
Exercises - 1a

• Verify that you can create an isolate with some data

in it, and compute something:

)load isolate
myis←isolate.New ''
myis.abc←1 2 3
myis.(+/abc)

Futures and Isolates

0

Exercises - 1b

• Initialise isolates from various sources:

• Cheat sheet for making namespaces:

MyNS←⎕NS '' ⋄ MyNS.data←1 2 3 4

Source Example

Namespace is←isolate.New MyNS

Workspace is←isolate.New 'ws name'

Name List is←isolate.New 'foo' 'goo' 'data'

Empty is←isolate.New ''

Futures and Isolates

1

Exercises – 1c

• Create a vector of isolates and distribute data across

them. Compute something in parallel. For example:

iss←isolate.New¨ '' '' ''
iss.data←↓3 4⍴⍳12
iss.(+/data)

Futures and Isolates

2

Exercises – 2a

• Experiment with making calls to ⎕DL in several

isolates at once.

isos←isolate.New¨'' '' ''

isos.⎕DL 5 10 15

• Notice the difference between assigning the result to

a variable vs displaying the result in the session.

delays←isos.⎕DL 5 10 15

• Verify that you can perform structural functions on the

result (like shape or reshape) without blocking

Futures and Isolates

3

Exercises – 2b

• Experiment until comfortable with the use of

Values Running Failed Available

… to inspect the results of asynchronous calls. For

example:

isos←isolate.New¨'' '' ''

delays←isos.⎕DL 5 10 15

isolate.Values 'delays'

5.093 [Null] [Null]

Futures and Isolates

4

Exercise 3a

• Define a small stand-alone function which consumes

significant CPU and call it via

II ⍝ or isolate.ll
IÏ ⍝ or isolate.llEach

• Open Windows Task Manager and look at the CPU

and timings of invoking the function with the normal

each operator (¨) versus IÏ

• Or cheat:

]load …\isolatework\loop

Futures and Isolates

5

Exercise 3b

• Using your function from 3a, experiment with calling

functions derived from II and IÏ for example:

foo←{⎕DL 2×⍵}
foo_asynch←foo II
future←foo_asych 3

• Invoke your asynchronous function twice and

displays the results as they become available.

(hint/answer on next page)

Futures and Isolates

6

Exercise 3b - answer

• Invoke your asynchronous function twice and

displays the results as they become available:

l1←foo_asynch 2 ⋄ l2←foo_asynch 3
{⎕←l1}&⍬ ⋄ {⎕←l2}&⍬

4.062
6.094

Futures and Isolates

7

Session 3 Summary

• isolate.ll (or II) are models of the parallel operator ∥

• isolate.llEach (or IÏ) of what will be ∥¨

• The parallel operator creates an isolate which is empty except

for a copy of the operand function, and invokes the function

– The isolate is subsequently discarded

• ”Classical” Dyalog threading can be used to launch a thread

which will wait on a future and use the result when it arrives

Futures and Isolates

8

Exercise 4

Invoke your own function under IIX.PEACH

]load […where you saved it…]\IIX

NS←⎕NS ''

NS.(foo←{⎕DL 2×⍵})

('foo' IIX.PEACH NS)40⍴1

Futures and Isolates

9

Exercise 5a

• Write a function which updates a global variable in

the containing space (##.GLOBAL).

• Turn call-backs on:

isolate.Config 'listen' 1
isolate.Reset 0

• Invoke your function under IÏ and verify that it is

doing what you expect.

Futures and Isolates

10

Exercise 5b

(Optional)

• Update your isolate function to loop and make

several calls to a global function outputs something to

the session.

• Beware: Do not display the result of your long-

running function, there seems to be a conflict

between delaying on a future and GUI message

queue processing.

Futures and Isolates

11

Exercise 6

• Enable server-side debugging:

isolate.Config 'onerror' 'debug'
isolate.Reset 0

• Put a bug in a function and invoke it in an isolate

Futures and Isolates

12

Configuration Options

Option Name Default Description

drc # Location of CONGA namespace to use

homeport 7051 The lowest port number that will be used

homeportmax 7151 The highest port number to try listening on

isolates 99 Number or isolates allowed per process

listen 0 1 to allow isolates to issue callbacks to parent

process

maxws '64000' By default, uses the same setting as the current

APL session

onerror 'signal' Signal errors to the line waiting for results

processes 1 The number of processes to start per processor

processors 4 Number of processors (default determined

automatically)

runtime 1 Whether to run isolates using the runtime engine

workspace 'isolate' Workspace to load when starting new isolates

Futures and Isolates

13

