display different series in different ways on the same

chart. To do this, you need to set the type property of the parent Chart object to 'mixed'. The

way in which each series on the chart will be displayed will then depend on the type property

of each individual Series object. You can set this to one of: 'line' 'scatter' 'area'

'bar' 'stair' 'hilo' 'candle'. The default is 'line'.

Caution: Be careful when mixing series displayed as bar charts with the other types. Bars are

by default drawn centered at X coordinates 1, 2, 3..., if no xvalues are set. By contrast, other

types of graph are drawn either with the X coordinates explicitly set using xvalues, or at X

coordinates starting at 0 (not 1) if no X values are specified.

APLX System Classes & User-Interface Programming 430

Customizing the Chart using the Draw method

You can add extra features to the display of a Chart object by using the Draw method. This works

exactly as for other controls, allowing you to write text or add shapes such as polygons to the chart.

When the Chart control is redrawn, it first renders the chart itself, and then runs your Draw method

commands. (The same is true when the Chart object is printed, copied to the clipboard, or read back as
a bitmap).

For this to be useful, you need to be able to relate your Draw commands to the chart itself. To assist in

this, you can use the Chart object's Chartalttopoint Charttopoint Pointtochart

Pointtochartalt methods, which allow you to convert between the X Y coordinates of the chart

and the ordinary scale of the Chart control.

However, an easier way of ensuring that your Draw commands match up to the chart layout is to set

the Draw command scale to 7, meaning 'use the Chart object's X and Y scales'. If you do this, all of

your Draw commands will automatically be correctly rescaled if the chart is re-sized, as in this

example where the Draw method is used to add circular coordinate lines to a polar chart (lines 26 to

30):

 ↔Chart_Polar;xdata;ydata;angle;radius;⎕IO;Polar
[1] ⍝ Sample line chart used as a 'polar' chart
[2] ⍝ Draw line where radius is a function of angle from horizontal
[3] Polar←'⎕' ⎕NEW 'Window' ⊦ Polar.scale←5 ⊦ Polar.size←548 512
[4] Polar.title←'Sample: Polar'
[5] Polar.Chart.New 'Chart' ⊦ Polar.Chart.align←¯1
[6] Polar.Chart.fonttitle←'APLX Upright'
[7] Polar.Chart.title←'r = ⊄ (1 + sin ⊄)'
[8] ⎕IO←0
[10] angle←(⍳400)÷20
[11] radius←angle×(1+1○angle)
[12] ⍝
[13] ⍝ Convert polar coordinates to XY coordinates
[14] xdata←radius×2○angle
[15] ydata←radius×1○angle
[16] ⍝
[17] ⍝ Set the scale to be ¯40 to +40 along both X and Y axes
[18] Polar.Chart.xmajorticks←¯40 ¯30 ¯20 ¯10 0 10 20 30 40
[19] Polar.Chart.ymajorticks←¯40 ¯30 ¯20 ¯10 0 10 20 30 40
[20] ⍝
[21] ⍝ Plot the data as though it were a line chart
[22] Polar.Chart.s1.New 'series' ⊦ Polar.Chart.s1.xvalues←xdata
[23] Polar.Chart.s1.yvalues←ydata ⊦ Polar.Chart.s1.linewidth←2
[24] ⍝
[25] ⍝ Use the Draw method to add circular reference lines
[26] Polar.Chart.Draw 'Scale' 7 ⍝ Use Chart coordinates
[27] Polar.Chart.Draw 'Pen' 1 200 200 200 ⍝ Light gray
[28] Polar.Chart.Draw 'Mode' ¯1 9 ⍝ Mode 9 so that ticks show through
[29] Polar.Chart.Draw 'Brush' 0 ⍝ Transparent so circle not filled
[30] Polar.Chart.Draw(⊂'Circle'),((⊂0 0),¨10×1+⍳4)
[31] ⍝
[32] ⍝ Wait until window is closed
[33] 0 0⍴⎕WE Polar
 ↔

APLX System Classes & User-Interface Programming 431

This give the following effect, where the circular gray lines come from the Draw method commands:

APLX System Classes & User-Interface Programming 432

Section 8. OLE, OCX and ActiveX Programming

APLX System Classes & User-Interface Programming 433

OCX/ActiveX Controls and OLE Automation

Note: This section applies to Windows only

APLX for Windows supports OLE Automation (also known as just Automation, or COM), a powerful

facility which allows your APLX functions to use external software and controls to enhance the
functionality of your applications. There are three ways in which you can use this feature:

(a) You can place external OCX or ActiveX controls directly on your APLX windows. For example,

you can use the Formula One Excel-style spreadsheet control as though it were a built-in APLX
control. This is done simply by creating a window and then creating an external control on it.

(b) You can embed OLE (Object Linking and Embedding) documents in your windows. For example,

you could include a Microsoft Word document as part of a more complex window, merging the Word

menus and toolbar with your own. To allow this, APLX includes a control called an 'OLEContainer'

which you place on your window. You can then specify the document to be embedded or linked, or
allow the user to select one.

(c) You can invoke and exchange data and commands with external OLE Server Applications. This is

somewhat similar to (b), but the application runs independently of APLX and is not embedded in one

of your windows. For example, you could invoke Excel, cause it to load a spreadsheet, and extract the

data from the spreadsheet as an APL nested array, without the user being involved.

In each case, you create an object using ⎕NEW or ⎕WI. This object will have properties, methods, and

events which belong to the external software but which you can access just as you do with ordinary

APLX objects. (To avoid any possible ambiguity, each external property, method, or event name is
prefixed with an 'x', but you can omit this if you prefer.)

Properties supporting Automation

The System object has three properties which each return an N by 4 nested array of the external
controls and servers installed on your system. These properties are:

xclasses OCX/ActiveX controls - case (a) above

oledoctypes Document types which can be embedded in an OLEContainer - case (b) above

oleclasses Server applications which you can invoke - case (c) above

The returned array has one row for each external control or server installed (not all of these will

necessarily be accessible).

The first column is the plain text name, for example 'Chart FX'. The second column is an

alphanumeric string enclosed in curly brackets, which is the unique ID of the automation object. The

third column is the object class name, which is usually a period-delimited string giving the vendor

APLX System Classes & User-Interface Programming 434

name, object class name and optionally the version number, for example 'SoftwareFX.ChartFX.20'.
(The fourth column is reserved for future use).

You can use any of these as the class name to identify the control to APLX, but we recommend that
you use the third.

You can also use the Control Browser (on the Tools menu) to see the same information together with

more detail on the properties, methods, events and constants exported by the control.

APLX System Classes & User-Interface Programming 435

Using OCX/ActiveX Controls

An OCX or ActiveX control is an external control which you can place on one of your APLX

windows. There are many such controls available from Microsoft and from third-party software

vendors. Examples include controls for drawing graphs, spreadsheet controls, document viewers,
calendar controls, etc.

The use of an ActiveX/OCX control is best illustrated by an example. Suppose you want to use the

Formula One spreadsheet control from Visual Components, Inc. You must first create a window, and

then place the control on it. The class name of the control is one of the names returned by the

xclasses property (or you can use the Control Browser window). For Formula One, we can use the

programmatic ID 'VCF1.VCF1Ctrl.1':

 W←'⎕' ⎕NEW 'Window'
 W.F1.New 'VCF1.VCF1Ctrl.1' ⊦ W.F1.align← ¯1

At this point, we have created a window and the control, ready for use but currently without any data:

Now we can see what properties and methods the external control exposes:

 W.F1.properties
 align anchors autodraw caption children class color data doublebuffered dragsou
 rce droptarget enabled events handle methods name opened order pointer pro
 perties scale self size sourceformats tabstop targetformats tie verbs visi
 ble where winptr xAllowArrows xAllowAutoFill xAllowDelete xAllowDesigner x
 AllowEditHeaders xAllowFillRange xAllowFormulas xAllowInCellEditing xAllow
 MoveRange xAllowObjSelections xAllowResize xAllowSelections ... etc etc

 W.F1.methods
 Click Close Delete Doverb Draw Focus Hide New Open Paint Resize Send Set Show S
 howaboutbox Showproperties Trigger XAboutBox XAddColPageBreak XAddPageBrea
 k XAddRowPageBreak XAddSelection XAttach XAttachToSS XAutoFillItemsCount X
 CalculationDlg XCancelEdit XCheckRecalc XClearClipboard XClearRange XColor
 PaletteDlg XColWidthDlg XCopyAll XCopyRange XCopyRangeEx ... etc etc

APLX System Classes & User-Interface Programming 436

There are many more which we have not shown for brevity. The first few are standard APLX

properties/methods, and then those beginning with 'x' are defined by the Formula One control. The
APLX Control Browser gives you more details:

You can also look at the Formula One help file for full documentation.

Using external Properties and Methods

You can use the properties, and call methods, just as you would for built-in APLX controls:

Read the current row (Note: You can use 'row' or 'xrow' as the property name)

 W.F1.row
1

Set the current row and column:

 W.F1.row←2
 W.F1.col←3

Set the current cell as text:

 W.F1.text←'23.2'

Read it back as a number:

 W.F1.number
23.2
 1 + W.F1.number
24.2

APLX System Classes & User-Interface Programming 437

Array properties

Some external controls use 'Array Properties', which are collections of properties indexed by one or

more parameters (usually but not always integers). APLX uses a special syntax for these. See the
separate description of Array Properties for details.

Responding to external Events

Many ActiveX/OCX controls trigger events, just like those associated with APLX built-in controls.

You can cause APLX functions to be called when an event occurs, by setting the associated 'on..'

property of the control. The names of the events are those defined by the control, with a leading 'X'.

Thus, if the OCX control has an event called 'Recalculate', you assign your event handling function to

the property onXRecalculate. (You can omit the 'X' if the name does not clash with an APLX built-in
name). You can find out the names of the events in the usual way:

 W.F1.events
 onClick onClose onDblClick onDestroy onDragDrop onDragEnd onDragEnter onDragLea
 ve onDragOver onDragStart onFocus onHide onKeyDown onKeyPress onKeyUp onMo
 useDown onMouseMove onMouseUp onOpen onSend onShow onUnFocus onXCancelEdit
 onXClick onXDblClick onXEndEdit onXEndRecalc onXKeyDown onXKeyPress onXKe
 yUp onXModified onXMouseDown onXMouseMove onXMouseUp onXObjClick onXObjDbl
 Click onXObjGotFocus onXObjLostFocus onXObjValueChanged onXRClick onXRDblC
 lick onXSelChange onXStartEdit onXStartRecalc onXTopLeftChanged onXValidat
 ionFailed

(Again the first few of these are the standard APLX events; the external control events begin with

'onX'). The Control Browser gives more information on parameters and data types.

Any parameters to the callback function can be retrieved using the ⎕WARG system function.

For example, the Formula One spreadsheet-control allows you to specify a callback, to be triggered

when the user clicks in a cell. The event name is onXClick, and the parameters are defined as:

void Click (long nRow, long nCol);

This means that it passes two integer parameters, which are the row and column of the cell in which
the user has clicked.

You can associate an APL function with this event as follows:

 W.F1.onXClick←'EVTCLICK'

(Note that in this case we must use the full name onXClick, because there is also an APLX built-in

event called onClick).

In your APLX callback function you can retrieve the event parameters; ⎕WARG will return a two-

element vector with the row and column values:

APLX System Classes & User-Interface Programming 438

 ↔EVTCLICK;⎕IO
[1] ⎕IO←1
[2] 'The user clicked in row ',(⍕⎕WARG[1]),' column ',⍕⎕WARG[2]
 ↔

Additional methods for OCX/ActiveX controls

There are some specific built-in APLX methods which apply to OCX controls. These are:

Showproperties: (No arguments). Displays the control's properties dialog, if there is one, allowing

the user to set specific properties (for example, a charting control may allow the user to select the type

of chart). It returns a boolean scalar 1 if the user pressed OK, or 0 if the user pressed Cancel.

Showaboutbox: (No arguments). Displays the control's About Box, typically giving copyright and
version information.

See also the verbs property and the Doverb method.

APLX System Classes & User-Interface Programming 439

Using OLE linked/embedded documents

The second type of OLE Automation supported by APLX is the embedding or linking of a document

in one of your APLX windows, using a special control called an OLEContainer. ('Embedding' means

that there is a copy of the document associated with the control, whereas 'linking' means that the

control does not have a copy of the data but maintains a link to an existing file). The user can edit the
document using the application associated with it.

As an example, suppose you want to embed a Microsoft Word document in your application. You

must first create a window, and then place an OLEContainer control on it. We use the align property
to cause it to fill the window:

 W←'⎕' ⎕NEW 'Window'
 W.OLE.New 'OLEContainer
 W.OLE.align←¯1

Initially, there is no document in the container, and the properties and methods comprise only those
which APLX defines:

 W.OLE.properties
 align anchors autoactivate autodraw border canpaste caption children class colo
 r contents data docstate doublebuffered dragsource droptarget enabled even
 ts file handle methods modified name opened order pointer properties scale
 self size sizemode sourceformats style tabstop targetformats tie verbs vi
 sible where winptr

 W.OLE.methods
 Click Close Closedocument Delete Doverb Draw Focus Hide New Open Paint Refresh
 Resize Send Set Show Showproperties Trigger

You can invoke Word to embed a document in several ways, as described below. These include

writing a filename (or empty vector) to the file property, writing a class name to the progid

property, or writing a previously saved document to the contents property. In this example, we create
a new blank Word document:

 W.OLE.progid←'Word.Document'

Our APLX window now looks like this, and the user can enter text (if there were a menu on the

window, Word's menu would be merged with it):

APLX System Classes & User-Interface Programming 440

If the server application exposes its own properties and methods, these will now be accessible to
APLX. Not all OLE servers provide such facilities, but Word certainly does:

 W.OLE.properties
 align anchors autoactivate autodraw border canpaste caption children class colo
 r contents data docstate doublebuffered dragsource droptarget enabled even
 ts file handle methods modified name opened order pointer properties scale
 self size sizemode sourceformats style tabstop targetformats tie verbs vi
 sible where winptr x_CodeName xActiveTheme xActiveThemeDisplayName xActive
 Window xActiveWritingStyle xApplication xAttachedTemplate xAutoHyphenation
 xBackground xBookmarks xBuiltInDocumentProperties xCharacters xClickAndTy
 peParagraphStyle xCodeName xCommandBars xComments xCompatibility xConsecut
 iveHyphensLimit xContainer xContent xCreator xCustomDocumentProperties xDe
 faultTabStop xEmail xEmbedTrueTypeFonts xEndnotes xEnvelope ... etc etc

 W.OLE.methods
 Click Close Closedocument Delete Doverb Draw Focus Hide New Open Paint Refresh
 Resize Send Set Show Showproperties Trigger XAcceptAllRevisions XActivate
 XAddToFavorites XApplyTheme XAutoFormat XAutoSummarize XCheckConsistency X
 CheckGrammar XCheckSpelling XClose XClosePrintPreview XCompare XComputeSta
 tistics XConvertNumbersToText XCopyStylesFromTemplate XCountNumberedItems
 XCreateLetterContent XDataForm XDetectLanguage XEditionOptions ... etc etc

We have again truncated the lists for brevity.

Some properties are themselves objects. For example, the xContent property is actually a pointer to a

Content object:

 W.OLE.xContent
1826228

You can explore the properties and methods of the sub-object in the normal way, using a dot notation
to drill down the levels:

 W.OLE.xContent.properties
 xApplication xBold xBoldBi xBookmarkID xBookmarks xBorders xCase xCells xCharac
 ters xCharacterWidth xColumns xCombineCharacters xComments xCreator xDisab
 leCharacterSpaceGrid xDuplicate xEmphasisMark xEnd xEndnotes xFields xFind

APLX System Classes & User-Interface Programming 441

 xFitTextWidth xFont xFootnotes xFormattedText xFormFields xFrames xGramma
 rChecked xGrammaticalErrors xHighlightColorIndex xHorizontalInVertical xHy
 perlinks xID xInformation xInlineShapes xIsEndOfRowMark xItalic xItalicBi
 xKana xLanguageDetected xLanguageID xLanguageIDFarEast xLanguageIDOther xL
 istFormat xListParagraphs xNextStoryRange xNoProofing xOrientation xPageSe
 tup xParagraphFormat xParagraphs xParent xPreviousBookmarkID xReadabilityS
 tatistics xRevisions xRows xScripts xSections xSentences xShading xShapeRa
 nge xSpellingChecked xSpellingErrors xStart xStoryLength xStoryType xStyle
 xSubdocuments xSynonymInfo xTables xText xTextRetrievalMode xTopLevelTabl
 es xTwoLinesInOne xUnderline xWords

This allows you to set or retrieve the properties of the sub-objects. For example, to write text to the
Word document:

 W.OLE.xContent.text←'Now is the time'

OLEContainer properties

The main OLEContainer properties are:

style: The style is the sum of a set of flags:

1 = Linked instead of embedded document (must be set before setting the
 'file' property)
2 = Allow in-place activation
4 = Show as icon instead of document (must be set before setting 'file' property)

progid: A character vector determining the class of object (for example, whether it is a Word

document or a Pinnacle Chart). It is of the same form as the third column of the System object's

oledoctypes property. If there is a document loaded, reading the progid property allows you to find

out what the document type is. Writing to the progid property creates a new empty document of the
appropriate class. If you write an empty vector, a dialog is displayed allowing the user to choose.

file: A character vector determining the name of the document contained in the OLEContainer. If the

OLE container is linked to a document, reading the file property allows you to find out its name.

Writing to the file property causes the container to attempt to load the document (or link to it, if the

style is 1). If you write an empty vector, a dialog is displayed allowing the user to choose a
document.

autoactivate: Determines how the activation of the document takes place. One of:

0 = Manual (use the DoVerb method to activate the document)
1 = Automatic (APLX activates it automatically) [Default]
2 = Activate when the control gets focus
3 = Activate when the user double-clicks in the control.

sizemode: Determines how the document fits in the container. One of:

0 = Displays the OLE object at its normal size, clipping any parts that don't
 fit within the container. [Default]
1 = Displays the OLE object at its normal size, centering it within the container.
2 = Scales or shrinks the view of the OLE object to fit within the container,
 by scaling width and height proportionally.

APLX System Classes & User-Interface Programming 442

3 = Scales or shrinks the view of the OLE object to fill the OLE container,
 without regard to preserving the proportions of the OLE object.
4 = Displays the OLE object at its normal size and automatically resizes the
 container to fit the size of the OLE object.

docstate: Read-only property giving information about the OLE document state. One of:

0 = There is no OLE object in the container.
1 = There is an OLE object in the container, but its server application isn't
 currently running.
2 = The OLE object's server is running.
3 = The OLE object is open in a separate window.
4 = The OLE object is activated inplace, but hasn't yet merged its menus
 or toolbars.
5 = The OLE object is activated inplace and menus and toolbars have been merged

modified: Boolean property, saying whether the document has been modified. You can reset this to 0
(false).

verbs: Read-only property. It returns a nested array of the application-specific 'verbs' which the server

application defines. See the Doverb method for details.

contents: When you read the contents property, APLX returns a character vector containing the

internal representation of the document (or the link) in the container, encoded as a series of bytes and

including information about the type of the document. You should never change the contents of this

vector, but you can store it in a file and write the same vector back to an OLEContainer to cause it to
re-display the same document.

OLEContainer methods

The main OLEContainer methods are:

Showproperties: (No arguments). Displays the document's properties dialog.

Doverb: Takes an integer argument which is the ID of a 'verb' to perform. This can either be a positive

integer representing one of the application-specific verbs (see the verbs property), or one of the
standard verbs:

0 Specifies the action that occurs when an end-user
 double-clicks the object in its container.
¯1 Instructs an object to show itself for editing or viewing.
¯2 Instructs an object to open itself for editing in a window
 separate from that of its container.
¯3 Causes an object to remove its user interface from the view.
 Applies only to objects that are activated in-place.
¯4 Activates an object in place, along with its full set of
 user-interface tools, including menus,
 If the object does not support in-place activation, gives domain error
¯5 Activates an object in place without displaying tools, such as menus
 and toolbars, that end-users need to change the behavior or appearance
 of the object.
¯6 Used to tell objects to discard any undo state
 that they may be maintaining without deactivating the object.

APLX System Classes & User-Interface Programming 443

Refresh: (No arguments). Causes the display to be updated to reflect any changes to the source
document.

Closedocument: (No arguments). Closes the document, remembers its state, and disconnects from the

server application. You can still read the contents property to retrieve the document contents.

APLX System Classes & User-Interface Programming 444

Using OLE (COM) Server Applications

The third use of OLE automation is to link to an external server application. This is somewhat similar

to embedding a document in an OLEContainer, but the application runs independently of APLX and is

not associated with one of your windows. It may not even be visible. For example, you could invoke

Word, cause it to load a document, and extract the text from the document, without the user being
involved.

Using an OLE (also known as COM) Server Application is very similar to the previous examples,

except that you create the object as a top-level object, using the external class name (as returned by the

oleclasses property) as the APLX class name.

For example, this function invokes Excel and retrieves a spreadsheet as a nested array (see the

workspace 10 SAMPLESEXCEL for more examples):

 ↔R←GetSpreadsheet SHEETNAME;ROWS;COLS;COLNAMES;⎕IO
[1] ⍝
[2] ⍝ APLX for Windows OLE Example:
[3] ⍝ Get an Excel spreadsheet as a nested array
[4] ⍝
[5] ⍝
[6] ⎕IO←1
[7] ⍝
[8] ⍝ Launch Excel
[9] ⍝ Because 'Excel.Application' is not an APLX class, it looks for a server
[10] XL←'⎕' ⎕NEW 'Excel.Application'
[11] ⍝
[12] ⍝ In this example we don't want to see Excel. It runs in the background
[13] XL.visible←0
[14] ⍝
[15] ⍝ Open specified spreadsheet
[16] R←XL.Workbooks.Open SHEETNAME
[17] ⍝
[18] ⍝ Get number of rows and columns
[19] ROWS←XL.Activesheet.UsedRange.Rows.Count
[20] COLS←XL.Activesheet.UsedRange.Columns.Count
[21] ⍝
[22] ⍝ Get column names. They are called, A B C..Z AA AB AC..AZ BA BB, etc
[23] COLNAMES←GetColumnNames COLS
[24] ⍝
[25] ⍝ Read all data into APL nested array
[26] R←XL.name ⎕WI 'Range().Value' ('A1:',(⊃COLNAMES[COLS]),⍕ROWS)
[27] ⍝
[28] ⍝ Ask Excel to quit (reference localized, so reclaim memory at end)
[29] XL.Quit
 ↔

Line 26 of the above function is an example of reading an Array Property, where the parentheses are

used to tell APLX that the parameter (in this case a string containing the cell range) should be used to
select the particular property required.

APLX System Classes & User-Interface Programming 445

Using references to returned objects

The APLX OCX interface allows you to use numeric 'LPDISPATCH' handles which may be returned

by some OCX/ActiveX controls or OLE Servers. This usually applies in the case where you create a

new object in the external control, and need some way to refer to it. Windows returns a 'handle', which

in APL is represented as an integer. You can use the text representation of the integer as part of a
hierarchical property or method name to access the newly-created object.

For example, you can create a new Word document using the Add method of the Word application.

This returns a handle. In APLX, you can use this as follows:

 W←'⎕' ⎕NEW 'Word.Application'
 MYDOC←⍕'W' ⎕WI 'Documents.Add'
 MYDOC
1797860
 'W' ⎕WI MYDOC,'.Words.Count'
1

APLX System Classes & User-Interface Programming 446

Array Properties and Constants

Array Properties

Some OCX controls and OLE servers use special types of properties known as 'Array Properties'.

These are rather like indexed arrays in APL, in that one or more parameters are used to determine

which one of a set of properties you are reading from or writing to. The parameters are often simply
integers, but can be strings or other data types.

To use 'Array Properties', you need to use ⎕WI rather than dot notation. You pass the parameter(s) as

part of the ⎕WI argument, and put parentheses into the property name string to indicate this. Each pair

of parentheses corresponds to one element from the ⎕WI argument list. An example is shown in line 26
of the GetSpreadsheet function above:

 R←XL.name ⎕WI 'Range().Value' ('A1:',(⊃COLNAMES[COLS]),⍕ROWS)

Range is an Array Property, and the parentheses tell APLX to use one element from the nested
argument list (in this case a character vector) as the parameter.

Constants

Many OCX controls and OLE servers define named constant values or 'enums' as valid arguments for

properties and methods. Often the documentation will refer to the names of these constants without
giving the values, which you need to use them from APL.

In APLX, there are two ways you can find out these values. The Control Browser window shows

constant values by category for controls and servers which publish them. You can thus look up the
value in this dialog.

Alternatively, you can determine the value at runtime using the Valueof method. This takes a character

vector argument which is the name, and returns the value. For example, Formula One defines a set of

enumerated values for file formats. To select the Formula One Version 3 format, you need the

constant F1FileFormulaOne3. You can either look this up in the documentation, or use the Control
Browser to find it, or determine it from within APLX as follows:

 W.F1.Valueof 'F1FileFormulaOne3'
5

APLX System Classes & User-Interface Programming 447

Section 9. APLX Multi-tasking

APLX System Classes & User-Interface Programming 449

Introduction to APLX multi-tasking

APLX includes built-in support for multi-tasking. This means that a single instance of the APLX

program can simultaneously run multiple APL tasks, each with its own workspace and optionally its

own session window. (Technically, APLX runs as a single process, with multiple threads. One thread
controls the user-interface, and each APL task has its own thread.)

APLX tasks are of two types, 'top-level' or 'parent' tasks, and 'child' tasks. When APLX starts up, it

creates the first top-level task automatically. Further top-level tasks are created using the File menu on

the APLX session window, and each has its own session window in which you can enter APL
expressions. A top-level task keeps running until one of the following occurs:

 You type)OFF in the task's session window, or your program executes)OFF

 You select 'Close Session' from the File menu

 You close the session window

When a top-level task ends, other top-level tasks are not affected. When all top-level tasks have

finished, the APLX program terminates. If you select 'Exit APLX' from the File menu, all tasks
terminate.

Child tasks are created under program control using ⎕WI. They can either be background tasks (with

no session window), or alternatively they can be ordinary tasks with their own session windows,

although these might be hidden. Child tasks may be terminated in the same ways as top-level tasks,

but in addition they can be terminated under program control by the parent task. They will also

terminate automatically if their parent task terminates. Child tasks can themselves create further child
tasks.

Each task has its own separate memory allocation for the workspace, of a size which you can specify.

The tasks execute independently, but you can use signals to allow parent and child tasks to

communicate with one another. In addition, variables can be shared between tasks. The niladic system
function ⎕UL returns the number of APLX tasks which are currently running.

Special considerations for Client-Server versions of APLX

If you are running a Client-Server implementation of APLX, it is possible for your various APLX

tasks to run on different machines. This is true both for tasks created using the File menu, and for

Child tasks. In the former case, you can specify where the task should be created using the dialog

which appears when you select the New Session menu item. In the latter case, you select the Server on

which the task should run using the host property of the APL Child Task object.

If you are running APLX64, your APL sessions can comprise a mixture of 32-bit and 64-bit tasks.

APLX System Classes & User-Interface Programming 450

Creating top-level tasks using the File menu

To create a new top-level task, just select 'New Session' from the File menu. A new session window

will open, and you now have two APL tasks running. The window titles indicate which session is
which.

You can execute APL expressions and)LOAD workspaces separately in each session window. You can

also use the other APLX features such as Edit windows and the Workspace Explorer simultaneously in

multiple tasks. To help you keep track of which window belongs to which task, the window title

includes the workspace name. In addition, the Window menu shows the window titles associated with

each session grouped together and indented. For example, this is how the screen might look if you
have two top-level tasks running, and you are editing one function in each task:

Choosing the Host on Client-Server versions of APLX

If you are running a Client-Server implementation of APLX, you can choose on which Server your

new APL tasks should run, by going to the APL tab of the APLX Preferences dialog. You can set the

default to be a 32-bit APL on the current machine, a 64-bit APL on the current machine (if you have

purchased APLX64), or alternatively specify a Server host name which APLX should contact over the
network to create the task.

APLX System Classes & User-Interface Programming 451

You can also specify that you want to be prompted each time a new session is created, in which case a
dialog will appear when you select New Session from the File menu.

Setting the workspace size

When you create top-level task using the File menu, it is allocated the default workspace size which

you have set using the Preferences dialog. You can change the workspace size using the)CLEAR

system command, which optionally takes a parameter which is the desired workspace size in bytes,
kilobytes (K), megabytes (M) or gigabytes (G):

)CLEAR 800K
 WS Size = 800KB
 CLEAR WS
)CLEAR 2M
 WS Size = 2.0MB
 CLEAR WS

The valid range is 50KB to 2GB (for 32-bit versions of APLX). For APLX64, the maximum

workspace size is limited only by the maximum virtual memory size allowed by the operating system

(currently 16384 GB for Windows XP 64). Depending on the operating system and its configuration,
you are likely to be limited in the maximum size of workspace which you can allocate.

APLX System Classes & User-Interface Programming 452

Creating APL child tasks under program control

Creating a new APL task object

You can create child tasks under program control using the 'APL' System Class. This works as

follows:

 ChildTask←'⎕' ⎕NEW 'APL'

This creates a task object, but the APL task itself does not start running until you call the Open
method. Before doing that, you can set various properties of the new task:

Specifying whether the task runs in the background

By default, child tasks you create will have their own session window. However, if you set the

background property to 1, the task will not have a session window and all its output will be thrown

away (you must set this property before calling the Open method).

Specifying the workspace size

By default, a new child task is allocated the amount of workspace which you have set as the default

using the Preferences dialog. The wssize property allows you to specify a different size, as a value in

bytes. If you ask for a very small value, a minimum value of around 100KB will be allocated. If you

ask for a very big value, the operating system may allocate a smaller value. A value of 0 means 'use

the default'. You must set the wssize property before calling the Open method, but you can read it
back at any time.

Specify which machine the task should run on

If you are running a Client-Server implementation of APLX, you can set the host property of the APL

object to specify on which machine the new APL task should run. You must do this before starting the
task.

If you have purchased APLX64, your child APL sessions can comprise a mixture of 32-bit and 64-bit

tasks. A 32-bit task can start a 64-bit task, and vice versa.

Specifying whether the task's session window is visible

A task which is not a background task will have a session window associated with it, but it may not be

visible. You can use the visible property (or the Show and Hide methods) to control whether it is

shown, just as you would with any other window. This can be done before or after the Open method

has been called. You can also use the where and size properties to set or read the position and size of

the task's session window.

APLX System Classes & User-Interface Programming 453

Starting the APL task

The actual APL task starts when you call the Open method. If the task has a session window, it will be

created at this time, and it will appear unless the visible property is 0. If the task has a background

property of 1, nothing will appear. The child task inherits the ⎕MOUNT table of its parent, so will

initially have the same mapping from library numbers to operating-system directories.

Example

This sequence creates a child task with its own visible session window, and a workspace size of
approximately 1MB:

 ChildTask←'⎕' ⎕NEW 'APL'
 ChildTask.wssize←1E6
 ChildTask.Open

You can enquire about the visibility and coordinates of the session window as follows:

 ChildTask.visible
1
 ChildTask.where
12 32 24 64

You can change the size and position of the task's session window as you would with an ordinary
window:

 ChildTask.where←4 10 16 50

APLX System Classes & User-Interface Programming 454

Using the child task

If the child task has a visible session window associated with it, you can enter commands and APL
expressions in it in the normal way. Alternatively, the parent APL task can use it as follows:

Checking the status of the child task:

The status read-only property indicates the execution state of the task. It returns one of the following

codes:

¯1 The task is not running (i.e. it has not been opened, or has terminated)

0 The task is busy executing an APL expression or command

1 The task is in desk-calculator mode, awaiting input

2 The task is awaiting ⍞ input

3 The task is awaiting ⎕ input

4 The task is awaiting ⎕CC input

Causing the child task to execute an expression or command

The Execute method allows the parent to cause the child task to execute an APL expression or system

command. It takes as an argument a character string which the command to be executed (or passed as
input to ⍞ or ⎕).

The child task should be awaiting input (you can tell whether this is the case by reading the status

property, or by using the onReady callback). If it is not, the command will be placed in a buffer and

will be executed when the child task next asks for input. However, there is no queue of commands

held; any existing command already in the buffer will be over-written if the child task has not yet

executed it. The Execute method returns immediately; it does not wait for the command to complete.

In this example, the child task is initially ready for input. It then executes the)LOAD command, and is

busy for a short time (status property is 0). The status property then changes back to 1 when it is
ready for further input:

 ChildTask.status
1
 ChildTask.Execute ')LOAD 10 SAMPLEEXCEL'
 ChildTask.status
0
 ChildTask.status
1

APLX System Classes & User-Interface Programming 455

Note that in a real multi-tasking APLX application you would typically use 'signal' events to allow the

parent and child tasks to communicate with each other and synchronize their operations - this is

described below. The Execute method would typically be used only when starting up the child task.

Reading back the child task's session window contents

The text property of the APL object contains the text in the task's session window (assuming it is not
a background task). For example, after executing the)LOAD above you might have:

 CONTENTS←ChildTask.text

 CONTENTS
CLEAR WS
)LOAD 10 SAMPLEEXCEL
SAVED 2002-09-12 16.43.21
APLX for Windows and Excel Sample - 18th July 2002
--
This workspace contains some functions to demonstrate how to use APLX to
access Excel spreadsheets via the Microsoft Excel OLE server.

... etc

It is a text vector, usually with embedded carriage return (⎕R) characters. The text property returns

the logical contents of the session window, even if the session window is not visible (however it is

always an empty vector for a background task, which does not have a session window). You can also
write to this property to change the text in the session window of a child task.

Uniquely identifying a child task

Every task has a unique identifier. You can read the task identifier of a child task using the read-only

taskid property. It is a scalar integer, and can be used in event handling to identify the task:

 ChildTask.taskid
53429272

The taskid property will be zero if the task is not running.

The child task can read its own task identifier using the taskid property of its System object.

Interrupting a child task under program control

If a child task is executing (status property is 0), the Interrupt method can be called to interrupt it.
It is equivalent to a keyboard interrupt (break).

Terminating a child task under program control

A child task may terminate for various reasons. For example, you might use the Execute method to

cause it to execute an)OFF command, or it may run an APL function which ends by executing an

)OFF. If it has a session window, you can end the task in the same ways as you would a top-level task,
using the File menu or by closing the session window.

APLX System Classes & User-Interface Programming 456

Alternatively, a parent task can terminate the child by using the Close method:

 ChildTask.Close

This closes any windows belonging to the task, releases the workspace memory, and ends the task.

The status property reverts to ¯1. If you wish you can then use the Open method to start it afresh, or

the Delete method to destroy the task object altogether (or erase the last reference to it in the
workspace).

If a parent task terminates, all its child tasks are automatically terminated as well.

APLX System Classes & User-Interface Programming 457

Communication between child and parent tasks

Once a child task is running, events are used to communicate between the child and its parent. These

events can arise automatically, or more usually by explicit program action. They are used to trigger the

execution of a callback function in the receiving task. (Note: As with all callbacks in APLX, the actual
callback is run in a ⎕WE (wait for events) statement).

The automatic events occur when the state of the child task changes. They are as follows (in each case,

⎕EV[6] in index origin 1 will contain the unique task ID, as returned by the taskid property):

 When the state of the child task changes from executing to awaiting input, an onReady event is

triggered in the parent's task object. You can associate a callback with this, for example to pass
the next command to the child task:

 ChildTask.onReady←'NEXTCMD'

This would cause the NEXTCMD function to be run when the child task is ready for the next

command to be sent to it using the Execute method.

 When an untrapped error occurs during function execution (but not desk-calculator mode) in

the child task, an onError event is triggered in the parent's task object. You can associate a
callback with this, for example to write the error to a diagnostic log:

 ChildTask.onError←'ERROR_HANDLER'

This would cause the ERROR_HANDLER function to be run when an error is encountered in the

child task. The error message (in the same format as ⎕ERM) will be available in ⎕WARG during

the callback. (If you have an onReady callback defined as well, this will be also be triggered,

after onError).

 When the child task is about to execute an expression or command (either typed by the user, or

under program control) an onExecute event is triggered in the parent's task object. During the

callback, ⎕WARG contains the command or expression which is about to be executed, as a

character vector. This can be used for example to write an APL tutorial application when the
parent task can see what the user is entering in the child-task session window.

 Finally, when the child task is about to terminate for any reason, an onClose event is triggered

in the parent's task object.

APLX System Classes & User-Interface Programming 458

Signal events

The main method of communication between child and parent tasks is through explicit 'signal' events.

This mechanism allows the child task to send a message to the parent, and vice versa. This works as
follows:

 If the parent wants to send a signal to the child, it invokes the Signal method in the child task

object. This causes an onSignal event to trigger in the System object of the child task.

 Conversely, if the child task wishes to send a signal to the parent, it invokes the Signal

method in its own System object. This causes an onSignal event to trigger in the child task
object of the parent.

In both cases, the Signal method optionally takes an argument, which is any APL array (or an APLX

overlay created using ⎕OV). This is typically used to send a command to the other task, or to return a

result to it. Any argument to the Signal method is available to the receiving task as the ⎕WARG system
variable during the execution of the callback.

For example, suppose a child task is being used to carry out a time-consuming calculation. It starts by

awaiting a signal to indicate that it should do the calculation, with the argument to the signal being the

data to work on. When it has completed the calculation, it sends a signal back to the parent with the
answer. The following sequence indicates how this might be done.

First we need to do some setup. The parent task attaches a callback to the child task object:

 ↔CALCDONE
[1] 'The answer is ' ⎕WARG
 ↔

 ChildTask.onSignal←'CALCDONE'

This will cause the CALCDONE function to be run when the child task signals that it has a result
available, and the result will thus be printed.

Similarly, the child task attaches a callback to its System object, waiting for a signal to indicate that it

should carry out the calculation:

 ↔DOCALC;RESULT;DATA
[1] DATA←⎕WARG
[2] RESULT←RUNMODEL DATA
[3] '#' ⎕WI 'Signal' RESULT
 ↔

 '#' ⎕WI 'onSignal' 'DOCALC'
 ⎕WE ¯1

This will cause the DOCALC function to be run when the parent signals the child, using the data passed

as the argument to the Signal method. When the calculation is complete, the child signals back to the

APLX System Classes & User-Interface Programming 459

parent. The child then sits in the ⎕WE event loop waiting for signals to occur (this takes no CPU
resource).

To carry out the calculation, the parent signals the child, and then processes events (if it is not already
running under ⎕WE):

 ChildTask.Signal THEDATA
 ⎕WE ¯1

This triggers the child task to run the DOCALC function, and on completion the parent's CALCDONE
function runs:

The answer is 42

In a real example, the parent task would be responding to other events (for example, user-interface

events), and there might be a number of child tasks each simultaneously working on a different run of

the model. If you have multiple child tasks running, you can use the task ID (⎕EV[6] in index origin 1)
to distinguish between them in the callback function.

There might also be a queue of signals waiting to be processed on either side. Note that there is a limit

to the number of events which can be queued, typically around 200 events. If this maximum is
exceeded, the oldest events are thrown away.

APLX System Classes & User-Interface Programming 460

Using 'delta' properties to share data between tasks

Any property name which starts with the delta character ∆ can be used to store your own data in an

object. Subject to available memory, you can have as many such properties as you like, and you can
store any simple or nested array, or overlay, in each property.

This feature works in a special way for child task objects. A delta property for the System object of a

child task is the same as the delta property of the same name in the parent task's child task object. Thus

the parent task can assign arbitrary data to a delta property, and the child task can access it through its

own System object. If the child task writes to a delta property of its System object, the parent can see
the data which has been assigned in the child task object.

For example:

 Task1←'⎕' ⎕NEW 'APL'
 Task1.wssize←200000 ⊦ Task1.background←1
 Task1.∆MESSAGE←'Startup'
 Task1.Open
 Task1.Execute "'⎕' ⎕WI '∆MESSAGE' 'OK'"
 Task1.∆MESSAGE
OK

This technique can be used in a number of ways. When starting a task, it can be used to pass an

overlay containing all the functions and variables which the child task will need to run. When the task

is running, delta properties can be used to share state information, parameters and results between the
parent and the child.

The delta property persists for as long as the child task object exists in the parent task. This means that

a child task can write to a delta property, and then terminate. The data will still be available to the

parent.

Special considerations for Client-Server versions of APLX

If you are running a Client-Server implementation of APLX, your APL tasks may not all be running

on the same machine. However, you can still use delta properties to share data between them. The

actual data is held (in memory) on the Client machine, and will be sent over the network to/from the

APL task as required. All of this is transparent - you do not need to do anything special for this to
work.

The only issue to be aware of is that delta variables (like other ⎕WI properties) are always held in 32-

bit format. Data written from a 64-bit task will be converted to 32-bit form. This means that delta

variables cannot be bigger than 2GB, and must not have more than 2147483647 elements. If an integer

array contains numbers whose magnitude is bigger than 2*31, the array will be converted to floating-

point form. Precision may be lost for integers whose magnitude is greater than 2*53.

APLX System Classes & User-Interface Programming 461

Sharing variables between tasks

As well as passing data using the Signal method and delta properties, you can also share variables

between all the APL tasks you have running (this includes all top-level tasks and all child tasks). You

do this using Auxiliary Processor 800, which is built into APLX. All that is required is to share a
variable with this processor:

 800 ⎕SVO 'TITLE'
2

This causes the variable TITLE to be held outside the workspace, in a common memory area accessible

to any other tasks which use ⎕SVO to share the same variable. When you assign to a shared variable of

this type, APLX allocates memory for it outside the workspace. If this memory cannot be allocated, an

IO ERROR is reported to the APL task. Other than available memory, there are no limits on the size or
number of such variables.

The value of the variable will be the last value written to it by any task. This can be any APL array, or

an overlay created using ⎕OV which contains multiple functions and variables. It persists for as long as

any task has the variable shared, and is automatically deleted when it is no longer required (or when
APLX exits).

For example:

Share a variable with all other tasks:

 800 ⎕SVO 'TITLE'
2

Assign some data to it:

 TITLE←"Lady Windermere's Fan"

Read it back:

 TITLE
Lady Windermere's Fan

Read it back again:

 TITLE
The Importance of Being Earnest

Another task has modified it!

APLX System Classes & User-Interface Programming 462

Special considerations for Client-Server implementations of APLX

If you are running a Client-Server implementation of APLX, your APL tasks may not all be running

on the same machine. In contrast to delta properties, variables shared using Auxiliary Processor 800

are held on the Server machine, so you cannot use this mechanism to share data across the network. In
addition, there are separate common data areas for 32-bit and 64-bit tasks.

