
Abstract
All of the GUI interfaces for Linux are built on X-windows. X-windows is a client-server design. The
screen-keyboard-mouse side is the server. Programs running on any machine use the services provided to
receive input and draw output.

There is an extension to X-windows servers called xkb which provides additional keyboard support.

This paper describes how Dyalog have used this feature to implement an APL keyboard that overlays the
original keyboard. The APL character set is available in all applications, whether the underlying keyboard
is US, Russian – or any other language.

Objective
The main objective of this work was to create an APL keyboard that would overlay the users existing
keyboard. This APL keyboard would be usable in any program be it a word processor, text editor, email
client … anything.

X and Xkb
There are three desktop operating systems in common use - various versions of Windows, Linux and Mac
OS/X. This work focuses on Linux. Specifically Linux running one of the several environments that run
on top of X windows. Thus KDE, Gnome, XFCE etc.

This work builds on the work of Erik Fortune of Silicon Graphics Inc. In 1996 he created the X keyboard
extension now normally known as “xkb”[1]. This was driven by a desire to implement the ISO9995 stan-
dard for keyboards[2].

X windows is a protocol (communication layer) defined between an X server and an X client. The X
server is the display, keyboard, mouse end. It provides services to the program. So if the program is
running on an AIX server in a rack somewhere and the user is sitting at a Linux desktop the Linux end is
the X server and the AIX end is the X client. Of course both client and server may be on the same machine
and for running applications like word processing that would normal.

The X protocol itself provides for eight modifier keys which showed a lot of foresight. Examples of modi -
fier keys are “shift”, “control” and “alt”. Xkb adds a possibility of virtual modifier keys so that some other
keystroke is interpreted as producing a particular combination of modifier keys. This work has not needed
to use that capability to any extent additional to normal Linux.

The characters generated by an Xkb keyboard definition are Unicode characters.

Consider a key :

1

Supporting APL keyboards on Linux
Producing a clean, integrated, satisfying APL keyboard

Geoff Streeter
Dyalog Ltd

geoff@dyalog.com

Main Topic: keyboards

L Ł
l ł

This has four glyphs. However, the arrangement as a matrix is just a convenience for the keyboard
designer. From an xkb point of view it looks like:

l L ł Ł

Characters are selected using “level”. Level is determined by the values of the eight modifier keys. Thus
there can be 256 levels which can be used for any one keypress. In ISO9995 terms the state of these modi-
fiers are known as “qualifiers”.

ISO9995 added another concept which Xkb adopted - “group”. There can be four groups. Thus there can
be 1024 glyphs on an individual key.

This would be a challenge to any keyboard engraver. The group information is passed differently to the
modifier information when a key stroke is passed from X server to X client. However, from a user
perspective it is just more shift keys.

Adding APL
The use of a group enables us to overlay the group 1 keyboard with a completely different keyboard. So
we can add APL characters.

The keys used to select groups are independent of the modifier keys. So we can code the APL keyboard as
group 2 and add it to any existing keyboard that doesn't use group 2. In 2007 this is exactly what was
done.

2

l L ł Ł

1 2 3 4
Level

Group 2
1

⎕ ⌷
l L ł Ł

1 2 3 4
Level

Group 2
1

Integrating with current practice
Recently, X.org and Xfree which are the suppliers of X to Linux re-thought the way that groups are
handled. This has helped this project. Sergey Udaltsov is the maintainer for the X.org project. He is a
Russian who also uses Ukrainian and English. This means that he was constantly switching languages.
Instead of coding all of the group information in the tables that map the keystrokes to the symbols, he
mapped languages to groups. Each individual language keyboard is defined only for group 1. When
languages are added that definition is changed to a new group. Thus up to four languages can be used with
what X regards as a single keyboard.

APL can be one of those languages just like any other. This is important. APL is not special in the Linux
environment. It is just another language. The normal environment is not being hi-jacked in any way.

Linux xkb comes pre-configured with some group selection techniques. There are two strategies for this.
Firstly a “latching” strategy which selects a group only whilst its activation key is kept pressed. Secondly,
a “locking” strategy that selects the group until some other activation selects a different group. For APL
programmers a latching strategy is ideal because only a single, or very few, characters are required before
the keyboard reverts to normal. For real language switching, like from Russian to English, a locking
strategy is better because the language is going to be in use for a sentence or a paragraph. Linux provides a
number of activation choices for latching to the next group. The most useful is, probably, the otherwise
unused “windows” keys that are present on most modern keyboards - even laptop ones. Locking shift
selections can be chosen to increase group, decrease group, select the first group, select the last group … .

From an xkb point of view the concept is “group”. From a KDE or Gnome configuration point of view the
concept is “layout”.

It is going to help if APL is placed as the next language after the one in which the text part of APL code is
typed. So a Russian would probably want to allocate languages in the order Russian, US, APL. Then
when writing APL code he would do a locking group switch to US 1 and use the latching shift to obtain the
additional APL characters. He might do a locking shift back to Russian to comment his code.

Dyalog has defined an APL keyboard.
 ┌─────┬─────┬─────┬─────┬─────┬─────┬─────┬─────┬─────┬─────┬─────┬─────┬─────┲━━━━━━━━━┓
 │ │ ⌶ │ ⍫ │ ⍒ │ ⍋ │ ⌽ │ ⍉ │ ⊖ │ ⍟ │ ⍱ │ ⍲ │ ! │ ⌹ ┃ ┃
 │ ⋄ │ ¨ │ ¯ │ < │ ≤ │ = │ ≥ │ > │ ≠ │ ∨ │ ∧ │ × │ ÷ ┃ BP ┃
 ┢━━━━━┷━┱───┴─┬───┴─┬───┴─┬───┴─┬───┴─┬───┴─┬───┴─┬───┴─┬───┴─┬───┴─┬───┴─┬───┺━┳━━━━━━━┫
 ┃ BT ┃ │ │ ⍷ │ │ ⍨ │ │ │ ⍸ │ ⍥ │ ⍣ │ ⍞ │ ⍬ ┃ ┃
 ┃ TB ┃ ? │ ⍵ │ ∊ │ ⍴ │ ~ │ ↑ │ ↓ │ ⍳ │ ○ │ * │ ← │ → ┃ ┃
 ┣━━━━━━━┻┱────┴┬────┴┬────┴┬────┴┬────┴┬────┴┬────┴┬────┴┬────┴┬────┴┬────┴┬────┺┓ ┃
 ┃ ┃ │ │ │ │ │ │ ⍤ │ │ ⌷ │ ≡ │ ≢ │ ⊣ ┃ TC ┃
 ┃ ┃ ⍺ │ ⌈ │ ⌊ │ _ │ ∇ │ ∆ │ ∘ │ ' │ ⎕ │ ⍎ │ ⍕ │ ⊢ ┃ ED ┃
 ┣━━━━━━━┳┹────┬┴────┬┴────┬┴────┬┴────┬┴────┬┴────┬┴────┬┴────┬┴────┬┴────┲┷━━━━━┻━━━━━━┫
 ┃ ┃ │ │ │ │ │ │ │ │ ⍪ │ ⍙ │ ┃ ┃
 ┃ ┃ │ ⊂ │ ⊃ │ ∩ │ ∪ │ ⊥ │ ⊤ │ | │ ⍝ │ ⍀ │ ⌿ ┃ ┃
 ┣━━━━━━━╋━━━━━┷━┳━━━┷━━━┱─┴─────┴─────┴─────┴─────┴─────┴───┲━┷━━━━━╈━━━━━┻━┳━━━━━━━┳━━━┛
 ┃ ┃ ┃ ┃ MO ┃ ┃ ┃ ┃
 ┃ ┃ ┃ ┃ TO ┃ ┃ ┃ ┃
 ┗━━━━━━━┻━━━━━━━┻━━━━━━━┹───────────────────────────────────┺━━━━━━━┻━━━━━━━┻━━━━━━━┛

For the usual APL glyphs it matches the keyboard that we have had engraved. This is a very traditional
allocation of APL symbols to keys so most programmers should be comfortable using it. Some line
drawing characters have been placed on the numeric keypad.
 ┌───┬───┬───┬───┐
 │ │RD │TG │LN │
 ├───┼───┼───┼───┤
 │ ┌ │ ┬ │ ┐ │ │
 ├───┼───┼───┤TL │
 │ ├ │ ┼ │ ┤ │ │
 ├───┼───┼───┼───┤
 │ └ │ ┴ │ ┘ │ │
 ├───┴───┼───┤ │
 │ ─ │ │ │ │
 └───────┴───┴───┘
In addition the keyboard supplies the codes that Dyalog have supported for many years to do things like
“open the editor”. These are largely where a Dyalog Windows user would expect them to be. Except this

1Most, possibly all, current APLs restrict the character set that can be used for variable or function names
to the upper and lower case alphabet, the digits and a few other characters. Since names tend to be longer
than function or operator sequences, the base keyboard when typing APL code is easier to use if it is Latin
based. This may change as APL develops in a Unicode environment.

3

keyboard is a true overlay so, for example, the “ED” key, which a Windows user would expect to be on
Shift+Enter is on APL+Enter, where “APL” is the key the user has chosen to latch the next group. These
special codes have been mapped into the “Private Use” part of the Unicode standard. Their presence
should not interfere with any other application.

The keyboard mapping is specified in /usr/share/X11/xkb/symbols/apl. It contains stanzas like2 :
 key <AC09> {
 type[Group1] = "TWO_LEVEL",
 symbols[Group1] = [U2395, U2337] // , ⎕ ⌷
 };

If, in the future, it is desired to add more characters, then using three levels would only require
APL+AltGr+character. This is from an Xkb point of view. From a Windows perspective putting three
APL characters on a key would be more difficult3.

It should be noted that the APL is strictly an overlay4. So the alpha is on the key at the left edge of the
middle row. Key <AC01> in Xkb parlance. This is not where, say, a French APL user might expect it to
be. On a French keyboard the “A” is at the left edge of the top row. A French APL keyboard would place
the alpha there. However, the French also relocate the “W” but the omega does not move with it. By using
a true overlay all of the APL characters are fixed. Xkb allows a “variant”. A layout which is a modifica-
tion of an existing layout. So a French variant, if desired, is easy to code and reasonably easy to select.

If it is desired to add a new APL glyph, or indeed a mathematics glyph, to the keyboard only one file
needs to be changed on the X server. The change is easy, doesn't need a reboot and works everywhere that
understands Unicode5. So, for example, to add, say, to the L key would change the above stanza to:⍠

 key <AC09> {
 type[Group1] = "THREE_LEVEL",
 symbols[Group1] = [U2395, U2337, U2360] // , , ⎕ ⌷ ⍠
 };

The additional character would challenge the keyboard engraver but is otherwise available with just a
restart of the X server6.

Fonts
This paper is really about keyboards but keyboards produce glyphs. Glyphs need to be displayed. So fonts
are an issue. Linux has a concept of a virtual font which is a list of fonts and a particular glyph will be
taken from the first font in the list that supports it. The default “monospace” font works well for the APL
characters, the only exceptions being base and top (decode, encode) which are not well rendered. Of
course the APL385-Unicode font can be added to the virtual font “monospace”. The font used to display
the keyboard above was “FreeMono” and has all of the characters. The only one which is rendered partic -
ularly dubiously is the diamond which is very small.

2The syntax for this seems to be evolving. The latest xkb versions will accept:
key <AC09> { [U2395, U2337] };

The <AC09> locates the key on the physical keyboard. U2395 specifies the Unicode location of the ⎕
glyph.

Documentation for XKB is hard to come by. However, the translation of Ivan Pascal's Russian
documentation at http://pascal.tsu.ru/en/ is a starting point.

3Windows has fewer qualifier keys. In addition keyboard layout switching is more difficult. A latching
accelerator key combination to temporarily switch layout is not possible.

4Not in the ISO9995 sense of an overlay

5The same job for Dyalog on Windows would require changes to the .din files for the IME, the Cntl keyboard
and the AltGr keyboard for each language.

6The compiler that reads these stanzas is both uncommunicative and unforgiving. So errors simply mean that
the language at fault, in this case APL, is unavailable following the X server restart.

4

http://pascal.tsu.ru/en/

Some programs will not use virtual fonts – usually ones for which font selection is important like word
processors and desktop publishing software. For these, you obviously need to pick a suitable font that
contains the characters you wish to use in the style you require. Nevertheless using APL on Linux is
possible without additional fonts being installed and this is true whether the APL is running on the same
box or on something remote like an AIX server.

Communicating with APL itself
This paper concentrates on keyboarding for APL characters for any application. It concentrates on the
desktop applications running on Linux. From an APL developer's perspective the most important of those
applications is the one that drives APL itself.

APL applications developed and run on servers in racks running Unix are largely based on sockets. The
user interfaces are implemented in applications running on desktop operating systems. Nevertheless, such
socket based applications need developing and maintaining. In the absence of a suitable GUI client 7 char-
acter based clients based on terminal emulators are used. Some applications still use terminal emulators as
the user interface.

There are several terminal emulators in the Linux environment. KDE provides “Konsole” and Gnome pro-
vides “gnome-terminal”. Both can, and do by default, transmit and receive UTF-8 streams. Both are built
on top of “xterm” which is similar to a vt420. Any APL that supports character based terminals needs
mechanisms to adjust to various terminals. Dyalog is no different and has had these mechanisms for many
years. Dyalog's introduction of Unicode support induced some enhancement but no real change. It was
easy to provide support both for the Unicode products and the Classic products. Indeed, support was easy
to provide for the old products. It is straightforward to run very old Dyalog versions hosted by Konsole or
gnome-terminal. The oldest version Dyalog has run like this is v6.2.

The same mechanisms are used to support the “PuTTy” terminal emulator running on Windows. However,
keyboarding for that environment works8 but is frustrating to use. The Linux environment is much more
pleasant.

Bibliography
[1] Fortune, Erik,The X Keyboard Extension: Protocol Specification

[2] ISO 9995-1:2006 General Principles Governing Keyboard Layouts9

7John Daintree is giving a presentation in the Dyalog specific part of this conference showing some work on
this.

8It has to use the 32 bit IME (Input Method Editor) which needs turning on to get APL characters but turning
off for other aspects – like sending interrupts using ctrl+c. PuTTy does not support layouts from the “Microsoft
keyboard layout creator”.

9Erik Fortune was using the 1994 version of ISO9995. There are eight sections to ISO9995.

5

	Supporting APL keyboards on Linux
	Producing a clean, integrated, satisfying APL keyboard
	Geoff Streeter
	Dyalog Ltd
	geoff@dyalog.com
	Abstract

