
Dare to Teach APL!
Aaron W. Hsu
Indiana University



Warning!
All results, statistics, and discussion of this 
project and in this presentation are extremely 
preliminary and should be understood in this 
context.



What happens when…
You let them pick what they want to do, and 
you only teach them how to program in 
parallel, purely functionally, with none other 
than APL dfns?



Resistance is futile



What is FSM?
Foundations in Science and Mathematics
AKA: Flying Spaghetti Monster, Finite State 
Machine



The FSM was an opportunity to create a completely original, 
ground-up re-envisioning of Computer Science Education:

How does syntax/semantics affect student learning?

What does it look like for students to know naught but parallel 
programming?

APL (dfns) uniquely suited to such a study.



Can we funnel new 
talent into the 
University System?
We emphasized Women in Computing 
initiatives and targeted IU’s Scheme-based, 
functional style curriculum for “future looking” 
plans.



Major People Involved
Aaron W. Hsu (APLer, Schemer, masochist willing to mention 
APL to the faculty)

Jason Hemann (Apprenticed to Dan Friedman)

Jennie Lipson (IU Undergraduate Instructor for entry-level 
courses)

Anna Eilering (Pre-course preparation, information, and Robot 
obsessed)



How do you handle 
enrollment?



Students are self selected, but the Computer Science course 
was opt-out rather than opt-in. 

Enrollment strategies designed to compensate for traditional 
selection bias.



Our educational framework is clumsily and sloppily based on 
concepts appearing in Educational Research, including situated 
learning and constructivist techniques.

Put in NP speak, this means that we tried to make the work 
they did relevant and self-motivated based on their own 
interests and “context.” 

We used little formal lecture and no linear curriculum for the 
design.



Course Structure

DOMAINS

Math

Physics

Biology

Chemistry

Image Manipulation

Whatever ya want, kid…

APL, REFERENCE MATERIALS

Mastering Dyalog APL (sort of)

Custom “Guide”
Glossary of terms
Emphasized declarative 

programming

Dyalog APL on RHEL 
Workstations

Full environment, no special aids



Do what you like



Work on real 
problems



Just code, socially



Declarative
Functional

Parallel



We achieved 
significant minority 
enrollment
More than 1/3 were women
Enrollment process actively contributed to 
these #’s



What we were worried about…
Symbols, symbols, symbols…

Console programming in the Linux environment

Slow, boring progress, lack of demonstrated interest in domains

Symbols, symbols, symbols…



Students had zero 
tangible difficulties 
with APL symbols!
This was one of the most unexpected 
anecdotal experiences we had.



Every class had at 
least one student in 
each domain



There appears to be 
little to no additional 
difficulty for parallel 
programming
While anecdotal, students were able to 
successfully accomplish a significant amount of 
work using nothing but pure functional, 
parallel programming.



While unsurprising, it is still disappointing to see that students 
appear to completely forget everything they ever learned, ever, 
when they enter the APL Session.



This was an “unexpected” success
We encountered significant opposition to the use of APL

A few of the students are regular participants in the IU 
computing groups

A surprising number of students were able to complete more 
than one domain’s worth of work

Students by and large had fun, were engaged, and participated 
successfully in traditionally valuable Computer Science “norms” 



Write your own 
code
Unlike many approaches to high school C.S. we 
did not give them much code, and they wrote 
all of the code for their solutions, with almost 
zero scaffolding.



Example Problems
Fractals

Blurring an animation repeatedly as an animation

Plotting the trajectory of a cannon ball

Developing a colorized version of the Game of Life

Writing a sprite oriented RPG game engine (Rogue-like)

A host of custom image manipulations designed by students



Parallel 
programming has 
been mistaught



APL allowed us to expose students to a surprisingly wide variety 
of relatively advanced Computer Science concepts in the time it 
takes most classes to get to defining your first helper function.

The exposure was intentionally shallow but broad.

Students actually enjoyed themselves, usually.



Future Work
Do these same techniques work differently if we use a different 
language? 

Does this scale to a longer course?

Can we obtain any quantitative results?

How well can students transition into a traditional program?

Analysis of recorded screen sessions



Thank you
Questions eagerly awaited….


	Dare to Teach APL!
	Warning!
	What happens when…
	Resistance is futile
	What is FSM?
	Slide Number 6
	Can we funnel new talent into the University System?
	Major People Involved
	How do you handle enrollment?
	Slide Number 10
	Slide Number 11
	Course Structure
	Do what you like
	Work on real problems
	Just code, socially
			Declarative�			Functional�				Parallel
	We achieved significant minority enrollment
	What we were worried about…
	Students had zero tangible difficulties with APL symbols!
	Every class had at least one student in each domain
	There appears to be little to no additional difficulty for parallel programming
	Slide Number 22
	This was an “unexpected” success
	Write your own code
	Example Problems
	Parallel programming has been mistaught
	Slide Number 27
	Future Work
	Thank you

