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APL is fast. Who needs a compiler?



Compilers can enhance reliability and performance.



Interpreter 
Limitations
Scalar fusion leads to 
poor cache behavior

Procedure calls can 
be expensive

Common 
optimizations are not 
possible

No static analysis of 
code for errors or 
correctness



Co-Dfns is a headlong jump into APL compilation.



D-fns eliminates serious roadblocks to performance.



The interpreter can have poor 
cache behavior.

((⍟S÷X)+(r+2÷⍨v*2)×T)÷vsqrtT←v×T*0.5



Co-Dfns is for predictable, safe, controllable performance.
Tuning expertise should not be a black art.



Co-Dfns is a two-primitive 
extension of the D-fns language.



Examples
X←5 5⍴⌾ ⍝ 5×5 single-assignment array

X[0;0]←3 ⍝ Set a single assignment cell

3≡X[0;0] ⍝ Reference a cell

?≡X[0;1] ⍝ Blocking call waiting for data

F∥¨ ⍝ Parallel Each

⍝ “Parallel” reduction of depth 1 vector

VECRED←{

Z[]←(⊃⍵),(¯1↓⍳⍴⍵)⍺⍺{Z[⍺] ⍺⍺ ⍵}∥¨1↓⍵⊣Z←⌾⍴⍨⍴⍵
}



Examples
TreeVecRed←{

}

Life←{⊃1 ⍵∨.∧3 4=+/,1 0 ¯1∘.⊖1 0 ¯1⌽¨⊂⍵}

LifeP←Life∥
LifeP2←{⊃1 ⍵∨.∧3 4=+/,1 0 ¯1∘.(⊖∥)1 0 ¯1⌽∥¨⊂⍵}



Why shouldn’t we be able to reason about performance?
ZPL and others make this a critical component.



APL is math you can use. Let’s use it for performance.



Examples
Life←{⊃1 ⍵∨.∧3 4=+/,¯1 0 1∘.⊖¯1 0 1⌽¨⊂⍵}

⟨(⍴Life A) ←→ (⍴A)⟩

⟨Z F (Y F X) ←→ (Z F Y) F X⟩
F/⍵

⟨G DeepMap ←→ G⟩
X+Y G Z ←→ {x y z←⍵ ⋄ x+y G z} DeepMap X Y Z

←→ {⟨(,3)≡⍴⍵⟩ x y z←⍵ ⋄ x+y G z} DeepMap X Y Z



Examples
⟨(⍬≡⍴S)∧(F DeepMap ←→ F)⟩
M F (⍴M)⍴S → M F S

⟨(⍬≡⍴X)∧(X F Y ←→ Y F X)⟩
X F Y → Y F X



Plans and 
Schemes
Usable version this year

Target multi-core, GPU, and 
distributed clusters

Fully integrate with Dyalog

Focus on scalable parallel 
performance

Leverage APL-style 
formalism

Create a dialog between 
tuning expert and compiler



Version 1 will have low-hanging fruit optimizations



Interpreter vs. Compiler
INTERPRETER

Garbage collected
Idiom-based special casing
No static verification
No user-guided optimization
Supports much more of APL
Numerous extensions

COMPILER

Stack-based allocation
Whole program optimization
Explicit verification and proof
Safe user-defined optimizations
Restricted to Co-Dfns
Limited extensions and interop



Using Co-Dfns should require less than trivial effort.



Demo time



Performance not included, some assembly required.
We’re not preaching super-compilation here.



Coding 
Goodies
Easily integrated with 
other code

A complete, useful, 
general parser for APL

A complete, rigorous 
specification of the 
language

Supports multiple 
runtimes

Language integration
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Intel’s Concurrent Collections 
Mathematics of Arrays
C++ (Oh dear!)
NanoPass



Thank you
Email: awhsu@indiana.edu
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