
Co-Dfns Compiler
Aaron W. Hsu
Indiana University



APL is fast. Who needs a compiler?



Compilers can enhance reliability and performance.



Interpreter 
Limitations
Scalar fusion leads to 
poor cache behavior

Procedure calls can 
be expensive

Common 
optimizations are not 
possible

No static analysis of 
code for errors or 
correctness



Co-Dfns is a headlong jump into APL compilation.



D-fns eliminates serious roadblocks to performance.



The interpreter can have poor 
cache behavior.

((⍟S÷X)+(r+2÷⍨v*2)×T)÷vsqrtT←v×T*0.5



Co-Dfns is for predictable, safe, controllable performance.
Tuning expertise should not be a black art.



Co-Dfns is a two-primitive 
extension of the D-fns language.



Examples
X←5 5⍴⌾ ⍝ 5×5 single-assignment array

X[0;0]←3 ⍝ Set a single assignment cell

3≡X[0;0] ⍝ Reference a cell

?≡X[0;1] ⍝ Blocking call waiting for data

F∥¨ ⍝ Parallel Each

⍝ “Parallel” reduction of depth 1 vector

VECRED←{

Z[]←(⊃⍵),(¯1↓⍳⍴⍵)⍺⍺{Z[⍺] ⍺⍺ ⍵}∥¨1↓⍵⊣Z←⌾⍴⍨⍴⍵
}



Examples
TreeVecRed←{

}

Life←{⊃1 ⍵∨.∧3 4=+/,1 0 ¯1∘.⊖1 0 ¯1⌽¨⊂⍵}

LifeP←Life∥
LifeP2←{⊃1 ⍵∨.∧3 4=+/,1 0 ¯1∘.(⊖∥)1 0 ¯1⌽∥¨⊂⍵}



Why shouldn’t we be able to reason about performance?
ZPL and others make this a critical component.



APL is math you can use. Let’s use it for performance.



Examples
Life←{⊃1 ⍵∨.∧3 4=+/,¯1 0 1∘.⊖¯1 0 1⌽¨⊂⍵}

⟨(⍴Life A) ←→ (⍴A)⟩

⟨Z F (Y F X) ←→ (Z F Y) F X⟩
F/⍵

⟨G DeepMap ←→ G⟩
X+Y G Z ←→ {x y z←⍵ ⋄ x+y G z} DeepMap X Y Z

←→ {⟨(,3)≡⍴⍵⟩ x y z←⍵ ⋄ x+y G z} DeepMap X Y Z



Examples
⟨(⍬≡⍴S)∧(F DeepMap ←→ F)⟩
M F (⍴M)⍴S → M F S

⟨(⍬≡⍴X)∧(X F Y ←→ Y F X)⟩
X F Y → Y F X



Plans and 
Schemes
Usable version this year

Target multi-core, GPU, and 
distributed clusters

Fully integrate with Dyalog

Focus on scalable parallel 
performance

Leverage APL-style 
formalism

Create a dialog between 
tuning expert and compiler



Version 1 will have low-hanging fruit optimizations



Interpreter vs. Compiler
INTERPRETER

Garbage collected
Idiom-based special casing
No static verification
No user-guided optimization
Supports much more of APL
Numerous extensions

COMPILER

Stack-based allocation
Whole program optimization
Explicit verification and proof
Safe user-defined optimizations
Restricted to Co-Dfns
Limited extensions and interop



Using Co-Dfns should require less than trivial effort.



Demo time



Performance not included, some assembly required.
We’re not preaching super-compilation here.



Coding 
Goodies
Easily integrated with 
other code

A complete, useful, 
general parser for APL

A complete, rigorous 
specification of the 
language

Supports multiple 
runtimes

Language integration



Acknowledgments 
Dyalog has provided 
significant funding and 
support.
PL Group at IU is a great 
place to test and strengthen 
these ideas.
John Scholes, for creating D-
fns.

Intel’s Concurrent Collections 
Mathematics of Arrays
C++ (Oh dear!)
NanoPass



Thank you
Email: awhsu@indiana.edu



Photo Credits
Hotnstock
MoonsongStock
Ladyaway
Fall_Stock
Estruda
Animalphotos
Dark_dragon_stock
Drezdany_stocks

Stupiddeeppeople
Thiselectricheart
Vampsstock
NefaroStock
NikiljuiceStock


	Co-Dfns Compiler
	APL is fast. Who needs a compiler?
	Compilers can enhance reliability and performance.
	Interpreter Limitations
	Co-Dfns is a headlong jump into APL compilation.
	D-fns eliminates serious roadblocks to performance.
	The interpreter can have poor cache behavior.
	Co-Dfns is for predictable, safe, controllable performance.
	Co-Dfns is a two-primitive extension of the D-fns language.
	Examples
	Examples
	Why shouldn’t we be able to reason about performance?
	APL is math you can use. Let’s use it for performance.
	Examples
	Examples
	Plans and Schemes
	Version 1 will have low-hanging fruit optimizations
	Interpreter vs. Compiler
	Using Co-Dfns should require less than trivial effort.
	Demo time
	Performance not included, some assembly required.
	Coding Goodies
	Acknowledgments 
	Thank you
	Photo Credits

