

Porting your Dyalog
Application to Internet

by

Eric Lescasse
Lescasse Consulting

18 rue de la Belle Feuille
92100 Boulogne

eric@lescasse.com
http://www.lescasse.com

September 11, 2007

Porting your Dyalog Application to Internet

Copyright © 2007 Eric Lescasse Page 2

Introduction

There are several approaches you can take to port your Dyalog application to Internet,
but say you have the following goals of transforming your Dyalog application to:

• a Microsoft .Net application
• an application that could be used from a browser by anyone having an Internet

connection
• an application that would remain a rich client application, i.e. a Windows

application
• an application that would load and start on Client computers without installing

any files on these computers
• an application that would still use your Dyalog functions/variables/files on the

Server
• an application that can be launched with just one click by any user

This seems too good to be true, but this is indeed now possible.

Read on.

Sample Demo

First let us prove it is possible and let us show you see an example:

Open your Internet Explorer browser (hopefully version 6 or 7) and enter the
following URL:

http://www.lescasse.com/dapl/publish.htm

You should be presented with the following Web page:

Porting your Dyalog Application to Internet

Copyright © 2007 Eric Lescasse Page 3

Click on the Run1 button.

A dialog gets displayed telling you that the application is loading.

Then another dialog prompts you to confirm you want to run this application2.

1 If your computer runs in an environment which is protected by a strong Firewall, you will have to
authorize port 10100 in the Firewall to be able to load this demo.
2 It is possible to avoid having this additional dialog prompting the User for confirmation by getting a
Trust Certificate. This is out of the scope of this paper. For those interested, there is a good MSDN
article from Brain Noyes which can be found from http://tinysells.com/48 and which provides detailed
insight into when prompting the user occurs as well as the ability to alter it.

Porting your Dyalog Application to Internet

Copyright © 2007 Eric Lescasse Page 4

Click the Run button.

After a short while the LoanSheet Dyalog Client-Server application should get
displayed3:

As you can see, this is a real Windows application.

3If you are getting the following error when trying to load/Run the application:

 The remote server returned an error: (407) Proxy Authentication Required

this is due to a known Microsoft .Net Framework Bug for ClickOnce applications, for which a hotfix is
available (look at: http://support.microsoft.com/kb/917952 to request and install this hotfix)

Porting your Dyalog Application to Internet

Copyright © 2007 Eric Lescasse Page 5

It has started on your computer without any files being installed on your computer.

You can now close Internet Explorer, if you wish.

Click the Calc Payments button: you should see the following values being displayed
in the DataGridView object:

Change the Purchase Amount to be 500000 and click the Calc Payments button
again.

Porting your Dyalog Application to Internet

Copyright © 2007 Eric Lescasse Page 6

You may even check the Recalculate when changing values check box and then use
the little buttons in the NumericUpDown edit boxes to change the Purchase Amount,
Years in Loan or Interest Rates.

As you change any of these values the grid is recalculated and displayed.

As you can see, the application reacts pretty quickly to recalculate the loan and to
display the results whenever you click a button.

Porting your Dyalog Application to Internet

Copyright © 2007 Eric Lescasse Page 7

However, here is what happens each time you click a button in this application:

• The various values displayed in the LoanSheet controls (except the ones
displayed in the grid) are read from the user interface and sent to my Internet
Server which is located in Paris, France, as a nested vector

• A CalcPayments Dyalog method is called in a Dyalog .Net object installed on

my Server

• A floating point matrix is returned from the Dyalog method call to the Client
application and displayed in the grid.

If this raised your interest, the next sections gives a few hints on what is required to
create such a Client-Server .Net Dyalog application.

Porting your Dyalog Application to Internet

Copyright © 2007 Eric Lescasse Page 8

Creating a Client-Server .Net Dyalog application

Step 1: Creating the Dyalog .Net DLL

First, to do so, you need Dyalog 11 since you will need to create Dyalog objects.

Let’s assume you have written a Dyalog application and let’s assume this application
is the LOAN.DWS workspace as distributed with the latest versions of Dyalog APL.

The first step is to create a Dyalog .Net DLL out of your application.

You can do that by loading the LOAN.DWS workspace, going to the Loan
namespace and encapsulating the functions and variables you want to publish in your
.Net DLL into a Dyalog 11.0 class.

)load loan
C:\Program Files\Dyalog\Dyalog APL 11.0\samples\ole\loan
saved Fri Mar 03 11:21:36 2006

)cs Loan
#.Loan

Then create a class, for example called Sheet, with one field called PeriodType and
one method called CalcPayments, as follows:

The important points here are:

Porting your Dyalog Application to Internet

Copyright © 2007 Eric Lescasse Page 9

• Make a public field out of any global variable you need to support as a
property in your Dyalog .Net DLL

• Create a method with the same name as any function in your application that

you want to support as a method in your Dyalog APL.Net DLL

• Be sure to declare the methods public with the :Access public
declaration statement

• Be sure to provide the appropriate signature for every method you include in

your class. Here we used:

:Signature Double[,]←CalcPayments Int32 LoanAmt,
Int32 LenMax, Int32 LenMin, Int32 IntrMax, Int32
IntrMin

which means that the CalcPayments method is returning a matrix of doubles
(=floating point numbers in APL terms) and uses 5 arguments, all integers

Once you have created your Sheet class, you need to register Loan as an OLE Server,
following the steps described in the Dyalog Version 11.0 Interface Guide pp. 251-
253

Then you may save the workspace under a new name to avoid altering the
LOAN.DWS workspace:

)wsid c:\dyalogws\loannet
was C:\Program Files\Dyalog\Dyalog APL
11.0\samples\ole\loan

)save
. . .

Finally, to create the Dyalog .Net LOANNET.DLL DLL, select File / Export and fill
the Create Bound File dialog as follows:

Porting your Dyalog Application to Internet

Copyright © 2007 Eric Lescasse Page 10

Step 2: Creating the Application User Interface
You need Visual Studio 2005 and C# to create the User Interface of your application.

Do not be afraid however since this is really easy, more than you may think of, even if
you do not know C#.

Start Visual Studio 2005, select File / New Project and fill the dialog as follows:

Porting your Dyalog Application to Internet

Copyright © 2007 Eric Lescasse Page 11

You can select any name you want for the project and for the Solution. I usually use
the same name for both. You can include dots in the names as in the above example.

Once the project is created, you’ll see the empty application form being displayed in
Visual Studio.

It is out of the scope of this article to describe in detail how to build the .Net User
Interface of our Loan application4, but basically, you drag objects from the Toolbox
displayed in the left hand side of Visual Studio 2005 and drop them on the form.

You can then move these objects, resize them, align them and change some of their
properties at design time by using the Properties pane at the bottom right of Visual
Studio 2005.

To create an event handler in C#, you most often simply double click on the object for
which you want to handle an event. For example if you double click on the Calc
Payments button, this will open the Form1.cs source code for your form and will
automatically create the Click event handler for the Calc Payments button.

4 If you are interested to learn how to build .Net C# User Interfaces, you may want to look at the
following on line Training:

http://www.lescasse.com/CSharpTraining.asp

The first Screencast is available for free to every one and may give you enough information to get
started. If you want to go further and access the other on line C# Training Sessions, please contact
me at eric@lescasse.com

Porting your Dyalog Application to Internet

Copyright © 2007 Eric Lescasse Page 12

 private void button1_Click(object sender, EventArgs e)
 {
 }

You can then add code between the curly brace characters.

Step 3: Create a C# wrapper class for the Dyalog
Loannet.DLL

You should then add a class to your C# project, which will serve as a simple wrapper
class around the Dyalog LOANNET.DLL.

Here is the code of this class:

 public class RemoteApl : MarshalByRefObject
 {
 private Sheet loan = new Sheet();

 public int PeriodType
 {
 get { return (int)loan.PeriodType; }
 set { loan.PeriodType = (int)value; }
 }

 public double[,] CalcPayments(int i1, int i2, int i3, int i4, int i5)
 {
 return (double[,])loan.CalcPayments(i1, i2, i3, i4, i5);
 }
 }

For this class to work you need to Add a Reference in the C# project to the
LOANNET.DLL Dyalog .Net DLL and to add the following using statement at the
top of the project:

using Loan;

The above class is very simple. It starts by creating an instance of the Sheet APL
class, which is called loan.

Then a C# property called PeriodType is defined. It simply calls the Dyalog
loan.PeriodType field in the background.

Then a C# method called CalcPayments is defined: it simply calls the Dyalog
loan.CalcPayments method in the background.

Porting your Dyalog Application to Internet

Copyright © 2007 Eric Lescasse Page 13

Step 4: Calling the CalcPayments Dyalog method from the C#
client application

Calling the Dyalog method from the C# Client application is pretty simple.

Just add the following code to the button1_Click event handler:

 private void button1_Click(object sender, EventArgs e)
 {
 RemoteApl apl = new RemoteApl();
 apl.PeriodType = 1+(checkBox1.Checked ? 1 : 0);
 double[,] res = apl.CalcPayments(
 (int)nudLoanAmt.Value,
 (int)nudLenMax.Value,
 (int)nudLenMin.Value,
 (int)nudIntrMax.Value,
 (int)nudIntrMin.Value
);
 }

This code is almost self explanatory.

It starts by creating a new instance called apl of the RemoteApl class that we defined
in Step 3.

Then it sets the PeriodType property of this apl instance to 2 or 1 depending if the
Period are years check box is checked (look at the screenshots at the beginning of
this paper).

When the following instruction is executed:

 apl.PeriodType = 1+(checkBox1.Checked ? 1 : 0);

the PeriodType property of the RemoteApl class is set. Setting this property
executes the following code in the RemoteApl class:

 set { loan.PeriodType = (int)value; }

which in turn changes the PeriodType field in the loan Dyalog class.

Finally, the CalcPayments method of the RemoteApl class is called, passing to it 5
arguments which are the values read from the various NumericUpDown objects
displayed in our User Interface. Note that in C# an instruction can span over several
lines: it is the final semi-colon which marks the end of the instruction. This is
particularly handy to make programs readable, all the more than you may even add
comments to each part of the instruction.

Porting your Dyalog Application to Internet

Copyright © 2007 Eric Lescasse Page 14

Example:

 double[,] res = apl.CalcPayments(
 (int)nudLoanAmt.Value, // loan amount
 (int)nudLenMax.Value, // maximum loan period
 (int)nudLenMin.Value, // minimum loan period

 (int)nudIntrMax.Value, // maximum interest rate
 (int)nudIntrMin.Value // minimum interest rate
);

Note that the Value property of a NumericUpDown object is a decimal in C# and
needs to be cast to an integer, i.e. the (int) prefix to the various NumericUpDown
objects.

It is essential that the parameters passed to the CalcPayments match both the
declaration of the RemoteApl CalcPayments method and the data types defined in
the Dyalog APL loan.CalcPayments method properties.

Then the button1_Click event handler captures the result returned from the
CalcPayments Dyalog function in a 2-dimensional array of doubles called res.

From then on, you can use the res variable in C# to display the results in a
DataGridView object.

I will not comment this additional code, but here is how you would do that, provided
you would have added a DataGridView object called dataGridView1 to your form:

dataGridView1.SuspendLayout();
dataGridView1.Columns.Clear();
dataGridView1.DefaultCellStyle.Alignment =
 DataGridViewContentAlignment.MiddleRight;
DataGridViewCellStyle style = new DataGridViewCellStyle();
for (int i = 1; i < res.GetLength(1); i++)
{

dataGridView1.Columns.Add("Col" + i.ToString(),
 res[0,i].ToString() + " Years");

style.Alignment = DataGridViewContentAlignment.MiddleRight;
dataGridView1.Columns[i - 1].SortMode =

 DataGridViewColumnSortMode.NotSortable;
dataGridView1.Columns[i - 1].HeaderCell.Style = style;

}
object[] cells = new object[res.GetLength(1)-1];

for (int i = 1; i < res.GetLength(0); i++)
{

for (int j = 1; j < res.GetLength(1); j++)
cells[j-1] = string.Format("{0:C}", res[i, j]);

dataGridView1.Rows.Add(cells);
}
dataGridView1.ResumeLayout();

Porting your Dyalog Application to Internet

Copyright © 2007 Eric Lescasse Page 15

This includes:

• dynamically creating the DataGridView columns since their number depends
on values set in the interface,

• setting cell styles so that numeric values are right aligned in the cells and in
the column header cells

• formatting data in all the cells
• populating the grid with the results sent by Dyalog APL

With just a little habit this is pretty simple code to write. The SuspendLayout and
ResumeLayout methods are useful for avoiding displaying any change in the
interface until the grid is completely populated and formatted.

Step 5: Adding the C# Remoting layers

At this stage, you might wonder how on earth it is possible for C# to call Dyalog
objects properties and methods, after all.

Well, this is made possible by using .Net Framework Remoting.

It is out of the scope of this article to describe how this is done, but this means adding
one more C# project which uses Remoting, installing the compiled version of this
application on the Server as well as adding a few lines of code in the Form1.cs class
to authorize communication with the C# Remoting layer.

The Server might be your local machine (represented by http://localhost) or a remote
Server (represented by its IP address: http://xxx.xxx.xxx.xxx)

I should mention that such an application needs to use a port above port 1000.

For example the sample Client-Server Dyalog application which you can run from:

http://www.lescasse.com/dapl/publish.htm

uses port 10100 on my Server.

Step 6: Testing the application from Visual Studio

Once everything has been written, debugged and set up correctly, you can start using
your Client-Server application.

To do so, click the Visual Studio Start Debugging button or press F5.

The application user interface should get displayed.

When you click on the Calc Payments button you should see the Dyalog
CalcPayments method result be displayed in the interface.

Porting your Dyalog Application to Internet

Copyright © 2007 Eric Lescasse Page 16

If you have checked the Recalculate when changing values check box and then
change some values in the NumericUpDown objects and click Calc Payments button
again, you’ll see a new grid of results being displayed, all calculated in the
background by Dyalog APL.

Step 7: Deploying the application locally

We are now reaching maybe the most important (and easy) step of the whole process:
deploying the application to the Server as a ClickOnce application.

This is simply done by double clicking Properties under the project name in Solution
Explorer in Visual Studio 2005.

The application Properties get displayed in Visual Studio

Click on the Publish Tab and fill it as follows:

The important points here are:

• The publishing location: enter: http://localhost/Dapl for example
• Check the radio button called The application is available online only

You may also enter a Publish Version number and may want to click on Options to
set a few additional options, for example:

Porting your Dyalog Application to Internet

Copyright © 2007 Eric Lescasse Page 17

Then simply click the Publish Now button.

After a short while, if everything compiles ok, Visual Studio will start Internet
Explorer and display the published page allowing to launch the application:

Porting your Dyalog Application to Internet

Copyright © 2007 Eric Lescasse Page 18

From there, you may click the Run button to start the application from Internet
Explorer and click Run again in the next dialog to confirm.

Step 8: Deploying the application on a Remote Server

Now that you can run the Client-Server Dyalog application locally (i.e. your
development computer serves as both the Client computer and as the Server), you
may want to install the application on a real Remote Internet Server.

This means:

1. Copying the remoting layer that you compiled on your local machine to the
Server

2. Properly registering this remoting layer
3. Changing http://localhost to http://xxx.xxx.xxx.xxx in your Form1.cs

application (where xxx.xxx.xxx.xxx is the IP Address of the Server)
4. Recompile the application under Visual Studio 2005
5. Republish the application (as shown in Step 7)
6. Copying the Published version of the application to the Server

Now, if all these steps have been done correctly, you should be able to call the
application from any computer, anywhere, provided that you have an Internet access.

Porting your Dyalog Application to Internet

Copyright © 2007 Eric Lescasse Page 19

Just start Internet Explorer and enter the following URL:

http://xxx.xxx.xxx.xxx/dapl/publish.htm

where xxx.xxx.xxx.xxx is the IP address of the Server or its name.

For example, you may try my sample Client-Server Dyalog demo from:

http://www.lescasse.com/dapl/publish.htm

Pre-Requisites, Security & Performance Issues
First, clients should have a recent enough computer for such an application to be able
to run. That means it is recommended they run Windows XP SP2, or Windows 2003
or Windows Vista.

It is also recommended they run Internet Explorer 6 or 7.

Such a Client Server application will not run directly under FireFox, though you can
launch it from FireFox and FireFox will automatically start Internet Explorer for you
and then run the application.

The client must have the Microsoft .Net Framework 2.0 installed on his computer:
however the ClickOnce application automatically detects the absence of the .Net
Framework 2.0 and automatically installs it if it is not there. A reboot might be
needed before being able to successfully load the application in such a case.

Finally, it sometimes happen that the Client runs a strong Firewall and in that case it
may be necessary for him to authorize the port used by the Client-Server application
in this Firewall.

Among all the people I know who tried :

http://www.lescasse.com/dapl/publish.htm

I have only encountered a couple of clients unable to load and run this demo and their
problems could be solved quickly.

When publishing such a Client Server Dyalog application, it is essential that you have
totally secured the Dyalog code which runs on the Server and if possible used error
handling to avoid having an error stopping the program in Dyalog APL.

This would be very bad, since the Client C# application would suddenly become
totally unresponsive and would have to be killed.

Also, as far as resources are concerned on the Server, it seems that the .Net Dyalog
DLL is shared by the various client users. This means that such a Dyalog Client-
Server could be used by a large number of users without impairing the Server
performance.

Porting your Dyalog Application to Internet

Copyright © 2007 Eric Lescasse Page 20

Other than that, anyone can verify by running the sample demo I am presenting here
from my Web site that such a Client-Server Dyalog application is very efficient. You
can see that by clicking the Recalculate when changing values check box and then
repeatedly clicking on the Purchase Amount NumericUpDown buttons to increase or
decrease the amount. Just remember that each time you click one of these buttons:

• All values are read from the interface
• They are sent to the CalcPayments Dyalog method running on my Server in

Paris, France
• The Dyalog CalcPayments method is run on my Server
• The results are sent back to you (i.e. the Client C# part of the application)
• A DataGridView object is set up and populated with the results

And all this is almost instantaneous! However my Server is serving more than 10
Web Sites including a couple of large ones and currently runs about 10 such Client-
Server APL applications, so without being too busy, it does have other tasks to deal
with.

Conclusion

In this paper we have succinctly and not exhaustively explained how anyone can
transform his Dyalog desktop application to become a Client-Server ClickOnce
Internet application.

The advantages of doing so are numerous:

• The application becomes immediately usable by anyone, anywhere, provided
the user has an Internet access and a browser

• The application can be loaded and started on the Client computer without any

file installed on his computer (provided he fulfills the prerequisite of having
the .Net Framework 2.0 available on his machine)

• If the .Net Framework 2.0 is not present on the Client computer, it is installed

automatically (if user accepts it) when the application is first run

• The application is an Internet application

• However the application remains a Rich Client application (i.e. a pure
Windows application)

• The application is a .Net application

• The application is a Client-Server application which means that some files

maybe shared by ALL users (i.e. on the Server, including APL component
files) and some other files maybe used on the local Client computer (including
Dyalog component files created by the application)

Porting your Dyalog Application to Internet

Copyright © 2007 Eric Lescasse Page 21

• With such an application, there is no more need for any Installation Program,
CD/DVD to send to customers, files to download and install by customers, etc.

• Delivering a new application update to all customers is simple and immediate:

just upload the new set of application files to the Server and all of a sudden all
clients use the new version

• It is of course possible to protect application usage in various ways, including

Login/Password forms when application loads, etc.

• It is possible to create a pay by usage mechanism in such an application, etc.

Dyalog users who would like to port their Dyalog application to the Web using this
technology may contact me.

It is no doubt that such powerful Client-Server applications will start to quickly
emerge in the near future: the fact we can get advantage of the processing power of
APL on the Server is certainly a plus for us.

