
 1

Abstract

APL systems provide a definition mechanism so that expressions may be collected into non-

primitive or “user-defined” functions and operators.

The traditional APL defined function (T-Fn) , even when extended with control-structures, is pro-

cedural in nature, and does nothing to discourage looping, destructive assignment or the use of

non-result-returning and niladic “functions”.

In 1996, Dyalog introduced a purer function definition style, now referred to as a “D-Function”

(D-Fn), which was designed to fit better with the functional programming paradigm.

This paper details an attempt, in Dyalog's APL# project, to combine both the traditional “T-Fn”

and direct “D-Fn” definition styles into a unified whole, which supports both the procedural and

functional modes of programming.

T-Fns

APL provides a function definition mechanism, the traditional “T-fn” in which:

• The function's name is declared

• Any arguments are named

• Any result is named explicitly

• Any local names are declared

• Control structures determine the order of execution of lines of APL

T-fns encourage a procedural style of programming in which it is easy to commission side-effects

such as the mutation of data structures and the maintenance of state.

Here is Euclid's GCD algorithm coded as a T-fn. Notice that local variables m and n are repeat-

edly updated and that result variable z is assigned in the last line of the function.

Unifying T-Fns and D-Fns in APL#
Jonathan Manktelow

Morten Kromberg

John Scholes

Dyalog Ltd

Minchens Court, Minchens Lane, Bramley, RG26 5BH, United Kingdom

aplsharp@dyalog.com

State of the art of array processing languages

 2

 � z�m gcd n
[1] :While n�0
[2] (m n)�n,n|m
 [3] :End
 [4] z�|m
 �

This second function, given a 3-vector of its coefficients, returns a vector of the real roots of a

quadratic equation:

 � v�roots cfs;a;b;c;d & Real roots of quadratic
[1] (a b c)�cfs & coefficients
[2] d�(b*2)-4×a×c & discriminant:
[3] :If d<0 & negative:
[4] v�/ & only complex roots
[5] :ElseIf d=0 & zero:
[6] v�-b÷2×a & duplicate roots
[7] :Else & positive:
[8] v�(-b+¯1 1×d*0.5)÷2×a & two roots
[9] :EndIf
 �

Notice that the header line names: the result; function; argument; and local temporary variables.

A T-fn terminates after its last line or a :Return statement is evaluated, at which point, the cur-

rent referent of the declared result variable is returned as the result of the function.

D-Fns

Dyalog's "D-Function" direct definition style provides an alternative in which:

• The optional naming of the function is separated from its definition

• Arguments are special tokens Α and Ω

• The function result is implicit

• Names assigned within the function are local by default

• The guarded expression is the only control

A D-fn terminates with its first unassigned, unguarded expression or when a guard “fires” by

evaluating to 1. D-fns may be named in the same way that arrays are named, by using the � as-

signment arrow.

 {Ω Ω} 0 & apply unnamed function
 0 0
 dup�{Ω Ω} & name function

 dup 0 & apply named function
 0 0

 3

D-fns encourage a purer form of programming in which the result of a function is just a single

expression of its arguments. For ease of comprehension, the result expression may make use of

local definitions, which precede it. Such an arrangement, where variables don't vary is an impor-

tant characteristic of the "Functional Programming Style" [1].

Here are Euclid's algorithm and the function for the real roots of a quadratic, coded as D-fns:

 {
 Ω=0:|Α
 Ω � Ω|Α & (� calls function recursively)
 }

 { & Real roots of quadratic
 a b c�Ω & coefficients
 d�(b*2)-4×a×c & discriminant

 d<0:/ & -ive: only complex roots
 d=0:-b÷2×a & zero: duplicate roots
 d>0:(-b+¯1 1×d*0.5)÷2×a & +ive: two roots
 }

APL#

“APL Sharp” is a new dialect of APL, which is aimed at the Microsoft.NET and similar “virtual

machine” frameworks. Since full integration with the target frameworks means that the new lan-

guage will not be 100% upwards compatible with current Dyalog APL, we have taken the oppor-

tunity to rationalize function definition and various other aspects of APL language design. [2]

The designers of APL# felt that both of Dyalog's definition styles had merit but that, rather than

implement both, it would be desirable to try to unify them into a consistent whole. In particular

APL# should provide:

• The cleanness of the D-function style

• A vehicle for both procedural and functional programming

• Both named and unnamed functions (and operators)

• Optional naming of arguments

• Both traditional control structures and D-fns' guard

• The ability to set both local and global state

 4

An APL# defined function is of the form

 { <rarg> C <body> } & monadic function
or

 {<larg> <rarg> C <body>} & dyadic function

where <larg> and <rarg> are argument names and where <body> is a diamond- or newline-

separated list of lines of APL code. For example:

 dup�{aCa a} & duplicate

 sqrt�{nCn*0.5} & square root

 root�{m nCn*÷m} & m'th root

 gcd�{m n C & Euclid's GCD
 n=0: |m
 n � n|m
 }

To ease the transfer of D-functions from Dyalog, special tokens Α and Ω will continue to refer to

the function's left and right argument respectively and a missing argument specification, or “sig-

nature” is assumed to represent: Α Ω C. This means that many D-fns will port with only minor

amendments to APL#. For example:

 gcd�{ & APL# function identical to D-function.
 Ω=0: |Α & NB: space required to right of guard:.
 Ω � Ω|Α

 }

Ambivalent Functions

In APL# all functions will be ambivalent; no special syntax will be needed to indicate whether a

left argument is required or may be omitted.

The writer of an ambivalent function must decide what to do when a left argument is not given.

Often, this amounts to supplying a default value as in this T-fn for the m-th (default square-) root

of its numeric argument:

� z�m root n
[1] N(0=Onc'm')/'m�2'
[2] z�n*÷m
 �

 5

This assignment of a default value for a missing left argument was considered common enough

that D-fns provided a special syntax Α�:

root�{
 Α�2
 Α*÷Ω
}

Occasionally, the code in the body of a function needs to know explicitly whether a left argument

has been supplied or not. In this case both T-fns and D-fns normally resort to interrogating the

name-class (0 or 2) of the left argument, using ONC.

A third, and it turns out, equally common, task is to propagate the dynamic valence of the calling

function to any called functions. In other words, a function might pass its optional left argument

to a sub-function. In the early days of D-fns, Phil Last invented a technique for this:

Α�{Ω} & left argument defaults to identity fn.
Α sub Ω & sub called with/out left argument.

In APL#, {Ω} would be replaced with primitive function “right” Q.

For APL#, Phil has suggested an improved mechanism, which incorporates all three cases: The

header name corresponding to a missing left argument would be assigned to primitive function

“Q” on entry to the function. Then the code for the respective cases becomes:

larg�ΑR99 & left argument defaults to 99
monadic�S0 Α 1 & left argument missing?
Α sub Ω & sub called with optional left argument

Function termination

Unlike D-functions, where the first (and, under normal circumstances, only) unassigned, un-

guarded expression terminates, in APL#, in the absence of an explicit :Return statement or of

a firing guard, the last executed expression of the function terminates and supplies the result.

Furthermore, Dyalog's concept of a “shy result” (where a function, such as OEX, returned a result

only if the context required one) has been abandoned. Instead, in a slight departure from tradition,

unassigned output from function lines is discarded. To force output to the session, O� or V� must

be used. Note, however, that the result of an expression typed directly into the session is dis-

played as before:

 {
 O�'display' & value displayed
 'discard' & value discarded
 'return' & value returned
 }0
 display
 return

 6

Tuples

As well as being single names, <larg> and <rarg> may also be parenthesised vectors of

names, which correspond to the items of vector arguments, so:

roots�{ (a b c) C & Real roots of quadratic.
 d�(b*2)-4×a×c & discriminant
 d<0: / & only complex roots
 d=0: -b÷2×a & duplicate roots
 d>0: (-b+¯1 1×d*0.5)÷2×a & two roots
 }

 {(a b)Cb a} & reverse of 2-item vector

 rgt�{((a b)c)Ca(b c)} & binary tree rotation
 & www.dyalog.com/dfnsdws/n_BST.htm

 rgtZ2 Q('ab' 'c')'d' & ((a b)c)d C a(b(c d))
a b cd

NB: Notice the difference between monadic {(a b)Ca+b} and dyadic {a bCa+b}.

A more substantial example of tuple-naming might be this partial implementation of a brainfuck

[3] machine, in which both the left and right arguments are pairs of lists:

 bf�{ ((ss s)(t tt)) ((mm m)(n nn)) C & Α:tokens Ω:memory
 '+'=t: ((ss s)t)tt � Ω+0(1 0) & increment
 '<'=t: ((ss s)t)tt � (mm m)n � nn & shift left
 ...
 } & http://en.wikipedia.org/wiki/Brainfuck

 (S{Α Ω}/'\',src) bf 0 & dyadic call on bf

Local names

In common with D-fns, assignments within the function body will create names, which are local

to the function.

Making names local by default is a significant change for anyone converting an application based

on T-fns to APL#. However, like Dyalog APL and other dynamic object oriented languages,

APL# supports the creation of “spaces”, which can act as containers corresponding to global or

semi-global contexts. Global names can reside simply in the “application root”

#.TheAnswer�42; or the “current space” Othis.x�99; or in suitably named sub-spaces

#.TrigConstants.pi�22÷7.

For the moment, the only way to assign a global name in the current space is to preface it with

“Othis.”, though a neater syntax may emerge. For more on APL# “spaces”, see papers else-

where in these proceedings [2].

 7

Control and Guard Expressions

In APL#, control structures are expressions and so may return results. Just like a function, the re-

sult of a control structure is the result of its last executed expression:

 1 + (:If 2>3
 4
 :ElseIf 5<6
 7
 :Else
 8
 :EndIf) + 9
 17
 O�(:For i :In 2 3 4
 x�i i
 :End)
 4 4

Similarly, a guard expression (cond:true ^ false) can return a result:

 1 + (
 2>3: 4
 5<6: 7
 8
)+9
 17

NB: Name assignments within a guard expression will be local to any enclosing function, not just

to the enclosing parentheses.

Operators

Both T- and D- styles allow the definition of operators (more precisely, derived functions), which

take function or array operands in addition to array arguments. Each of the following operators

applies its function operand to each depth-0 leaf item of the array right argument.

 � z�(f leaf)r
 [1] :If 0=_r
 [2] z�f r
 [3] :Else
 [4] z�f leaf¨r
 [5] :EndIf
 �

 {
 0=_Ω:ΑΑ Ω
 �¨Ω
 }

 8

One shortcoming of the D-operator is that it is distinguished from a function only by the presence

of ΑΑ or ΩΩ somewhere in the body of its code. For small examples, such as those above, this is

fine but when the code extends over many lines, it is not easy to spot whether we're dealing with

a function or an operator. APL# solves this problem by requiring an explicit signature for an op-

erator.

APL# distinguishes operators by placing the operand name(s), in braces, to the left of the right

argument:

 { {f} n C a} & monadic operator / monadic derived fn
 { m {f} n C a} & monadic .. / dyadic ..
 { {f g} n C a} & dyadic .. / monadic ..
 { m {f g} n C a} & dyadic .. / dyadic ..

The above leaf example becomes:

 leaf�{ {f} a C & apply at leaves
 0=_a: f a
 �¨a
 }

By analogy with functions, special tokens ΑΑ, ΩΩ and �� may be used within the body of the op-

erator to refer to its left and right operand and to itself, respectively. In common with D-fns, �
within the body of an operator refers to the derived function (the operator bound with its oper-

ands). See [1] for details. Remember, however, that unlike functions, the operator signature may

not be omitted.

Finally, any of the special tokens Α, Ω, ΑΑ and ΩΩ may appear instead of names, in the signature,

providing that each appears in its “proper” position. The coding for leaf could become:

 leaf�{ {ΑΑ} Ω C & apply at leaves
 0=_Ω: ΑΑ Ω
 �¨Ω
 }

 9

Summary

APL# defined functions and operators:

• Begin with an optional (for functions) signature, which defines their class and valence.

• Terminate after the last line, or a guard fires, or an explicit :Return is executed.

• Do not display unassigned results in the session.

• Allow a mixture of control structures and guarded expressions.

We have attempted to meld together two quite different modes of function definition. The result

is inevitably a compromise and, during the design, there were understandably tensions between

the supporters of the opposing styles. In particular, the D-functionista initially saw this as a dilut-

ing of his pure world (to the extent that he had to be appeased with the promise of a “golden

light” that would appear in the edit window as long as the code under review remained pure and

free from side-effects).

Although we have not been bound by maintaining upwards compatibility, the ability to

systematically translate existing applications implemented using T-fns or D-fns has been kept in

mind during the design, and we believe that semi-automatic conversion of very large parts of

existing applications will be feasible.

In short, we believe that we have produced a definition, which will be attractive to both camps

and which will turn out to be greater than the sum of its constituent parts. Time will tell.

The APL# project is a "work in progress"; we look forward to feedback from the community be-

fore proceeding with the final implementation.

Summary of Syntax

fnop ::= { [signature] body } & function / operator defn
signature ::= [argt] [operands] argt C & optional fn/op signature
argt ::= namelist & function argument
operands ::= { namelist [namelist] } & operator operand(s)
namelist ::= name | (name ...) & single or multiple names
body ::= line | line separator body & function / operator body
separator ::= <newline> | ^ & nl- or ^- separated lines

References

[1] “Dynamic Functions in Dyalog APL” www.dyalog.com/download/dfns.pdf

[2] “An APL for the Microsoft.Net Framework”, Kromberg, M., Proceedings APL 2010 LPA -

Berlin, 2010.

[3] An implementation of the brainfuck language in D-fns: www.dyalog.com/dfnsdws/n_bf.htm

 10

Acknowledgement

Thanks to Phil Last for the suggestion regarding the design of ambivalent functions.

Appendix: Further Examples

 gcd�{m n C & looping version of gcd
 |S (:While n�0
 (m n)�n,n|m
 :End)
 }

 leaf�{ {f} r C & leaf with ctrl struct
 :If 0=_r
 f r
 :Else
 �¨r
 :EndIf
 }

 leaf�{ {f} r C & leaf with fn-returning guard
 (0=_r: f ^ �¨) r
 }

root�{Ω*÷ΑR2} & Α'th root (default sqrt)

 roots�{ (a b c) C & roots with ctrl struct expression
 d�(b*2)-4×a×c
 (:If d<0
 /
 :ElseIf d=0
 -b
 :Else
 -b+¯1 1×d*0.5
 :End)÷2×a
 }

 roots�{ (a b c) C & roots with guard expression
 d�(b*2)-4×a×c
 (
 -b+(
 d<0: /
 d=0: 0
 d>0: ¯1 1×d*0.5
)
)÷2×a
 }

