
Mastering Dyalog APL
A Complete Introduction to Dyalog APL

Bernard Legrand

With most grateful acknowledgements to the contributors:

Kim S. Andreasen

Daniel Baronet

Gitte Christensen

Peter Donnelly

Morten Kromberg

John Scholes

Adrian Smith

Tim JA. Smith

Dyalog is a trademark of Dyalog Limited

Copyright 1982-2009 by Dyalog Limited

Published by Dyalog Limited

All rights reserved.

First Edition November 2009

No part of this publication may be reproduced in any form by any means without the prior written permission of Dyalog Limited.

Dyalog Limited makes no representations or warranties with respect to the contents
hereof and specifically disclaims any implied warranties of merchantability or

fitness for any particular purpose. Dyalog Limited reserves the right to revise this

publication without notification.

TRADEMARKS

SQAPL is copyright of Insight Systems ApS.

UNIX is a trademark of X/Open Ltd.

Windows, Windows Vista, Visual Basic and Excel are trademarks of Microsoft Corporation.

All other trademarks and copyrights are acknowledged.

Dyalog Limited

http://www.dyalog.com

ISBN : 978-0-9564638-0-7

iii

Contents

INTRODUCTION - WILL YOU PLAY APL WITH ME? 1

Will You Follow Us? 1

Our First Steps into APL's Magic World 4

Array Processing 5

More Symbols 7

Most Symbols Have a Double Meaning 8

Reduction Unifies Traditional Notations 9

Let's Write Our First Programs 10

Indexing 11

Calculating Without Writing Programs 12

Friendly Binary Data 14

A Touch of Modern Math 16

A Powerful Search Function 17

After Values, Let Us Process Shapes 20

Back to Primary School 22

There Is a Lot to Discover Yet 25

FAQ 28

iv Contents

CHAPTER A: GETTING STARTED 31

1 - Installing the Software 31
1.1 Installation 31
1.2 First Contact 33
1.3 Demonstration Files 36

2 - Working with This Tutorial 40

CHAPTER B: DATA AND VARIABLES 43

1 - Simple Numeric Values 43
1.1 Our First Operations 43
1.2 Variables 44
1.3 Operations on Variables 46

2 - Arrays of Items 47
2.1 Create a List or a Matrix 47
2.2 Special Cases with Reshape 48
2.3 Multi-dimensional Arrays 49

3 - Shape, Rank, and Vocabulary 50
3.1 Shape and Rank 50
3.2 Scaling Down the Ranks 51
3.3 Vocabulary 51
3.4 Beware! 52

4 - Simple Character Values 53
4.1 Character Vectors and Scalars 53
4.2 Character Arrays 55

5 - Indexing 56
5.1 Traditional Vector Indexing 56
5.2 The Shape of the Result 57
5.3 Array Indexing 58
5.4 Convention 60
5.5 Warnings 61
5.6 The Index Function 62

 Contents v

6 - Mixed and Nested Arrays 63
6.1 Mixed Arrays 63
6.2 Four Important Remarks 64
6.3 Nested Arrays 64
6.4 DISPLAY 66
6.5 Be Simple! 68
6.6 That's Not All, Folks! 70

7 - Empty Arrays 70

8 - Workspaces and Commands 71
8.1 The Active Workspace 72
8.2 The Libraries 73
8.3 Load a WS 74
8.4 File Extensions 75
8.5 Merge Workspaces 76
8.6 Exiting APL 78
8.7 Contents of a WS 78
8.8 Our First System Commands 79
Exercises 81

The Specialist's Section 83
Spe-1 Variable Names 83
Spe-2 Representation of Numbers 83
Spe-3 The Shape of the Result of Indexing 84
Spe-4 Multiple Usage of an Index 86
Spe-5 A Problem With Using Reshape (∰) 86
Spe-6 Monadic Index (⌷) 87

CHAPTER C: SOME PRIMITIVE FUNCTIONS 89

1 - Definitions 89

2 - Some Scalar Dyadic Functions 90
2.1 Definition and Examples 90
2.2 Division By Zero 92
2.3 Power 92
2.4 Maximum & Minimum 92
2.5 Relationship 93
2.6 Residue 94

3 - Order of Evaluation 94

vi Contents

4 - Monadic Scalar Functions 96
4.1 The Four Basic Symbols 96
4.2 Other Scalar Monadic Functions 97

5 - Processing Binary Data 99
5.1 Membership 99
5.2 Binary Algebra 100
5.3 Without 102

6 - Processing Nested Arrays 102
6.1 Scalar vs. Non-scalar Functions 102
6.2 Be Careful With Shape/Type Compatibility 103

7 - Reduction 104
7.1 Presentation 104
7.2 Definition 105
7.3 Reduction of Binary Data 106
7.4 Reduction of Nested Arrays 107
7.5 Application 1 107
7.6 Application 2 108

8 - Axis Specification 109
8.1 Totals in an Array 109
8.2 The Shape of the Result 111
8.3 Special Notations 111

9 - Our First Program 112

10 - Concatenation 113
10.1 Concatenating Vectors 113
10.2 Concatenating Other Arrays 114
10.3 Concatenating Scalars 117
10.4 Special Notations 117

11 - Replication 118
11.1 Basic Approach: Compression 118
11.2 Replication 120
11.3 Scalar Left Argument 120
11.4 Special Notations 121

12 - Position (Index Of) 121
12.1 Discovery 121
12.2 Application 3 123

 Contents vii

13 - Index Generator 125
13.1 Basic Usage 125
13.2 Application 4 126
13.3 Comparison of Membership and Index Of 127
13.4 Idioms 130
13.5 Application 5 131
13.6 Application 6 132

14 - Ravel 132

15 - Empty Vectors and Black Holes 134
Exercises 136

The Specialist's Section 140
Spe - 1 Division Control - ⎕DIV 140
Spe - 2 Derived Functions 141
Spe - 3 Nor & Nand 141
Spe - 4 Index Generator of Arrays 142
Spe - 5 Ravel With Axis 143
Spe - 6 Residue 145

CHAPTER D: USER DEFINED FUNCTIONS 147

1 - Landmarks 147
1.1 Some Definitions 147
1.2 Configure Your Environment 148

2 - Single-Line Direct Functions 152
2.1 Definition 152
2.2 Unnamed D-Fns 153
2.3 Modifying The Code 153

3 - Procedural Functions 154
3.1 A First Example 154
3.2 Local Names 156
3.3 Miscellaneous 159
3.4 Second Example 161
Exercises 164
3.5 Calls to Sub-Functions 166

viii Contents

4 - Flow Control 167
4.1 Overview 167
4.2 Conditional Execution 169
4.3 Disparate Conditions 174
4.4 Predefined Loops 176
4.5 Conditional Loops 178
4.6 Exception Control 181
4.7 Endless Loops 182

5 - Traditional Flow Control 186
5.1 Conditional Execution 186
5.2 Multiple Conditions 190
5.3 Modern and Traditional Controls Cooperate 192

6 - Input, Output, and Format 193
6.1 Some Input and Output Methods 193
6.2 Format 194
6.3 Displaying Intermediate Results 196
6.4 Using Global Variables 197
6.5 Exchanging Data With an Excel Worksheet 198
6.6 Reading or Writing a Text File 199
6.7 Printing Results on a Printer 201
6.8 Using a Graphical User Interface 202
6.9 Requesting Values From the Keyboard 203

7 - Syntax Considerations 205
7.1 Comments & Statement Separators 205
7.2 Why Should a Function Return a Result? 206
7.3 Different Types of Functions 207
7.4 Nested Argument and Result 211
7.5 Choice of Names 212

8 - Multi-Line Direct Functions 213
8.1 Characteristics 213
8.2 Guards 215
8.3 Syntax Considerations 215

9 - Recursion 217

10 - Synonyms 218

 Contents ix

11 - About the Text Editor 220
11.1 What Can You Edit? 220
11.2 What Can You Do? 221
11.3 Undo, Redo, Replay 222
11.4 Miscellaneous 224

12 - SALT 225
Exercises 227

The Specialist's Section 230
Spe-1 Shadowed Names 230
Spe-2 Loop Control 231
Spe-3 Labels and the Branch Arrow 231
Spe-4 Other Conditional Execution 233
Spe-5 Name Category of Synonyms 234
Spe-6 Bare Output 235
Spe-7 :InEach 236

CHAPTER E: FIRST AID KIT 239

1 - When an Error Occurs 240
1.1 Our First Error 240
1.2 Cascade of Errors 243
1.3 Information and Actions 249
1.4 Why Should You Reset Your State Indicator? 250

2 - Most Frequent Error Messages 252
2.1 Execution Errors 252
2.2 Some Other Errors 257

3 - Trace Tools 258
3.1 Invoke and Use the Tracer 258
3.2 Choose Your Configuration 261
3.3 Break-points and Trace-controls 262
3.4 System Functions 265
Exercises 267

The Specialist's Section 268
Spe-1 Value Errors 268
Spe-2)SINL 269
Spe-3 Namespaces and Indicators 269

x Contents

CHAPTER F: EXECUTE & FORMAT CONTROL 273

1 - Execute 273
1.1 Definition 273
1.2 Some Typical Uses 274
1.3 Make Things Simple 276

2 - The Format Primitive 276
2.1 Monadic Format 276
2.2 Dyadic Format 277

3 - The ⎕FMT System Function 280
3.1 Monadic Use 280
3.2 Dyadic Use 281
3.3 Qualifiers and Affixtures 288

The Specialist's Section 292
Spe-1 Execute 292
Spe-2 Formatting data 295

CHAPTER G: WORKING ON DATA SHAPE 299

1 - Take and Drop 299
1.1 Take and Drop Applied to Vectors 299
1.2 Three Basic Applications 302
1.3 Take and Drop Applied to Arrays 303

2 - Laminate 305
2.1 Application to Vectors and Scalars 307
2.2 Applications 308

3 - Expand 310
3.1 Basic Use 310
3.2 Extended Definition 310
3.3 Expand Along First Axis 311

4 - Reverse and Transpose 312

5 - Rotate 314
5.1 Rotate Vectors 314
5.2 Rotate Higher-Rank Arrays 315

 Contents xi

6 - Dyadic Transpose 316
Exercises 319

The Specialist's Section 322
Spe - 1 More About Laminate 322
Spe - 2 Dyadic Transpose 322

CHAPTER H: SPECIAL SYNTAX 325

1 - Modified Assignment 325

2 - Multiple Assignment 326

3 - Selective Assignment 327
3.1 Quick Overview 327
3.2 Available Primitives 328

CHAPTER I: NESTED ARRAYS (CONTINUED) 331

1 - First Contact 331
1.1 Definitions 331
1.2 Enclose & Disclose 332
1.3 More About DISPLAY 336

2 - Depth & Match 338
2.1 Enclosing Scalars 338
2.2 Depth 339
2.3 Match & Natch 341

3 - Each 342
3.1 Definition and Examples 342
3.2 Three Compressions! 345

4 - Processing Nested Arrays 346
4.1 Scalar Dyadic Functions 346
4.2 Juxtaposition vs. Catenation 346
4.3 Characters and Numbers 348
4.4 Some More Operations 350
Exercises 353

xii Contents

5 - Split and Mix 354
5.1 Basic Use 354
5.2 Axis Specification 355

6 - First & Type 357

7 - Prototype, Fill Item 358

8 - Pick 361
8.1 - Definition 361
8.2 - Beware! 362
8.3 - Important 363
8.4 - Selective Assignment 364
8.5 - An Idiom 365

9 – Partition & Partitioned Enclose 365
9.1 The Dyalog Definition 366
9.2 The IBM Definition 367

10 - Union & Intersection 369

11 - Enlist 369
Exercises 371

The Specialist's Section 372
Spe-1 Compatibility and Migration Level 372
Spe-2 The IBM Partition on Matrices 375
Spe-3 Ambiguous Representation 376
Spe-4 Pick Inside a Scalar 376

CHAPTER J: OPERATORS 377

1 - Definitions 377
1.1 Operators & Derived Functions 377
1.2 Sequences of Operators 378
1.3 List of Built-in Operators 379

2 - More About Some Operators You Already Know 379
2.1 Reduce 379
2.2 n-Wise Reduce 380
2.3 Axis 382

 Contents xiii

3 - Scan 383
3.1 Definition 383
3.2 Scan with Binary Values 384
3.3 Applications 385

4 - Outer Product 386
4.1 Definition 386
4.2 Extensions 387
4.3 Applications 389
Exercise 393

5 - Inner Product 394
5.1 A Concrete Situation 394
5.2 Definitions 396
5.3 Typical Uses of Inner Products 396
5.4 Other Uses of Inner Product 405
5.5 Application 406
Exercises 408

6 - Compose 410
6.1 Form 1 411
6.2 Form 2 412
6.3 Form 3 412
6.4 Form 4 413

7 - Commute 414

8 - Power Operator 415
8.1 - Elementary Use (Form 1) 415
8.2 - Conditional Execution (Form 1) 416
8.3 - Left Argument (All Forms) 417
8.4 - Inverse Function 417
8.5 - Fixpoint, and Use with Defined Operators 418

9 - Spawn 418
9.1 Main Features 418
9.2 Special Syntax 420

10 - User-Defined Operators 421
10.1 Definition Modes 421
10.2 Some Basic Examples 422

xiv Contents

The Specialist's Section 424
Spe-1 Reduction Applied to Empty Vectors 424
Spe-2 Index Origin and Axis operator 426
Spe-3 The Power Operator 427
Spe-4 Defined Operators 429
Spe-5 The Result of an Inverse Function 429

CHAPTER K: MATHEMATICAL FUNCTIONS 431

1 - Sorting and Searching Data 431
1.1 Sorting Numeric Data 431
1.2 Sorting Characters 433
1.3 Finding Values 435

2 - Encode and Decode 436
2.1 Some Words of Theory 436
2.2 Using Decode & Encode 438
2.3 Applications 441

3 - Randomised Values 444
3.1 Deal: Dyadic Usage 445
3.2 Roll: Monadic Use 445
3.3 Derived Uses 446

4 - Some More Maths 447
4.1 Logarithms 447
4.2 Factorial & Binomial 448
4.3 Trigonometry 449
4.4 GCD and LCM 450
4.5 Set Union and Intersection 451

5 - Domino 452
5.1 Some Definitions 452
5.2 Matrix Inverse 453
5.3 Matrix Division 455
5.4 Two or Three Steps in Geometry 455
5.5 Least Squares Fitting 457
Exercises 461

 Contents xv

The Specialist's Section 463
Spe - 1 Encode and Decode 463
Spe - 2 Random Link 466
Spe - 3 Gamma and Beta Functions 468
Spe - 4 Domino and Rectangular Matrices 468

CHAPTER L: SYSTEM INTERFACES 473

1 - Overview 473
1.1 Commands, System Variables, and System Functions 473
1.2 Common Properties 474
1.3 Organisation 475

2 - Workspace Management 475
2.1)WSID & ⎕WSID Workspace Identification 476
2.2 ⎕LX Startup Expression 477
2.3)LOAD,)XLOAD & ⎕LOAD Load a Workspace 478
2.4)COPY,)PCOPY & ⎕CY Import Objects 479
2.5)LIB Explore a Workspace Library 480
2.6)CLEAR & ⎕CLEAR Clear the Active Workspace 480
2.7)SAVE & ⎕SAVE Save a Workspace 481
2.8 ⎕WA Memory Space Available 482

3 - Object Management 482
3.1)VARS,)FNS,)OPS,)OBS & ⎕NL Object Lists 482
3.2 ⎕NC Name Category 485
3.3)ERASE & ⎕EX Delete Objects 486
3.4 ⎕SIZE Object Size 487

4 - Environment Control & Information 488
4.1 ⎕TS Current Date & Time 488
4.2 ⎕PP Print Precision 488
4.3 ⎕IO Index Origin 489
4.4 ⎕AI Account Information 490
4.5 ⎕PFKEY Programmable Function Keys 491

xvi Contents

5 - Function Definition and Processing 493
5.1)ED & ⎕ED Edit Objects 493
5.2 ⎕CR, ⎕NR, ⎕VR & ⎕OR Function Representations 493
5.3 ⎕FX Function Creation 496
5.4 ⎕SHADOW Name Shadowing 497
5.5 ⎕LOCK Locking a Function 497
5.6 ⎕REFS Internal References 498
5.7 ⎕AT Function Attributes 498

6 - Debugging and Event Trapping 500

7 - Calculation Control 501
7.1 Already Studied 501
7.2 ⎕CT Comparison Tolerance 501
7.3 ⎕DL Delay 503

8 - Character Processing, Input/Output 503
8.1 ⎕AV & ⎕AVU Atomic Vectors 503
8.2 ⎕UCS Unicode Conversions 504
8.3 ⎕TC Terminal Control 504
8.4 ⎕A & ⎕D Alphabet & Digits 505
8.5 ⎕NULL Null Item 505

9 - Miscellaneous 507
9.1 ⎕OFF &)OFF Quit APL 507
9.2 ⎕SH, ⎕CMD,)SH &)CMD Host System Commands 507
9.3 ⎕PW Page Width 508

The Specialist's Section 509
Spe-1 Commands vs. System Functions 509
Spe-2 ⎕SAVE 510
Spe-3)CONTINUE Save & Continue 511
Spe-4 ⎕OR 511
Spe-5 ⎕VFI Verify and Fix Input 512
Spe-6 ⎕RTL Response Time Limit 513
Spe-7 ⎕MONITOR Execution Monitoring 514
Spe-8 System Variables vs. System Functions 516

 Contents xvii

CHAPTER M: EVENT HANDLING 517

1 - Diagnostic Tools 518

2 - Event Trapping 518
2.1 Event Numbers / Event Messages 519
2.2 :Trap / :Else / :EndTrap 520
2.3 ⎕TRAP 522
2.4 Beware of These Errors 527
2.5 Neutralise the Traps 530

3 - Event Simulation 530
3.1 ⎕SIGNAL Example 532

CHAPTER N: FILE PROCESSING 535

1 - Component Files 536
1.1 First Steps 536
1.2 Utility Functions 540
1.3 Shared Files 544
1.4 How to Queue File Operations 551

2 - Data Representation 554
2.1 Representation of Values 554
2.2 Representation of Variables 557

3 - Native Files 559
3.1 Similarities and Differences 559
3.2 Basic Operations 561

4 - External Variables 566

The Specialist's Section 569
Spe-1 Component Files 569
Spe-2 Native Files 572

CHAPTER O: NAMESPACES 577

1 - Simple Namespaces 577
1.1 Introduction 577
1.2 Use the Contents of a Namespace 583

xviii Contents

2 - More about References 588
2.1 Namespace References 588
2.2 Display Form 591

3 - Arrays of Refs 592
3.1 Create an Array 592
3.2 Indexing Arrays of Refs 594

4 - The Session Namespace 594

The Specialist's Section 597
Spe - 1 The Dot as a Syntactic Element 597
Spe - 2 State Indicators 598
Spe - 3 Evaluation of Statements 598
Spe - 4 The Dyalog Workspace Explorer 600
Spe - 5 Control of Exported Functions 601
Spe - 6 Retrieving a Namespace Source 602

CHAPTER P: GRAPHICAL USER INTERFACE 603

1 - Guidelines 603
1.1 Terminology and Options 603
1.2 Create a Simple Dialog Box 607
1.3 Get Information 610
1.4 Changing Properties 611
1.5 Make It Work 612

2 - Call-Back Functions 613
2.1 Discovery 613
2.2 The Arguments of a Call-Back Function 618
2.3 The Result of a Call-Back Function 622
2.4 Improve It 625
2.5 Tracing Call-Back Functions 628

3 - Selection Tools 628
3.1 List 628
3.2 Combo 631

4 - Colours, Fonts, and Root 633
4.1 Colours 633
4.2 Fonts 633
4.3 Properties of the Root Object 636

 Contents xix

5 - Improve Your User Interface 639
5.1 Default Keys 639
5.2 Enqueuing Events and Using Methods 640
5.3 Activating Objects 641
5.4 Form Appearance 642

6 - Menus 644

7 - The Grid Object 646
7.1 Geometry & Titles 647
7.2 Cell Types 648
7.3 Interaction with a Grid 653
7.4 Example 654
7.5 Multi-Level Titles 658
7.6 Some Additional Properties 660

8 - Using Printers 661
8.1 The Printer Object 661
8.2 Printer Management 664

9 - And Also … 667

The Specialist's Section 669
Spe-1 Lists of Properties, Methods, Events 669
Spe-2 Different Syntaxes 671
Spe-3 Using Classes 672

CHAPTER Q: INTERFACES 675

1 - Introduction 675

2 - OLE Interface with Excel 676
2.1 Introduction 676
2.2 Create, Fill, and Save a Workbook 677
2.3 Open and Process a Workbook 680
2.4 A Simple Example 683

3 - Name Association 686
3.1 Introduction 686
3.2 Detailed Syntax 688
3.3 See How It Works 690

xx Contents

CHAPTER R: SALT 693

1 - Introduction 693
1.1 Why a Source Code Management System? 693
1.2 Using Script Files 697
1.3 Updating a Script From the APL Session 700

2 - Version Management 702
2.1 Creating and Using Versions 702
2.2 File Management 705
2.3 Comparing Scripts 707

3 - Settings 709

The Specialist's Section 711

CHAPTER S: PUBLISHING TOOLS 713

1 - NewLeaf 714
1.1 Getting Started 714
1.2 Frames and Text 715
1.3 Fonts 720
1.4 Tables 722
1.5 The Page Designer 726
1.6 More Tools, Better Quality 735

2 - RainPro 738
2.1 Getting started 738
2.2 Multiple Bar Chart 740
2.3 Scattered Points 744
2.4 Min-Max Vertical Lines 750
2.5 Polar Representations 753
2.6 Multiple Charts 754
2.7 There is Much More To Explore! 756

 Contents xxi

CHAPTER X: SOLUTIONS 757
Chapter B 757
Chapter C 758
Chapter D 761
Chapter G 765
Chapter I 767
Chapter J 768
Chapter K 771

APPENDICES 773

Appendix 1 : Scalar Functions 773

Appendix 2 : Invoking the Editor 774

Appendix 3 : Selective Assignment 775

Appendix 4 : Dyalog APL Operators 776

Appendix 5 : Identity Items 777

Appendix 6 : Event Numbers 778

Appendix 7 : System Variables and Functions 780

Appendix 8 : System Commands 783

Appendix 9 : Symbolic Index 784

INDEX M-789

xxii Contents

 1

Introduction - Will You Play APL With Me?

Will You Follow Us?

We would like to have you discover a new land, a land where people who may or may not be

specialists in programming can process their data, build computerised applications, and take

pleasure in using a programming language which is an extremely elegant and powerful tool of

thought.

Beware: Dyalog APL is Addictive!

Among the hundreds of programming languages which have been created, most of them share

the same fundamentals, the same basic instruction set, approximately the same functions, and

by and large the same methods to control the logic of a program. This greatly influences the

way people imagine and build solutions to computing problems. Because the languages are so

similar, the solutions are similar. Does it mean that these are the only ways of solving

problems? Of course not!

Dyalog APL is there to open doors, windows, and minds, prove that original new methods do

exist, and that mathematics is not limited to four basic operations. Using APL will expand and

extend the range of mental models that you use to solve problems, but beware:

Once you are hooked on APL, there is a real risk that you will no longer accept the limitations

of "traditional" programming languages.

Installation and Keyboard

If you do not have access to a computer with Dyalog APL installed, you should still be able to

gain an appreciation of the language from these pages and, we hope, enjoy the experience.

If you have installed Dyalog, not only can you read this book, but you can also experiment on

your own computer using the examples below, and invent your own data and calculations.

If you have a copy of Dyalog APL, install it as explained in the User Guide. Just run the

installation program and accept all the defaults; there is no need to change anything.

2 Dyalog APL - Tutorial

You might like to refer to section A-1 for additional installation hints.

As you will see in the following pages, APL uses special symbols, like ⍉, ∰, and ∸, which

you enter using a special keyboard layout.

You will not need all of the special symbols to read the following pages. The picture below

illustrates a cut-down version of the UK keyboard layout, with only the APL symbols that are

referred to in this introduction. They are shown on a grey background. The US keyboard is

slightly different, but the symbols we need are positioned identically. The full keyboard layout

is shown in the User Guide.

Here is how the keyboard is to be used:

 All the standard English letters, numerals and symbols are typed as usual.

 The majority of the APL symbols are obtained by pressing the "Ctrl" key, in conjunction

with another key. For example, to obtain ∰, you must press Ctrl and R. From now on, this

keystroke will be identified as "Ctrl+R". On the keyboard layout illustrated above, the

symbols that you enter this way are printed at the bottom-right corner of each key.

 Most other APL symbols are obtained by simultaneously pressing "Ctrl" and "Shift" and

then the appropriate key. For example, to obtain ⍉, you must press Ctrl and Shift and 6.

From now on, this keystroke will be identified as "Ctrl+Shift+6". On the keyboard layout

illustrated above, the symbols that you enter this way are printed at the top-right corner of

each key.

 A few APL symbols are obtained by pressing the "Alt Gr" key (or Ctrl+Alt if your

keyboard does not have an "Alt Gr" key), simultaneously with another key, but you don't

have to bother about them here: We won't be using them in the examples in this

introduction.

 Introduction - Will you play APL with me ? 3

 In case you initially have any difficulty with the keyboard, there is a "language bar" on top

of the session screen, with all the APL symbols on it. When you need a symbol, you just

have to click on it and the symbol will appear wherever your cursor is positioned.

You may notice that some symbols appear twice on the keyboard. This is the case for example

for the symbols < = >. These symbols are all part of a normal keyboard (the black ones), but

they have been repeated on the APL keyboard, mostly in order to group the symbols used for

comparison functions together (the red ones). Do not worry: No matter which key you use to

produce one of the duplicated symbols, you'll obtain the same result.

Utilities and Data

For most of the examples, you can just type what you read in the following pages, but

sometimes you will need some data which we have prepared for you.

This data is contained in a special file (called a WorkSpace) named DyalogTutor_EN.dws

which accompanies this book.

If you don’t have the file, please refer to section A-1 for instructions on how to download it.

The file can only be opened by Dyalog APL. You can open it as follows:

 In Windows Explorer, double-click on the file's name. APL will be started, and it will then

open the file.

 Or, start APL by double clicking on the Dyalog APL icon. Then, using the "File/Open"

menu, search for the file and open it.

Once the workspace has been loaded, a welcome message is displayed, and you can check that

the workspace contains the variables we shall be using in the following pages:

)vars
Actual Ages AlphLower AlphUpper Area Big Category etc…

You can display the contents of any variable by hovering over its name with the mouse-

pointer, by double-clicking on its name, or just by typing its name and pressing the Enter key,

like this:

 Forecast
150 200 100 80 80 80
300 330 360 400 500 520
100 250 350 380 400 450
 50 120 220 300 320 350

Now, you are ready, fasten your seatbelts, we're off!

4 Dyalog APL - Tutorial

Our First Steps into APL's Magic World

Simple Operations

In APL, what you type starts 6 characters right from the left margin (we say it is "indented"),

whereas the computer's response begins at the left margin. For additional clarity, in the

following pages the characters typed by the user are printed in red, the response given by the

computer being in black.

You will notice that in the examples given in the book we very often put a blank space

between a symbol and the surrounding names or values. This is in most cases unnecessary; we

only do so in order to improve readability. Later on, we will gradually cease to insert the

blank spaces in expressions that you should become familiar with along the way.

An expression gets evaluated and the result shown in the session when you press the Enter

key. Let's try some simple expressions:

 27 + 53
80

 1271 - 708
563

 86 ÷ 4 The Divide sign is obtained using Ctrl+ =
21.5

 59 × 8 The Multiply sign is obtained using Ctrl+ -
472

You can see that APL behaves like any hand-held calculator with, however, a small

difference; multiplication is represented by the multiplication symbol (×) which is used in

schools in many countries; likewise for division (÷).

In most other computer languages, a star * is used for Multiply and / for Divide. This is a

legacy of the early days of computers, when the character set was limited to the one available

on a typewriter. At the time it was decided to use * and / in place of × and ÷. But it is now

possible to display any type of symbol on a screen and on a printer, and this transposition is

no longer justifyable. The use of common symbols, which are taught all over the world, aids

the understanding of APL by non programmers.

If you are familiar with other programming languages, you may occasionally and erroneously

use * instead of ×. Let's see what might happen then:

 7 * 3 In APL the star means "Power"
343 so that 7*3 is equivalent to 7×7×7

 Introduction - Will you play APL with me ? 5

Variables

As in any programming language, it is possible to create variables. Just choose a name and use

the left arrow to assign it a value. In APL a numeric value can consist of a single number, or

several numbers separated by at least one blank space. The arrow can be obtained using Ctrl+ [

 VAT ← 19.6 Read it as: VAT gets 19.6

 Years ← 1952 1943 1986 2007

The names are "case sensitive". It means that three variables named respectively VAT, Vat,

and vat, would be distinct, and may contain different values.

To ask for the contents of a variable, just type its name and press Enter, like this:

 VAT
19.6

 Years
1952 1943 1986 2007

Array Processing

APL is able to operate on two sets of numbers, provided those two sets have the same "shape".

For the moment, understand this as "the same number of items". For example, suppose that

you have a list of prices of 5 products, and the quantity bought of each:

Prices 5.20 11.50 3.60 4.00 8.45
Quantities 2 1 3 6 2

You can create two variables like this:

 Price ← 5.2 11.5 3.6 4 8.45

 Qty ← 2 1 3 6 2

When multiplied together, the variables are multiplied item by item, and produce a result of

the same length. That result can be assigned to a new variable.

 Costs ← Price ∲ Qty

 Costs
10.4 11.5 10.8 24 16.9

This array processing capability eliminates most of the "loops" which are common to other

programming languages. This remains true even if the data is not a simple list but a multi-

dimensional array, of almost any size and number of dimensions.

6 Dyalog APL - Tutorial

To make it clear, imagine that a Sales Director makes forecasts for sales of 4 products over the

coming 6 months, and assigns them to the variable Forecast. At the end of the 6 months, he

assigns the real values to the variable Actual. Here they are:

 Forecast Actual

150 200 100 80 80 80 141 188 111 87 82 74
300 330 360 400 500 520 321 306 352 403 497 507
100 250 350 380 400 450 118 283 397 424 411 409
 50 120 220 300 320 350 43 91 187 306 318 363

We have not yet explained how you can build such arrays of data, but if you have APL

installed, these variables are provided in the Workspace file named "DyalogTutor_EN.dws".

Refer to the "Utilities and Data" section above to see how you can load the workspace and

access the data.

It is clear that the first idea of any Sales Director will be to ask for the differences between

what he expected and what he has really got. This can be done easily by typing:

 Actual - Forecast
¯9 ¯12 11 7 2 ¯6 Note that to distinguish the sign attached to

21 ¯24 ¯8 3 ¯3 ¯13 negative values from subtraction, negative

18 33 47 44 11 ¯41 values are shown with a high minus sign.
¯7 ¯29 ¯33 6 ¯2 13

To enter negative values, this high minus sign can be obtained by pressing Ctrl+2.

In most traditional programming languages an operation like the one above requires two

embedded loops. See what is needed in PASCAL:

DO UNTIL I=4
 DO UNTIL J=6
 DIFF(I,J):=ACTUAL(I,J)-FORECAST(I,J)
 END
END.

Even if this may seem obvious to a programmer, it is worth noting that most of the code has

nothing to do with the user requirement. The only important thing (subtract forecasts from

actual values) is hidden behind the detailed workings of the computer program.

To have a calculation done by a machine, one must translate our human wording into

something that the computer can understand. With traditional languages, most of that effort is

made by the man, to produce a program like the PASCAL example above. The great

advantage of APL is that the man has generally much less effort to make, and the machine

does the rest.

We have seen that APL will work on two variables of the same shape; it also works if one of

the variables is a single item, which is called a scalar. If so, the other variable may be of any

shape.

 Introduction - Will you play APL with me ? 7

For example, if we want to calculate the amount of 19.6% VAT applied to the variable Price

above, we can type Price × VAT ÷ 100 (or VAT × Price ÷ 100 as well), as shown here:

 Price × VAT ÷ 100
1.0192 2.254 0.7056 0.784 1.6562 This result would require some rounding

 but this is not important for now

More Symbols

Most programming languages represent only a very small subset of the mathematical

functions using symbols (typically +, -, * and /). The creator of APL, Kenneth E. Iverson,

chose to include many traditional mathematical symbols in his language, and also added some

new symbols to the set that we already know so well.

E.g.: Many functions which in other programming languages are library routines with names

like "Maximum" have their own symbols in APL.

The function "Maximum" (⌈) returns the greater of two numbers, or of two arrays of numbers

compared item by item.

There is also, as one might expect, a symbol for "Minimum" (⌊).

 75.6 ⌈ 87.3 Maximum (Ctrl+S)
87.3

 11 28 52 14 ⌈ 30 10 50 20 Comparison item by item
30 28 52 20

 11 28 52 14 ⌊ 20 Minimum (Ctrl+D)
11 20 20 14

APL supports about 70 symbols. Since some symbols have more than one meaning one could

argue at length about the exact number.

This is nothing to worry about: Some of the symbols are familiar; such as × or > or again ÷

and -, but also ! and a good many others.

8 Dyalog APL - Tutorial

Most Symbols Have a Double Meaning

This is not a peculiarity of APL; in algebra we are familiar with the use of symbols as

common as the minus sign being used in two different ways.

In the expression a = x - y the minus sign means subtract

Whereas in a = -y the minus sign indicates the negation of y, that's different

The first form is called the "dyadic" use of the symbol.

The second form is called the "monadic" use of the symbol.

It is the same in APL, where most of the symbols can have two meanings.

For example, to find the shape (the dimensions) of an array, one uses the Greek letter Rho (∰),

which can be read "shape of …", in its monadic use. It is produced using Ctrl+R.

 ∰ Price Monadic use
5 Price has 5 items

 ∰ Forecast
4 6 Forecast has 4 rows of 6 items

Used dyadically, the same symbol will organise items into a specified shape. For example,

suppose that we want to create the matrix below:

 25 60
 33 47
 11 44
 53 28

We must give the computer two pieces of information:

 First the shape to give to the matrix: 4 2 (4 rows of 2 columns)

 Next the contents of the matrix: 25 60 33 47 11 44 53 28

It is the symbol ∰ (Rho) which makes the connection between the shape and the contents:

 Tab ← 4 2 ∰ 25 60 33 47 11 44 53 28

 Tab
25 60
33 47
11 44
53 28

A new variable Tab is thereby created, and this is also how the variables Forecast and

Actual above were made.

 Introduction - Will you play APL with me ? 9

Conventions

In APL, we give special names to certain shapes of data:

 Scalar is used for a single value, a number like 456.18 or a single letter like 'Q'.

 Vector is a plain list of values

 It may be composed of numbers like Price and Qty,

 or of letters like 'Once upon a time' within single quotes

 Matrix is an array with two dimensions, like Forecast or Tab

 Array is a generic word for any set of values, whatever the number of its dimensions

 Table is a common word used for arrays with 2 dimensions (matrices)

 Cube is a common word used for arrays with 3 dimensions

Reduction Unifies Traditional Notations

Perhaps you remember the variable Costs: 10.4 11.5 10.8 24 16.9

So what must we do to work out the total? Mathematicians are creative people who long ago

devised the symbol ∑, always with a pretty collection of indices above and below, which

make it complex to understand and to type on a typewriter.

In APL, the operation is written like this:

 +/ Costs
73.6

Simple isn’t it? This gives the total of all the items of the array.

You can read this as "Plus Reduction" of the variable Costs.

To gain a better understanding of the process:

When we write an instruction such as +/ 21 45 18 27 11

- it works as if we had written 21 + 45 + 18 + 27 + 11

- and we obtain the sum 122

In fact, it works as if we had "inserted" the symbol + between the values.

But then, if we write ×/ 21 45 18 27 11

- it is as if we had written 21 × 45 × 18 × 27 × 11

- so, we get the product 5051970

10 Dyalog APL - Tutorial

Similarly, if we write ⌈/ 21 45 18 27 11

- it is as if we had written 21 ⌈ 45 ⌈ 18 ⌈ 27 ⌈ 11

- so, we obtain the largest term 45

Reduction, represented by the symbol /, belongs to a special category of symbols called

Operators. All the other symbols (+ - ∲ ⌈ ∰ ⍉ ...) are called Functions (addition,

subtraction, multiplication, maximum, shape, etc.).

The arguments of a function are data (arrays): Price × Qty

Whereas at least one of the arguments of an operator is a function: +/ Qty

The left argument of Reduction can be one of many of the APL symbols, and it can also be the

name of a user-defined program. This may give you an idea of the generality and power of the

concept.

Dyalog APL contains 10 such powerful operators. If that is not enough, you can even write

your own operators, just like you can write your own functions!

Let's Write Our First Programs

Imagine that we want to calculate the average of the following numbers:

 Val ← 22 37 41 19 54 11 34

We must:

 first calculate the sum of the values: +/ Val giving 218

 next calculate the number of values: ∰ Val giving 7

 and finally divide one result by the other

The calculation can be written as the single formula: (+/Val) ÷ (∰Val)

As it is quite likely that we shall often want to make this sort of calculation, it is preferable to

store this expression in the form of a program.

In APL we prefer the name defined function to the name "program".

Defined functions may be used in the same way as the built-in functions represented by

special symbols like + - × — > ∰..., which are called primitive functions.

To define a simple function like this one, here is the easiest way:

 Average ← {(+/∱)÷(∰∱)}

 Introduction - Will you play APL with me ? 11

Average is the program name

∱ is a generic symbol which represents the array passed on the right.

∭ would be the generic symbol for the array passed on the left, if any

The definition of the function is delimited by a set of curly braces { and }. For more complex

functions it is also possible to use a text editor, but this is beyond the scope of this short

introduction.

Once defined, this function may be invoked in a very simple way:

 Average Val For execution, ∱ will get the values
31.1428571428 contained in Val

 Average 12 74 56 23
41.25

Let us also write two little dyadic functions, the left argument of which is ∭, and the right is ∱:

 Plus ← {∭+∱}

 Times ← {∭∲∱}

 (3 Plus 6) Times (5 Plus 2)
63

As you can see, these functions behave exactly as if we had written (3+6) × (5+2)

We said in the preceding section that a user-defined program could be used by the Reduce

operator; let us try:

 Plus/ Val
218 It works!

Indexing

Returning to our vector of numbers Val: 22 37 41 19 54 11 34

In order to extract the 4th item, we just write: Val[4]

In many other programming languages one uses parentheses instead of brackets; this is not

very different.

What is new is that one can extract several items in one instruction.

 Val
22 37 41 19 54 11 34

 Val[2 4 7 1 4] One may extract the same item twice or more

37 19 34 22 19

12 Dyalog APL - Tutorial

And of course, in the same way, one may modify one or more items of Val using their

indexes. Naturally, one must provide as many values as there are items to modify, or a single

value for all:

 Val[3 5 1] ← 0

 Val
0 37 0 19 0 11 34

 Val[3 5 1] ← 300 77 111

 Val
111 37 300 19 77 11 34 You can check that the 3rd item is now 300, the 5th is 77, etc.

It is often necessary to extract the first few items from a list of values, for example the first 5.

Nothing could be easier:

 Val[1 2 3 4 5]
111 37 300 19 77

But if one needs to extract the first 500 items from a long list, typing the integers from 1 to

500 would of course be very inconvenient.

This is why APL has been given the symbol ∯ (Iota), which produces the set of the first n

integers (∯ can be obtained using Ctrl+I)

Thus, instead of writing 1 2 3 4 5 6 7 8, it is sufficient to write ∯8.

And to extract the first 500 terms of a large vector, one may write: Big[∯500]

We shall discover later an even simpler method.

Calculating Without Writing Programs

The employees of a company are divided into three hierarchical categories, denoted simply 1,

2, and 3. One assigns to two variables the salaries and the categories of these employees; as

partly shown here:

Salaries ← 4225 1619 3706 2240 2076 1389 3916 3918 4939 2735 ...

Categories ← 3 1 3 2 2 1 3 3 3 2 ...

Do they never want to increase these salaries? (what has our poor world come to!).

 Introduction - Will you play APL with me ? 13

A rumour reaches us about their plans: They want a different percentage increase for each

category, according to the following scale:

Category
Suggested
increase

1
2
3

8%
5%
2%

How much is this going to cost the company?

We create a variable containing the above three rates:

 Rates ← 8 5 2 ÷ 100 APL allows us to divide three numbers by a single one

 Rates
0.08 0.05 0.02

The first employee is in category 3, so the rate that applies to him is:

 Rates[3]
0.02

It follows that the first 5 employees, being in categories 3 1 3 2 2 respectively, are entitled to

the following increases:

 Rates[3 1 3 2 2]
0.02 0.08 0.02 0.05 0.05

More generally, the rates applied to all of our employees could be obtained like this:

 Rates[Categories]
0.02 0.08 0.02 0.05 0.05 0.08 0.02 0.02 0.02 0.05 0.05 0.02 etc.

Having the rates, one has just to multiply by the salaries to obtain the individual increases:

 Salaries × Rates[Categories]
84.5 129.52 74.12 112 103.8 111.12 78.32 78.36 98.78 136.75 etc.

Finally, by adding them all, one will know how much it will cost the company:

 +/ Salaries × Rates[Categories]
2177.41

You may note that:

 The expression remains valid whatever the number of employees or categories,

 the result has been obtained without writing any program,

 and this expression can be read as the simplest possible English, like this:

Sum the Salaries multiplied by Rates according to Categories

Clever, no?

This illustrates how the expression of a solution in APL can be very close to the way that the

solution could be phrased in everyday language. This also shows clearly that the ways of

reasoning induced by traditional programming languages are not the only possible ones. This

difference and originality, introduced by APL, are among the major features of the language.

14 Dyalog APL - Tutorial

Friendly Binary Data

APL makes much use of binary data. It is most often created by means of relational functions

like = or >, which give the answer 1 or 0, depending whether the relation is true or not:

 Salaries > 3000
1 0 1 0 0 0 1 1 1 0 1 1 0 0 1 1 0 0 0 0

 Actual > Forecast
0 0 1 1 1 0
1 0 0 1 0 0 One can see the favourable results instantly
1 1 1 1 1 0
0 0 0 1 0 1

APL offers the conventional mathematical form of the 6 relational functions:
< ≤ = ≥ > ≠

Naturally one can operate on this binary data using all the functions of Boolean algebra, and

moreover, the symbols used are those familiar to mathematicians of all nationalities around

the world:

Function AND is represented by the symbol ∧ (represented by the word AND in

 many programming languages)

Function OR is represented by the symbol ∨ (represented by the word OR in

 these languages)

Thus, if I am looking for people in category 3 whose salary is less than 4000 euros, I can

write:

 (Categories = 3) ^ (Salaries < 4000)
0 0 1 0 0 0 1 1 0 0 0 0 0 0 0 1 0 0 0 1

In fact APL offers all the functions of Boolean algebra, including some perhaps less familiar

functions like NOR and NAND (Not-OR and Not-AND), but they are very useful in finance

and electronic automation.

There is, however, no special symbol for the function Exclusive OR (often called XOR). This

is because it is not needed: The function Not Equal ≠ gives the same result as Exclusive OR

when it is used with Boolean values, as you can see below:

 0 0 1 1 ≠ 0 1 0 1
0 1 1 0

Finally, not only can these binary vectors be used as we have described but also for novel

purposes, such as counting and selecting.

 Introduction - Will you play APL with me ? 15

Counting

Having found which salaries are less than 2500 euros by means of the following expression:

 Salaries < 2500
0 1 0 1 1 1 0 0 0 0 0 0 1 1 0 0 1 0 1 0

It is easy to add all the 1s and 0s to calculate how many people earn less than 2500 euros:

 +/ Salaries < 2500
8

Selection

One can also use the binary vector as a "mask" to select the items corresponding to the binary

"1"s from another array:

 1 1 0 1 0 0 1 / 23 55 17 46 81 82 83
23 55 46 83

The procedure is identical for character data:

 1 0 1 0 0 0 0 1 1 / 'Drumstick'
Duck

This function, called Compress, is particularly useful for extracting the items conforming to a

given criterion from a variable. For example, to display the salaries of people in Category 2,

one writes:

 (Categories = 2) / Salaries
2240 2076 2735 3278 1339 3319 Powerful, isn’t it?

Discovery

To practise our skills some more, let us find in our variable Val the positions of numbers

greater than 35. Here are the necessary steps:

Val ← 22 37 41 19 54 11 34

Val>35 is 0 1 1 0 1 0 0

∰Val is 7

∯∰Val is 1 2 3 4 5 6 7 All possible positions

Let us compare two of these results

Val>35 0 1 1 0 1 0 0

∯∰Val 1 2 3 4 5 6 7

16 Dyalog APL - Tutorial

You can see that that if you eliminate (using Compress) the items which correspond to zeros

in order to retain only those corresponding to 1, you easily get the positions required: 2 3 5

Thus the job may be done as follows:

 (Val>35) / ∯∰Val
2 3 5

This expression is applicable in many different situations.

Here is a similar use, but applied to character data: To find the positions of "a" within a

phrase; the method is the same.

 Phrase ← 'Panama is a canal between Atlantic and Pacific'

 (Phrase = 'a') / ∯∰Phrase
2 4 6 11 14 16 30 36 41 You can check it!

A Touch of Modern Math

Proudly having found all the "a"s, we may wish to find all the vowels.

Alas, although we can write Phrase = 'a', because a vector can be compared with a single

value, one cannot write Phrase = 'aeiouy'(1), because that would require the item by item

comparison of a phrase of 46 letters and "aeiouy" which has only 6.

In other words: You may compare 46 letters with 46 other letters, or compare them with one

letter, but not with 6.

So we shall use a new function: Membership which is represented by the symbol ∮, also used

in mathematics.(∮ can be obtained by pressing Ctrl+E)

The expression A ∮ B returns a Boolean result which indicates which items of the variable A

appear in the variable B, wherever they may be. And it works no matter what are the shapes,

the dimensions or the type (numeric or character) of A and B, a pure marvel!

For example:

 5 7 2 8 4 9 ∮ 3 4 5 6
1 0 0 0 1 0 Only 5 and 4 are found in 3 4 5 6

 'dandelion' ∮ 'garden'
1 1 1 1 1 0 0 0 1 The letters "lio" do not appear in "garden"

1
 "Y" is considered to be a vowel in many European languages.

 Introduction - Will you play APL with me ? 17

So in pursuit of our enquiry we shall write:

 (Phrase ∮ 'aeiouy') / ∯∰Phrase
2 4 6 8 11 14 16 20 23 24 30 33 36 41 43 45

One can also use membership between a vector and a matrix, as shown below, assuming that

the list of towns is a variable created earlier.

We have represented side by side the variable itself and the result of using Membership:

 Towns Towns ∮ 'aeiouy'
Canberra 0 1 0 0 1 0 0 1 0 0
Paris 0 1 0 1 0 0 0 0 0 0
Washington 0 1 0 0 1 0 0 0 1 0
Moscow 0 1 0 0 1 0 0 0 0 0
Martigues 0 1 0 0 1 0 1 1 0 0
Mexico 0 1 0 1 0 1 0 0 0 0

We can reverse the expression, but the result has always the same shape as the left argument:

 'aeiouy' ∮ Towns
1 1 1 1 1 0 None of the town names contains a "y"

A Powerful Search Function

We have harnessed a very useful method to look for the positions of letters or numbers in a

vector, but the answer obtained does not provide a one to one correspondence between the

search values and the resultant positions:

 List ← 15 40 63 18 27 40 33 29 40 88 Vector of values

 Where ← 29 63 40 33 50 We want to find these

 (List ∮ Where) / ∯∰List Let's apply our method
2 3 6 7 8 9 Positions found

The positions are correct, but 29 is not in position 2, and 40 is not in position 6.

The question we have answered using the expression above is: "In which positions in List do

we find a number that also appears somewhere in Where?"

If we want to answer the slightly different question: "Where in List do we find each number

in Where?" we need to use a different method.

This new method uses the dyadic form of the symbol ∯ (Iota).

 List ← 15 40 63 18 27 40 33 29 40 88 Same vector of values

 Where ← 29 63 40 33 50 Where are these?

 List ∯ Where New method using dyadic ∯
8 3 2 7 11 Positions found

18 Dyalog APL - Tutorial

It is true that 29, 63, 40 and 33, occur respectively in positions 8, 3, 2 and 7. It's much better!

But, first surprise: The value 40 occurs 3 times in List, but only the first one is reported in

the result. This is because, by definition, dyadic Iota returns only the first occurrence of a

given item. If the response for each value sought has to match a position; how may one,

looking for 5 numbers, obtain 7 results?

Second surprise: The value 50 is reported as being found in position 11 in a vector comprising

only 10 items! This is how the function IndexOf (dyadic ∯) reports that a value is absent.

At first sight this seems a bit surprising, but in fact it is a property which makes this function

so generally powerful, as we shall soon see.

An Example

A car manufacturer decides that he will offer his customers a discount on the catalogue price

(you can see how this example is imaginary!)

The country has been divided into 100 areas, and the discount rate will depend on the area

according to the following table:

Area Discount

17
50
59
84
89

9 %
8 %
6 %
5 %
4 %

Others 2 %

The problem is to calculate the discount rate that may be claimed for a potential customer who

lives in given area D; for example D ← 84.

Let us begin by creating two variables:

 Area ← 17 50 59 84 89

 Discount ← 9 8 6 5 4 2

Let us see if 84 is in the list of favoured areas:

 D ∮ Area
1 Yes, it's there

 Area ∯ D
4 84 is the 4th item in the list

 Introduction - Will you play APL with me ? 19

Let us find the current rate of discount for this index position:

 Discount[4]
5 This customer can claim a 5% discount; good!

One may simply write: Discount[Area∯D]

If a customer lives in any area such as 75, 45, or 93, the expression Area∯D will in all cases

give the result 6, because those values are absent in Area. Then Discount[6] will always

find the rate 2%, as expected.

The importance of this approach is that it is vector-based. Suppose that publicity attracts

crowds and that therefore D is no longer a single value but a vector, the solution is still valid:

 D ← 24 75 89 60 92 50 51 50 84 66 17 89

 Discount[Area∯D]
2 2 4 2 2 8 2 8 5 2 9 4

All that without a program, neither "loop" nor "test", and whatever the number of areas.

Readers who know other programming languages will have no difficulty in making the

comparison.

Generalisation

In truth, the expression we just wrote is an example of an algorithm for "changing the frame of

reference". Don’t panic, the name may seem esoteric, but the concept is simple. A list of area

numbers (the initial set) is translated into a list of discount rates (the final set).

Let us now imagine the initial set to be an alphabet composed of lower case and upper case

letters, and the final set to be composed of only upper case letters (with a blank space in the

middle):

 AlphLower
abcdefghijklmnopqrstuvwxyz ABCDEFGHIJKLMNOPQRSTUVWXYZ

 AlphUpper
ABCDEFGHIJKLMNOPQRSTUVWXYZ ABCDEFGHIJKLMNOPQRSTUVWXYZ*

Notice that AlphUpper is one character longer than AlphLower. We have added an asterisk

at the end, and you will see why we did so:

Here is a little French sentence, with one accented letter.

 Tale ← 'Le Petit Chaperon-Rouge a bouffé le Loup'

The expression below converts from lower to upper case.

 AlphUpper[AlphLower∯Tale]
LE PETIT CHAPERON*ROUGE A BOUFF* LE LOUP

20 Dyalog APL - Tutorial

As one might expect, the characters – and é, which are absent from the initial alphabetic set

have been replaced by the * of the final set, but the conversion is acceptable. This solution can

easily be improved.

Once more, the rational steps to be taken to create a solution are easily translated into a

programming algorithm, and the programmer can thereby get a much more extensive insight

into the problem itself.

After Values, Let Us Process Shapes

Many traditional programming languages do not really handle arrays of numbers or

characters. They hold them in memory, but when the arrays are required for processing they

can only be handled one item at a time. It is not surprising in these circumstances, that these

languages have only limited means of controlling the shape of the data.

It is quite the opposite in APL, which offers many tools for working with the shape of the

data. We shall only look at a few of them here.

Take and Drop

The functions Take (↑) and Drop (∸) serve, as their names suggest, to extract part of a set of

values. Here we shall show only examples based on vectors, but all the other shapes of data

can be treated in a similar way.

Recalling that List has values 15 40 63 18 27 40 33 29 40 88

 4 ↑ List (Ctrl+Y)
15 40 63 18 Take the first 4 items of the vector

 5 ∸ List (Ctrl+U)
40 33 29 40 88 Drop the first 5 items

If the left argument is negative, these same functions count from the end of the vector.

 ¯3 ↑ List
29 40 88 Take the last 3 items of the vector

 ¯7 ∸ List If one drops the last 7 items; it only leaves
15 40 63 the first three ones

That last result is the same as obtained by 3 ↑ List.

Some pages ago, we used Big[∯500] to extract the first 500 items of Big. We can now see

that we also could have used 500↑Big.

 Introduction - Will you play APL with me ? 21

Here again, using these new symbols, it is possible to create innovative solutions to classical

problems.

Let us imagine a business with a turnover which has grown over 12 years.

The variable Tome is Turnover in millions of euros.

 Tome ← 56 59 67 64 60 61 68 73 78 75 81 84

We want to calculate the difference between each year and the year before; how can we do it?

 1 ∸ Tome would give 59 67 64 60 61 68 73 78 75 81 84

¯1 ∸ Tome would give 56 59 67 64 60 61 68 73 78 75 81

In other words, in each position of the first result we have "this year's turnover", and in the

same position in the second result we have "the previous year's turnover".

We see that all that remains is to subtract these results item by item:

 (1∸Tome) - (¯1∸Tome)
3 8 ¯3 ¯4 1 7 5 5 ¯3 6 3 Without a program or loops; all very simple!

In place of a subtraction, a division would calculate (with some obvious adjustments) the rates

of growth instead of the differences:

 100 × ((1∸Tome) ÷ (¯1∸Tome))-1

Let us put that in a small defined function, and apply it:

 Growth ← {100∲((1∸∱)÷(¯1∸∱))-1}

 Growth Tome
5.36 13.56 ¯4.48 ¯6.25 1.67 11.48 7.35 6.85 ¯3.85 8 3.70

This is not the real appearance of the result; it has been rounded just for printing purposes.

Mirrors and Transposition

APL is also well equipped with functions to pivot data about any axis, as suggested by the

appearances of the symbols used. They apply to both numeric and character data; as we are

going to show by applying these functions to the variable Towns that we used earlier.

The symbols used hereafter are obtained like this: ⌽ Ctrl+Shift+5

 ⍁ Ctrl+Shift+7

 ⍉ Ctrl+Shift+6

22 Dyalog APL - Tutorial

Initial Variable

Left-right reverse
(Mirror)

Top-bottom
reverse
(Mirror)

Swap
Rows & Columns

(Transpose)

Towns ⌽Towns ⍁Towns ⍉Towns

Canberra
Paris
Washington
Moscow
Martigues
Mexico

 arrebnaC
 siraP
 notgnihsaW
 wocsoM
 seugitraM
 ocixeM

Mexico
Martigues
Moscow
Washington
Paris
Canberra

CPWMMM
aaaoae
nrssrx
bihcti
esioic
r nwgo
r g u
a t e
 o s
 n

The symbols used (⌽ ⍁ ⍉) are self-explanatory, no effort is required to remember any of

them. They also have dyadic uses, but we shall not demonstrate them here.

Back to Primary School

Remember when we learned our multiplication tables? In that practically Palaeolithic era, to

make sure that we knew all our tables, my teacher made us calculate the multiplication table

for the integers 1 to 9:

× 1 2 3 4 5 6 7 8 9

1
2
3
4

etc.

 1 2 3 4 5 6 7 8 9
 2 4 6 8 10 12 14 16 18
 3 6 9 12 15 18 21 24 27
 4 8 12 16 20 24 28 32 36
 etc.

You see, I haven’t forgotten!

Probably you have done all this just like me. And then we quickly forgot that very powerful

tool, one which APL provides under the name Outer Product.

 Introduction - Will you play APL with me ? 23

The task consists of taking all possible pairs of items of two vectors, (the column and row

headings) and making them the left and right arguments of the function at the top left. For

example, 3 times 7 gives 21 (in red here above).

Next we shall go on to see what we get if we change the values a little:

× 8 5 15 9 11 40

5
4
10
3

 40 25 75 45 55 200
 32 20 60 36 44 160
 80 50 150 90 110 400
 24 15 45 27 33 120

This operation is written as follows in APL:

 5 4 10 3 ∬.∲ 8 5 15 9 11 40
40 25 75 45 55 200
32 20 60 36 44 160
80 50 150 90 110 400
24 15 45 27 33 120

The Outer Product symbol is made of a small circle (Ctrl+J), a dot, and the function to be

applied. It is an operator, as one of its arguments is a function (× in this case) rather than an

array.

Despite of its name "Outer Product" this operator is by no means restricted to working with

multiplication. We can replace the symbol for Multiplication by any other dyadic function

(like = < ≥ or ⌈), or even functions which you have defined yourself (like Plus), and you

will understand, as for Reduce which we saw earlier, that Outer Product is an operator of

amazing power.

Let’s have some fun with it:

(∯5)∬.=(∯5) (∯5)∬.<(∯5) (∯5)∬.≥(∯5) (∯5)∬.⌈(∯5) (∯5)∬.Plus(∯5)

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

0 1 1 1 1
0 0 1 1 1
0 0 0 1 1
0 0 0 0 1
0 0 0 0 0

1 0 0 0 0
1 1 0 0 0
1 1 1 0 0
1 1 1 1 0
1 1 1 1 1

1 2 3 4 5
2 2 3 4 5
3 3 3 4 5
4 4 4 4 5
5 5 5 5 5

2 3 4 5 6
3 4 5 6 7
4 5 6 7 8
5 6 7 8 9
6 7 8 9 10

24 Dyalog APL - Tutorial

A Useful Application

Suppose the vector Ages contains the ages of 400 respondents to an opinion poll. We want to

establish how many people there are in each of the following categories:

0 - 25 - 30 - 35 - 45 - 50 - 55 - 65 or above.

Here is an extract of the data:

Ages 32 19 50 33 23 65 46 26 31 58 51 23 51 36 28 42 ... etc

Category 0 25 30 35 45 50 55 65

We are going to use the Outer Product Category ∬.< Ages , and here are the first items of

the result:

< 32 19 50 33 23 65 46 26 31 58 51 23 51 36 28 42 34 ... etc

0
25
30
35
45
50
etc.

 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
 1 0 1 1 0 1 1 0 1 1 1 0 1 1 1 1 1
 1 0 1 1 0 1 1 0 1 1 1 0 1 1 0 1 1
 0 0 1 0 0 1 1 0 0 1 1 0 1 1 0 1 0
 0 0 1 0 0 1 1 0 0 1 1 0 1 0 0 0 0
 0 0 0 0 0 1 0 0 0 1 1 0 1 0 0 0 0 … etc.

If one adds up this Boolean matrix, one obtains for each row the number of people who are

older than 0 years, older than 25 years, older than 30 years, etc. This is the expression:

 cum ← +/ (Category ∬.< Ages)

With the cut-down extract shown above, the value of cum would be: 17 14 12 8 6 4

In other words there are 12 people older than 30. But among them, 8 are older than 35. In

order to know how many people are between 30 and 35, it is necessary to calculate 12-8 to

obtain 4.

If one wants to reproduce this calculation for all categories, it is necessary to perform a series

of subtractions as here:

 17 14 12 8 6 4 This is cum

- 14 12 8 6 4 0 This is cum without its first item and followed by zero

 -------------- Let us subtract
= 3 2 4 2 2 4 This result was obtained by the calculation cum-(1∸cum,0)

To append a zero to the right, we used a comma, which joins variables together. This is a

function called Catenate.

If one no longer works with a small extract of data, but with the full list of 400 people, this is

what one gets:

 Introduction - Will you play APL with me ? 25

 cum ← +/ (Category ∬.< Ages)

 cum - (1∸cum,0)
56 32 56 104 63 38 37 14

All that without real programming, and it works whatever the number of people or categories.

What luck!

Once again, APL allowed us to find straightforward and original solutions to traditional

problems.

There Is a Lot to Discover Yet

In the course of these pages we have flown over APL country and glimpsed certain bold ideas

which explain the attraction of the language. A thousand other things remain to be seen! If

you are convinced that Dyalog APL is worth the effort, you can start studying APL in much

more detail in the rest of this book.

Let us just discover some additional attractive features of APL.

Attractively Simple Syntax Rules

Most other programming languages contain rather complex rules to determine how an

expression is evaluated; a concept called operator precedence. Very often it says that for

example multiplication and division have higher precedence than addition and subtraction,

meaning that an expression like 5 × 3 + 2 gives 17, because the multiplication is done first,

and then the addition.

This sounds simple and familiar, but it quickly gets very complex and difficult to remember,

especially in a language containing many functions, like APL. For example, which precedence

should we give to ∯ or ∸ or ⌈, for which we do not have an established tradition? And what

about the functions we write ourselves?

The democratic solution adopted in APL is "We hold these truths to be self-evident that all

functions are created equal!" The only and very simple rule is that any function works on the

result of the entire expression to its right, and, if it is a dyadic function, the value immediately

to the left of it. As usual, parentheses can be used to group parts of an expression.

So, let us see how this applies to the expression above:

 5 × 3 + 2

26 Dyalog APL - Tutorial

× works on 5 (the value immediate to the left of it) and the result of 3 + 2, the entire

expression to the right of it. Even though it is not strictly correct, many people say that APL

evaluates from right to left. In any case, the result of the expression is 25 in APL!

Had we written (5 × 3) + 2 instead the result would of course have been 17.

It may take a little while to get used to this slightly unfamiliar rule, but once it has been

learned it is really a great advantage because you can direct your energy towards solving your

problem and not have to remember complex rules just to satisfy the computer's need for

guidance.

Use Many Other Calculating Tools

We have discovered some original functions, which are completely absent from most other

programming languages, like ∰, ↑, ⍉, ∮, and Outer Product. Those features lead to new

methods and new algorithms to process data; this is one of the main advantages of APL.

Not only do you have a lot more functions: Inner Product (generalized matrix product), many

built-in mathematical tools (trigonometry, matrix inverse, conversions to and from any

numerical base, etc.), but you can also handle generalized (nested) arrays; arrays which

contain arrays, which themselves contain arrays, and so on.

The scope of the possible solutions to a single problem is often so wide that it is probably the

reason why people never get tired of using APL: They always have something new to

discover and to invent.

Create User-friendly Applications with the GUI

Like all modern programming languages, Dyalog APL has a Graphic User Interface (GUI)

under Microsoft Windows and Win32 emulators under Unix. It allows you to design pleasant

user interfaces with all the items and features you are familiar with. Even a beginner can

quickly create an interface and process the data with all the power of the language, whereas in

traditional languages, the same operation would need days or weeks of programming. The

Microsoft.Net interface supports the use of WinForms and Windows Presentation Foundation

GUI elements as well.

Access Your Data

Of course, Dyalog APL has built-in instructions to access data files, and SQL databases like

Oracle, SQL Server, or other popular databases. These interfaces allow you to visualise and

process part or all of a data base as if it were an array, to which you can apply all the array

processing functions available in APL. That saves you a lot of heavy programming tasks.

 Introduction - Will you play APL with me ? 27

Dyalog APL has also its own powerful file system. These files are collections of arrays of any

shapes or sizes, which can be processed with the full power of the language. Databases built

with this special feature are extremely compact (2 to 3 times smaller than an equivalent

relational database). They can be shared, and they offer much greater flexibility and superior

performance compared to traditional database management systems.

Build an Efficient Partnership With Microsoft Excel

Microsoft Excel, probably the most popular spreadsheet manager, is used all over the world

by millions of people. It appears that Excel is an easy way to enter data into a computer in a

tabular form, and it is also an excellent product to produce everyday business reports and

graphs.

While Excel is convenient for small business applications, it is too limited to process complex

calculations, or when some operations involve data located in many workbooks.

Excel and APL can easily be combined in an efficient partnership. Excel is used to input data

in a very flexible way into spreadsheets, which most users are familiar with. APL can then

read dozens (and sometimes hundreds) of sheets, aggregate the data, and perform very

complex calculations, which may be controlled and parameterized through the GUI interface.

Of course, the results can be printed, but they can also be output to the users in the form of

specially prepared Excel worksheets. In these worksheets, the users can proceed to additional

operations for their particular needs, or produce graphs of their own.

And Also…

You can interface APL with Internet, write your own web server, use multithreading to

process simultaneous tasks, use all the advantages of true Object Oriented Programming, and

use many attractive features, which are beyond the scope of this quick survey.

28 Dyalog APL - Tutorial

FAQ

Perhaps you have found this language rather engaging, but before you decide to invest time

and energy in developing APL applications, you would like to be sure of your choice. Let's

give you some answers.

Is Dyalog APL A Professional Tool?

Among many others, here are some significant examples of important applications:

 Long term Board level financial planning for one of the world's five biggest petroleum

companies, used over 12 years.

 The management of supplies required from 'today + 2 days' to 'today + 3 months', by the

assembly lines of the 6 principal factories of a major international car manufacturer.

 Risk Management for an important insurance group.

These three examples have common characteristics, positioning them as major industrial

applications:

 They are particularly crucial because considerable finances are at stake.

 They must be absolutely reliable. A major car manufacturer works must not be brought to

a stop by a programming bug.

 The first two applications operate in a highly volatile business environment. As their

requirements are always changing, the programs undergo constant mutation. These

evolutions must be made with very short development cycles.

So we can answer: Yes, for a reasonable cost in labour, APL makes it possible to create,

maintain, support, and further develop large, sensitive applications of the highest level of

quality, reliability, and flexibility.

Can Dyalog APL Fit a Professional Developer's Needs?

The characteristics of APL make it easy to use, lead to quick development, and help to

produce light and flexible code. Programs developed in APL can evolve quickly, to fit

changing user requirements at will.

 Because APL uses symbols rather than words to represent operations, a programmer can

use any word for his own data and program names; they will never be in conflict with the

language structure and contents.

 Introduction - Will you play APL with me ? 29

 Due to its array-processing capability, APL dramatically reduces the needs for

programming loops. Because all such intricacies are removed, the code is much lighter,

and the programmer can concentrate all his attention and skill on the true core of

computing requirements.

 In most programming languages, a programmer would have to declare that each variable

will be an array of such and such dimensions, containing values with a specific data type.

There is nothing similar in APL. The size and the data type of a variable arise from the

way in which the variable has been produced. If one extracts two rows and five columns

from a matrix, the result will of course be a 2 by 5 matrix. And if we divide 486 into 7, the

result will of course be a fractional value; there no need to specify it in advance.

 The extensive set of direct operations on data offered by APL leads to new approaches.

For traditional problems, which have been solved in the same way in most programming

languages for years, APL suddenly offers new solutions, which appear to be light,

straightforward, very general, and easy to maintain because they are easy to read.

 The readability of APL often surprises people who practise other programming languages;

they probably forget that the languages they use are totally obscure for most non

specialists. APL is learned and used efficiently by people who are not data processing

professionals, but are instead specialists in their professional fields, such as accountancy,

chemistry, insurance, logistics, finance, and biology. They have less difficulty with APL

than with the problems they have to solve, and most often, they solve them with APL.

They could not achieve this alone with any other programming languages, but would

require the help of programming specialists … who of course know nothing of the

problem domain in question.

Where is APL Typically Used?

APL is typically used in situations where there is a lot to be gained if people who understand a

problem can be closely involved in developing solutions. Sometimes application code is

written in the afternoon by the same people who read the latest research reports or legislation

in the morning – or by members of a very small team who have overlapping skills.

In a more traditional approach, in which the specialist teams would need the help of

professional programmers, such teams may find that valuable information was lost in the

"process", so that several iterations would be required in order to reach a satisfactory solution.

Especially when a problem has a mathematical or technical foundation, APL can turbo-charge

the development cycle.

Even if there is no immediate urgency, APL allows the path between "users and coders" to be

much shorter than is the case when "traditional" technologies, in which requirement

gathering, specification, architecture and coding are often handled by separate teams. If you

have a novel idea that you would like to investigate (or "get to market") quickly, you may

reach your goal very much more easily by learning APL or employing a small team of APL

developers (who will be able to "speak your language"), rather than becoming or using

"programmers" to develop solutions for you.

30 Dyalog APL - Tutorial

APL is most widely used in the financial industry, which has a mathematical foundation, and

rapidly changing requirements: In this environment, the use of APL can provide a significant

competitive advantage.

Unfortunately some problems cannot wait!

Great flexibility and speed is the true commercial foundation for APL. With APL one can

develop in direct contact with the users and involve them from the outset in the continual

modification of the object of the development. Afterwards, as an application continues to

evolve, it is still the speed of development which makes APL a tool especially well adapted to

changing environments.

We hope you enjoyed this little trip in the magic world of APL.

If you still think that APL might be the very tool you need, you are ready to read the full text

of the following tutorial. You will revisit some of the examples you have seen above, plus

many, many others.

31

Chapter A: Getting Started

1 - Installing the Software

Before you begin to read this tutorial it is recommended that you:

 Have the manuals ready. Download them from www.dyalog.com (for free), or order a

printed copy at www.lulu.com/dyalog.

 Install Dyalog APL.

 Have the demonstration files ready. Download them from http://www.dyalog.com/intro

This tutorial was written for Dyalog APL Unicode Edition, Version 12.0. However, if you

have an earlier version, most of the examples will work.

In this chapter you will find practical information that may help you during your study.

1.1 Installation

The APL language uses special symbols like ∰, ∯, and ⍉. Because such symbols are not

available on a standard keyboard, a special input mechanism is required to interpret particular

keystrokes or combinations of keystrokes as APL symbols, and an output mechanism is then

used to display them properly.

There are two different editions of Dyalog APL: The Unicode Edition, and the Classic

Edition.

The Unicode Edition is the more modern of the two; it is better integrated with the operating

environment than the Classic Edition.

However, Version 12 of Dyalog APL is the first version to offer full Unicode support. If you

have to maintain applications written in earlier versions of Dyalog you will need to install the

Classic Edition of Version 12. Otherwise you should install the Unicode Edition.

Details on the Classic Edition may be found in the User Guide.

The Unicode Edition uses standard Windows keyboard drivers which can be enabled and

selected using the Windows “Language Bar”, just like other “alternative” keyboards that you

might use.

32 Dyalog APL - Tutorial

You have nothing special to do. The APL keyboards are added to your system as part of the

installation of Dyalog APL Unicode Edition and, as a consequence, APL characters can be

typed not only in the APL environment, but also in a text editor like Notepad, or in word

processing software like Microsoft Word.

Two flavours of the APL keyboard are installed. The names of these keyboards are prefixed

by your country code (e.g. “UK - ” for United Kingdom) followed by “Dyalog AltGr” and

“Dyalog Ctrl” respectively. If you use the Dyalog AltGr keyboard, you obtain APL symbols

by pressing the AltGr key in combination with other keys on the keyboard. If you use the

Dyalog Ctrl keyboard, you use Ctrl instead.

When you start an APL Session, you must switch to one of the APL keyboards using the

Language Bar or a special “hot key” of your choice. Under Windows XP, you assign “hot

keys” to input languages using the Advanced Key Settings dialog box which you reach from

Control Panel using the following path:

Settings Control Panel Regional and Language Options
 Languages Details Key Settings

Apart from the additional capability to enter APL symbols (using AltGr or Ctrl), the APL

keyboards are otherwise completely standard. This means that in principle, you may select

one of the APL keyboards as your default input language from the drop-down menu at the top

of the Text Services and Input Languages dialog box (Settings Tab). Be warned, however, that

there may be conflicts with other software that use Ctrl and/or AltGr for special purposes.

Note:

Throughout this book, it is assumed that you are using the UK - Dyalog Ctrl keyboard,

and you will be advised to enter APL symbols using Ctrl + some other key.

If you choose instead to use the AltGr keyboard, you should press AltGr instead of Ctrl when

so instructed. If you are using a different language (non-UK) keyboard, then some other key

may be different.

 Chapter A - Getting Started 33

Figure A-1

If you have any problem with the keyboard settings, refer to Dyalog's User Guide.

1.2 First Contact

1.2.1 - The Dyalog Working Environment

When Dyalog is started, a window appears that contains, from top to bottom (see figure A-2):

 A MenuBar

This MenuBar is described in detail in the Dyalog APL User Guide, Chapter 2 "The APL

Environment"; paragraph "The Session Menu Bar".

 A Toolbar

 A Language bar We shall describe it later in 2.2.3

 An empty working area at the top of which is displayed:

 Version used Dyalog APL/W Version 12.0.2
 Edition (Classic or Unicode) Unicode Edition
 Current date and time Mon Jun 30 16:15:30 2008
 Message clear ws

 Two Statusbars containing various indicators and status information.

34 Dyalog APL - Tutorial

1.2.2 - Check Your Installation

To verify that Dyalog APL is working properly, type 2+2 in the central (empty) area, and then

press the Enter key. The answer should be 4. Be proud; this is your first APL statement!

To check that your APL keyboard and font are properly installed, try to type the special

symbol "Iota" (∯) followed by the number 7. Iota is obtained by pressing Ctrl + I. You

should obtain the list of integers from 1 to 7 as shown below.

All this will be explained later, but if it worked, you can now begin the discovery of this

tutorial.

Figure A-2: Dyalog's working environment

1.2.3 - The APL Language Bar

By default, Dyalog displays a language bar, docked along the top of the Session window, to

facilitate your first contact with the special symbols used by the APL language. When the

mouse pointer is positioned over one of the symbols in the language bar, a help message pops

up that explains its name, its usage and syntax, together with the keystroke required to enter

the symbol. If you click on the symbol, it is copied into the Session window at the position of

your input cursor as if you had typed it using the keyboard.

Advice: After the first few hours of using APL, we recommend that you avoid using this

facility and practice using the keyboard instead. If you want to become really

fluent in APL, you must make the effort to learn the keystrokes that produce

APL characters.

 Chapter A - Getting Started 35

In our experience, it takes about a week to become really comfortable with the

most common symbols.

1.2.4 - Key Combinations

If you do not use the language bar, you will need to use key combinations to input APL

symbols. For example, Ctrl+R produces the symbol ∰ (Rho), Ctrl+I produces the symbol ∯

(Iota), and so on. Some symbols are obtained by Ctrl + Shift + another key.

In the keyboard layouts shown on the next page, we use the following conventions:

Figure A-3
Shift + P key

Normal P key

Ctrl + Shift + P Key

Ctrl + P Key

Two common UK and US English language APL keyboard layouts are illustrated below:

Figure A-4: Dyalog UK-Keyboard

36 Dyalog APL - Tutorial

Figure A-5: Dyalog US Keyboard

1.3 Demonstration Files

1.3.1 - The Workspace Concept

In APL, a user is given an area of memory, the Workspace, in which he can create variables

and programs. When the workspace is saved, all the programs and variables are saved together

in a single file, in the same way as for example, a spreadsheet.

In the following pages, you will be invited to create variables, write programs, and test by

yourself how the symbols work.

To relieve you of the task of entering data for your trials, most of the variables and programs

used in this book are provided in a file (a workspace) named DyalogTutor_EN.dws.

We recommend that you download this workspace from http://www.dyalog.com/intro.

You can change its name, but we recommend that you keep the default extension ".dws".

Let us imagine that you have stored it under the name: d:\mypath\myspace.dws. Then

each time you want to start a new APL practice session, you should load or reload this

workspace by typing:)Load d:\mypath\myspace (the default extension is then optional)

Be careful: The first character of this statement is a closing parenthesis. This particular syntax

is meaningful for what we later shall call "System Commands".

http://www.dyalog.com/

 Chapter A - Getting Started 37

1.3.2 - Associated Files

In this tutorial we shall also use the following associated files.

Download them too from http://www.dyalog.com/intro:

For Chapter N about File processing: cellar.dcf
report.txt
mlk.txt
nums.fun

For Chapter Q about OLE interface with Excel xldemo.xls
worldsales.xls

For Chapter R about SALT script files demoscript.dyalog
telefon.dyalog
test.dyalog
teton.dyalog
experiment.7.dyalog

Utility workspace Utils.dws

1.3.3 - Print What You Have Done

During your experiments, you will probably want to print a variable or a

program. Just place the cursor on the name of the variable or program,

and click the

button.

If ever you intend to print many objects (variables and programs), it is

better to display the contents of your workspace by clicking the

Workspace Explorer button . This will bring up a dialog box

similar to the one illustrated below:

http://www.dyalog.com/

38 Dyalog APL - Tutorial

Figure A-8: Dyalog 's Explorer

Select the objects you want to print (highlighted above), then press the right mouse button and

select "Print …" from the pop-up context menu.

You can configure various print settings, such as font, page-headers and footers using the

"Print Setup" dialog box.

1.3.4 - The Session Log

While you are working, Dyalog APL stores your input (each line you enter), and the resulting

output you get from the system, in a Session Log. You can scroll back in that log and re-

execute a line by just pressing the Enter key.

In fact, you can execute several lines from the Session Log in one go. To mark a line for

execution, you just have to change it in some way. You can make a real alteration, or a

cosmetic change that has no material effect on the expression to be executed. As soon as you

make any sort of modification to the line, the colour of the text (defined using the Colours

dialog box) will change. You can undo a change and restore a line to its original state, by

pressing Shift+Escape.

To execute the marked lines press the Enter key. They will be executed from top to bottom,

not in the order you selected them. Note however that if an expression generates an error, the

remaining lines will not be executed.

 Chapter A - Getting Started 39

The Session Log is not limited just to the current session, and you can scroll back to retrieve

expressions and results from previous sessions, limited only by the size of the log. This is

specified using the Log tab of the Configuration dialog box, displayed by the Options

Configuration menu.

You can scroll back in the log and permanently delete part of it (for example a large block of

unwanted output). Select the part to remove, and press Ctrl+Delete. By default, you will be

prompted for confirmation (this is a configurable option).

Using the menu Log Print, you can print the entire log (be careful; it may be very large) or

just this session's log. It may be extremely useful during the first few days to keep a printed

trace of all the experiments that you have made.

1.3.5 - The Input Buffer

In addition to the Session Log (which contains a scrollable record of both input and output),

Dyalog APL retains just the expressions that you have entered, in a separate Input Buffer.

You can recall any one of the lines that you have previously executed as follows:

 To scroll back, press Ctrl + Shift + Backspace

 To scroll forward, press Ctrl + Shift + Enter

Once you have retrieved the statement you want to re-use, you can modify it (or not) and press

Enter to re-execute it.

1.3.6 - Auto-Complete

To alleviate the chore of typing long names (of variables, functions, files), Dyalog can pop up

a list of existing names beginning with the same initial character(s) as you type. This feature is

called Auto Complete and is enabled, disabled and configured using the Auto Complete tab of

the Configuration dialog box (Options Configuration Auto Complete).

To choose a name from the pop-up list, use the Up and Down cursor keys. To confirm the

name that is currently selected press the Right cursor key (right arrow). To cancel the

suggestion list, just press Escape.

You can configure the number of characters you must type before Dyalog makes suggestions,

and change the keys used to confirm the selection or cancel the list.

40 Dyalog APL - Tutorial

2 - Working with This Tutorial

This tutorial is divided into 19 chapters named Chapter A to Chapter S. There is an additional

Chapter X that contains the solutions to the exercises. In each chapter, pages are numbered

starting from 1.

At the end of most chapters you will find a "Specialist's Section" containing advanced

discussions about the symbols or methods presented in the chapter. Because these topics are

for more experienced readers, they may use symbols that are not explained until later in the

book.

If you are a beginner, ignore those sections, and skip to the next chapter.

While reading the book, reproduce the given examples on your computer, and experiment by

yourself using different data; you will probably learn more from your own experimentation

than from our examples.

Most chapters also include exercises; some are very simple, and some are more complex. We

recommend that you do try to solve as many exercises as possible. Compare your solutions to

the ones we suggest in Chapter X. APL is so rich that there may be several solutions to the

same problem, the comparison is always interesting.

After Chapter D, you will be able to write small programs of your own, and you may want to

print some results, input data using the Graphical User Interface (GUI), or read data from

files. These topics are presented in self-contained dedicated chapters, so do not hesitate to go

back and forth in the book to find the features you need.

Also have a look at the workspaces delivered with Dyalog. They are described in the User

Guide, and contain some utility functions that may be useful to you.

This document is only a tutorial; everything cannot be said in these pages, and you can find

additional information in the Dyalog APL manuals:

 User Guide Installation and configuration of APL

 The working environment described in detail

 Utility workspaces and tutorials delivered with Dyalog APL

 APL files

 … and some advanced topics

 Chapter A - Getting Started 41

 Language Reference Describes all the symbols used in the language

 Describes the structure of a program

 Describes all the System Commands

 Gives basic information about Object Oriented Programming

 Interface Guide Introduction to the Graphic User Interface (GUI), with examples

 APL and the Internet

 OLE Automation client & server

 ODBC interface with SQL Data Bases

 Object Reference Overall description of all objects, properties, methods, and events

 used by the GUI interface

 .Net Interface Guide Using the Microsoft .Net Framework

A certain number of specialised booklets will also be published to complement this tutorial;

among them are:

 Object Oriented Programming

 SQAPL (Interface to Relational Databases using ODBC)

 NewLeaf (Document formatting and publishing)

 RainPro (Business and Scientific Graphics)

The manuals are available for download from www.dyalog.com.

We wish you pleasant reading

42 Dyalog APL - Tutorial

43

Chapter B: Data and Variables

When you use APL, you type an expression or a command into the session window, and the

result of the expression, or a message resulting from the execution of the command, is

displayed starting on the next line. So an APL “session” is a sequence of user input lines

(expressions and/or commands) interleaved with the results of the expressions.

To help you see what you have done, APL initially positions the input cursor 6 spaces in from

the left margin. Unless you deliberately move the cursor before you start typing, the

expressions you enter into the system will therefore be indented, whereas the results of the

expressions will not. For further clarity in this document, user input appears in red.

It is recommended that you go through this tutorial in front of your computer, and experiment

by typing the expressions given below into the Dyalog session window. Try changing the

expressions, and observe the new results.

1 - Simple Numeric Values

1.1 Our First Operations

Let's try some simple expressions (press Enter to have each expression evaluated):

 27 + 53
80

 1271 - 708
563

 644 - 832
¯188

Notice that APL uses a different symbol known as high minus (¯) to distinguish between a

negative value and the function subtract (-). If you wish to enter a negative value, you can

enter this special symbol by pressing Ctrl+ 2 (or by clicking the symbol in the "Language

Bar").

44 Dyalog APL - Tutorial

Let's continue with some more expressions:

 86 ÷ 4 The Divide sign is obtained by pressing Ctrl+ =.
21.5

 59 × 8 The Multiply sign is obtained by pressing Ctrl+ -.
472

If you are familiar with other programming languages, you may be accustomed to using a

slash (/) for division, and a star (*) for multiplication. Let's see what might happen if you

mistakenly use * in APL:

 7 * 3 In APL the star means "Power",
343 so that 7*3 is equivalent to 7×7×7.

The slash also has a different meaning in APL, we’ll get to that later.

1.2 Variables

As in any other programming language, it is possible to create variables. Just choose a name

and use the assignment arrow (←) to assign it a value. The value can be a single item or

several items separated by spaces. The assignment arrow can be entered by pressing Ctrl+ [.

 Discount ← 0.15 Read it as: Discount gets 0.15

 Years ← 1952 1943 1956 2007

 Purchased ← 4000

To obtain the value of a variable, just type its name (and press Enter), like this:

 Discount
0.15

 Years
1952 1943 1986 2007

Variable names are case sensitive. This means that APL considers a lower-case letter and an

upper-case letter to be two different characters. So three variables named respectively VAT,

Vat, and vat, would be distinct, and could contain different values. If you misspell the name

of a variable, an error message will be displayed if that name is unknown:

 discount We typed a lower-case "d", instead of "D"
VALUE ERROR The message "VALUE ERROR " means that the

 discount name discount is currently undefined.
 ∧

 Chapter B – Data and Variables 45

Variable names must follow certain rules:

 They must contain only letters, in lower or upper-case, including some accented letters (cf.

below), and the digits (0 to 9).

 The APL alphabet also includes the Greek letter Delta (∆), entered using Ctrl+H, the

Underscore sign (_), and also the Underscored Delta (⍙), entered using Ctrl+.(dot).

 They cannot start with a digit.

The following variable names are valid:

∆x with Delta
Fly⍙Airlines with underscored Delta
My_car_is_green with Underscores
Hote273 with digits
Bétise_à_Cambrai with accented letters

But 5à7 is not valid, because it begins with a digit.

In this document, most variable names begin with an upper-case letter, with the remainder in

lower-case. This is purely for consistency and ease of use.

The letters that are allowed as part of variable names are:

0123456789
ABCDEFGHIJKLMNOPQRSTUVWXYZ_
abcdefghijklmnopqrstuvwxyz
ÀÁÂÃÄÅÆÇÈÉÊËÌÍÎÏÐÑÒÓÔÕÖØÙÚÛÜÝß
àáâãäåæçèéêëìíîïðñòóôõöøùúûüþ
∆⍙
ⒶⒷⒸⒹⒺⒻⒼⒽⒾⓀⓁⓂⓃⓄⓅⓆⓇⓈⓉⓊⓋⓌⓍⓎⓏ

Beware! Although it is permitted, the use of accented characters is not recommended

because some people may be unable to enter them using their normal keyboard.

 ∆ and ⍙ may also cause problems if you ever want to inter-operate with other

software, and are best avoided.

 Finally, it is strongly recommended that you do not use the underscored letters

which are only included to support old applications. Today, underscored letters

are regarded as an anachronism, and are deprecated in modern versions of APL.

They are not part of the Unicode character set, and are only displayed in the

above list because we are cheating and using a non-standard font. When a

standard Unicode font is used, the APL underscored letters correspond to the

Unicode circled alphabet, which is displayed like this:

 ⒶⒷⒸⒹⒺⒻⒼⒽⒾⓀⓁⓂⓃⓄⓅⓆⓇⓈⓉⓊⓋⓌⓍⓎⓏ

46 Dyalog APL - Tutorial

1.3 Operations on Variables

Variables can be used in any expression or calculation. For example, if we want to calculate

the amount of the discount applied to the things we purchased, we can write:

 Amount ← Purchased∲Discount

 Amount
600

When the result of an expression is assigned to a name, it is not displayed. This is why we

have entered a second expression to have the value displayed. If the result of an operation is

not assigned to a name, it is immediately displayed, but then the value of the result cannot be

reused in another expression:

 Purchased × Discount

600

It is of course possible to change the contents of a variable. The previous value is then lost.

 Discount ← 0.185

It is possible to assign values to several variables in a single expression:

 (G H J) ← 30 51 49 G gets 30, H gets 51, and J gets 49.

This Multiple assignment is an elegant way of allocating a set of values to some distinct

variables:

 (Colette Bernard Line Now) ← Years

 Colette
1952

 Line
1956

Note that it is possible to write multiple assignments without parentheses on the left:

 G H J ← 30 51 49

 Colette Bernard Line Now ← Years

Some other APL systems require the parentheses, so if compatibility across APL

implementations is an issue for you, we recommend that you use parentheses in Dyalog APL

as well.

 Chapter B – Data and Variables 47

2 - Arrays of Items

In APL, an array is a set of zero or more items. The variable Years that we used in the

previous section is an array of 4 items.

2.1 Create a List or a Matrix

To enter a short list of items, just type them one by one separated by spaces, and assign the list

to a name. For example, here is the number of TV sets sold during the last 10 days by a

shopkeeper:

 Sales ← 6 1 8 12 3 3 5 4 7 9

If you need to enter a very long list of items, which will not easily fit on a single line, please

refer to Chapter H, Section 1, where a simple method is explained.

Imagine now that somebody has noted his income and expenses during the first six month of

this year:

Month Income Expenses

January
February
March
April
May
June

4210
4807
3609
5712
2305
4568

3121
4284
7543
2601
3364
2784

We shall see later how we can store the names of the months; for now, let us just try to store

the numeric values from the above table in a variable.

To do this, we have to give two pieces of information to the computer:

 the shape of the array: in this case, 6 rows and 2 columns

 the contents (or items) of the array, in row order.

The function that organises a set of items into an array of a specified shape is known as

Reshape and is symbolised by the Greek letter Rho (∰). It is easy to remember that Rho can

be entered using Ctrl-R.

48 Dyalog APL - Tutorial

The Reshape function is used as follows: R← Shape ∰ Contents

For example, to obtain a 6 by 2 array of items:

 Money ← 6 2 ∰ 4210 3121 4807 4284 3609 7543 5712 2601 etc…

 Money Let's verify the result.
4210 3121
4807 4284
3609 7543
5712 2601
2305 3364
4568 2784

2.2 Special Cases with Reshape

If there are too many items, the extra items are ignored:

 Contents ← 12 56 78 74 85 96 30 22 44 66 82 27

 3 3 ∰ Contents

12 56 78
74 85 96
30 22 44 The last 3 items (66 82 27) have been ignored.

However, if there are fewer items than implied by the shape, the list of items is reused as

many times as necessary to fill the array:

 3 9 ∰ Contents

12 56 78 74 85 96 30 22 44 We have used black and grey colours
66 82 27 12 56 78 74 85 96 to show where the items were reused.
30 22 44 66 82 27 12 56 78

This property is often used to create special patterns:

 3 4 ∰ 0 Fill an array with a single value.
0 0 0 0
0 0 0 0
0 0 0 0

 30 ∰ 1 5 0 0 Repeat a pattern.
1 5 0 0 1 5 0 0 1 5 0 0 1 5 0 0 1 5 0 0 1 5 0 0 1 5 0 0 1 5

 3 4 ∰ 2 4 6 8 Repeat a pattern.
2 4 6 8
2 4 6 8
2 4 6 8

 Chapter B – Data and Variables 49

 5 5 ∰ 1 0 0 0 0 0 Shift values.
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

2.3 Multi-dimensional Arrays

APL is not limited to arrays with two dimensions, it can handle arrays with 3, 4, indeed up to

15 dimensions.

Imagine that a company has stored the production of its assembly lines in a variable named

Prod.

The variable contains 5 years of production, on 2 assembly lines, and for 12 months per year.

To represent the 3 dimensions on the screen, the array is displayed split into sub-arrays each

representing a single year, as follows:

 Prod
26 16 22 17 21 44 25 22 23 44 41 33
43 36 47 49 30 22 57 20 45 60 43 22
 A blank line separates the sub-arrays.
44 21 58 57 17 43 47 17 43 26 53 23
29 19 23 38 53 47 38 22 40 57 35 26
 Ditto.
37 27 53 26 29 46 25 26 30 20 32 16
56 55 25 47 38 27 39 59 20 28 42 25

21 57 55 44 16 54 26 16 55 56 45 45
16 55 26 20 27 55 36 39 43 38 50 16

27 23 56 41 53 60 39 47 44 47 17 28
24 35 61 26 22 35 24 20 31 35 47 37

This array is organised in dimensions that represent 5 years, 2 lines, 12 months: it is a three

dimensional array. We can also say that its shape is 5 2 12.

50 Dyalog APL - Tutorial

3 - Shape, Rank, and Vocabulary

3.1 Shape and Rank

The symbol ∰, which we introduced above, can be used to obtain the lengths of the

dimensions or the Shape of an array:

 ∰ Years Read this as "Shape of Years".
4 Years has 4 items.

 ∰ Money
6 2 Money has 6 rows and 2 columns.

 Shape ← ∰Prod

 Shape
5 2 12 Prod has 5 sheets (or planes), each having

 2 rows and 12 columns.

Now, what is the shape of Shape ?

 ∰ Shape
3 Prod has 3 dimensions.

The same result could have been obtained directly using the expression ∰∰ Prod.

Prod has 3 dimensions; we say that its Rank is 3,

 or that it is organised along 3 criteria which are: Years / Lines / Months.

 ∰∰ Money
2

Money has 2 dimensions; we say that its Rank is 2,

 or that it is organised along 2 criteria which are: Months / Accounts.

Definition: The Rank of an array is the number of its dimensions.

It can be obtained using the expression: ∰∰Array

 Chapter B – Data and Variables 51

3.2 Scaling Down the Ranks

Using that formula, we can see that:

Prod has a shape equal to 5 2 12 and its rank is equal to 3

Money has a shape equal to 6 2 and its rank is equal to 2

Years has a shape equal to 4 and its rank is equal to 1

It seems consistent that some array must exist which has a rank equal to 0

Such arrays are single items, like 1573 or 36.29 or the variable Discount used above.

 ∰∰ Discount
0 A single number has no dimensions.

 ∰∰ 36.29
0

We needed 3 numbers to express the shape of Prod, 2 numbers to express the shape of

Money, and only 1 number to express the shape of Years … hence to express the shape of

1573 or Discount, we need no numbers:

 ∰ 1573
 The answer displays as a blank line: the shape of

 a single number is an empty array (0 items).

 ∰ Discount
 Ditto

3.3 Vocabulary

In this book, we shall use the following terms:

Array is a generic word for any set of items (possibly containing a single item,

 or no items at all)

Scalar is a single item like Discount its rank is 0

Vector is a list of items like Years its rank is 1

Matrix is an array of rank 2 like Money its rank is 2

Table is a common name for a matrix

Cube is a common name for 3-D arrays like Prod its rank is 3

52 Dyalog APL - Tutorial

3.4 Beware!

3.4.1 - The Shape is Always a Vector

The shape of a value is always a vector, even if it contains only one item or even no items at

all.

 Shape ← ∰Years

 Shape
4 It looks like a scalar.

 ∰∰ Shape
1 But it is of rank 1, so it is a vector.

 ∰ Shape
1 It is a vector with only one item.

3.4.2 - Do Not Rely on the Visual Aspect of a Variable

Although scalars, vectors, and matrices may sometimes look the same when they are

displayed, they should not be confused. Consider, for example, the following vector V and

matrix M:

 V ← 87 65 21 40

 M ← 1 4 ∰ 87 65 21 40

If we display their values, they look exactly the same:

 V
87 65 21 40
 M
87 65 21 40

But they cannot easily be added or multiplied together:

 V+M
RANK ERROR
 V+M
 ∧

Similarly, a scalar should not be confused with a 1-item vector or a 1-item matrix. The scalar

has a rank of 0 whereas the vector is rank 1.

 S ← 456 Create a scalar.

 V ← 1∰456 Create a one-item vector.

 Chapter B – Data and Variables 53

 S If displayed, they look the same.
456

 V
456

 ∰∰S But their ranks are different; the two variables
0 should not be confused.

 ∰∰V
1

3.4.3 - Displaying Long Vectors

If a vector is too long to be displayed in a single line on your screen, it will be wrapped onto

several lines. But to prevent possible confusion with the display of a matrix, the second line

and the following lines will not be aligned at the left margin, but will be indented 6 characters

to the right. For example:

 Bignum
446.19 231.12 253.59 115.56 262.15 271.78 1.07 180.83 166.92
 318.86 240.75 44.94 240.75 90.95 317.79 285.69 4.28 368.08
 295.32 379.85 324.21 77.04 77.04 415.16 447.26 33.17 415.16
 285.69 202.23 126.26 180.83 81.32 134.82 261.08 343.47
 157.29 335.98

4 - Simple Character Values

4.1 Character Vectors and Scalars

Up to now, we have used only numeric values, but we can also create textual data known as a

character array. To identify a string of characters as text, we start and end it with a single

Quote:

 Text ← 'Today is August 14th, 2007'

 Text
Today is August 14th, 2007

 ∰Text
26

 Trailer ← 'I type 7 trailing blanks '

 Trailer
I type 7 trailing blanks

 ∰Trailer
31

54 Dyalog APL - Tutorial

As these examples show:

 The quotes are not part of the text, they're just there to delimit it.

 Text can include any character: letters, digits, punctuation.

 So, Text and Trailer are vectors. They are sometimes called Strings.

 APL does not recognize words; a character array is simply a set of characters.

 Blank characters (spaces) are characters like any other characters; they do not have any

special meaning. However, when a character array is displayed any trailing blanks are

most often invisible.

A problem may occur when the text itself includes an apostrophe, for example in a sentence

like "It's raining, isn't it?".

When you enter apostrophes as part of the text, you must double them, as shown below, to

distinguish them from the delimiters:

 Damned ← 'It''s raining, isn''t it?'

This is only a typing convention, but the doubled quotes are transformed into a single

apostrophe, as you can see here:

 Damned
It's raining, isn't it? The vector's size is equal to 23.

As mentioned above a character array can contain digits, but they are not considered to be

numbers, and it is impossible to use them in a mathematical operation:

 Hundred ← '100'

 Hundred
100 It looks like a number.

 ∰Hundred
3 But it isn't.

 Hundred + 5
DOMAIN ERROR
 Hundred+5
 ∧

Of course, a single character is a scalar:

 Singleton ← 'P'

 ∰Singleton
 Do you remember? Scalars have no dimensions.

 ∰∰Singleton
0 Yes, it is definitely a scalar.

 Chapter B – Data and Variables 55

4.2 Character Arrays

We saw, some pages ago, a list of months: January
February
March
April
May
June

We can think of this as a list of 6 words, or as a matrix of 6 rows and 8 columns (the width of

"February"). Both representations are valid, and both can be used in APL; let us study them

one after the other.

To enter the months as a 6 by 8 matrix, one must use the Reshape (∰) function:

 To the left of the function we must specify the shape of the matrix we want to build: 6 8

 To the right of the function we must specify all of the characters (including any trailing

blanks) that are necessary to fill each row to the proper length:

 MonMat ← 6 8 ∰ 'January FebruaryMarch April May June'

No space was typed between February and March; do you see why?

 MonMat Now, let us see the result.
January
February
March
April
May
JuneJanu Oops!

We forgot that when the right argument is too short, ∰ reuses it from the beginning. That's the

reason why the last row is wrong. We must add 4 trailing blanks.

Facility

You do not have to re-type the entire expression, just move your cursor up to the line where

you defined MonMat, add the missing blanks, and press the Enter key.

APL will then copy the modified line down to the end of your session and automatically

restore the original line to its original state. As a consequence, the session window always

displays the sequence of expressions and results in the order in which you typed them.

 MonMat ← 6 8∰'January FebruaryMarch April May June '

56 Dyalog APL - Tutorial

 MonMat
January
February
March
April
May
June That's right now!

 ∰MonMat
6 8 As expected, it is a matrix.

Now, to enter the months as 6 words, one must type each word between quotes, and check that

each closing quote is separated from the next opening quote by at least one blank (otherwise it

would be interpreted as an apostrophe – remember, the juxtaposition of two quotes in a

character string is used to enter a single quote):

 MonVec ← 'January' 'February' 'March' 'April' 'May' 'June'

 MonVec
January February March April May June

 ∰MonVec
6 It is a vector.

MonVec is a vector of a kind that we have not seen before, the items of which are 6 sub-

arrays. This kind of an array is called a Nested Array.

Be patient! We shall study nested arrays very soon in this very chapter.

5 - Indexing

5.1 Traditional Vector Indexing

Our variable Contents contains the following items:
 12 56 78 74 85 96 30 22 44 66 82 27

To extract one of these items, you just have to specify its position, or Index, between Square

brackets:

 Contents[3]
78

In most "traditional" languages, programmers generally use parentheses instead of brackets,

but parentheses have many other different uses. In APL, parentheses have one and only one

use, namely to specify the order of evaluation of a complex expression. In this respect, the use

of square brackets for indexing makes APL more rigorous.

 Chapter B – Data and Variables 57

Of course, an index must follow some obvious rules: it must be an integer numeric value; it

may not be negative or greater than the size of the vector. Otherwise, an "INDEX ERROR" will

be reported.

It is possible to extract several items in a single operation, and in any order:

 Contents[3 7 1 3 3 12] You can see that an item can be selected
78 30 12 78 78 27 more than once.

The same notation allows you to modify one or more items of the vector. The only condition

is that you must provide as many replacement values as the number of items you select, or

give a single replacement value to use for all the selected items:

 Contents[2 4 6] ← 7 11 80 Three values replace three items.

 Contents
12 7 78 11 85 80 30 22 44 66 82 27

 Contents[8 11 12] ← 33 One single value replaces three items.

 Contents
12 7 78 11 85 80 30 33 44 66 33 33

This works exactly the same on character vectors:

 'COMPUTER'[8 7 4 2 8 6]
REPORT

 Test ← 'BREAD'

 Test[2 4] ← 'LN'

 Test
BLEND

5.2 The Shape of the Result

The index may be a numeric array of any shape: scalar, vector, matrix, or an array of higher

rank. To understand what happens, there is a simple rule:

When a vector is indexed by an array, the result has exactly the same shape as the index

array, as if each item of the index had been replaced by the item it designates.

This rule is easy to verify. Let us restore the initial values of Contents:

 Contents ← 12 56 78 74 85 96 30 22 44 66 82 27

58 Dyalog APL - Tutorial

And let us create a matrix of indices:

 MyIndex ← 3 5 ∰ 5 5 4 4 8 6 12 6 11 12 10 6 1 4 9

 MyIndex
 5 5 4 4 8
 6 12 6 11 12
10 6 1 4 9

 Contents[MyIndex]
85 85 74 74 22 For example you can see that the index in row 2
96 27 96 82 27 column 5 was 12. So, it has been replaced by
66 96 12 74 44 the 12th item of Contents, i.e. 27.

The rule remains true if the indexed vector is a character vector. For example, imagine that we

have a matrix named Planning, in which some tasks are planned (1) or not (0) over the next

12 months:

 Planning
0 0 0 1 1 1 1 1 1 0 0 0
1 1 1 1 1 1 1 1 0 0 0 0
0 1 1 1 0 0 0 0 0 1 1 1
0 0 0 0 0 0 0 1 1 1 1 1
0 0 1 1 1 1 1 0 0 0 0 0 This is not very easy to interpret!

Let us replace the inactive periods by "-", and the busy periods by "⎕". This beautiful

character, named Quad, can be entered by pressing Ctrl+L.

 '-⎕'[Planning+1] Do you understand why we added 1?

---⎕⎕⎕⎕⎕⎕---
⎕⎕⎕⎕⎕⎕⎕⎕----
-⎕⎕⎕-----⎕⎕⎕
-------⎕⎕⎕⎕⎕
--⎕⎕⎕⎕⎕----- Isn't it magic?

Of course, the vector to be indexed was composed of only two characters, so the set of indices

had to be composed only from the values 1 and 2. This is the reason why we added 1 to

Planning.

All the 0's in Planning have been replaced by the 1
st
 item (-), and all the 1's have been

replaced by the 2
nd

 item (⎕).

5.3 Array Indexing

Just to make some experiments, let us 41 26 38
create a new variable, named Tests: 14 87 52
 30 28 19
 65 40 55
 19 31 64
 45 82 74

 Chapter B – Data and Variables 59

Indexing an array is very similar to the method we saw for vectors, but we now need one

index for the row and one for the column; they must be separated by a Semi-colon. For

example, to get (or replace) the value 55 in row 4, column 3, one types:

 Tests[4;3]
55

It is of course possible to select more than one row and more than one column. If so, one

obtains all the values situated at the intersections of the specified rows and columns.

 Tests[1 5 6;1 3]
41 38
19 64
45 74

The result of indexing may sometimes be surprising. Let us extract 4 values from the first

column:

 Tests[1 2 5 6;1]
41 14 19 45

You probably expected the result to be displayed like a column? Really sorry!

The result of this expression is a vector, and a vector is always displayed as a row on the

screen.

We shall see later that it is possible, using a little trick, to cause the result to be displayed

vertically.

When you use indexing, you must specify as many indices or sets of indices as the array's

rank. For a 3-D array, you must specify 3 sets of indices, separated by two semi-colons.

For example, suppose that we would like to extract the production of the 2
nd

 assembly line, for

the first 6 months of the last two years, from the array Prod,. Let's express that in the order of

the 3 dimensions: Years/Lines/Months:

The last two years are in positions 4 5

The second assembly line 2
The first 6 months 1 2 3 4 5 6

 Prod[4 5;2;1 2 3 4 5 6]
16 55 26 20 27 55 The result is a matrix: 2 years/6 months.

24 35 61 26 22 35

Remark 1

Because we can select rows and columns, the semi-colon is necessary to tell them apart:

 Tests[1 2;3] gives rows 1 and 2, column 3

whereas Tests[1;2 3] gives row 1, columns 2 and 3

60 Dyalog APL - Tutorial

Remark 2

It is also possible to select several items which are not at the intersections of the same rows or

columns. To do so requires a special notation where the individual Row/Column indices of

each item are embedded in parentheses. The reason for this syntax will become clear in

Section 6.3.

For example, let us select Tests[2;3] together with Tests[5;1] and Tests[1;2].

 Tests[(2 3)(5 1)(1 2)]
 52 19 26

5.4 Convention

To specify all the items of a dimension, you just omit the index for that dimension, but you

must not omit the semi-colon attached to it.

In the previous example, to obtain both assembly lines we could have typed:

 Prod[4 5;1 2;1 2 3 4 5 6]

But it is shorter to type:

 Prod[4 5;;1 2 3 4 5 6] The omitted index means "All the assembly lines".

In the same way:

 Prod[4 5;2;] The omitted last index means "All the months".

And finally:

 Prod[;;1 2 3] The omitted indices means "All years and lines".

This convention also applies to replacing specific items. For example, to change all the items

in the last row of Tests, we could type:

 Tests[6;] ← 60 70 80

 Chapter B – Data and Variables 61

5.5 Warnings

We would like to draw your attention to some delicate details. Here is the first:

5.5.1 - Shape Compatibility

To replace several items in an array, the replacement array must have exactly the same shape

as the array of indices they replace.

For example, suppose that we would like to replace the four "corners" of Tests with the

values 11 22 33 44 respectively.

We cannot successfully execute: Tests[1 6;1 3] ← 11 22 33 44 ; a "LENGTH ERROR"

would be issued (note that this is a "Shape error").

If we had extracted these four values, the result would have been a 2 by 2 matrix:

 Tests[1 6;1 3]
41 38
60 80 Remember: row 6 was modified above!

So, to replace them, we cannot use a vector, as we have just tried to do. Instead we must

organise the replacement array into a 2 by 2 matrix, like this:

 Tests[1 6;1 3] ← 2 2 ∰ 11 22 33 44

 Tests
11 26 22 The replaced values are shown in black.
14 87 52
30 28 19
65 40 55
19 31 64
33 70 44

5.5.2 - Replace or Obtain All the Values

To replace all of the values in an array with a single value, it is necessary to use brackets in

which the indices of all the dimensions have been removed.

For example, imagine that we would like to reset all the values of Tests to zero.

Tests ← 0 would be wrong, because that would replace the matrix by a scalar.

The correct solution is Tests[;] ← 0 All the rows and columns are replaced by zero.

For a vector we would write: Vector[] ← 123 All the items are replaced by 123.

62 Dyalog APL - Tutorial

5.5.3 - "Pass-Through" Value

Imagine that we have a vector : Vec ← 32 51 28 19 72 31

We replace some items and assign the result to another variable: Res ← Vec[2 4 6] ← 50

What do we get in Res? Is it Res ← Vec[2 4 6] , or is it Res ← 50?

In fact, we get 50. We say that 50 is a Pass-Through value.

5.6 The Index Function

In APL, nearly all of the built-in functions (known as Primitive Functions) are represented by

a single symbol: + × ∰ ÷ etc. Bracket indexing, as we introduced above, is an exception: it is

represented by two non-contiguous symbols: [and]. This is one of the reasons why modern

versions of APL also include an Index function.

It is represented by the symbol ⌷

Beware: This is not the symbol Quad used in our planning example a few pages ago!

In fact, it looks like a Quad which has been squished, hence its name: Squish-Quad, or Squad

for short. The Squad is obtained with Ctrl+Shift+L.

When applied to a vector, Index takes a single number on its left.

 3 ⌷ Contents
78 This is equivalent to Contents[3]

For now, we shall not try to extract more than one item from a vector; we need additional

knowledge to do that.

For a matrix, Index takes a pair of values (row/column) on its left.

 4 2 ⌷ Tests
78 This is equivalent to Tests[4;2]

It is possible to select several rows and several columns, using a special notation that will be

explained in subsequent sections. The left argument of Index is now made of a list of rows

followed by a list of columns, both parenthesised:

 (1 3 6)(1 3)⌷Tests
11 22 This is equivalent to Tests[1 3 6;1 3]
30 19
33 44

 Chapter B – Data and Variables 63

6 - Mixed and Nested Arrays

Up to now we have dealt with only homogenous arrays: Scalars, vectors, or higher rank arrays

containing only numbers or only characters. An array was a collection of what we call simple

scalars. In the early 1980's enhanced versions of APL started to appear. They accepted a

mixture of numbers and characters within the same array (so-called Mixed Arrays), and arrays

could contain sub-arrays as items (so-called Nested Arrays).

In this chapter, we shall explore only some basic properties of Mixed and Nested arrays, just

to help you understand what might otherwise appear to be unusual behaviour or unexpected

error messages. We shall not go any further for now; Chapter I will be entirely dedicated to an

extensive study of nested arrays.

Note that with the current widespread use of Nested arrays, it is now very common to refer to

an "old-fashioned" array that is neither Mixed nor Nested as a Simple array.

6.1 Mixed Arrays

An array is described as a Mixed Array if it contains a mixture of scalar numbers and scalar

characters.

It is easy to create such an array:

 MixVec ← 44 87 'K' 12 29 'B' 'a' 'g' 46.3

 ∰MixVec
9 This is a vector.

 MixVec
44 87 K 12 29 Bag 46.3

 MixMat ← 2 5 ∰ MixVec

 ∰MixMat
2 5 That is a matrix.

 MixMat
44 87 K 12 29
 B a g 46.3 44

64 Dyalog APL - Tutorial

6.2 Four Important Remarks

6.2.1 - In a vector like MixVec, each letter must be entered as a scalar: embedded within

quotes, and separated from the next one by at least one blank space.

If the space is omitted, for example, if we type 'B''a''g', APL interprets the

doubled quotes as apostrophes, which yields B'a'g. This is not a sequence of 3

scalars, but a 5-item vector.

6.2.2 - When MixVec is displayed (see above), the three letters Bag are joined together,

like the letters in any vector of characters.

This presentation might be confused with an array of 7 items, whose 6
th

 item is the

vector 'Bag'. That would be a Nested Array. We will soon learn how to investigate

the structure of an array.

6.2.3 - This confusion disappears in MixMat. Because the items of the matrix must be

aligned in columns, "B" is placed under 44, "a" under 87, and "g" under "K". Here

you can easily see that the three letters Bag are really three independent scalars.

6.2.4 - A Mixed array is made up only of simple scalars (numbers or characters); it is not a

Nested Array.

6.3 Nested Arrays

An array is said to be Generalised or Nested when one or more of its items are not simple

scalars, but are scalars which contain other arrays. The latter may be simple arrays of any

shape or rank (vectors, matrices, arrays), or they may themselves be Nested arrays.

A nested array can be created in a number of ways; we shall begin with the simplest one,

known as Vector notation, or Strand notation. Here is how it works:

The items of an array are just juxtaposed side by side, and each can be identified as an item

because it is:

 either separated from its neighbours by blanks

 or embedded within .. quotes

 or an expression embedded within parentheses

 or a .. variable name

Just to demonstrate how it works, let us create a nested vector and a nested matrix.

 One ← 2 2∰8 6 2 4 Create two simple arrays,

 Two ← 'Hello' which will be used below.

 Chapter B – Data and Variables 65

 NesVec ← 87 24 'John' 51 (78 45 23) 85 One 69

 ∰NesVec
8 We have juxtaposed 8 items.

 NesVec
87 24 John 51 78 45 23 85 8 6 69
 2 4

When displayed, this vector is a bit difficult to read. To help you understand how it is

organised, we have drawn boxes around its items:

87 24 John 51 78 45 23 85
8 6
2 4 69

And now, a matrix!

 NesMat ← 2 3 ∰ 'Dyalog' 44 Two 27 One (2 3∰1 2 0 0 0 5)

 ∰NesMat
2 3

 NesMat
 Dyalog 44 Hello
 27 8 6 1 2 0 It is a bit more complex to interpret.
 2 4 0 0 5

Here again, we have drawn boxes around the items:

Dyalog 44 Hello

27
8 6
2 4

1 2 0
0 0 5

To obtain this kind of presentation, execute the following command (remember: a command

begins by a closing parenthesis):

)Copy Util DISP

Then execute:

 DISP NesMat

The interpretation of the display is sometimes difficult for a beginner, but after some weeks

(maybe months?) of experience, you will begin to understand immediately what it means.

You probably remember the mixed vector MixVec, which contained 3 adjacent scalars, "B",

"a", and "g". Let us compare the display of MixVec with a 7 item nested vector, whose 6
th

item contains the word "Bag":

66 Dyalog APL - Tutorial

Let us enter the nested array 44 87 'K' 12 29 'Bag' 46.3

It is displayed like this 44 87 K 12 29 Bag 46.3

Then let's look at MixVec MixVec
It is displayed like this 44 87 K 12 29 Bag 46.3

You will have observed that in the nested array the sub-vector Bag is separated from its

neighbours not by a single space, but by two spaces: this should alert an experienced APLer

that it is a nested array.

However, this difference is so small that the APL community, all over the world, uses a utility

program, named DISPLAY, to draw boxes around arrays (nested or not), to make things clear.

Let us examine it.

6.4 DISPLAY

DISPLAY is provided with Dyalog APL in a library workspace which itself is named

DISPLAY. Because this library is by default on the Workspace Search Path of APL, you can

easily add the DISPLAY function to your active workspace by typing the command:

)copy display This copies the entire workspace, but it

 contains only one single function: DISPLAY.

As you can see, applied to a simple scalar, DISPLAY does not produce any visible difference:

 DISPLAY 37
37

 DISPLAY 'K'
K

However, applied to a vector, DISPLAY draws a box around the values:

 DISPLAY 54 73 19

┌→───────┐ The default presentation uses line-drawing

│54 73 19│ characters to draw the box.

└~───────┘

 0 DISPLAY 54 73 19 With the optional left argument set to 0, the

.→-------. function uses standard characters.

|54 73 19|
'~-------'

The second, rougher, form of presentation is provided for use in circumstances where the line-

drawing symbols in the APL font are not displayed or printed as intended. This will depend

upon your version of Windows and on the display and printer drivers you are using.

 Chapter B – Data and Variables 67

6.4.1 - Conventions

The upper-left corner of the box provides information about the shape of the displayed value:

 a single horizontal arrow for a vector

 two (or more) arrows for a matrix or higher rank arrays

 no arrow at all for scalars containing nested values, a concept we haven't seen up to now

The bottom-left corner of the box provides information about the contents of the array:

~ means that the array contains only numeric values

_ means that the array contains only characters

+ is used for mixed arrays

∮ means that the array contains other arrays: it is a nested array

6.4.2 - Examples

 DISPLAY 78 45 12 Display a plain numeric (~) vector (→).
┌→───────┐
│78 45 12│
└~───────┘

 DISPLAY 1 3 ∰ 78 45 12
┌→───────┐ With its two arrows, this matrix cannot be
∸78 45 12│ confused with the vector shown above.
└~───────┘

 DISPLAY 2 6 ∰ 'Sunny Summer'
┌→─────┐
∸Sunny │

│Summer│ The bottom-left corner is a straight line
└──────┘ because the array contains only text.

 DISPLAY Prod[1 2;;1 3 5]
┌┌→───────┐
∸∸26 22 21│ This array is of rank 3. So, 3 arrows are used to
││43 47 30│ represent it (1 horizontal and 2 vertical arrows).
││ │
││44 58 17│
││29 23 53│ The bottom-left corner is a tilde because
└└~───────┘ the array contains only numbers.

Mixed arrays are sometimes more complex to understand.

 DISPLAY 54 'G' 61 'U' 7 19
┌→─────────────┐
│54 G 61 U 7 19│ The array is a mixed (+) vector (→), and all
└+─────────────┘ its items can be easily identified.

68 Dyalog APL - Tutorial

But the following array is more complex:

 DISPLAY 54 3 'G' 'U' 7 '3' 19
┌→─────────────┐
│54 3 GU 7 3 19│
└+─────────────┘

 Note that in the example above it is impossible to distinguish between the numeric value 3

and the character value '3'. The DISPLAY function actually tries to help us by

underlining all character values, but unfortunately this coincides with the bottom border of

the box. When the array being displayed becomes more complex, you will see this

underlining, as the next example shows.

 The two adjacent scalars 'G' and 'U' are displayed side by side; a vector 'GU' would

have given a nested array, with a different representation, as you can see below:

 DISPLAY 54 3 'GU' 7 '3' 19
┌→─────────────────┐
│ ┌→─┐ │ Because one of the items of this array contains a
│ 54 3 │GU│ 7 3 19 │ vector, the array is "nested", hence the ∮ sign at
│ └──┘ - │ the bottom-left corner. Now the underlining of
└∮─────────────────┘ '3' is visible, so it is easy to see that it is a

 character. Since 7 is not underlined it is a

number.

We shall discover more about DISPLAY when we study Nested arrays in detail (refer to I-
1.3), but we can already use it to show the structure of the arrays that we have been working

with. For example, our nested matrix NesMat:

 DISPLAY NesMat
┌→───────────────────────┐
∸ ┌→─────┐ ┌→────┐ │ You can see that all the sub-arrays contained in
│ │Dyalog│ 44 │Hello│ │ NesMat are individually represented with

│ └──────┘ └─────┘ │ the same conventions, making the inter-
│ ┌→──┐ ┌→────┐ │ pretation easy.
│ 27 ∸8 6│ ∸1 2 0│ │
│ │2 4│ │0 0 5│ │
│ └~──┘ └~────┘ │
└∮───────────────────────┘

6.5 Be Simple!

Up to now, the nested arrays we have met contained only "simple" items (scalars, vectors,

matrices). Here is a completely weird matrix, which itself contains a small nested array made

of the first two columns of NesMat:

 Chapter B – Data and Variables 69

 Weird ← 2 2∰ 456 (NesMat[;1 2]) (17 51) 'Twisted'

 Weird
 456 Dyalog 44 The default presentation is difficult to interpret!
 27 8 6
 2 4
 17 51 Twisted

 DISPLAY Weird Let us use DISPLAY to make things clear!
┌→───────────────────────────┐
∸ ┌→───────────────┐ │
│ 456 ∸ ┌→─────┐ │ │
│ │ │Dyalog│ 44 │ │
│ │ └──────┘ │ │
│ │ ┌→──┐ │ │
│ │ 27 ∸8 6│ │ │
│ │ │2 4│ │ │
│ │ └~──┘ │ │
│ └∮───────────────┘ │
│ ┌→────┐ ┌→──────┐ │
│ │17 51│ │Twisted│ │
│ └~────┘ └───────┘ │
└∮───────────────────────────┘

Remark

Of course, even if APL can handle arrays as unusual as the one above, it is not advisable to

build such arrays! Most nested arrays have a clear and straightforward structure.

Remember: in Section 4.2 we had a list of month names to store, and we had the choice

between a matrix and a vector of vectors, that is to say a nested vector.

 MonVec
January February March April May June

Because its contents are homogeneous (made up only of vectors), this array has a simple

structure that is clear and easy to interpret. DISPLAY shows it like this:

┌→──┐
│ ┌→──────┐ ┌→───────┐ ┌→────┐ ┌→────┐ ┌→──┐ ┌→───┐ │
│ │January│ │February│ │March│ │April│ │May│ │June│ │
│ └───────┘ └────────┘ └─────┘ └─────┘ └───┘ └────┘ │
└∮──┘

Imagine now that we want to store the ages of the children of 5 families; we could enter them

like this:

 Children ← (6 2) (35 33 26 21) (7 7) 3 (19 14)

 Children
6 2 35 33 26 21 7 7 3 19 14

70 Dyalog APL - Tutorial

 DISPLAY Children
┌→────────────────────────────────────┐
│ ┌→──┐ ┌→──────────┐ ┌→──┐ ┌→────┐ │
│ │6 2│ │35 33 26 21│ │7 7│ 3 │19 14│ │
│ └~──┘ └~──────────┘ └~──┘ └~────┘ │
└∮────────────────────────────────────┘

This array is not homogeneous; it is made of vectors mixed with a scalar. However, its

structure is simple, and consistent. Together with the previous example, it is a pertinent usage

of nested arrays.

6.6 That's Not All, Folks!

In this section we have only described some basic things about nested arrays. APL provides a

number of functions designed specifically to manipulate nested arrays, but it would be

premature to introduce these now until we have fully explored all of the basic capabilities.

Nevertheless, if you want to learn a bit more on the subject, just skip to Chapter I.

7 - Empty Arrays

An array is an empty array if the length of one or more of its dimensions is zero. Hence, it is

possible to meet many different kinds of empty arrays: vectors, matrices, arrays of any rank or

type.

0∰0 is an empty numeric vector.

'' is an empty character vector, because nothing was typed between the quotes.

' ' is not an empty vector; we typed a blank character between the quotes.

 Though it is invisible, it is a character just like "B" or "Z".

0 3∰'' is an empty character matrix with 0 rows, but nevertheless 3 columns.

5 0∰0 is an empty numeric matrix with no columns, but nevertheless 5 rows.

3 0 7∰0 is an empty numeric array of rank 3.

There are many ways to create empty arrays, as we shall discover in the following chapters.

We shall see later that empty arrays, which you may find surprising, are extremely useful in

solving a large number of business problems. If fact, they are often used as the starting point

(initial value) for variables that will grow by the iterative addition of new items.

 Chapter B – Data and Variables 71

The empty numeric vector is probably the most frequently used of all empty arrays. For that

reason, a special symbol has been designed to represent it: ⍬ (entered by pressing Ctrl+]).

Because this symbol is made of a Zero with a Tilde on top of it, it is called Zilde.

Lets us conclude this topic with a rather comforting statement:

 Emptiness ← ⍬ Let us start by an empty vector.

 Presence ← 'Friendly' Now, we create a text vector.

 Emptiness ∰ Presence Give Presence the shape Emptiness

F … and it works!

This proves that a Friendly Presence can fill up Emptiness! That's good! But can we explain

it? Let's try...

In the last expression, the Reshape function (∰) returns an array with the shape specified in its

left argument Emptiness.

Since Emptiness is an empty vector (⍬) Reshape will return an array having an empty shape.

Such an array is a scalar, so we know that the result of the expression will be a scalar.

Reshape will also fill the scalar with a value, taken from the right argument Presence.

Presence contains the character vector 'Friendly', but since we only need one item to fill

a scalar, we can only use the 'F'. The rest of the character vector 'Friendly' is not used.

In fact, the expression ⍬∰Array is widely used to return the first item of an array as a scalar,

and in particular to convert a 1-item vector into a scalar.

Remark Though they both are invisible when displayed, a numeric empty vector (⍬) is

different from a character empty vector ('').

8 - Workspaces and Commands

You have nearly finished this chapter and, naturally, you would like to save the variables you

have created:

 In the "File" menu, select "Save" or "Save as", and use the normal procedure for saving a

file.

 You can also click, in the toolbar, on the icon of a diskette (who still knows what a

diskette is?), which is equivalent, in APL to "Save as".

 There is also a built-in method in APL, which may be activated through a special SAVE

command or function, as will be described later.

72 Dyalog APL - Tutorial

An explanation of how APL manages your data is given below.

8.1 The Active Workspace

When you start a working session with APL, you are allotted an empty portion of memory,

which is called a Workspace, or WS for short. This WS is called the Active WS, because it is

the area of memory in which you work. You gradually fill it with variables and functions
2
 as

you create them.

You can ask the system to give you the list of your variables and functions. To do that, you

use a system command: a special word which is recognised by the APL system because its

first character is a closing parenthesis:). Some Swedish APLers call that a "banana".

The names of system commands are not case sensitive; they can be typed in mixture of upper

and lower-case characters.

Let's obtain a list of our variable names, using the command)vars:

)vars
experiment what Charlebois Contents Damned1
Discount Emptiness Goof Hundred M MixMat
MixVec Money MonMat MonVec MyIndex NesMat NesVec One
Planning Presence Prod Purchased Sales
Tests Text Trailer Two V Weird Years

The variables are listed in alphabetic order, but beware, the lower-case alphabet is ordered

before the upper-case one (Dyalog Classic Edition) or after (Dyalog Unicode Edition). This is

the reason why both the variables experiment and what are listed before Charlebois.

If some of these variables are no longer useful, we can delete them with the following

command, in which the variable (and function) names can be listed in any order:

)erase experiment What Charlebois M V Goof
not found What

)erase what

We had misspelled the name of one of our variables; the system erased the other ones, and

gave us a warning. Then we re-issued a command to erase the variable what. This example

underlines the fact that although the command name ("erase") itself is not case sensitive, the

names that it is instructed to work on are of course still case sensitive.

2
 In APL we try to design a computer program, not as a single monolithic procedure, but rather as a set

of inter-connecting units known as functions (or user-defined functions to distingusish them from

primitive or built-in functions). Each function is ideally small, self-contained, and performs a single

specific task.

 Chapter B – Data and Variables 73

If you had developed functions (programs), you could list them using the command)fns
(pronounced "funs"):

)fns
Average Growth Plus Times

Remark 1

One can erase everything from the active workspace (all variables and all functions etc.) and

revert to the original "clear" active workspace, by issuing the command

)clear

This is a bit brutal: all of the contents of the WS are deleted, and no warning message is issued

to notify the user of the consequence before the execution of the command. You should avoid

using this command, and instead use the "Clear" button on the toolbar, which asks for

confirmation. It is safer.

Remark 2

In most languages, programs must be stored (saved) independently, one after the other, and

variables do not exist on their own: they live only during the execution of a program which

creates, uses, and destroys them.

In APL, things are different:

 Variables have an independent existence, outside of any program execution; you have seen

that it is possible to create variables and manipulate them, at will, without writing any

programs.

 There may be a permanent interaction between programs and variables. Saving any part of

them would be nonsense: one must save the whole context; in other words, the whole

active workspace.

This is what we shall discover now.

8.2 The Libraries

Like in most other software environments:

 When you save a WS for the first time, you must give it a name

 Once it has been saved you need not re-specify its name when you re-save it.

Furthermore, we advise you to not re-specify the name when you want to re-save your

work, because, if you misspell it, your WS will be saved with the wrong name without you

being aware of it.

74 Dyalog APL - Tutorial

To save a WS, just issue the command)save followed, if this is the first time, by a file

name. For example:

)save MyPreciousWS

C:\Action\Seminars\MyPreciousWS saved Sun Aug 12 15:36:32 2007

A confirmation message appears, specifying where it has been saved, and the date and time of

the operation.

Of course, you can specify any path in your command, to save your WS wherever you like,

but if you want to specify a full path, it is often more convenient to use the "Save" button in

the toolbar, and browse through your folders.

You can have dozens of workspaces saved in various folders, according to your needs; they

represent your private library.

You can also use public workspaces provided by Dyalog Ltd. as part of the APL system,

workspaces downloaded from web sites, or workspaces provided by third-party developers.

You can list your workspaces using the command)lib.

Used alone, the command explores only the folders specified in your configuration

parameters, which can be modified using the menu:

Options Configuration Workspace Workspace search path

You can also specify explicitly in which folder the command should search:

)lib c:\Action\developments\projects
Budget Transport Survey_3 Survey_7

Four workspaces were found in this folder.

8.3 Load a WS

Once a WS has been saved, it may be used again in various ways:

 You can double-click on the WS name in the Windows Explorer

 You can use the menu File Open

 You can click on the "Open" icon in the toolbar

 And you can issue the system command)load

In all these cases, you will see the familiar file search box, in which you can browse to and

select the workspace file you would like to open (or load).

You can also use the)load command followed by a WS name:

)load myws

 Chapter B – Data and Variables 75

In this case APL will search for your workspace in the folders specified in your "Workspace

Search Path" as explained above, unless you specify a full path name. If the path name

includes blank characters, you must place the whole expression between double quotes, as in

the first example below:

)load "d:\my documents\sixteen tons\coal" Double quotes are mandatory.

)load e:\freezer\mummies\ramses2 Double quotes are not needed.

Remark 1

When a WS is loaded, it replaces the active WS in memory and becomes the new active

WS. If you have not saved the variables and functions you were working on, they are

definitely lost! There is no warning message.

You must be aware of this because in this respect, APL differs from most software

environments, in which each new file you open is opened in a separate window.

Remark 2

When a WS is loaded, a confirmation message appears, like the following:

C:\Action\Seminars\MyPreciousWS saved Sun Aug 12 15:36:32 2007

Note that the date and time reported is the date and time when the WS was last saved.

8.4 File Extensions

The default extension of an APL WS depends on the APL system you use. For Dyalog APL,

the extension is dws, an acronym of Dyalog WorkSpace.

This is only a default extension. When you save a WS, you can give it a different extension,

like old, std, or dev.

If you do so, you must be aware that when you load a WS using the)load command, and

omit the extension, the command will only search only for files with a dws extension.

Imagine that you have saved a WS under the name weekly.old

This WS will not be found if you just issue the command)load weekly

You must specify the extension:)load weekly.old

All these considerations are not mandatory knowledge, since you can navigate through the file

search dialog box, or through Windows Explorer to find whichever file you need.

76 Dyalog APL - Tutorial

8.5 Merge Workspaces

Suppose that you would like to use some functions or variables stored in another WS that has

previously been saved. You can import them into your active WS using the command)copy,

followed by the name of the WS and then the names of the functions and variables you want

to import.

For example, imagine that you need Screwdriver, Hammer, and Saw, all stored in a WS

named Toolbox. You can issue:

)copy Toolbox Screwdriver Hammer Saw

 The WS name must be the first, and under Microsoft Windows it is not case sensitive.

 The names of the functions and variables must follow, but beware, these are always case

sensitive.

If you specify only the workspace name, all its contents are imported. Be sure that all that

stuff is really useful to you.

When the copy is complete, a confirmation message is issued. Like the message issued by a
)load command, it tells you when that WS was last saved.

Of course, you can specify a path in the command; otherwise the WS is searched for in the

workspace search path defined in your configuration. Once again, use double quotes if

necessary:

)copy "d:\my documents\recipes\ratatouille"

8.5.1 - Protected Copy

When you import the entire contents of another WS, there is a risk that it contains an object

(variable or function) which has the same name, but not the same value, as an existing object

in your active WS. If so, the imported object replaces the current one. Danger!

You can avoid this by using the)pcopy command, with P standing for "Protected". If there

is a name conflict, the object in the active WS is not over-written, and a message tells you

which objects haven't been copied. For example:

)pcopy Bazaar
C:\Action\dear_customers\bazaar saved Mon Jun 27 18:44:16 2005
not copied Grub
not copied Watsit
not copied Marmite

 Chapter B – Data and Variables 77

8.5.2 - Intentionally Destructive Copy

We saw that an imported object may over-write an object in the active WS. This is sometimes

useful!

Imagine that you loaded a certain WS:

)load Goodies

Then you spend some hours adding new functions and variables, changing things here and

there, and suddenly, you discover that you made inappropriate changes to a function named

Goof.

You can retrieve the original function, still present in the saved version of Goodies with:

)copy Goodies Goof

When imported, the original version of Goof will override the version you altered. Your

active workspace will be correct again, and you will be able to go on with your work (but

don't forget to save it!).

8.5.3 - Evolution of Your Code

Imagine that you have imported into your active WS a function named Compute, copied from

a WS named Utilities. When you save your active WS, for example under the name

Budget, the function Compute will be saved with it.

But now, imagine that the original version of function Compute contained in Utilities is

modified, or enhanced; what happens? The copy saved with Budget is still the old version,

and Budget may therefore be outdated.

This is a reason why APL allows a dynamic copy of what you need from a known reference

WS. This technique will be explained in Chapter L.

8.5.4 - Active WS Identification

You can obtain the name of your current WS by issuing the command:

)wsid
is d:\private\recipes\ratatouille

Do not be misled by the name that is reported: it just means that the contents of your active

WS had initially been loaded from that WS, or have recently been saved under that name. But

since it was loaded or saved, your current WS has perhaps been modified, and is no longer

identical to the original copy stored in the library.

78 Dyalog APL - Tutorial

In the same way, if you see instead the message: "is CLEAR WS", it does not mean that your

WS is clear (empty; contains nothing), but that it has not been saved yet, and hence has no

name.

8.6 Exiting APL

You can close an APL session using three traditional Windows methods, and two APL system

commands:

 You can click on the "Close" cross at the top-right corner of your APL window

 You can press Alt+F4

 You can activate the menu File Exit

 You can issue the system command)off

 You can issue the system command)continue

The first two methods will ask if you want to save your current session configuration, a so-

called Continue WS (this will be seen in chapter L), and the log of everything that you did

during the session. The next two methods will close APL without any question or warning,

and will not save your configuration. The last one will save a Continue WS before exiting.

In any case, always remember to save your work (if necessary) before you quit.

8.7 Contents of a WS

Generally speaking, a workspace contains functions (programs) and variables which interact

to constitute some useful application.

The large memories of modern computers support very big workspaces, and a single WS is

generally enough to store even a very complex application, or several applications. However,

it is good practice to store different applications in different workspaces: accounting, budget,

customer care, etc… It is not recommended that you mix several applications in a single WS.

However, if appropriate, it is possible for a function to dynamically load another workspace

(without any intervention by the user), and activate a different or complementary application.

For now, a unique WS should be sufficient to contain all your experiments.

If several workspaces need to share a common set of utility programs, this can be

accomplished by dynamically importing the utilities from a common source. This will be seen

in Chapter L.

 Chapter B – Data and Variables 79

8.8 Our First System Commands

Just to recapitulate, here is a little summary of the system commands we've just discovered.

Many other commands will be studied in Chapter L. The following conventions are used in

the table:

 The command names are written using normal characters; the parameters are in italics

 Parameters within {braces} are optional

 names represents a list of variable or function names

 wsname is the name of a WS

 ext is the extension of the file. Only necessary if it is different from "dws"

 path is an optional path. If not specified, APL searches in all the directories

 referenced in:

 Options Configuration Workspace "Workspace Search path"

80 Dyalog APL - Tutorial

Our First System Commands

Command Usage

)vars Lists the variables in the active workspace.

)fns Lists the user defined functions in the active workspace.

)erase names Deletes the named objects from the active workspace.

)clear Deletes everything, and leaves the active workspace empty.

)save Saves the active workspace under its current name, or:

Opens the File Save dialog box if the WS has no name.

)save {path}wsname{ext} Saves the active WS under the given path/name/extension.

)lib

)lib path

Gives the list of all workspaces in the workspace search path.

Gives the list of all workspaces in the specified path.

)drop {path}wsname{ext} Deletes a saved WS from disk

)load Opens the File Open dialog box, from which a workspace can

be selected. It will replace the active WS.

)load {path}wsname{ext} Replaces the contents of the active WS with the referenced

WS.

)copy {path}wsname names Imports the named items from the specified WS into the

active WS, where they may overwrite objects identically

named.

)copy {path}wsname Imports all the contents of the specified WS.

)pcopy {path}wsname {names} Similar to)copy, but does not overwrite existing objects.

)wsid Displays the name of the current (active) WS.

)off Closes the APL session.

)continue Saves a Continue WS and closes the APL session.

 Chapter B – Data and Variables 81

Exercises

Warning! The following exercises are designed to train you, not the computer.

For this reason, we suggest that you try to answer them on a sheet of paper, not on

your computer. When you are sure of your answer, you can test it on the computer.

B-1 Given a scalar S, can you transform it into a vector containing one single item?

Or the opposite: Can you transform a one-item vector V into a scalar?

B-2 Given the result of the 2 expressions using the variable X:

 X
2 15 8 3

 ∰X
8

What is X?

B-3 Find the result of this expression: 'LE CHAT'[7 5 2 3 4 6 7]

This amusing example was first given in "Informatique par telephone" of Philip S. Abrams

and Gérard Lacourly, Editions Herman, Paris 1972.

B-4 The variable Tab is created like this:

 Tab ← 2 5 ∰ 9 1 4 3 6 7 4 3 8 2

How could you replace the values 9 6 7 2 in this variable by 21 45 78 11 respectively?

B-5 X ← 1 2 9 11 3 7 8
 X[3 5] ← X[4 1]

What do you think is the new value of X?

And what happens if you now execute: X[4 6] ← X[6 4]

B-6 A vector of 6 items named Mystery is indexed like this:

 Mystery[3 1 6 5 2 4]
8 11 3 9 2 15

What is the value of Mystery?

82 Dyalog APL - Tutorial

B-7 One creates a vector, and selects some items from it, as shown:

 Vec ← 33 19 27 11 74 47 10 50 66 14

 Vec[FindMe]
47 27 19 14 50 74

Could you guess the value of FindMe?

B-8 One creates a vector, and a set of indices:

 Source ← 10 4 13 3 9 0 7 6 2 13 8 1 5

 Set ← 3 3 ∰ Source[2 4 8 5 12 13 7 4]

Then one uses it to index the original vector:

 Result ← Source[Set]

What is the shape of Result?

Can you find its value?

B-9 Is there a difference between the following two vectors?

First V1 ← 'p' 'o' 't'

and then V2 ← 'pot'

B-10 Is there a difference between the following two vectors?

First V3 ← 15 48 'Y' 'e' 's' 52

and then V4 ← 15 48 'Yes' 52

B-11 Here is a very simple variable: Two ← 2

We use it in the following expression:

Foolish ← Two Two ∰ 2 Two '∰' 'Two'

What is the shape of Foolish?

Can you show its value?

Solutions The solutions are given at the end of the book,

 in Chapter X.

 Chapter B – Data and Variables 83

The Specialist's Section

Each chapter is followed by a "Specialist's Section" like this one.

This section is dedicated to skilled APLers, who wish to improve their knowledge.

You will find here rare or complex usages of the concepts presented in the chapter, or discover

extended explanations which need the knowledge of some symbols that will be seen much

further in the book

If you are exploring APL for the first time,

skip this section and go to the next chapter

Spe-1 Variable Names

Variable names must obey the rules shown in Section B-1.2.

We have seen that you may use some special characters: Delta (∆) Underscore (_), and also

the underscored delta (⍙). We do not recommend these symbols; they often make programs

difficult to read.

Spe-2 Representation of Numbers

Up to now, we have entered decimal numbers using the most common conventions, like

3714.12 or 0.41

It is also possible to employ other conventions to facilitate typing.

When the magnitude of a decimal value is less than 1 it is not necessary to enter a zero before

the decimal point:

0.413 can also been entered as .413

¯0.5119 can also been entered as ¯.5119

Very large and very small numbers can be entered using scientific (or exponential)

representation.

Using this convention, any "extreme" number can be represented by a "normal" number, the

mantissa, multiplied by a power of 10, the exponent.

84 Dyalog APL - Tutorial

For example, 42781900 could be represented as 4.27819×107
 or 427.819×105
 or 42781.9×104

and 0.0000038421 could be represented as 384.21×10-8
 or 3.8421×10-6

In APL, the mantissa and the exponent are separated by the letter E.

Using this notation, one can enter very large or very small numbers.

If the magnitude of the number is not too large or too small, all its digits will be displayed:

 4.27819E7 Let us begin with rather large values.
42781900

 4278.19E4
42781900

 384.21E¯8 And now, some rather small values.
0.0000038421

 3.8421E¯6
0.0000038421

But if the numbers are very large (or very small), and would require more digits to be shown

than the maximum (defined by ⎕PP, Print Precision) APL displays them with a "normalised"

mantissa with only one integer digit, followed by the appropriate exponent:

 431765805838751234
4.317658058E17

 5678.1234E20
5.6781234E23

 1234.9876E¯15
1.2349876E¯12

 ¯2468.1357E¯13
¯2.4681357E¯10

Spe-3 The Shape of the Result of Indexing

Spe-3.1 - Rule

Suppose you are given an array of any rank Array

The expression Array[A; B; C; etc…]

always gives a result with a shape equal to (∰A),(∰B),(∰C), etc …

This rule makes it possible to always predict the shape of the result of an indexing operation.

 Chapter B – Data and Variables 85

For example

Prod[2 5 3;2 1;1 2 5 6] would give a result of shape 3 2 4

Prod[;2;∯6] would give a result of shape 5 6

In the last example, the omitted index refers to the first dimension of Prod which is of length

5.

The second index (2) is a scalar, and has no dimension.

That's why the shape of the result is 5 6 and not 5 1 6

Spe-3.2 - Using Ravel to Preserve a Dimension

In a program, a matrix is indexed like this: Mini ← Mat[Rows;Cols]

For example Mini ← Mat[2 9 26;50 51 80 91]

Generally, Rows may contain several row numbers, and Cols may contain several column

numbers. Applying the preceding rule, it is easy to see that we'll obtain a sub-matrix in Mini.

But it may be that Rows or Cols are scalars. The result of Mat[Rows;Cols] would then not

be a sub-matrix, but a scalar or a vector. This could lead to other expressions in your function

generating an error or an incorrect result, because they were written expecting matrices.

To avoid this problem, you can force an index expression to be a vector (perhaps a vector

containing only one item) by using Ravel (symbol ",") like this:

 Mat[,Rows ; ,Cols] Will always return a matrix.

Ravel shall be discussed in C-14.

In Section 5.3, we indexed the variable Test like this:

 Tests[1 2 5 6;1]
41 14 19 45

And we were surprised to see the values of a column were displayed horizontally. We can

now understand why: the shape of the result is equal to (∰1 2 5 6),(∰1). As the shape of a

scalar is empty, this expression is equivalent to (∰1 2 5 6) i.e. 4. The indexing operation

therefore produces a vector, which is displayed on a single line of the screen.

To obtain a matrix, we must transform the column index (scalar 1) into a vector: we shall

again use Ravel, like this:

 Tests[1 2 5 6; ,1]
41
14
19
45

86 Dyalog APL - Tutorial

Spe-4 Multiple Usage of an Index

When an array is indexed, the same item (the second item in the example below) may be

selected more than once; for example:

 A ← 71 72 73 74 75 76

 A[2 3 2 4 2]
72 73 72 74 72

If a repeated index is used to update the variable, only the last replacement value is retained:

 A[2 3 2 4 2]←45 19 67 33 50

 A
71 50 19 33 75 76 The second item was first set to 45, then to 67,

 and finally to 50.

Spe-5 A Problem With Using Reshape (∰)

We want to create a numeric matrix with 3 rows, and as many columns as another matrix

Trix, entirely filled with zeroes.

One solution is to first obtain the number of columns of Trix, using the Drop (∸) function:

 1∸∰Trix Drop is discussed in G-1

8 Trix has 8 columns

Then manually build the correct matrix using the number of columns (8) we obtained

previously

 3 8∰0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 That's correct.

Now, let us try to build a generalized solution:

 nc←1∸∰Trix Calculate the number of columns.

 New←3 nc∰0 That should be the same, no?
DOMAIN ERROR What's happening then? It no longer works.
 New←3 nc∰0
 ∧

The reasons for the problem are as follows:

 When, in the first example, we entered the expression 3 8, we juxtaposed two scalars,

and the result was a two-item vector.

 Chapter B – Data and Variables 87

 The expression ∰Trix in the second example returns a two-item vector (for example 5
8). The Drop function leaves only one value, but the result 8 is still a one-item vector.

 When we then entered the expression 3 nc, we juxtaposed a scalar to a vector. This does

not return a simple vector, but a nested array.

 Unfortunately, a nested array is not a valid left argument for Reshape!

Solution: Catenate 3 and nc to form a simple vector, which you then use as the left argument

to ∰.

 New ← (3,nc)∰0 Catenate is discussed in C-10.

A direct solution would be:

 New ← (3,1∸∰Trix)∰0

Spe-6 Monadic Index (⌷)

In Section 5.6, we used the Index function with a left argument for indexing.

Used monadically (without a left argument), Index returns all the items of its right argument,

whatever its shape:

 Vec ← 17 41 23 64

 ⌷ Vec Equivalent to Vec[]

17 41 23 64

 Mat ← 2 3 ∰ ∯6

 ⌷ Mat Equivalent to Mat[;]
1 2 3
4 5 6

The Index function may also be used with Objects (See Chapter Q, Object Oriented Program-

ming). Applied to a an Enumerable Property of an Object, or an Instance of an Object which

has such a Property as its default Property, the same syntax returns all the items in this

collection.

For example, to obtain the names of all the sheets in an Excel workbook, one can type:

 XL.ActiveWorkbook.(⌷Sheets).Name

In this expression, ⌷Sheets represents the collection of all those sheets.

88 Dyalog APL - Tutorial

89

Chapter C: Some Primitive Functions

1 - Definitions

In APL data is processed using what we call Functions. It is important to distinguish between:

 Primitive Functions They are part of the APL language.

 They are represented by symbols: ∰ ⍉ ⌈ ...

 They cannot be modified.

 User Defined Functions As their name implies, they are written by the user.

 They are represented by names: Average, Budget …

 They can be modified.

APL has a very rich set of primitive functions. In this chapter, we will explore just a few of

them; many others will follow in subsequent chapters.

In the introduction to this book, we mentioned that in traditional mathematics, some symbols

can be used with a single argument or two arguments. For example:

In the expression a = x - y the minus sign indicates subtraction.

Whereas in a = -y the minus sign indicates the negation of y, that's different.

The first form is called the Dyadic use of the symbol.

The second form is called the Monadic use of the symbol.

It is the same in APL, where most of the symbols (functions) have a monadic and a dyadic

meaning. For example:

Res ← ∰ Var Here ∰ obtains the shape of a variable
Res ← Shape ∰ Contents Here ∰ creates an array with a given shape

90 Dyalog APL - Tutorial

There is, however, a major difference. In traditional mathematics, the symbol representing a

monadic function is sometimes placed before its argument (as in: a = -y), sometimes after it

(as in: a = y!), sometimes on both sides (as in: a = |y|), and some other conventions may be

found.

In APL, the symbol representing a monadic function is always placed before its argument, as

in ∰Var.

2 - Some Scalar Dyadic Functions

2.1 Definition and Examples

Scalar dyadic functions are primitive functions which have the following properties:

 They are Dyadic (require an argument on both sides).

 They work item by item (scalar by scalar).

 They can work on two arrays of the same shape, in which case the result also has the same

shape.

 They can work on one array of any shape, and a single value (a scalar or any one-item

array), in which case the result has the same shape as the non-singleton array.

The four basic arithmetic functions Addition, Subtraction, Multiplication and Division are

scalar dyadic functions. They apply themselves between each item of the left argument and

the corresponding item of the right argument, like this:

 5 3 2 9 + 2 6 8 4 The function is applied between each item of two

7 9 10 13 4-item vectors. The result is also a 4-item vector.

As an example of a function that is not a scalar function, let us look at the Reshape function.

There is nothing in common between the shapes of its arguments:

 2 3 ∰ 6 8 2 1 9 3 The left argument has 2 items, the right one has 6

6 8 2 and the result in this case is a matrix.
1 9 3

Let us explore the behaviour of the basic arithmetic functions on vectors:

 5 3 2 9 - 2 6 8 4
3 ¯3 ¯6 5

 5 3 2 9 ÷ 2 6 4 7
2.5 0.5 0.5 1.285714286

 Chapter C – Some Primitive Functions 91

 Price ← 5.2 11.5 3.6 4 8.45

 Qty ← 2 1 3 6 2

 Costs ← Price ∲ Qty

 Costs
10.4 11.5 10.8 24 16.9

Scalar dyadic functions apply to arrays of any rank and shape.

As we saw in the introduction, a Sales Director makes forecasts for sales of 4 products over

the coming 6 months, and assigns them to the variable Forecast. At the end of the 6 months,

he records the actual values in the variable Actual. Here they are:

 Forecast Actual

150 200 100 80 80 80 141 188 111 87 82 74
300 330 360 400 500 520 321 306 352 403 497 507
100 250 350 380 400 450 118 283 397 424 411 409
 50 120 220 300 320 350 43 91 187 306 318 363

For your convenience, these variables are included in the Workspace "DyalogTutor_EN.dws".

The first thing any self-respecting Sales Director will want to know is the difference between

the expected and the actual results. This can be done easily by typing:

 Actual - Forecast
¯9 ¯12 11 7 2 ¯6 Matrix-Matrix gives a matrix of the same shape.
21 ¯24 ¯8 3 ¯3 ¯13
18 33 47 44 11 ¯41 Remember: negative values are indicated by a

¯7 ¯29 ¯33 6 ¯2 13 high minus sign.

But remember, a scalar dyadic function may also be applied between a single value and an

array of any shape.

For example, if we want to multiply Forecast by 2, we can type:

 Forecast × 2 2 × Forecast would do just as well.
300 400 200 160 160 160
600 660 720 800 1000 1040
200 500 700 760 800 900
100 240 440 600 640 700

A complete list of Scalar Dyadic Functions is given in Appendix 1.

92 Dyalog APL - Tutorial

2.2 Division By Zero

An expression such as 17÷0 leads to an error message (DOMAIN ERROR), because zero does

not belong to the domain of valid denominators.

However, 0÷0 returns (by default) the result 1, because any number divided by itself should

give 1. Nevertheless, because this is sometimes inappropriate, it is possible to change the

default behaviour (see the Specialist's Section).

2.3 Power

In APL, the mathematical notation A
n

is written A*n.

The function Power (*) accepts any value(s) for n: integer or decimal, positive, negative, or

zero, according to traditional usage.

To calculate the values of : 4
2
 4

1.4
 4

0
 4 1/4 4

-2.1
 4

5
 we just need to type:

 4 * 2 1.4 0 0.5 ¯1 ¯2.1 5
16 6.9644 1 2 0.25 0.0544 1024

0*0 gives 1.

There is no special symbol in APL to represent a square root; it is obtained by raising a value

to the power ½.

Although a few implementations of APL do support complex arithmetic, Dyalog APL does

not, and it is impossible to calculate an even root of a negative number. Instead, a DOMAIN
ERROR is issued.

2.4 Maximum & Minimum

Maximum (⌈) and Minimum (⌊) return respectively the larger of two values and the smaller

of two values, whatever their signs. Because they are scalar dyadic functions, they can be

applied item by item between any two compatible arrays.

 75 ⌈ 83
83

 19 ⌈ 11 22 ¯20 60
19 22 19 60

 52 14 ¯37 18.44 ⌊ ¯60 15 ¯40 11.23
¯60 14 ¯40 11.23

 Chapter C – Some Primitive Functions 93

Minimum can be used to apply a limit to the values in an array. For example, to set a ceiling of

450 in the matrix Forecast, it is sufficient to type:

 Forecast ⌊ 450
150 200 100 80 80 80
300 330 360 400 450 450 500 and 520 have been limited to 450.
100 250 350 380 400 450
 50 120 220 300 320 350

2.5 Relationship

As in traditional mathematics, APL provides the 6 relationship functions:

A < B A less than B A ≥ B A greater than or equal to B

A ≤ B A less than or equal to B A > B A greater than B

A = B A equal to B A ≠ B A not equal to B

These symbols are obtained by pressing the Ctrl key simultaneously with the keys 3 to 8,

respectively.

All these 6 functions return 1 if the relation is true, or 0 if it is false.

 11 < 7 returns 0

 24 ≤ 24 11 33 returns 1 0 1

 5 = 9 returns 0

 3 8 7 ≥ 5 8 0 returns 0 1 1

 6 > 2 3∰7 2 9 3 6 4 returns 2 3 ∰ 0 1 0 1 0 1

The results are called binary, or Boolean, values (Boolean refers to the name of the

mathematician George Boole). They can be processed in many different ways and are

extremely useful, as we shall soon see.

Note that none of the four symbols < ≤ ≥ > can be applied to character arrays.

Only = and ≠ can be used with character arrays, as illustrated below:

 'm' = 'm' returns 1

 'm' = 'M' returns 0

 'k' ≠ 'a' returns 1

 'sorry' ≠ 'r' returns 1 1 0 0 1

94 Dyalog APL - Tutorial

Because these functions are scalar dyadic functions, they are applied between individual

letters, not words:

 'gold' = 'gulf' returns 1 0 1 0

For the same reason, the two words (considered as vectors) must be of equal size:

 'male' ≠ 'female' causes a LENGTH ERROR

2.6 Residue

The Residue function, represented by |, returns the remainder of a division.

In the expression R ← X|Y, R is the remainder of Y divided by X (be careful; the arguments of

Residue are given in the reverse order of that used by Division Y÷X).

 7 | 54
5

 2 | 216 47 29 28
0 1 1 0 This indicates which are odd and which are even values.

 7 4 11 4.3 | 54 84 119 19.6
5 0 9 2.4

The function can be used with negative values. The result R is always equal to Y-(N×X),

where N is some integer such that R lies between 0 and X, but is not equal to X.

 3 ¯5 6 ¯3 | 29 43 ¯14 ¯14
2 ¯2 4 ¯2

If X is zero, R is equal to Y.

3 - Order of Evaluation

Like other programming languages, APL allows the programmer to use parentheses to specify

the order of evaluation of a complex expression. Thus the expression 5×(6+7) means "add 6

to 7, then multiply by 5". In the absence of parentheses, most other programming languages

employ rules of precedence to decide how a complex expression such as 5×6+7 would be

evaluated. Typically, the result will be 37 because multiplication is given precedence over

addition and is performed first.

When APL was designed, it was decided that the sheer number of primitive functions meant

that a set of precedence rules would be impossibly complex to remember and apply. Instead,

APL follows traditional algebraic conventions.

 Chapter C – Some Primitive Functions 95

The solution adopted in APL is simple, and consistent with the rules we apply to calculate

complex expressions in traditional algebra. Suppose, for example, that we need to calculate:

To do this, we would first divide x by 3, then take the square root of the result, next calculate

its sine, and finally calculate the logarithm: Each function applies to the result of the entire

expression to its right. This is how it is done in mathematics, and so it is in APL. The only

difference is that in APL there are no exceptions!

 5 × 6 + 7 First calculate 6+7, giving 13,
65 then multiply by 5, giving 65.

 (5×6) + 7 Here we instruct APL to do the multiplication first.
37

 7+5×6 An experienced APL programmer would probably
37 have written the previous expression this way.

Rule

In an APL expression, each function takes as its right argument the result of the entire

expression to its right. No functions have higher precedence than any others.

If the function is dyadic (takes both a left and a right argument), it takes as its left

argument the array immediately to its left, delimited by the next function.

This is sometimes called "Right to left evaluation" (although this is not strictly correct).

If necessary, one can use Parentheses to force a different order of evaluation.

You must not be confused: each function is itself evaluated in its natural order, so 8÷4 gives

2, not 0.5! The term "Right to Left" only means that the first operation executed is the

rightmost one.

If the order of evaluation seems strange to you at first sight, just refer to a plain English

sentence: "Take the top half of the bottom quarter" does not mean "Take the top half first, and

then take the bottom quarter"; it means "First split into quarters and take the bottom one,

then split that quarter into two halves and take the top half of it": This is exactly the way that

APL works! Even in everyday English language, which we write from left to right, we

implicitly use the "right to left evaluation" rule.

Let us apply this rule to some examples:

3×5+1 First 5+1 gives 6

 then 3×6 gives 18

3 6⌊4+2 9>7 First 2 9>7 gives 0 1
 then 4+0 1 gives 4 5

 and 3 6⌊4 5 gives 3 5

3sinlog x

96 Dyalog APL - Tutorial

Warning!

In the beginning you may encounter some surprises. For example, if V is a vector, 1+∰V is

different from ∰V+1. Let us see why, with the following vector: V ← 5 2 7

1+∰V First ∰V gives 3

 then 1+3 gives 4

∰V+1 First V+1 gives 6 3 8

 then ∰6 3 8 gives 3

This may be completely new to people who have experience with other programming

languages, and is one of the reasons why we recommend that you to do all of the exercises at

the end of this chapter. With a little practice, you will soon find this simple rule very natural,

and that you will consider it a relief that you do not have to remember complex rules for

function precedence.

4 - Monadic Scalar Functions

Most of the symbols we have encountered so far also have a monadic definition; let’s look at

them now.

4.1 The Four Basic Symbols

We will begin with the four basic symbols: + - × ÷

4.1.1 - Identity

The Plus sign used monadically is the Identity function. It returns its argument as its result:

 + 54 76 29
54 76 29

One might suppose that such a function is of no practical value, but it is sometimes used to

display the value of a variable, as for example in:

 + Magoo ← 2 3∰Prod
26 16 22 Without the plus sign, the value of Magoo

17 21 44 would not have been displayed.

 Chapter C – Some Primitive Functions 97

 + M ← 2 3∰'abcdef'
abc It works identically on character data,
def which dyadic + does not.

This feature will be used occasionally in the following pages, until we discover a different

syntax.

4.1.2 - Negative

The Minus sign is the Negative function. It returns the negation of its argument:

 - 19 11 ¯33 0 ¯17
¯19 ¯11 33 0 17

4.1.3 - Signum

The Multiply symbol used monadically is the Signum function. It tells us the sign of its

argument, using the following convention:

 1 The value is positive

 0 The value is zero

¯1 The value is negative

 × 19 11 ¯33 0 ¯17
1 1 ¯1 0 ¯1

4.1.4 - Reciprocal

No surprise: The Divide symbol gives the Reciprocal or Inverse value of its argument:

 ÷ 2 ¯4 .3 .25 ¯7
0.5 ¯0.25 3.333333333 4 ¯0.1428571429

4.2 Other Scalar Monadic Functions

4.2.1 – Exponential

The expression *N gives the N
th

 power of e, the base number of the natural logarithm.

 * 1 0 3 ¯1
2.718281828 1 20.08553692 0.3678794412

98 Dyalog APL - Tutorial

4.2.2 - Floor and Ceiling

Floor (⌊) rounds its argument down, while Ceiling (⌈) rounds its argument up, to the nearest

smaller or larger integer value, respectively:

 ⌊ 51.384 48.962 0 ¯73.27 ¯9.99
51 48 0 ¯74 ¯10

 ⌈ 51.384 48.962 0 ¯73.27 ¯9.99
52 49 0 ¯73 ¯9

To round a value to the nearest integer a commonly used method is to add 0.5 and then take

the Floor, or alternatively, to subtract 0.5 and take the Ceiling, as shown here:

 ⌊ 51.384 48.962 12.5 ¯73.27 ¯9.99 + 0.5
51 49 13 ¯73 ¯10

 ⌈ 51.384 48.962 12.5 ¯73.27 ¯9.99 - 0.5
51 49 12 ¯73 ¯10

The results are the same in most cases, but differ for boundary values: for example, 12.5 is

rounded to 13 or 12 depending on which method is used.

4.2.3 - Magnitude (Absolute Value)

The monadic stile represents the absolute (unsigned) value of its argument, as shown:

 | 29.2 49.3 ¯14.8 0 ¯37.2
29.2 49.3 14.8 0 37.2

4.2.4 - Comparison Symbols

None of the symbols < ≤ = ≥ > ≠ have a monadic usage.

 Chapter C – Some Primitive Functions 99

5 - Processing Binary Data

Remark

Binary values are most often produced by the comparison functions that we have already seen.

However, the result of any function (such as addition or subtraction) which is composed only

of 1s and 0s can be used as a binary (or Boolean) value, and may be used as an argument to

any of the special primitive functions that apply to Boolean values.

Among the various ways of producing binary results, Membership appears to be one of the

most interesting tools.

5.1 Membership

 Membership tells whether the items of its left argument are present (1) or not (0) in the

right argument, regardless of their position in it.

 It accepts arguments of any shape or type.

 The result produced always has the same shape as the left argument.

Some examples will help you understand the function:

 23 14 41 19 ∮ 17 88 19 50 51 52 23 40
1 0 0 1

This means that 23 and 19 appear somewhere in the rightmost vector, whereas 14 and 41 do

not. The left argument has 4 items, and so has the result.

The Membership function can operate on arguments of completely different shape. For

example, it is possible to detect the presence of each item of a vector in a matrix, or vice

versa.

In Chapter B we used a matrix containing the 6 first months of the year:

 MonMat
January
February
March
April
May
June

100 Dyalog APL - Tutorial

We can ask if certain letters are present in this matrix:

 'December' ∮ MonMat
0 1 1 1 0 1 1 1

The result shows that all the letters of December appear in MonMat, except "D" and lowercase

"m" (which should not be confused with the uppercase "M" of March and May).

In this case we used a vector left argument and a matrix right argument. Let’s try it the other

way around. The following expression tells us which letters in the matrix MonMat appear in

the vector Century:

 MonMat ∮ 'Century'
0 0 1 1 0 1 1 0
0 1 0 1 1 0 1 1
0 0 1 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 1 0 0 0 0 0
0 1 1 1 0 0 0 0

As you might imagine, any comparison between numbers and letters gives zero:

 1952 ∮ '1952'
0

 '1952' ∮ 1952 Remember that '1952' is a vector of 4 letters,
0 0 0 0 none of which can be found in the number 1952.

We recommend that you do exercise C-22 to discover all the possibilities of Membership.

5.2 Binary Algebra

Binary values can be processed using half a dozen specialised primitive functions, the main

ones being And, Or, Xor, and Not. Additional functions will be described in the Specialist's

Section.

The function And is represented by the symbol ∧ (Ctrl+0), as it is in mathematics. It returns

the result 1 if the left and the right arguments are both equal to 1:

 0 ∧ 0
0

 1 ∧ 0
0

 0 ∧ 1
0

 1 ∧ 1 This is the only case where both values are 1.
1

 Chapter C – Some Primitive Functions 101

We can condense those four expressions into a single one:

 0 1 0 1 ∧ 0 0 1 1
0 0 0 1

The function Or is represented by the symbol ∨ (Ctrl+9), as it is in mathematics. It returns

the result 1 if the left or the right argument is equal to 1.

The four possible cases are shown in the following expression:

 0 1 0 1 ∨ 0 0 1 1
0 1 1 1

Xor is an acronym for eXclusive Or. It returns the result 1 if one of the arguments is equal to

1, but not if both are equal to 1.

In automation, the same function is generally represented by a circled Plus sign.

APL does not need a different symbol for the function, because Xor is the same as the

comparison function that we have already met: ≠

 0 1 0 1 ≠ 0 0 1 1
0 1 1 0

The last function is the monadic function Not. Represented by the Tilde ~ (Ctrl+T), it

converts 0 into 1 and 1 into 0:

 ~ 0 1 0 0 0 1 1
1 0 1 1 1 0 0

Remark

 And, Or, and Xor are scalar dyadic functions.

 Not is a scalar monadic function.

 Membership is a dyadic function, but it is not a scalar function.

All these functions can be applied to binary data of any shape. For example, lets us see if any

of those items of Forecast, which are greater than 350 thousand Euros, have been exceeded

by Actual sales:

 + bin ← (Forecast>350) ∧ (Actual>Forecast)
0 0 0 0 0 0
0 0 0 1 0 0
0 0 0 1 1 0
0 0 0 0 0 0

102 Dyalog APL - Tutorial

A side note: The parentheses around the rightmost expression (Actual>Forecast) are not

strictly needed. However, they do no harm either, so we have added them here to help you

read the expression, since you may not yet be fully familiar with APL's order of evaluation.

5.3 Without

Given a vector A and any array B, the expression A~B returns a vector equal to A, but in which

all items of B have been removed. The size and shape of B is immaterial, only the individual

items of B are used.

This function is called Without.

 'This Winter is warm' ~ MonMat Here, the right argument is a matrix we
TsWtswm created earlier.

 'Congratulations' ~ 'ceremony' The uppercase "C" is preserved because

Cgatulatis it is different from the lowercase "c".

 Magoo
26 16 22
17 21 44

 21 22 23 24 25 26 27 ~ Magoo Of course, it also works on numbers.
23 24 25 27

6 - Processing Nested Arrays

When working with nested arrays, it is important to recognise whether or not you are using a

scalar function.

6.1 Scalar vs. Non-scalar Functions

In Chapter B, we set up a nested vector Children, which is composed only of numeric items:

 DISPLAY Children
┌→────────────────────────────────────┐
│ ┌→──┐ ┌→──────────┐ ┌→──┐ ┌→────┐ │
│ │6 2│ │35 33 26 21│ │7 7│ 3 │19 14│ │
│ └~──┘ └~──────────┘ └~──┘ └~────┘ │
└∮────────────────────────────────────┘

 Chapter C – Some Primitive Functions 103

The application of scalar functions is straightforward.

For example, when we add 50 to Children, the value 50 is added to each of the items of

Children. As these items are themselves scalars or vectors, adding 50 means adding 50 to

each of their individual items. This process continues through all levels of nesting, ensuring

that 50 gets added to all the individual items of Children. The result is therefore a structure

identical to Children:

 DISPLAY Children + 50
┌→───┐
│ ┌→────┐ ┌→──────────┐ ┌→────┐ ┌→────┐ │
│ │56 52│ │85 83 76 71│ │57 57│ 53 │69 64│ │
│ └~────┘ └~──────────┘ └~────┘ └~────┘ │
└∮───┘

One way of expressing this behaviour is to say that the scalar functions (both the dyadic and

the monadic ones) permeate down through the structure of nested arrays, until they reach the

lowest-level items, and then apply themselves at this level. They are said to be pervasive

functions.

Non-scalar functions, like Membership, are not pervasive.

 What ← 19 (6 2) 3 (33 26)
 What ∮ Children
0 1 1 0

The item (6 2) of What is also an item of Children, hence Membership gives the answer 1,

and the same is true for the value 3.

In contrast 19 is only an item of the 5
th

 item of Children; it is not an entire item of

Children. Because a non-pervasive function processes each item as a whole, 19 is not the

same as (19 14), so the answer is 0. The same goes for (33 26), which is only part of the

second item of Children.

6.2 Be Careful With Shape/Type Compatibility

It is easy to add a vector of 5 scalar items to Children, because each of the 5 scalars can be

added to the corresponding item of Children:

 Children + 10 20 30 40 50
 16 12 55 53 46 41 37 37 43 69 64

But if we try to add a vector of 5 sub-vectors to Children, we must ensure that the shape of

each sub-vector is compatible with the shape of the corresponding item of Children:

 Children + (4 8) (5 7 4 9) (1 ¯1) (100 200 500) (14 51)
 10 10 40 40 30 30 8 6 103 203 503 33 65

104 Dyalog APL - Tutorial

If there is any incompatibility, a LENGTH ERROR is issued:

 Children+(1 2)(2 3)(3 4)(4 5)(5 6)

LENGTH ERROR
 Children+(1 2)(2 3)(3 4)(4 5)(5 6)

 ∧

All of the items of our vector could have been added to the corresponding items of Children

except the second one. APL has detected and signalled this error.

You must also be careful if a nested or mixed array contains character data; it will not be

possible to apply any arithmetic function to the array as a whole.

7 - Reduction

7.1 Presentation

A few pages ago we calculated the costs of some purchased goods:

 Costs ← Price ∲ Qty

 Costs
10.4 11.5 10.8 24 16.9

How much did we spend?

Mathematicians are creative people who long ago devised the symbol ∑, always with a pretty

collection of indices above and below, which makes it complex to understand and difficult to

type on a keyboard.

In APL, the operation is written like this:

 +/ Costs
73.6

Simple, isn’t it? This expression gives the total of all the items in the vector. You can read this

as "Plus Reduction " of the variable Costs.

To gain a better understanding of the process:

When we write an expression such as +/ 21 45 18 27 11

 - It works as if we had written 21 + 45 + 18 + 27 + 11

 - and we obtain the sum 122

In fact, it works as if we had "inserted" the symbol + between the values.

 Chapter C – Some Primitive Functions 105

So, when we write ×/ 21 45 18 27 11

 - It is as if we had written 21 × 45 × 18 × 27 × 11

 - So we get the product 5051970

Similarly, when we write ⌈/ 21 45 18 27 11

 - It is as if we had written 21 ⌈ 45 ⌈ 18 ⌈ 27 ⌈ 11

 - So we obtain the largest item 45

And so on …

Exercise

Try to evaluate the following expression: 23⌈ ⌈ ⌈/ 17.81 21.41 9.34 16.53

Don't panic! Remember to evaluate it symbol by symbol, from right to left.

7.2 Definition

Reduction, represented by the symbol /, belongs to a special category of symbols called

Operators.

In most programming languages the word operator is used to describe operations like

addition, subtraction, multiplication, and so on. In APL such operations are called Functions;

typical examples are +, -, ×, and ∰. The word operator has a separate meaning in APL.

In APL a function works on an array or between two arrays to produce a result:

 Cost ← Price × Qty

Whereas an operator applies to one or two functions (its operands) to produce what we call a

derived function.

In the expression: Stock ← +/ Qty

the symbol / is the operator. It takes the function + as its single argument (operand) and

produces the derived function +/. This derived function is then applied to Qty, giving a result

which is assigned to Stock.

Please note that the argument to a monadic function is always to the right of the function,

whereas the function applied to a monadic operator (its operand) is always to the left of the

operator.

Many, although not all, of the APL primitive functions may be used as the operand to

Reduction; you can even apply a user-defined function. This generality makes Reduction, and

other operators, extremely powerful.

Dyalog APL provides a total of 10 such powerful operators, listed in appendix 4. It is also

possible to write your own operators, just as it is possible to write your own functions.

106 Dyalog APL - Tutorial

7.3 Reduction of Binary Data

Among the typical usages of Reduction are ∧ and ∨ applied to binary data.

∧/ Bin gives the result 1 if All the items of Bin are equal to 1

∨/ Bin gives the result 1 if At least one of the items of Bin is equal to 1

+/ Bin tells us How many items of Bin are equal to 1

You can verify it on some small examples:

 ∧/ 1 1 1 0 1 0 1
0

 ∧/ 1 1 1 1 1 1 1
1

 ∨/ 1 1 1 0 1 0 1
1

 +/ 1 1 1 0 1 0 1
5

For example, in Chapter B, we created a vector named Contents:

 Contents
12 56 78 74 85 96 30 22 44 66 82 27

Are all the values greater than 20? ∧/ Contents > 20
 The answer is no: 0

Is there at least one value smaller than 30? ∨/ Contents < 30
 The answer is yes: 1

How many values are smaller than 30? +/ Contents < 30
 The answer is: 3

Warning! Reducing an array by a non commutative function like - or ÷ yields

results which may be counter-intuitive, but which may nevertheless be

useful in a number of applications.

Remember: -/ 45 9 11 2 5

is equivalent to 45 - 9 - 11 - 2 - 5

Applying APL's order of evaluation we can see that this expression is equivalent to:

 45 - (9 - (11 - (2 - 5)))

The result, 50, is perhaps not what you expected.

In other languages, the result would be 18, because the expression is evaluated as:

 (((45 - 9) - 11) - 2) - 5

 Chapter C – Some Primitive Functions 107

This kind of "alternating series" can be useful for some mathematical calculations, although

only rarely for business applications.

7.4 Reduction of Nested Arrays

When you apply reduction to a nested array you must check that the items of the nested array

are compatible (in shape and type) with the function that you intend to apply:

 +/ (4 8) (1 4) 10 (9 5) All the items can be added together.
 24 27

 +/ (4 8) (1 4) (1 2 3) (9 5) (1 2 3) cannot be added to the other items,

LENGTH ERROR so APL reports an error.
 +/(4 8)(1 4)(1 2 3)(9 5)
 ∧

7.5 Application 1

The employees of a company are divided into three hierarchical categories, denoted simply 1,

2, and 3. Two variables contain the salaries and the categories of these employees; i.e.:

Salaries 4225 1619 3706 2240 2076 1389 3916 3918 4939 2735 …

Categories 3 1 3 2 2 1 3 3 3 2 …

The employees ask for an increase in their salaries. Each category of employee requests a

different percentage increase, as shown in the following table:

Category Upgrade

1
2
3

8%
5%
2%

How much is that going to cost the company?

Let us just create a variable containing the three rates shown above:

 Rates ← 8 5 2 ÷ 100

 Rates
0.08 0.05 0.02

The first employee is in category 3, so the rate that applies to this person is:

 Rates[3]
0.02

More generally, the rates applied to all of our employees can easily be obtained like this:

 Rates[Categories]
0.02 0.08 0.02 0.05 0.05 0.08 0.02 0.02 0.02 0.05 0.05 0.02 etc.

108 Dyalog APL - Tutorial

Having the rates, we only have to multiply them by the salaries to obtain the individual

increases:

 Salaries × Rates[Categories]
84.5 129.52 74.12 112 103.8 111.12 78.32 78.36 98.78 136.75 etc.

Finally, by adding them all together, we discover how much it will cost the company:

 +/ Salaries × Rates[Categories]
2177.41

Note that:

 The expression remains valid regardless of the number of employees or categories.

 The result has been obtained without writing a program (no loops, no tests).

 This expression can be phrased in the simplest possible English, namely:

Sum the Salaries multiplied by Rates according to Categories

This illustrates how the implementation of a solution in APL can be very close to the way that

the solution would be expressed in everyday language. It also shows the advantage of not

having to deal with trivial and "irrelevant" matters such as looping, memory allocation,

declarations, etc. before a working solution can be developed.

7.6 Application 2

Imagine now that we want to calculate the average of a set of values, for example the values

contained in the variable Contents.

To do that, we must:

 Add all the values +/ Contents

 Count how many values we have ∰Contents

 Divide one by the other (+/Contents) ÷ (∰Contents)

The result would be 56.

Again, because of APL's simple rule for the order of evaluation, the rightmost set of

parentheses could be omitted.

 Chapter C – Some Primitive Functions 109

8 - Axis Specification

8.1 Totals in an Array

8.1.1 - Processing Arrays

We have seen the result of applying reduction to vectors, but what about matrices and higher

rank arrays?

As an example let us recall the array Prod. Its three dimensions represent respectively:

1 5 years

2 2 assembly lines

3 12 months.

We can calculate totals along any one of these 3 dimensions: Years, Lines, and Months.

We specify the dimension (or Axis) between brackets after the Reduction symbol:

+/[Axis] Prod

For example, suppose that we want to calculate the total production for the five years. Years

are represented by the 1
st
 dimension of Prod, so we write:

 +/[1] Prod
155 144 244 185 136 247 162 128 195 193 188 145
168 200 182 180 170 186 194 160 179 218 217 126

We obtain a 2 by 12 matrix, giving the production of the 2 assembly lines, month by month.

Now, let us add up the production numbers of the two assembly lines. Lines are represented

by the 2
nd

 dimension of Prod, so we write:

 +/[2] Prod
69 52 69 66 51 66 82 42 68 104 84 55
73 40 81 95 70 90 85 39 83 83 88 49
93 82 78 73 67 73 64 85 50 48 74 41
37 112 81 64 43 109 62 55 98 94 95 61
51 58 117 67 75 95 63 67 75 82 64 65

We obtain a 5 by 12 matrix, with the total production of both assembly lines, month by month,

in each of the 5 years.

110 Dyalog APL - Tutorial

And finally, let us calculate the annual production of each assembly line. Months are

represented by the 3
rd

 dimension of Prod, so we write:

 +/[3]Prod
334 474
449 427
367 461
490 421
482 397

The result is a 5 by 2 matrix, in which the columns contain the annual production of the two

assembly lines in each of the five years.

8.1.2 - Axis Is Like an Operator

The dimension specified within brackets is the axis along which the function is applied.

This produces a derived function, and for this reason, the pair of Axis brackets is often called

the Axis Operator.

The syntax for Axis does not quite follow the general syntax for operators, but it shares all

other properties with genuine operators. Axis takes a function as its left operand (the derived

function +/ in the last example above), the dimension specification as its “right operand” (3 in

the example), and produces a derived function, which is applied to Prod to calculate the

annual sums.

Viewed as an operator Axis is therefore dyadic. It is, however, important to emphasise that its

"right" argument is not Prod, it is the expression within the brackets. This shows that a dyadic

operator does not need to have two functions as operands; one of them may be an array.

8.1.3 - Processing Arrays

We shall learn more about Axis in Chapter J; let us first explore another simple use of this

operator.

Suppose that we would like to multiply each of the rows (or columns) of a matrix by different

values; we can use Axis to specify whether we multiply row-wise or column-wise, like this:

Here is the matrix Let us multiply row-wise and now column-wise

 Tam Tam×[1]5 2 10 Tam×[2]2 5 0 2 1

 2 3 5 8 8 10 15 25 40 40 4 15 0 16 8
 4 6 2 5 9 8 12 4 10 18 8 30 0 10 9
 1 4 9 7 8 7 28 63 49 56 2 20 0 14 8

 Chapter C – Some Primitive Functions 111

8.2 The Shape of the Result

The dimensions of Prod are: 5 2 12

+/[1]Prod sums the 1st dimension and gives a result of shape 2 12

+/[2]Prod sums the 2
nd

 dimension and gives a result of shape 5 12

+/[3]Prod sums the 3
rd

 dimension and gives a result of shape 5 2

You can see that Reduction of a 3-D array gives a 2-D array, in which the summed dimension

has "disappeared". This is the origin of the term "Reduction"; it reduces the rank of the array.

This rule will help you predict the dimensions of the result of a reduction.

Rule

When Reduction is applied along the N
th

 dimension of an array, the shape of the result is

the same as the shape of the array, but without its N
th

 item.

The Rank of the result is 1 less than the rank of the original array.

Whenever you want to calculate the sum along a particular dimension of an array, think of the

dimensions in terms of concrete things: Years, lines, months, etc. This should help you.

8.3 Special Notations

By default, if no axis is specified, reduction is applied along the last dimension of the array.

So +/ Prod is equivalent to +/[3] Prod

and +/ Forecast is equivalent to +/[2] Forecast

But it is also common to work along the first dimension of an array. For this reason, APL

includes a special symbol for reduction along the first dimension: ⌿

So +⌿ Prod is equivalent to +/[1] Prod

and +⌿ Forecast is equivalent to +/[1] Forecast

Note: if one specifies an axis after the symbol / or ⌿, the function is applied along the

specified Axis, whichever symbol is actually used. For example:

 +⌿[3] Prod is equivalent to +/[3] Prod

 +/[1] Forecast is equivalent to +⌿[1] Forecast

112 Dyalog APL - Tutorial

9 - Our First Program

The expression we wrote in section 7.6 to calculate the average of a set of values, is one that

we may want to use time and time again. So let us store it as a program, or, to use the proper

APL terminology, as a User Defined Function.

There are many different ways to define functions, and these will be covered in detail in

Chapter D. For now we shall use the simplest, which is perfectly suitable for straightforward

calculation functions like this one. Let's type:

 Average ← {(+/∱)÷(∰∱)}

Average is the name of the function.

 It is followed by the definition, delimited by a pair of curly braces { and }.

∱ is a generic symbol that represents the array that will be passed as the right

 argument of the function.

∭ is a generic symbol that represents the array that will be passed as the left

 argument of the function, if any.

The symbols ∱ and ∭ are obtained using Ctrl+W and Ctrl+A, respectively.

For more complex multi-line functions it is obviously more appropriate to use a text editor.

However, this is beyond the scope of this chapter.

Once defined, this function may be invoked directly, just as if it were a built-in (primitive)

function:

 Average Val
31.1428571428

 Average 12 74 56 23
41.25

The word Average can now be used in any APL expression. We have enriched the

vocabulary which can be used to process data in this workspace (provided that we save it).

Be patient: We shall see many other possibilities in Chapter D.

 Chapter C – Some Primitive Functions 113

10 - Concatenation

Concatenation is a dyadic function which joins two arrays together. It is represented by

comma (,). The function name is normally abbreviated to Catenate, and we will use both

terms.

10.1 Concatenating Vectors

Catenate is easy to understand:

 A ← 24 15 67 89

 B ← 11 33 75

 A,B
24 15 67 89 11 33 75

It is like joining two sentences together, so it is easy to remember which symbol to use.

You can see that ∰(A,B) is equal to (∰A) + (∰B).

Character strings are processed in the same way:

 A ← 'Tell me'

 B ← 'More'

 A,B
Tell meMore

Note that there is no space inserted between the contents of the two vectors. When we join a

vector of 7 characters to a vector of 4 characters, the result must have 11 characters.

When you concatenate an empty vector to another vector, the result is the same as the

original:

 N ← 24 15 67 89

 V ← 0∰0 We could use ⍬ instead.

 N,V
24 15 67 89 The numeric vector remains unchanged.

 A,'',B
Tell meMore The text is unchanged.

114 Dyalog APL - Tutorial

10.2 Concatenating Other Arrays

It is possible to concatenate two arrays if their shapes are compatible. The axis along which

the concatenation is to be performed must be specified, if it is different from the default.

Let us use three matrices A, B, and C:

 The shape of A is 3 4 A ← 3 4 ∰ 'A'

 The shape of B is 2 4 B ← 2 4 ∰ 'B'

 The shape of C is 3 3 C ← 3 3 ∰ 'C'

The possible concatenations are:

A
 This is obtained by :

A,[1] B

The shape of the result is 5 4

B,[1] A would have put B on top of A B

A C
 This is obtained by A,[2] C

The shape of the result is 3 7

C,[2] A would have put C to the left of A

It is not possible to concatenate B and C, because none of their dimensions are compatible.

In the same way as for Reduction, the Axis operator indicates which dimension will change

during the operation, as we can see:

In the first case: Shape of A 3 4

 Shape of B 2 4

 Shape of A,[1]B 5 4 The 1
st
 dimension changes

In the second one: Shape of A 3 4

 Shape of C 3 3

 Shape of A,[2]C 3 7 The 2
nd

 dimension changes

 Chapter C – Some Primitive Functions 115

The following table shows the four possible different catenations side by side:

A,[1]B B,[1]A A,[2]C C,[2]A

 AAAA BBBB AAAACCC CCCAAAA
 AAAA BBBB AAAACCC CCCAAAA
 AAAA AAAA AAAACCC CCCAAAA
 BBBB AAAA
 BBBB AAAA

Rule

It is possible to Concatenate two arrays A and B along their I
th

 dimension provided that

they have the same rank, and provided that all other dimensions have the same lengths.

The operation is written like this: A,[I] B

It is also possible to Concatenate an array A of rank N to another array B of rank N-1.

The concatenation must then be done along a dimension of A such that its other

dimensions are strictly identical to those of B.

For example, it is possible to concatenate a vector to a matrix, provided that the vector has the

same length as the corresponding dimension of the matrix:

 A,[1]'JUMP' A,[2]'TOP'

 AAAA AAAAT
 AAAA AAAAO
 AAAA AAAAP
 JUMP

In the first example: The shape of A 3 4

 The shape of B 4 We must catenate along [1]
 We add one row 1

 The shape of A,[1]B 4 4 The 1st dimension changes

In the second example: The shape of A 3 4

 The shape of B 3 We must catenate along [2]
 We add one column 1

 The shape of A,[2]B 3 5 The 2nd dimension changes

116 Dyalog APL - Tutorial

Example 1

We can add a row of totals to the bottom of a matrix with an expression like this:

 Forecast,[1] (+/[1] Forecast) The parentheses are for ease of interpretation;

150 200 100 80 80 80 they are not necessary.
300 330 360 400 500 520
100 250 350 380 400 450
 50 120 220 300 320 350
600 900 1030 1160 1300 1400

Example 2

In a similar way, it is possible to concatenate a matrix to a 3-D array.

Suppose you have a 3-D array A whose dimensions are 3 4 6, and a matrix B whose

dimensions are 3 6. These two arrays may be catenated together:

In this case: The shape of A 3 4 6

 The shape of B 3 6 You must catenate along [2]
 We add one layer 1

 The shape of A,[2]B 3 5 6 The 2
nd

 dimension changes

For example we would like to append to Prod the production of a subcontractor, organised as

an array of 5 years and 12 months.

 Subcon
 0 0 0 0 0 0 5 6 6 6 6 7
 7 7 7 8 10 10 10 10 8 7 8 10
10 10 12 11 12 10 11 9 6 6 6 8
 8 9 14 15 18 19 20 19 20 17 15 14
14 15 18 18 13 12 10 10 11 11 11 11

The shape of Prod is 5 2 12

The shape of Subcon is 5 12

They must be concatenated along the 2
nd

 dimension of Prod

And the result will have the shape 5 3 12

You see, it is as if Subcon had the length 1 along the concatenation (missing) dimension.

 Chapter C – Some Primitive Functions 117

 Prod,[2] Subcon
26 16 22 17 21 44 25 22 23 44 41 33
43 36 47 49 30 22 57 20 45 60 43 22
 0 0 0 0 0 0 5 6 6 6 6 7

44 21 58 57 17 43 47 17 43 26 53 23
29 19 23 38 53 47 38 22 40 57 35 26
 7 7 7 8 10 10 10 10 8 7 8 10
… and so on.

10.3 Concatenating Scalars

When a scalar is concatenated to an array it is repeated as many times as necessary to match

the length of the appropriate dimension of the array.

Here are two examples, using the matrix A, described above:

A,[1] '-' A,[2] '*'

AAAA AAAA*
AAAA AAAA*
AAAA AAAA*

This property is very useful, because its saves us working out how many items are needed to

match the corresponding dimension of the array.

We can also concatenate two scalars. The result is of course a two-item vector:

 7,9
7 9

10.4 Special Notations

By default, if no axis is specified catenation works along the last dimension of the array(s).

So A,C is equivalent to A,[2] C

APL also includes a special symbol that means "Concatenate along the First dimension"; this

symbol is a comma topped by a minus sign: ⓐ.

It can be obtained by Ctrl+Shift+@ (UK) or Ctrl+Shift+~ (US).

So AⓐB is equivalent to A,[1] B

118 Dyalog APL - Tutorial

If an axis is specified, the operation is processed according to the axis specification,

whichever symbol (, or ⓐ) is used.

So A,[2] C and Aⓐ[2] C are both equivalent to A,C
and A,[1] B and Aⓐ[1] B are both equivalent to AⓐB

11 - Replication

11.1 Basic Approach: Compression

To extract scattered values from a vector, we can use indexing:

 Contents[5 6 11]
85 96 82

We can also use a new function named Compression (or Compress). It takes a Boolean vector

as its left argument, and any array of appropriate shape as its right argument. The items of the

right argument which match the 1s in the left argument are preserved, whereas those which

match the 0s are removed. It acts like a mask or a filter:

 0 1 1 0 / 42 15 79 66
15 79

 1 0 1 0 0 0 0 1 1/'Drumstick'
Duck

This is extremely useful, because we can use Compression to select items which match a

given condition.

For example, let us extract from Contents the values which are greater than 80.

The Boolean vector for the left argument is obtained by Contents>80, and the selection is

made by:

 (Contents>80) / Contents
85 96 82

Of course, the same operation can be applied to any array, provided that one specifies which

axis is concerned. For example, if we have a matrix of chemical formulas:

 Chemistry
H2SO4
CaCO3
Fe2O3

 Chapter C – Some Primitive Functions 119

 1 0 1 /[1] Chemistry
H2SO4 Two rows are selected, corresponding

Fe2O3 to the two 1s in the vector on the left.

 1 1 0 1 0 /[2] Chemistry
H2O Only 3 columns are selected;

CaO columns 3 and 5 have been removed.
FeO

Compression is an excellent tool which allows you to:

 extract some useful items from a variable,

 or remove some unwanted items from a variable, which is the same thing.

Advice

Every time you obtain a Boolean vector, you should immediately think of two major things

you can do with it: Count or select.

For example, using Contents, we can produce a Boolean vector that shows which items are

smaller than 50: bin ← Contents<50. Then, we can:

 count the items: +/ bin gives 5

 select (or extract) the items: bin / Contents gives 12 30 22 44 27

Hint

Programmers who are new to APL and who are familiar with indexing as the natural selection

mechanism may be tempted to use the Boolean selection vector to create some indexes, and

then use the indices to select the desired items. This works very well, for example:

 ix ← bin / ∯∰Contents

 Contents[ix]
12 30 22 44 27

However this is an unnecessary complication that wastes memory and processing time,

compared to the straightforward selection shown above.

120 Dyalog APL - Tutorial

11.2 Replication

In fact, Compression is just a special case of a more comprehensive function named

Replication or Replicate. Its left argument can be any vector of integer values, each of which

produces the following result:

If the left item is positive each item in the right argument is replicated the number of

 times specified by the corresponding item of the left

 argument.

If the left item is zero the corresponding item in the right argument is suppressed.

If the left item is negative the corresponding item in the right argument is replaced by

 as many "Fill items" as is indicated by the corresponding item

 in the left argument.

The concept of a "Fill item" is new and will be discussed in full in Chapter I on “Nested

Arrays”. For now, you need only to know that the fill item for a simple numeric array is 0,

and the fill item for a simple character array is a space (blank).

Here are some examples, using the same left argument applied to numeric and character

vectors:

 0 1 3 0 / 42 15 79 66 42 and 66 have been removed, 15 has been kept,
15 79 79 79 and 79 has been replicated 3 times.

 0 1 3 0 / 'boat'
oaaa

 2 ¯3 1 0 / 42 15 79 66 15 has been replaced by 3 zeroes,
42 42 0 0 0 79 because it is numeric.

 2 ¯3 1 0 / 'boat' 'o' has been replaced by 3 spaces,
bb a because it is character.

11.3 Scalar Left Argument

If the left argument of Compression or Replication is a scalar, it applies to all the items of the

right argument.

 v ← 'Phew'

 1/v
Phew All the items are retained

 3/v
PPPhhheeewww All the items are repeated 3 times.

 0/v All the items are removed; nothing is left.

 The result is an empty vector.

 Chapter C – Some Primitive Functions 121

11.4 Special Notations

Like Reduction and Catenation, Replication works by default along the last dimension of an

array. However, it is possible for it to work on the first dimension using the symbol ⌿, which

we have already seen.

For example

 0 1 0 ⌿ Chemistry Equivalent to: 0 1 0/[1] Chemistry
CaCO3

Beware: The result obtained this way is not a vector, but a matrix having only one row.

You must not confuse Reduction and Replication: Even if the symbol used is the same, they

are completely different operations:

Reduction takes a function as its (left) argument (operand); it is an operator+/ Contents

Replication takes a vector as its left argument; it is a simple function vec/ Contents

12 - Position (Index Of)

12.1 Discovery

It is very often necessary to locate the positions of particular values in a list of items. To solve

this, APL has a special function named Position (also called "Index Of"), represented by the

Greek letter Iota (∯). This symbol can be obtained by Ctrl+I (the initial letter of Iota). Let us

see how it works:

 Vec ← 15 42 53 19 46 53 82 17 14 53 24

 Vec ∯ 19 14 53 49 15 We ask for the positions of 5 values in Vec
4 9 3 12 1 and naturally we obtain 5 answers.

 The result tells us that 19, 14, and 15 appear in positions 4, 9, and 1 respectively.

 The result also tells us that 53 appears in position 3. This is of course true, but it also

appears in positions 6 and 10, which are not included in the result. This is a necessary

restriction: If we had searched for 5 values and obtained 7 results, it would not have been

possible to say where each value appears. This is the reason why Index Of returns only the

first occurrence of each value.

122 Dyalog APL - Tutorial

We shall see later that this is an advantage: If instead we need to find all the positions in

which a value occurs, there is another function that we can use (see section 13.2).

 Surprisingly the result tells us that 49 appears in position 12, though Vec has only 11

items! This is the way that Index Of indicates a missing value. We shall see that it is a

great advantage, too.

The following rule explains how dyadic Iota works:

In the expression: R ← Vec ∯ Data

 Vec Must be a vector.

 It can be of any type: Numeric, character, mixed, nested.

 Data Can be any array (any type, any shape, any rank).

 R Has the same rank and shape as Data

 The items of R contain the positions of the first occurrence of the corresponding

items of Data in Vec

 Items which do not appear in Vec give the result 1+∰Vec

 'ABC' ∯ 57 A number cannot appear in a character vector.
4

 4 8 ∯ '4 8' The result contains 3 items, because the blank
3 3 3 space between 4 and 8 is part of the vector.

 Alpha ← 'ABCDEFGHIJKLMNOPQRSTUVWXYZ 0123456789'

 Alpha ∯ Chemistry
8 30 19 15 32
3 38 3 15 31 Lower case letters give the answer 38
6 38 30 15 31 because Alpha has 37 items.

And on a nested array:

 'Tee' (3 7) 'Golf' ∯ 3 7 (3 7) 'Tee' 'Green'
4 4 2 1 4

The function Index Of is one of the most important primitive functions in APL. It is very

flexible, and it can be used in many situations, as shown in the following examples.

Warning: In the expression A∯B we search for B in A

 whereas in A∮B we search for A in B. Do not be confused!

 Chapter C – Some Primitive Functions 123

12.2 Application 3

A car manufacturer decides that he will offer his customers a discount on the catalogue price.

The country has been split into 100 geographic areas, and the discount rate will depend on the

geographic area according to the following table:

Area Discount

17
50
59
84
89

9 %
8 %
6 %
5 %
4 %

Others 2 %

The first task is to calculate the discount rate to be claimed for a potential customer who lives

in area D; for example D ← 84.

Let us begin by creating two variables with the values in the table above:

 Area ← 17 50 59 84 89

 Discount ← 9 8 6 5 4 2

Let us see if 84 is in the list of favoured areas:

 Area ∯ D
4 Yes; 84 is the 4th item in the list.

Let us find the current rate of discount for this index position:

 Discount[4]
5 This customer can claim a 5% discount.

We could simply write: Discount[Area∯D]

Now, what if a customer lives in any other area such as 75, 45, or 93?

The expression Area∯D will for all these area codes return the result 6, because these values

are absent from Area.

Then Discount[6] will always find the rate 2%, as specified. Here we can see that it is an

advantage that Index Of returns 1 + the number of items in the vector to be searched.

124 Dyalog APL - Tutorial

A Vector Solution

The importance of this approach to finding the discount rates is that it is vector-based.

Suppose that publicity attracts crowds and that therefore D is no longer a scalar but a vector,

the solution is still valid:

 D ← 24 75 89 60 92 50 51 50 84 66 17 89

 Discount[Area∯D]
2 2 4 2 2 8 2 8 5 2 9 4

We have achieved all this without a program, neither a "loop" nor a "test". And it works for

any number of areas. Readers who know other programming languages will probably

appreciate the simplicity of this approach.

Generalisation

In reality, the expression that we have just written is an example of an algorithm for

"changing the frame of reference". Don’t panic, this term may seem esoteric, but the concept

is simple: a list of area numbers (the initial set) is translated into a list of discount rates (the

final set). The algorithm comprises only the function Index Of and indexing:

R← FinalSet[InitialSet ∯ Values]

Let us imagine the initial set to be an alphabet composed of both lowercase and uppercase

letters, and the final set to be composed of only uppercase letters, with a blank space in the

middle:

 AlphLower
abcdefghijklmnopqrstuvwxyz ABCDEFGHIJKLMNOPQRSTUVWXYZ

 AlphUpper
ABCDEFGHIJKLMNOPQRSTUVWXYZ ABCDEFGHIJKLMNOPQRSTUVWXYZ*

Now, let us write a sentence; we will write it in French in order only to show what happens

with missing characters.

 Tale ← 'Le Petit Chaperon-Rouge a bouffé le Loup'

If we apply the algorithm seen above, the expression will convert the text from lower to upper

case:

 AlphUpper[AlphLower∯Tale]
LE PETIT CHAPERON*ROUGE A BOUFF* LE LOUP

As one might expect, the characters – and é, which are absent from the initial alphabetic set,

have been replaced by the *, the “extra” character at the end of the final set. This works

because once again the final set is one item longer than the initial set.

 Chapter C – Some Primitive Functions 125

Once more, the logical steps needed to solve the problem are easily translated into a

programming solution, and the programmer can thereby direct all his attention to solving the

problem.

13 - Index Generator

13.1 Basic Usage

When used as a monadic function, the symbol Iota generates a vector of the first N integers. It

is called Index Generator.

 ∯ 9
1 2 3 4 5 6 7 8 9

If we have to extract the first 12 items of a vector Vec, we can write:

 Vec[1 2 3 4 5 6 7 8 9 10 11 12]

It is, of course, much easier to write Vec[∯12]

The result can be combined with simple arithmetic operations. For example, suppose we need

to produce the following list of 6 values: 115 122 129 136 143 150 (note the increments of 7).

We can do this as follows:

 ∯6 is 1 2 3 4 5 6
 (∯6)-1 is 0 1 2 3 4 5
 7∲(∯6)-1 is 0 7 14 21 28 35
 115+7∲(∯6)-1 is 115 122 129 136 143 150

More generally, any arithmetic series of integers can be produced by the following formula:

R ← Origin + Step × (∯Length) - 1

Special Case

If ∯N gives a vector of length N, then ∯0 should give a vector of length 0, right? A vector

having length 0 is an empty vector. Let us check:

 ∯0
 Nothing appears: It's an empty vector.

126 Dyalog APL - Tutorial

Traditionally, ∯0 was a convenient expression to generate an empty numeric vector. Now,

with modern versions of APL, it is easier to use the symbol Zilde (⍬).

Generalisation

The definition of ∯N given above reflects only a limited part of what this function can do; you

will find more information in the Specialist's Section at the end of this chapter.

13.2 Application 4

You probably remember that the function Index Of returns only the first occurrence of a value

in a vector (cf. section 12.1). Using monadic Iota we can build an algorithm to find all the

occurrences.

Here is a vector, in which we would like to find the positions of the number 19:

 Vec ← 41 17 19 53 42 27 19 88 14 56 19 33

Vec=19 0 0 1 0 0 0 1 0 0 0 1 0
∯∰Vec 1 2 3 4 5 6 7 8 9 10 11 12

If we compress the second vector by the first one, the only items that will remain will be the

positions of the target value:

 (Vec=19)/∯∰Vec
3 7 11

The same technique will work on characters. Lets us search for the letter "a" in a character

vector:

 Phrase ← 'Panama is a canal between Atlantic and Pacific'

 (Phrase='a')/∯∰Phrase
2 4 6 11 14 16 30 36 41 You can check it!

A Touch of Modern Maths

Having found all the "a"s, we may wish to find all the vowels.

Alas, although the expression Phrase='a' works because a vector can be compared with a

single value, the obvious solution Phrase='aeiouy'3
 does not. It is not possible to make an

item by item comparison of a phrase of 46 letters with "aeiouy", which has only 6 letters.

In other words: one may compare 46 letters with 46 other letters, or compare them with one

letter, but not with 6 letters.

3
 The letter "y" is considered a vowel in many European languages.

 Chapter C – Some Primitive Functions 127

Fortunately, the function Membership does exactly what we want:

 (Phrase ∮ 'aeiouy') / ∯∰Phrase
2 4 6 8 11 14 16 20 23 24 30 33 36 41 43 45

More generally, this algorithm can be used to search for some Data in a Vector:

R ← (Vector ∮ Data) / ∯∰Vector

13.3 Comparison of Membership and Index Of

We have discovered two different techniques, using the primitive functions, Index Of,

Membership, and Index Generator, that allow us to look up one set of values in another and to

determine the positions of the items of one set in the other. Depending on the problem that we

have to solve, we can choose which of the two methods will be most appropriate for the job in

hand. Consider the following example:

13.3.1 - Example

A company named Blue Hammer Inc. has subsidiaries in a number of countries; each

country being identified by a numeric code. The country names are stored in a matrix named

Countries, and the country codes are stored in a vector named Codes. To make things

easier to read, let us show those two variables side by side:

 Countries Codes

France 50
Great Britain 43
Italy 12
United States 83
Belgium 64
Swiss 34
Sweden 66
Canada 81
Egypt 37
etc... etc...

So, Sweden is identified by 66, and Belgium is identified by 64.

All the sales made during the last month have been recorded in two vectors:

BHCodes indicates in which country each sale has been made, and

BHAmounts indicates the amount of each sale.

128 Dyalog APL - Tutorial

Here are the two vectors. Many countries have not sold anything, whereas some countries

(like 12 and 83) have made several sales:

BHCodes 83 12 12 83 43 66 50 81 12 83 14 66 etc...
BHAmounts 609 727 458 469 463 219 431 602 519 317 663 631 etc...

13.3.2 - First Question

We would like to focus on some selected countries (14, 43, 50, 37, and 66) and calculate the

total amount of their sales. Let’s first identify which items of BHCodes are relevant:

 Selected ← 14 43 50 37 66

 BHCodes ∮ Selected
0 0 0 0 1 1 1 0 0 0 1 1 0 1 0 Identifies sales in the selected countries only.

Then we can apply this filter to the amounts, and add them up:

 (BHCodes ∮ Selected) / BHAmounts
463 219 431 663 631 421

 +/ (BHCodes ∮ Selected) / BHAmounts
2828

An alternative solution is to find the positions of the selected countries, then using this set of

indexes to get the amounts, and add them. The result is of course the same:

 Positions ← (BHCodes ∮ Selected) / ∯∰BHCodes

 +/ BHAmounts[Positions]
2828

As mentioned in Section 11 it is a kind of detour to solve this task using indexing, but here it

serves to illustrate the different lookup methods.

Let us take a look at the selected countries and their positions in BHCodes:

Selected is 14 43 50 37 66
Positions is 5 6 7 11 12 14

Using Membership, we have obtained Positions which contains 6 items for the 5 countries

in Selected. What does it tell us?

 Positions contains the indices of all of the occurrences of the selected countries in the

list of sales.

 However, the items in Positions do not correspond to the items in Selected on a one-

to-one basis; we cannot say that country #14 is in position 5, or country #43 in position 6,

and so on.

 It does not tell us that nothing was sold in country #37. Perhaps it would have been a good

idea to identify this fact?

 Chapter C – Some Primitive Functions 129

13.3.3 - Second Question

Now, let us suppose that we want to display the names of the selected countries. To do this,

we must determine the positions of the selected country codes in the entire list of country

codes, and get the corresponding names.

If we use the Membership approach , here is what we get:

 Selected Just to remind you of the values.
14 43 50 37 66

 Positions ← (Codes ∮ Selected) / ∯∰Codes

 Countries[Positions;] ,[2] Selected
France 14
Great Britain 43 We concatenated a numeric vector to a character
Sweden 50 matrix; the result is a Mixed matrix.
Egypt 17
Brazil 66

At first sight, this seems to be good: all the selected countries are displayed. However, they

are not in the correct order: 14 is not France but Brazil, 43 is Great Britain, but 50 is not

Sweden, it is France, and so on.

The problem with this method is the lack of a one-to-one correspondence between the selected

countries and their positions in the list of sales. The positions will always be in the order that

the countries appear in Countries - because of the expression ∯∰Codes. However, the order

of the selection vector, the result of the expression (Codes ∮ Selected), is completely

independent of the order of the items in Selected: The expression returns the same result no

matter how Selected is ordered.

The correct method to use in order to solve this task is to use the Index Of function (dyadic

Iota):

 Positions ← Codes ∯ Selected It is even a simpler expression.

 Countries[Positions;] ,[2] Selected
Brazil 14
Great Britain 43
France 50 That's correct now!
Egypt 17
Sweden 66

It is the one-to-one relationship between the items of the right argument to Index Of

(Selected) and the items of its result (Positions) that guarantees a correct result.

130 Dyalog APL - Tutorial

13.3.4 - Comparison

The following table summarizes the most important properties of the two methods:

Pos←(List∮Data)/∯∰List

 The items in Pos do not have a 1-to-1correspondence

with the items in Data.

 Instead the items in Pos correspond to the items in

List.

 Pos gives all of the positions of multiple occurrences

of List in Data.

 Pos does not explicitly identify missing values.

Pos←List ∯ Data

 The items in Pos do have a 1-to-1correspondence with

the items in Data.

 Pos ignores multiple occurrences; just gives the first.

 Pos identifies missing values by the value 1+∰List.

The choice of method depends on the kind of problem you want to solve.

13.4 Idioms

The expression (Vec∮Data)/∯∰Vec is what we call an Idiom; that is to say an expression

which can be understood as an entity at first sight (with some practice!).

For someone who knows nothing of APL the expression above may be completely obscure

(even if he has an extensive knowledge of other programming languages), and he cannot

readily appreciate that an APL programmer can understand it immediately, without having to

read each of the symbols one by one.

This is not a paradox. For young children, reading the word "Daddy" is complex: It requires

the comprehension of a sequence of letters one-by-one. I presume that you no longer do that,

do you? You do not read the letters; you understand the word as a whole. This is exactly the

same for the above idiom.

Incidentally, it is not just the APL programmer who is capable of processing an idiomatic

expression in its entirety. Dyalog APL itself includes a special Idiom Recognition feature that

speeds up the processing of APL code for many popular idioms.

 Chapter C – Some Primitive Functions 131

13.5 Application 5

Sometimes, a programmer needs to remove duplicate items from a vector and there is well-

known idiomatic way to do this. The idiom applies equally to numeric, character and nested

vectors. Let us begin with a numeric vector:

 Vec ← 12 89 57 46 12 50 36 37 83 46 27 12

The algorithm is based on the comparison of two vectors:

∯∰Vec gives the position of each item of Vec:

 1 2 3 4 5 6 7 8 9 10 11 12

Vec∯Vec may be a bit more complex to understand: We use ∯ to identify the positions

of the items of Vec in Vec itself. But because Index Of only returns the first

occurrences, we get, for each item, the position where this value appears for

the first time:

 1 2 3 4 1 6 7 8 9 4 11 1

Let us write those two vectors one under the other:

∯∰Vec 1 2 3 4 5 6 7 8 9 10 11 12 Actual positions

Vec∯Vec 1 2 3 4 1 6 7 8 9 4 11 1 First occurrences

(∯∰Vec)=(Vec∯Vec) 1 1 1 1 0 1 1 1 1 0 1 0 Comparison

If the position of an item matches the position of its first occurrence it must be retained,

otherwise it is a second (or third…) occurrence, and it must be removed. So the final

algorithm is as follows:

((∯∰Vector) = Vector ∯ Vector) / Vector

 ((∯∰Vec)=Vec∯Vec)/Vec
12 89 57 46 50 36 37 83 27 Duplicate values have been removed.

It also works on character arrays and on nested arrays:

 Text ← 'All men are created equal'

 ((∯∰Text)=Text∯Text)/Text
Al menarctdqu

132 Dyalog APL - Tutorial

Unique

Although still useful as an example, the idiom described above is now obsolescent, because a

primitive function has been added to APL to perform the same task.

This function, called Unique, is represented by the symbol ∪ (Ctrl+V) used as a monadic

function:

 ∪ Vec
12 89 57 46 50 36 37 83 27 It's so simple!

 ∪ Text
Al menarctdqu

 ∪ 'one' 'nine' 'five' 'nine' 'two' 'two' 'one'
 one nine five two

13.6 Application 6

Some applications of Index Generator are extremely basic, but so useful! Suppose that you

invest a certain sum of money, €6,000 for example, and you expect an interest rate of 4% p.a.

How is the investment expected to grow in the next 5 years?

You will have to calculate 1.04 to the power 0, 1, 2 , 3… The Index Generator will help us:

 6000×1.04*(∯6)-1
6000 6240 6489.6 6749.18 7019.15 7299.91

14 - Ravel

The function Ravel is represented by the monadic use of comma (,). Applied to any array, it

returns all its items as a vector.

Naturally, if the array is already a vector, Ravel does not change anything.

Let us see how it works on some matrices:

 Tests
11 26 22
14 87 52
30 28 19
65 40 55
19 31 64
33 70 44

 Chapter C – Some Primitive Functions 133

 ,Tests
11 26 22 14 87 52 30 28 19 65 40 55 19 31 64 33 70 44

The items of the matrix have been strung out and returned as a vector.

 Chemistry
H2SO4
CaCO3
Fe2O3

 ,Chemistry
H2SO4CaCO3Fe2O3

A common use of Ravel is to transform a scalar into a one-item vector. The difference

between a scalar and a one-item vector is not readily obvious, until you use it as an index into

a matrix.

Suppose that you need to select a particular set of columns Cols from the matrix Forecast.

As long as Cols contains more than one value, the result will be a matrix:

 Cols ← 1 4 6

 Forecast[;Cols]
150 80 80
300 400 520
100 380 450
 50 300 350

But if Cols happens to have only a single value, which is a scalar, the result returned is a

vector (we already mentioned this in B-5.3):

 Cols ← 4

 Forecast[;Cols]
80 400 380 300

The rank of the result may be critical if some other expression in your program expects a

matrix.

To make certain that your indexing expression always returns a matrix, you must ensure that

your index will always be a vector by using Ravel:

 Forecast[;,Cols] Whatever the rank of Cols, the result

 80 will always be a matrix.
400
380
300

Ravel can be associated with an Axis specifier; this will be discussed in the Specialist's

Section.

134 Dyalog APL - Tutorial

15 - Empty Vectors and Black Holes

When we apply a scalar dyadic function to a vector and a scalar, the rule is that the result has

the same size as the vector:

 42 75 86 31 + 10 A scalar added to a 4-item vector
52 85 96 41 gives a 4-item vector, too.

 'MAMMOTH' = 'M'
1 0 1 1 0 0 0

But what happens if the vector is empty? The rule says that the result must have the same size

as the vector: Therefore it should be empty, too, regardless of the (scalar) function that we

used!

 Hole ← ⍬ Any other method (like ∯0) would be OK.

 Hole + 3
 Nothing is displayed: The result is empty.
 Hole × 100
 The same.
 Hole = 0

 Hole = Hole
 Help! What can we do?

 ∰Hole
0 Phew! This result explains everything.

Empty vectors look very much like black holes: They absorb everything (but only when used

with scalar functions). This may lead to some unexpected results.

Unexpected Consequences

You may remember that we wrote a function to calculate the average of a vector (see section

C-9). Let us use it on a series of vectors, reducing the length of the vector each time:

 Average 48 73 21
47.33333333 OK.

 Average 48 73
60.5 OK.

 Average 48
 No answer: The result is empty, but WHY?

 Chapter C – Some Primitive Functions 135

Let us take a look at the definition of that function (double-click on its name):

 Average ← {(+/∱)÷(∰∱)}

When the function processes a scalar like 48, the expression (∰∱) gives an empty result.

Then, when we use this empty vector to divide into the sum, we get another empty result!

To compensate for this, we can first transform the argument of the function into a vector using

Ravel. So, the new improved definition of the function is as follows:

 Average ← {(+/∱)÷(∰,∱)} Note the comma between ∰ and ∱.

 Average 48
48

136 Dyalog APL - Tutorial

Exercises

Warning! The following exercises are designed to train you, not the computer.

For that reason, we suggest that you try to answer them on a sheet of paper, not on

your computer. When you are sure of your answer, you can test it on the computer.

C-1 Can you evaluate the following expressions?

3 ∲ 2 + 6 ≠ 3 ∲ 2

12 6 27 ⌊ 11 + ∯3

4 5 6 ⌈ 4 + 2 5 9 > 1 6 8

7 ⌊ 25 6 17 - (2 × 3) + 9 3 5

((8 + 6) × 2 + 1) × 3 - 6 ÷3

(∰4⌈5) + 4⌈5

C-2 Try to evaluate the following expressions.

Be careful: They are not as simple as might first appear!

2 2+2 2

2+2 2+2

2+2,2+2

2,2+2,2

C-3 Given the following vector: A ← 8 2 7 5

Compare the results obtained from the following sets of expressions:

1+∰A and ∰A+1
1+∯∰A and ∯¯1+∰A and ∯∰A-1

C-4 Using your knowledge of the order of evaluation in APL, re-write the following expressions

without using parentheses.

((∯4)-1)⌈3

7⌊(∯9)⌈3

1+((∯5)=1 4 3 2 5)∲5

 Chapter C – Some Primitive Functions 137

C-5 Given a variable A, find an expression which returns the answer 1 if A is a scalar, and 0 if it is

not.

C- 6 Given two scalars A and B, write an expression which gives 7 if A is greater than or equal to B,

and 3 if A is smaller than B.

C-7 Given two scalars A and B, find an expression which returns:

 an empty vector if A is zero, whatever the value of B

 0 if B is zero, but A is not

 3 if neither A nor B are zero

C-8 Broken keyboard!

Unfortunately, your keyboard has been damaged, and your ∧ and ∨ keys no longer work.

Which other symbols could you use to replace them?

You can test your solutions on these vectors: 0 0 1 1 and 0 1 0 1

C-9 Given these three vectors: G ← 1 1 1 0 0 1
 M ← 0 0 1 1 0 1
 D ← 1 0 1 0 1 0

Evaluate the following expressions:

a) G∨D e) G∧M∨D

b) ~G∧D f) (~D)∧(~G)

c) ~G∨~D g) (M⌈G)=(M⌊D)

d) D∧~G h) (M⌊G)≠(M⌈D)

C-10 Evaluate the following expressions:

a) 0 < 0 ≤ 0 = 0 ≥ 0 > 0

b) 'sugar' ∮ 'salt'

c) 11 ≠ '11'

d) '14' ∯ '41'

C-11 How many times does the letter "e" appear in the following character vector?

Tex ← 'The silence of the sea'

138 Dyalog APL - Tutorial

C-12 We have conducted some experiments on a variable Z:

2 ∰ Z returns 1 7

+⌿ Z returns 20

Z = 9 returns 0
 0
 1
 0

What is the value of Z?

C-13 We have conducted some experiments on a variable Z:

Z = 0 returns 0 1 0 0
 1 0 0 1

+/[2] Z returns 20 6

+/[1] Z returns 8 7 6 5

What is the value of Z?

C-14 What are all the positions of the letter "e" in the character vector specified in exercise C-11?

C-15 Given a vector Vec of any size and type (numeric or character), try to extract the items of Vec

which are in the odd positions (the 1
st
, the 3

rd
, the 5

th
…).

C-16 How many numbers are there in the variable Prod used in this chapter?

C-17 How is it possible to remove all the values which do not fall between 20 (inclusive) and 30

(exclusive) from a given vector?

C-18 In a vector, we would like to replace all the values that are smaller than 20 by 20, and replace

all the values that are greater than 30 by 30. How can we do that?

C-19 The following 5 expressions cannot be executed, but instead generate error messages; can you

say why?

a) 3+(5-(6+2)×4 d) ∰4 5 6+2 3-1

b) 121÷(∯4)-3 e) ∯4 0 ¯4+2 0 1

c) (¯X+5)*2

 Chapter C – Some Primitive Functions 139

C-20 Write an APL expression which produces a vector of 17 numbers, the first being 23, with each

subsequent number being equal to the preceding one plus 11.

C-21 In a shop, each product is identified by a code. You are given the list of the codes, and the

corresponding prices:

PCodes ← 56 66 19 37 44 20 18 23 68 70 82

Prices ← 9 27 10 15 12 5 8 9 98 7 22

A customer gives you a list of items he intends to buy as vector of code/quantity pairs: Code-

Quantity, Code-Quantity, and so on.

Wanabuy ← 37 1 70 20 19 2 82 5 23 10

Can you evaluate his bill? Note that this cannot be done easily in a single (and readable) APL

expression, and you will therefore need to write several expressions.

You can check your solution: The correct answer is 375.

C-22 We have organised a lottery, and we have created four vectors:

Tickets Numbers of all the tickets

Sold Numbers of the tickets which have been sold

Winners Numbers of the winning tickets

Ours Numbers of the tickets we bought ourselves

We also have a vector named Prizes. It has the same length as Winners, and it tells us the

value of the prize associated with each winning ticket.

For your convenience, these variables are provided in the workspace DyalogTutor_EN.

And now, try to answer the following 4 questions:

a) What are the numbers of the unsold tickets?

b) Are there some winning tickets which have not been sold?

c) How many winning tickets do WE have?

d) How much did we win?

C-23 Can you calculate all the divisors of an integer number N?

Solutions The solutions are given at the end of the book in Chapter X.

140 Dyalog APL - Tutorial

The Specialist's Section

Each chapter is followed by a "Specialist's Section" like this one.

This section is dedicated to skilled APLers, who wish to improve their knowledge.

You will find here rare or complex usages of the concepts presented in the chapter, or discover

extended explanations which need the knowledge of some symbols that will be seen much

further in the book.

If you are exploring APL for the first time,

skip this section and go to the next chapter.

Spe - 1 Division Control - ⎕DIV

We saw in Section C-2.2 that 0÷0 returns 1 because any number divided by itself should

give 1.

This may sometimes be inappropriate. Suppose that we want to calculate the sales growth for

5 products, but the production of the 3
rd

 product has not started yet, so its sales are currently

zero:

 Before←20 31 0 120 63

 After← 22 27 0 149 59

The growth (in percent rounded) can be calculated like this:

 ⌊0.5+100× (After-Before)÷Before
10 ¯13 100 24 ¯6

It is rather surprising to see that we've got a 100% growth on a product that does not exist!

To avoid this dichotomy, a so-called System variable named ⎕DIV is included in Dyalog APL

to change the behaviour of division.

By default, ⎕DIV is zero, but can be set to 1: ⎕DIV ← 1.

With ⎕DIV set to 0 0÷0 gives 1

 Any other number divided by zero gives a DOMAIN ERROR.

With ⎕DIV set to 1 0÷0 gives 0

 Any other number divided by zero also gives 0

Because ⎕DIV is a variable, it can be localised in the header of a function. Then the particular

behaviour of division remains specific to that function and its sub functions.

 Chapter C – Some Primitive Functions 141

Spe - 2 Derived Functions

Let us sum the items of a vector: +/Contents

In this expression, the operator Reduction takes Plus as its argument (operand).

This pair of symbols creates a new function, a so called "Derived function". The derived

function is in this case monadic, and it takes the variable Contents as its argument.

Contents is not the right argument of /; it is the argument of the derived function +/.

This is so true that +/ could be parenthesised: (+/)Contents

It can also be given a name:

 AddUp ← +/

 AddUp 10 20 30
60

All operators create derived functions, i.e. functions that are derived from the function(s) they

accept as operand(s).

Spe - 3 Nor & Nand

APL Boolean algebra also includes two useful functions:

Nor (stands for Not-Or), represented in APL by ∷ (made of ~ over a ∨)

Nand (stands for Not-And) represented in APL by ∶ (made of ~ over a ∧)

These functions give the negation of Or and And respectively.

It means that: A∷B is equal to ~A∨B
 A∶B is equal to ~A∧B as shown below.

Assuming that A ← 0 1 0 1 and B ← 0 0 1 1, then we can compare:

Or A ∨ B gives 0 1 1 1
Nor A ∷ B gives 1 0 0 0

And A ∧ B gives 0 0 0 1
Nand A ∶ B gives 1 1 1 0

142 Dyalog APL - Tutorial

Warning!

Both ∨ and ∧ are associative. It means that:

(A∨B)∨C is equivalent to A∨(B∨C) and can be written A∨B∨C

(A∧B)∧C is equivalent to A∧(B∧C) and can be written A∧B∧C

This is not the case for Nor and Nand:

(A∷B)∷C is not equivalent to A∷(B∷C)

(A∶B)∶C is not equivalent to A∶(B∶C)

The consequence is that if Bin has more than 2 items:

∷/Bin is not equivalent to ~∨/Bin

∶/Bin is not equivalent to ~∧/Bin

This is probably the reason why those two symbols are rarely used in common business

applications, but they are extremely useful in electronic automation, because they represent

basic logical circuits.

Spe - 4 Index Generator of Arrays

We have given a limited definition of the Index Generator; here is a more general

presentation:

In the expression R ← ∯Dim

Dim represents the shape of an array (the array itself need not actually exist)

R is the set of indexes pointing to all items of that array

The shape of R is given by Dim, and each item of R is the index (or set of indices) of its own

items.

Some examples should help:

 If the shape of a vector is 5 the coordinates of its items are 1 2 3 4 5

 They are given by ∯5 1 2 3 4 5

 If the shape of a matrix is 2 3 the coordinates of its items are pairs going from

 (1 1), (1 2), ... up to (2 3)

 They are given by ∯2 3 1 1 1 2 1 3
 2 1 2 2 2 3

 If the shape of an array is ... 3 2 5 the coordinates of its items are triplets,

from (1 1 1) up to (3 2 5)

 Chapter C – Some Primitive Functions 143

 They are given by ∯3 2 5 1 1 1 1 1 2 1 1 3 1 1 4 1 1 5
1 2 1 1 2 2 1 2 3 1 2 4 1 2 5

2 1 1 2 1 2 2 1 3 2 1 4 2 1 5
2 2 1 2 2 2 2 2 3 2 2 4 2 2 5

3 1 1 3 1 2 3 1 3 3 1 4 3 1 5
3 2 1 3 2 2 3 2 3 3 2 4 3 2 5

More generally, any array is identical to itself indexed by Iota of its shape:

 Data is identical to Data[∯∰Data]

Spe - 5 Ravel With Axis

Ravel can be used with an Axis specifier, using the notation: R←,[Axis] Data

In this expression, Axis can be:

 An empty vector R← ,[⍬] Chemistry

 A decimal scalar, adjacent to an axis of Data R← ,[0.5] Contents

 A subset of the axes of Data R← ,[2 3] Prod

Spe-5.1 - Empty Axis

If Axis is empty, the result is obtained by appending a new dimension of size 1 to the list of

Data's dimensions.

It means that: if ∰Data is 8 then ∰,[⍬] Data will be 8 1

 if ∰Data is 3 7 then ∰,[⍬] Data will be 3 7 1

Example:

 ,[⍬] 'PUB' The original data is a 3 item vector.
P
U The result is a 3 by 1 matrix
B A second dimension of length 1 has been added

Spe-5.2 - Fractional Axis

If Axis is a fractional value, it is mandatory that it is "adjacent" to an existing dimension of

Data.

This means that for an array of rank 3, the axis must be a value between 0 and 4 (exclusive).

The result is derived from Data by inserting a new dimension of size 1 in the list of Data's

dimensions. The new dimension is inserted according to the value of Axis.

144 Dyalog APL - Tutorial

It means that: if ∰Data is 8 5 then ∰,[0.5] Data will be 1 8 5
 ∰,[1.5] Data will be 8 1 5
 ∰,[2.5] Data will be 8 5 1

 if ∰Data is 7 then ∰,[0.5] Data will be 1 7
 ∰,[1.5] Data will be 7 1

Examples:

 ,[1.5] 'PUB' The original data is a 3-item vector.
P
U The result is a 3 by 1 matrix.

B

 ,[0.5] 'PUB' The original data is a 3-item vector.
PUB The result is a not a vector, but a 1 by 3 matrix.

Those conventions are totally consistent with those defined for some other functions like

Laminate or Mix.

The actual value of the axis specification is not used for anything other than to determine

where to insert the new dimension. This means that, for example, all expressions of the form

,[1.xxx] will have the same effect as the ,[1.5] that we used above:

 ,[1.0123] 'PUB'
P
U The result is the same as above.

B

Spe-5.3 - A List of Dimensions

If Axis is a subset of the axes of Data, it is mandatory that they are contiguous and in

ascending order. It means that for an array of rank 3, the list of axes can be [1 2] or [2 3],

but neither [1 3] nor [3 2].

The result is obtained by unravelling Data so that the dimensions mentioned in Axis are

merged into a single dimension.

For example, imagine that Data is an array of shape 5 2 4 7:

,[1 2] Data gives a result of shape 10 4 7

,[2 3] Data gives a result of shape 5 8 7

,[3 4] Data gives a result of shape 5 2 28

,[1 2 3] Data gives a result of shape 40 7 and so on…

For example, you can try the two following operations:

,[1 2] Prod gives a matrix of shape 10 12

,[2 3] Prod gives a matrix of shape 5 24

 Chapter C – Some Primitive Functions 145

Spe-5.4 - Border Cases

 If Axis is reduced to a single value, the operation returns Data unchanged.

So: ,[1]Prod or ,[3]Prod both return Prod unchanged.

 If Axis contains the whole set of the axes of Data, the operation is equivalent to a simple

Ravel, and gives a vector of the items of Data.

So: ,[1 2 3]Prod is strictly equivalent to ,Prod.

For these reasons, Ravel with axes can only "collapse" dimensions of arrays of rank 2 or more.

Spe - 6 Residue

The formal definition of Residue R ← X|Y is the following: R ← Y-X∲⌊Y÷X+X=0

This formula confirms what we said in Section 2.6:

 if X is zero, X|Y is equal to Y

 R and X will always have the same sign.

146 Dyalog APL - Tutorial

147

Chapter D: User Defined Functions

1 - Landmarks

1.1 Some Definitions

In previous chapters we made a distinction between the functions and operators which are part

of APL, like + × ⌈ ∰ (we refer to them as primitives), and those functions and operators that

are created by the user which are represented not by a symbol but by a name, like Average or

Doitforme (we say they are user-defined).

We also made an important distinction between functions, which apply to data and which

return data, and operators, which apply to functions to produce derived functions (see C-7.2).

This means that we can distinguish between 4 major categories of processing tools:

Categories Examples Refer to

Built-in tools
Primitive functions + × ⌈ ∰ Previous chapters

Primitive operators / Chapter J

User-defined tools
User-defined functions Average This chapter

User-defined operators Section J-10

This chapter is devoted to user-defined functions. The subject of user-defined operators will

be covered later in Chapter J.

We can further categorise user-defined functions according to the way that they process data.

Firstly we can distinguish between Direct and Procedural functions.

148 Dyalog APL - Tutorial

Direct functions (commonly referred to as D-Fns
4
) are defined in a very formal manner.

They are usually designed for pure calculation, without any external or user

interfaces. D-Fns do not allow loops except by recursion, and have limited options

for conditional programming.

Procedural functions are less formal, and look much more like programs written in other

languages.

They provide greater flexibility for building major applications which involve user

interfaces, access to files or databases, and other external interfaces. Procedural

functions may take no arguments and behave like scripts.

Even though you may write entire systems with D-Fns, you might prefer to restrict their use to

short in-line statements, for example to run {a series of functions} on each item of an array.

The second distinction we can make concerns the number of arguments a user-defined

function can have.

Dyadic functions take two arguments, which are placed on either side of the function (X f Y).

Monadic functions take a single argument, which is placed to the right of the function (f X).

Niladic functions take no argument at all.

Ambivalent functions are dyadic functions whose left argument is optional.

1.2 Configure Your Environment

Dyalog APL has a highly configurable development and debugging environment, designed to

fit the requirements of very different kinds of programmers. This environment is controlled by

configuration parameters; let us determine which context will suit you best.

1.2.1 - What Do You Need?

All you need (except for love) is:

 a window in which to type expressions that you want to be executed (white Session

window)

 one or more windows in which to create/modify user-defined functions (grey Edit

windows)

 one or more windows to debug execution errors (black Trace window)

4 Direct functions or D-Fns were originally called "Dynamic functions", but today the term Direct is

preferred.

 Chapter D – User-Defined Functions 149

In Classic Dyalog mode, Edit and Trace windows can be "floating" windows which can be

moved freely anywhere on your screen, as shown here:

Figure D-1

Classic mode offers two benefits:

 You can easily display more than one function at a time. This makes it convenient to

Copy/Paste statements from one to another, or just to have an overall view of a collection

of related functions

 You can decide to have a single trace window (as shown) or a stack of trace windows,

showing which function calls which other. This will be described later.

Dyalog APL offers a second development environment scheme, more consistent with other

software development tools, in which it is possible to divide the session window into three

parts which can be resized, as shown here:

150 Dyalog APL - Tutorial

Figure D-2

Session window

 3×5
15

Edit window

Trace window

This configuration provides a single Edit window and a single Trace window, each of which is

"docked" along one of the Session window borders. You can dock these windows along any

of the Session window sides. For example, the figure below shows a configuration with three

horizontal panes, highly suitable for entering and editing very long statements.

Figure D-3

Edit window

This configuration is well suited to long statements

⍝ Session window
 Average 18 41 27 9
23.75

Trace window

Even when this configuration is selected, it is possible to grab the border of a sub-window

(Edit or Trace) and then drag and drop it the middle of the session window, as an independent

floating window.

The Edit window supports the Multiple Document Interfaces (MDI). This means that you can

work on more than one function at a time. Using the "Window" menu, you can Tile and

Cascade, or you can maximize any one of the functions to concentrate solely upon it.

If you are working on a relatively small screen you may find that the "Classic Dyalog mode"

works best for you, but it is of course up to you to decide which of the two modes you find is

most convenient.

You can reconfigure your environment at any time using: OptionsConfigurationTrace/Edit.

 Chapter D – User-Defined Functions 151

Figure D-4 - Dyalog Configuration box

You can select "Classic Dyalog mode" (recommended) or not.

If selected you can decide to have multiple trace windows or select "Single trace window".

We shall see in Section E-3.2 which option is best suited to the kind of work you are doing.

If you do not select the classic mode, the "Single trace window" option is hidden.

1.2.2 - A Text Editor; What For?

Some D-Fns can be defined by a single expression, and so do not require the use of a text

editor; we used this technique in C-9 to define a function named Average.

A single-line D-Fn may be defined using assignment, which is actioned when you press the

Enter key. This technique is clearly inappropriate for a multi-line function.

To define a multi-line function, the user must enter its statements in a separate window (the

text editor), and then fix (validate, establish) the entire set of statements as a new function. To

do this, the user can choose to use an external text editor, like Microsoft Notepad or Wordpad

(this is explained in Chapter R), or the built-in editor delivered with Dyalog APL.

152 Dyalog APL - Tutorial

2 - Single-Line Direct Functions

2.1 Definition

Single-line D-Fns are created like this: Name ← {definition}

Name is the function name.

It is followed by a definition, delimited by a pair of curly braces { and }.

This definition involves one or two variables named ∱ and ∭, which represent the

values to be processed, they are called arguments of the function.

∱ is a generic symbol which represents the right argument of the function.

∭ is a generic symbol which represents the left argument, if the function is dyadic.

We created a monadic D-Fn in C-9: Average ← {(+/∱)÷(∰∱)}

Here are two more dyadic D-Fns, and an example showing how they can be used:

 Plus ← {∭ + ∱}

 Times ← {∭ ∲ ∱}

 3 Times 7 Plus 9 This is strictly equivalent to 3×7+9
48 the order of evaluation is the same

The arguments ∱ and ∭ are read-only (they cannot be modified) and are limited in scope to

only being visible within the function itself.

The developer does not need to declare anything about the shape or internal representation of

the arguments and the result. This information is automatically obtained from the arrays

provided as its arguments. So, our functions can work on any arrays, as shown:

 12 Plus 2 3∰∯6 A scalar added to a matrix returns a matrix

13 14 15 No need to specify it
16 17 18
 7.3 Times 10 34 52 16 A vector of integer numbers multiplied by a

scalar
73 248.2 379.6 116.8 fractional number returns a fractional vector

Single-line D-Fns are well suited to pure calculation or straightforward array manipulation.

For example, here is how we can calculate the hypotenuse of a right-angled triangle from the

lengths of the two other sides:

 Chapter D – User-Defined Functions 153

 Hypo ← {(+/∱*2)*0.5}

 Hypo 4 3
5

 Hypo 12 5
13

2.2 Unnamed D-Fns

A Direct function can be defined and then discarded immediately after it has been used, in

which case it does not need a name. For example, the geometric mean of a set of N values is

defined as the N
th

 root of their product. The function can be defined (temporarily), used, and

then discarded, like this:

 {(×/∱)*÷∰∱} 6 8 4 11 9 14 7
7.865702202

This kind of function is similar to inline or lambda functions in other languages.

A special case is {}; this function does nothing. However, placed at the left of an expression,

it can be used to prevent the result of the expression from being displayed on the screen.

2.3 Modifying The Code

Single-line D-Fns may be modified using the function editor, as will be explained later for

procedural functions.

They can also be redefined entirely, as many times as necessary, as shown:

 Magic ← {∭+∱}

 Magic ← {∭÷+/∱} We create a function and then change it twice

 Magic ← {(+/∭)-(+/∱)} Only the last definition will survive.

Multi-line D-Fns will be studied later, after we have had time to practise using the function

editor.

154 Dyalog APL - Tutorial

3 - Procedural Functions

Procedural functions, which are commonly referred to as Trad-fns (short for Traditional

functions), are mainly used for complex calculations involving many variables, interactions

with a user, file input/output of data, etc. They look much like functions or programs in more

traditional programming languages.

3.1 A First Example

Procedural functions are composed of a Header and one or more statements (function lines),

so we need to invoke a text editor to enter these as lines of text. For now, we shall use the

Dyalog built-in editor.

As an example, let us see how we could define a function to calculate an average, with a

technique slightly different from the one we employed in C-9.

First of all, we must choose a name for our new function. Having already used the name

Average, let us choose Meanval.

Among the multiple ways of invoking the text editor let us use a very simple one: type the

command)ED followed by a space and the name of the function to create:)ED Meanval

A window appears which contains only the name we chose, as shown below:

Figure D-5

First, we must specify in the header that our function will accept an array (a vector of values)

on its right. We can represent the array with any valid name, for example vec; it is the

argument to our function.

 Chapter D – User-Defined Functions 155

Normally, we would obtain the average value by the simple formula (+/vec)÷(∰vec).

Here, just to produce a multi-line function, we shall split the process into a series of very

simple steps, as shown below: calculate the sum, then the number of values, and divide one by

the other.

Figure D-6

Note that the presence/absence of

line numbers is defined by a

configuration parameter.

You can toggle line numbers on/off

by pressing Ctrl together with the

numeric keypad minus

key, or by clicking

Our function looks fine, and we must now make it available for execution. The term we use to

describe this process in APL is to Fix the function. This is somewhat analogous to compilation

in other programming languages. There are 2 different ways to fix the function:

 The easy way: press the Escape key (or activate the FileExit menu).

It may seem strange to use the Escape key for a positive action, but this is largely

historical. Escape is used to fix the function and close its edit window.

 Activate the FileFix menu.

If you do so, the function is fixed, but its edit window remains open.

This is useful only if you intend to test the function, modify it, test it again, modify again,

etc, without closing the window.

Now the function exists and can be used

 Meanval 29 14 73 18 Process a vector of values

 No answer; something is going wrong!

Explanation

We executed the function, and no result appeared. In fact, in our function, we have told the

computer to create three variables sum, nb, and res, but which of them is the final result we

would like to obtain? Because the flow of a function can include loops, the final result is not

always the variable calculated on the last statement; the computer cannot guess!

We need a way to specify which variable is the result.

 To modify your function, just double-click on its name (or enter)ED Meanval again)

 Then, to the left of the header, add the text res← which does not mean "Put the result in

res ", but "Return the value contained in res".

 Fix this modification by pressing Escape again.

156 Dyalog APL - Tutorial

Figure D-7

Let us test it again:

 Meanval 29 14 73 18 Process the same values
33.5 Now, a result is produced, and it is good

3.2 Local Names

We might think that all is now well, but this is not the case, as we shall see.

 vec ← 17 29 32 43 Create a numeric vector

 Meanval vec Process it
30.25 That's fine!

 nb ← 8 3 7 4 6 1 5 4 Create a second one

 Meanval nb
4.75

 nb
8 Ooops, nb has been overwritten!

Apparently, we have a problem. Let us check the variables we used during function execution.

sum 134

nb 8

res VALUE ERROR

vec 17 29 32 43

This needs some explanation!

Although they are no longer useful, sum and nb remain as variables in the workspace after

they have been assigned values during the execution of the function:

 sum is correct, but is no longer useful after the function has terminated; we should find a

way to prevent it from remaining in our workspace.

 Chapter D – User-Defined Functions 157

 The variable nb now contains the value (the length of the argument, in this case 8) that

was calculated during the execution of the function. The value 8 has replaced the previous

value of the variable that we assigned to it (8 3 7 4 6 1 5 4). This is really

embarrassing, and should not happen!

 However, vec has not been overwritten, we can see that it still has its original value (17
29 32 43) although we applied the function to a different vector.

 And res no longer exists, though it has been calculated!

The reason is as follows: vec and res are temporary variable names used during function

execution; they are Local variables. Once execution is complete, these temporary variables

are destroyed, with slightly different consequences:

 The temporary variable res was created during function execution. But because res is

named as its result, when the function terminates, it returns its value and discards its

name. Hence the message VALUE ERROR when we asked for the value of res after the

function had finished.

 With regard to vec, the explanation is as follows:

o An "external" variable vec already contains some values: 17 29 32 43

o During execution, a temporary "local" variable also named vec receives the values

passed via the right argument; for example 8 3 7 4 6 1 5 4.

o The "external" value is hidden (we use the term shadowed) by the local one, so it is

the local value that is visible and used during function execution.

o At function completion, the "local" value is destroyed, revealing the "external" one

which is no longer hidden by it and becomes visible again.

All the names referenced in the function header are processed as Local names. Generally,

these are variable names, but we shall see very soon that they can also be function names.

However, all the variables created during execution which are not referenced in the header are

considered to be external references, outside the function. These names can refer to existing

variables, maybe producing undesirable side effects, and they will remain after execution.

They are Global variables.

To avoid any unpredictable side effects, it is recommended that you declare as Local all the

variables used by a function. This is done by specifying their names in the header, each

prefixed by a semi-colon, as shown on the following figure.

Modify your function again, as described above.

Important: Dyalog APL uses different colours for local and global names. In the previous edit

windows res and vec were black, indicating that they are local names, while sum and nb

were red, indicating that they are global names. You should see the colour changes while

making your modifications.

158 Dyalog APL - Tutorial

Figure D-8

The colours used here are the

default ones.

You can change the colours using

the Options Colours menu

To check if this works:

 First, let us remove the inappropriate variables produced by the old version of the

function:

)erase sum nb vec

 Then let us create two vectors in the workspace:

 nb←'Nobody will destroy me['

 vec←37 42 29

 Now we can apply our function to any set of values:

 Meanval 11 59 48 26 73
43.4

 nb
Nobody will destroy me! The global value has been preserved

 vec
37 42 29

 Any attempt to get the values of sum and res will now cause a "VALUE ERROR".

Rules

 All the names referenced in the header of a function (including its result and

arguments) are local to the function. They will exist only during the execution of the

function.

 Operations made on local variables do not affect global variables having the same

names.

 Global and Local are relative notions: when a function calls another sub function,

variables local to the calling function are global for the called function.

 All the variables used in a function should preferably be declared local, unless you

specifically intend otherwise.

 Chapter D – User-Defined Functions 159

3.3 Miscellaneous

3.3.1 - List of Functions

You can obtain a list of your variables by typing)Vars

You can obtain a list of your functions by typing)Fns

3.3.2 - Use of the Result

Once a function has been written, its result can be:

 Immediately displayed and lost: Meanval 11 59 48 26 73
 43.4

 Included in an expression: 100-3×Meanval 20 24 31 42
 12.25

 Assigned to a variable: Janne ← Meanval 85 70 95

3.3.3 - Visual Representation

We saw that double-clicking on a function name invokes the editor, and allows the user to see

the code. In a printed document, the conventional representation of a function is as follows:

 ∳ res←Meanval vec;sum;nb
[1] sum←+/vec
[2] nb←∰vec
[3] res←sum÷nb
 ∳

The function is delimited by a pair of ∳ symbols. This special symbol is named "Del" in

English, or "Carrot" (because of its shape) in some French speaking countries. We will use

this way of representing a function throughout the book.

One can obtain this representation (as a character array) using the built-in System function

⎕VR (for "Visual Representation") of Dyalog APL. System functions are a special kind of

function, provided with the development environment. The first character of their name is a

Quad (⎕) guaranteeing that they cannot conflict with user-defined names, and they can be

typed in upper or lower-case characters. They will be discussed in detail in Chapter L.

 ⎕vr 'Meanval'
 ∳ res←Meanval vec;sum;nb
[1] sum←+/vec
[2] nb←∰vec
[3] res←sum÷nb
 ∳

160 Dyalog APL - Tutorial

Note that this is quite unusual in a programming language. The result of ⎕VR is a character

vector representing the source code of our function, which is now available for processing by

other functions in the workspace!

3.3.4 - Invoking the Text Editor

Double-clicking a name which represents an existing item invokes the editor and displays its

contents, using the colour scheme appropriate for the type of the item (function, character

matrix, nested array, etc.) defined via your Options Colours settings.

You can also invoke the editor by pressing Shift-Enter when the input cursor is inside or

adjacent to the name. This is perhaps the most convenient way as, when working in an APL

session, you tend to use the keyboard much more than the mouse.

Some items (e.g. numeric matrices, some nested arrays) may only be viewed using the editor,

while others such as functions, text vectors, and text matrices can be modified. In the example

below, we have invoked the editor, and changed the contents of the text matrix Chemistry:

Figure D-9

The default colours are black on a white

background like here.

If one saves this matrix, it will now have 5 rows and 7 columns (the length of its longest row).

If a name is currently undefined (has no value), double-clicking or pressing Shift-Enter on that

name invokes the editor on it as if it were a new function. This is one way to create a function.

You can also invoke the editor using the command)ED as we did before. By default, it opens

a function definition, but you can explicitly specify the type of a new object by prefixing its

name with a special character, as shown in the table below.

 Chapter D – User-Defined Functions 161

Prefix Example Item produced

none

∳

-

→

∮

)ed new

)ed ∳ borscht

)ed - papyrus

)ed → crouton

)ed ∮ grunt

Function

Function

Text matrix

Simple text vector

Vector of text vectors, with one sub-vector per line

See also Appendix 2 for additional prefixes.

It is possible to open several edit windows simultaneously. For example:

)ed Tyrex -Moose will open one edit window to create a function named Tyrex, and

a second edit window to create a text matrix named Moose.

If the object specified by the name already exists, the prefix (if specified) is ignored, and the

editor is invoked according to the existing type of the object.

There are some other ways to invoke the editor:

 Use ⎕ED instead of the command)ED. For example: ⎕ED 'Clown'.

⎕ED is a System function. This concept will be discussed in Chapter L.

 Type a name, or put the cursor on an existing name, and activate the menu: Action Edit

 Type a name, or put the input cursor on an existing name, and click

3.4 Second Example

You will remember that in Chapter C we had two variables named Forecast and Actual

representing sales of 4 products over 6 months.

It would be nice to interlace the columns of those two matrices to make it easier to compare

forecast and actual sales for the same month. Furthermore, because this might be useful for

other pairs of matrices, let’s create a general function to do the job; let’s call it Interlace.

 Forecast Actual

150 200 100 80 80 80 141 188 111 87 82 74
300 330 360 400 500 520 321 306 352 403 497 507
100 250 350 380 400 450 118 283 397 424 411 409
 50 120 220 300 320 350 43 91 187 306 318 363

The result we would like to obtain is shown below. For illustrative purposes, Forecast

numbers are shown in black and and Actual in grey:

162 Dyalog APL - Tutorial

150 141 200 188 100 111 80 87 80 82 80 74
300 321 330 306 360 352 400 403 500 497 520 507
100 118 250 283 350 397 380 424 400 411 450 409
 50 43 120 91 220 187 300 306 320 318 350 363

The first thing you must decide is how this function will be used:

 Will you pass both matrices on the right: Interlace Forecast Actual

 or one on the left and one on the right: Forecast Interlace Actual

Both solutions are valid; it is only a question of personal taste and ease of use. Our first

function was monadic; let us make this one dyadic.

Having decided on the calling syntax, we can invoke the editor as described earlier, and type

the function header as shown below:

Figure D-10

Notice the toolbar that was absent in
previous editor examples.

The toolbar can be switched on (the

default) or off at will using the
configuration dialog box:

Options Configuration

and then:

Trace/Edit Show toolbars

The names given to the arguments do not matter to the APL system: A and B, Left and

Right, X and Y are perfectly valid names and are obviously easier to recall than Potatoes or

Ocarina. However, you should pick names which help you remember what the function is

doing. For example, in a general-purpose function like this, you should probably avoid using

too specific names like Forecast and Actual: that would imply that this function only

works on arrays containing Forecast and Actual data. Such names might also confuse the

distinction between local and global names.

How shall we interlace our two matrices? We suggest the following steps:

 Calculate the size of the result R. It will be a matrix with as many rows as A and B, but

twice as many columns ... size ← 1 2∲∰B

 Create R filled with zeroes .. R ← size∰0

 Calculate the indices of its even columns even ← 2∲∯(∰B)[2]

 Fill the even columns with B ... R[;even]←B

 Calculate the indices of the odd columns, and fill them with A .. R[;even-1]←A

The final function could be written as follows. Do not forget to localize your variables, and

specify the name of the result in the function header.

 Chapter D – User-Defined Functions 163

Figure D-11

We can now apply the function to any pair of variables, provided they have the same size:

 (2 3∰∯6) Interlace (2 3∰5 7 0 2 8 9)
1 5 2 7 3 0
4 2 5 8 6 9

 Forecast Interlace Actual
150 141 200 188 100 111 80 87 80 82 80 74
300 321 330 306 360 352 400 403 500 497 520 507
100 118 250 283 350 397 380 424 400 411 450 409
 50 43 120 91 220 187 300 306 320 318 350 363

Another possible syntax

If you had decided instead to make the function monadic, it could have been written like this

(the modified parts are in black, and the rest is in grey):

 ∳ R←Interlace Couple;A;B ;size;even
[1] (A B)←Couple Split the argument into 2 variables

[1] size←1 2∲∰A
[2] R←size∰0
[3] even←2∲∯(∰B)[2]
[4] R[;even]←B
[5] R[;even-1]←A
 ∳

You are now ready to solve simple problems; we strongly recommend that you try to solve

all the following exercises before you continue further in this chapter.

164 Dyalog APL - Tutorial

Exercises

D-1 Write a dyadic function Extract which returns the first N items of any given vector. The

value N and the vector itself will be the left and right arguments, respectively:

 3 Extract 45 86 31 20 75 62 18
45 86 31

 6 Extract 'can you do it?'
can yo

D-2 Write a dyadic function which ignores the first N items of any given vector, and only returns

the remainder, as shown:

 3 Ignore 45 86 31 20 75 62 18
20 75 62 18

 6 Ignore 'can you do it?'
u do it?

D-3 Write a monadic function which returns the items of a vector in reverse order:

 Reverse 'snoitalutargnoc'
congratulations

D-4 Write a monadic function which appends row and column totals to a numeric matrix.

For example, if Mat is the matrix: 75 14 86 20
 31 16 40 51
 22 64 31 28

Then Totalise Mat should give: 75 14 86 20 195
 31 16 40 51 138
 22 64 31 28 145
 128 94 157 99 478

D-5 Write a monadic function which returns the lengths of the words contained in a text vector:

 Lengths 'This seems to be a good solution'
4 5 2 2 1 4 8

D-6 Write a dyadic function which produces the series of integer values between the limits given

by its two arguments:

 17 To 29
17 18 19 20 21 22 23 24 25 26 27 28 29

 Chapter D – User-Defined Functions 165

D-7 Develop a monadic function which puts a frame around a text matrix. For the first version,

just concatenate minus signs above and under the matrix, and vertical bars down both sides.

Then, update the function to replace the four corners by four Plus signs. For example:

 Frame Towns
+----------+
|Canberra |
|Paris |
|Washington|
|Moscow |
|Martigues |
|Mexico |
+----------+

Finally, you can improve the appearance of the result by changing the function to use

line-drawing symbols. You enter line-drawing symbols using the Ctrl key in

conjunction with the numeric keypad (Dyalog APL Classic Edition), or by using ⎕UCS
(Unicode Edition). The horizontal and vertical lines are ⎕UCS 9472 9474 and the

four corners are ⎕UCS 9484 9488 9492 9496:

 Frame2 Towns
┌──────────┐
│Canberra │
│Paris │
│Washington│
│Moscow │
│Martigues │
│Mexico │
└──────────┘

D-8 It is very likely that the function you wrote for the previous exercise works on matrices but

not on vectors. Can you make it work on both?

 Frame 'We are not out of the wood'
┌──────────────────────────┐
│We are not out of the wood│
└──────────────────────────┘

D-9 Write a function which replaces a given letter by another one in a text vector. The letter to

replace is given first; the replacing letter is given second, like this:

 'tc' Switch1 'A bird in the hand is worth two in the bush'
A bird in che hand is worch cwo in che bush

D-10 Modify the previous function so that it commutes the two letters:

 'ei' Switch2 'A bird in the hand is worth two in the bush'
A berd en thi hand es worth two en thi bush

166 Dyalog APL - Tutorial

3.5 Calls to Sub-Functions

The statements which constitute the body of a user-defined function can themselves call

functions: primitive or user-defined. This clearly means that a function can call other

functions without any special procedural technique.

Let us suppose that you successfully solved exercise D-6 above, so that you now have a

function To to produce a list of integer values between two limits:

 408 To 413
408 409 410 411 412 413

Now, let us imagine a company with a turnover which has more or less grown over 12 years.

The variable Tome represents its TurnOver in Millions of Euros.

 Tome ← 56 59 67 64 60 61 68 73 78 75 81 84

We want to calculate the difference between each year and the next. This can be obtained by

subtracting the following two vectors:

 v1 59 67 64 60 61 68 73 78 75 81 84
- v2 56 59 67 64 60 61 68 73 78 75 81

 = 3 8 ¯3 ¯4 1 7 5 5 ¯3 6 3

The first one can be obtained by Tome[2 To 12], the second one by Tome[1 To 11].

If we want to generalise the expression, all we need do is replace 12 by ∰Tome.

The following function is very poorly written, but this is intentional:

 ∳ Z←Willitwork Y;v1;v2
[1] v1←Y[2 To ∰Y] We use sub-function To
[2] v2←Y[1 To (∰Y)-1] Once more
[3] Z←v1-v2
 ∳

Obviously, it is necessary that "To" has been written before we can use "Willitwork".

 Willitwork Tome Of course it works!
3 8 ¯3 ¯4 1 7 5 5 ¯3 6 3

In this example "To" has been written as an independent defined function. However for very

small calculations like this, the sub-function can be defined as a Direct function, inside the

calling function. Let us show how this might be done:

)erase To We can get rid of To

 ∳ Z←Willitwork2 Y;v1;v2 ;To
[1] To←{(∭-1)+∯∱-∭-1} First, we define the sub-function
[2] v1←Y[2 To ∰Y] Now we can use it
[2] v2←Y[1 To (∰Y)-1]
[3] Z←v1-v2
 ∳

 Chapter D – User-Defined Functions 167

It is good practice to localise the name of the sub-function, to avoid any potential conflict with

an existing name outside the frame of reference of the function. If you fail to localise To in the

function header, and then run Willitwork2 while there is another function named To outside

it, the outer To will be overwritten. If there was a variable named To, our function

Willitwork2 would have generated an error on line [1] (because you are not allowed to

overwrite a variable with a function).

Of course, a much better solution, which doesn’t use a sub-function, would have been the

following:

 ∳ Z←Willitwork3 Y;index
[1] index←∯(∰Y)-1
[2] Z←Y[index+1]-Y[index]
 ∳

Recursion: If a function calls itself, it is said to be recursive (see Section 9).

4 - Flow Control

4.1 Overview

Apart from extremely simple calculations, most programs rely on certain statements being

executed only if a given condition is satisfied (conditional execution), or on a set of statements

being executed again and again, until a given limit is reached (looping). The APL language

offers a special set of syntactic elements to control the flow of statements.

In the very first versions of APL, the only way to implement conditional execution and

looping was to use the symbol → (branch arrow). This was used to jump from one statement to

another, skipping over other statements (conditional execution) or jumping back to repeat a set

of statements again (looping). The branch arrow is equivalent to the GOTO statement in other

languages, and was once the only way to control execution flow in an APL program.

Contemporary versions of APL include a special set of keywords which offer a much more

flexible, easy to use, and easy to read way to control the flow of execution. They are also very

similar to those used in most other languages. These are known as Control structures.

We shall begin by using control structures and then introduce you later to the old way of

programming, only because you may come across it in some existing programs, and because it

sometimes offers shorter or more convenient ways of doing things.

168 Dyalog APL - Tutorial

Control structures are blocks of statements which begin and end with special keywords. These

keywords are all prefixed with a colon, like :If or :Repeat .

The keywords can be typed in lower or upper case, but Dyalog APL will always store and

display them using a fixed spelling convention, with an upper case first letter, and the

following letters in lower case. Composite keywords like "EndIf" or "GoTo", are shown with

the first letter of the second word also in uppercase.

Opening keywords are used to begin the

conditional execution or repeated execution of a

block of statements.

Usually (but not always), the block is ended by a

keyword starting with :End.

The sets of opening/closing keywords are shown

here.

:If :EndIf

:For :EndFor

:Select :EndSelect

:Repeat :Until

 or :EndRepeat

:While :EndWhile
 or :Until

:Trap :EndTrap

:With :EndWith

:Hold :EndHold

The primary keywords shown above can be

complemented by additional keywords which

qualify more precisely what is to be done.

:Else

:ElseIf

:AndIf

:Orif

:Case

:Caselist

:Until

And finally, some keywords may be used to

conditionally alter the flow of execution within a

control structure.

:GoTo

:Return

:Leave

:Continue

The following keywords will not be studied in this chapter:

:Trap … :EndTrap concerns event processing See Chapter M

:With … :EndWith concerns the GUI interface See Chapter P

 and namespaces See Chapter O

:Hold … :EndHold concerns multithreading

 Chapter D – User-Defined Functions 169

4.2 Conditional Execution

4.2.1 - Simple Conditions ... (:If / :EndIf)

The clauses :If and :EndIf delimit a block of statements (Block 1 in the diagram below),

which will be executed only if the condition specified by the :If clause is satisfied, as

illustrated below:

 ∳ Function header
Figure D-12

 Block 0 If present, Block 0 will always be executed

:If Condition

 Block 1 Block 1 will be executed if Condition is satisfied

:EndIf

 Block 2 If present, Block 2 will always be executed

Condition is any expression whose result is a Boolean scalar or one item array. For example:

Code∮List or Price>100 or Values∧.=0

Example

Our keyboard has been damaged: we can no longer use the Absolute value key. Perhaps a

function could replace it? Here is a version using a :If clause:

 ∳ Y←Absval1 Y
[1] :If Y<0
[2] Y←-Y
[3] :EndIf
 ∳

If the argument is positive (or zero), the function does nothing, and just returns the argument it

received. If the argument is negative, it returns the corresponding positive value.

4.2.2 - Alternative Processing (:If / :Else / :EndIf)

In the previous example if Condition is satisfied, Block 1 is executed; otherwise nothing is

done. But sometimes we would like to execute one set of statements (Block 1) if Condition is

satisfied, or an alternative one (Block 2) if it is not.

For this, we use the additional keyword :Else as shown below:

170 Dyalog APL - Tutorial

 ∳ Function header
Figure D-13

 Block 0 If present, Block 0 will always be executed

:If Condition

 Block 1 Block 1 will be executed if Condition is satisfied

:Else

 Block 2 Block 2 will be executed if Condition is not satisfied

:EndIf

 Block 3 If present, Block 3 will always be executed

Example

Let us try to solve the classic equation: ax
2
+bx+c=0, given the values of a, b, and c.

 ∳ Z←QuadRoot abc;a;b;c;delta
[1] (a b c)←abc
[2] delta←(b*2)-4×a×c Calculate the discriminant

[3] :If delta≥0 If positive, calculate the roots
[4] Z←(-b)+1 ¯1×delta*0.5
[5] Z←Z÷2×a
[6] :Else If negative, issue a message
[7] Z←'No roots'
[8] :EndIf
 ∳

 Quadroot ¯2 7 15
¯1.5 5

 Quadroot 4 2 3
No roots

4.2.3 - Composite Conditions .. (:OrIf / :AndIf)

Multiple conditions can be combined using the Boolean functions "OR" and "AND".

 Chapter D – User-Defined Functions 171

 ∳ Function header
Figure D-14

 Block 0 If present, Block 0 will always be executed

:If Condition 1

 Block 1 Executed if Condition 1 is not satisfied

:OrIf Condition 2 Executed if Condition 1 is not satisfied

 Block 2 Executed if Condition 1 OR Condition 2 is satisfied

:EndIf

 Block 3 If present, Block 3 will always be executed

In many cases, the same result could be obtained by a more traditional APL approach using ∨:

:If (Condition 1) ∨ (Condition 2)

However, suppose that Block 1 and/or Condition 2 needs a lot of computing time.

 The traditional APL solution will always evaluate both Condition 1 and Condition 2,

combine the results, and decide what to do.

 With the ":OrIf" technique, if Condition 1 is satisfied, Block 2 will be immediately

executed, and neither Block 1 nor Condition 2 will be evaluated. This may sometimes save

a lot of processing time.

Note that the optional Block 1 may be useful to prepare the variables to be referenced in

Condition 2.

We have a similar structure with the :AndIf clause:

 ∳ Function header
Figure D-15

 Block 0 If present, Block 0 will always be executed

:If Condition 1

 Block 1 Optional block, executed if Condition 1 is satisfied

:AndIf Condition 2 Executed if Condition 1 is satisfied

 Block 2 Executed if both Condition 1 AND Condition 2 are

satisfied

:EndIf

 Block 3 If present, Block 3 will always be executed

172 Dyalog APL - Tutorial

In many cases, the same result could be obtained by a more traditional APL approach using ∧:

:If (Condition 1) ∧ (Condition 2)

However, it may be that Condition 2 cannot be evaluated if Condition 1 is not satisfied. For

example, we want to execute Block 2 if the variable "VAR" exists and is smaller than 1000. It

is obvious that VAR<1000 cannot be evaluated if the variable does not exist. The two

conditions must be evaluated separately:

 :If 2=⎕NC'VAR' True if VAR is a variable, cf. section 7.3.3
 :AndIf VAR<1000 Will not be executed if VAR is not a variable
 ...
 :EndIf

If Condition 1 is not satisfied neither Block 1 nor Condition 2 will be executed. This may also

save some computing time.

Note that you may not combine :OrIf and :AndIf within the same control structure; the

following code will generate a SYNTAX ERROR.

 :If Width<20
 :AndIf Length<100
 :OrIf Height<5
 Surface←0
 :Else
 Surface←Width∲Length
 :EndIf

4.2.4 - Cascading Conditions .. (:ElseIf / :Else)

Sometimes, if the first condition is not satisfied, perhaps a second or a third one will be. In

each case, a different set of statements will be executed. This type of logic may be controlled

by one or more ":ElseIf" clauses. And if none of these conditions are satisfied, perhaps

another block of statements is to be executed; this may be controlled by a final ":Else", as

we have seen earlier.

Depending on the problem, ":Else" may be present or not. If there is no ":Else" clause and

no condition has been satisfied, nothing will be executed inside the :If block.

 Chapter D – User-Defined Functions 173

 ∳ Function header
Figure D-16

 Block 0 If present, Block 0 will always be executed

:If Condition 1

 Block 1 Block 1 will be executed if Condition 1 is satisfied

:ElseIf Condition 2 If Condition 1 is not satisfied, then:

 Block 2 Block 2 will be executed if Condition 2 is satisfied

:ElseIf Condition 3 If neither Condition 1 nor Condition 2 are satisfied,

then:

 Block 3 Block 3 will be executed if Condition 3 is satisfied

:Else If none of those conditions are satisfied, then:

 Block 4 Block 4 will be executed

:EndIf

 Block 5 If present, Block 5 will always be executed

The conditional blocks 1 to 4 above are thus mutually exclusive. As soon as a condition is

satisfied, the next block of statements is executed, and execution will continue with the code

below the closing keyword ":EndIf", even if any other of the subsequent conditions could

also be satisfied.

For example, suppose that the first condition is: Var<100 and the second is: Var<200.

If Var happens to be equal to 33, it is both smaller than 100 and 200, but only the block of

statements attached to Var<100 will be executed.

4.2.5 - Alternative Solutions

Now you know how to use control structures to write conditional expressions. However, this

does not mean that you always have to use control structures. The richness of the APL

language often makes it more convenient to express conditional calculations using a more

mathematical approach.

For example, suppose that you need to comment on the result of a football or rugby match by

displaying "Won", "Draw", or "Lost", depending on the scores of the two teams. Here are two

solutions:

174 Dyalog APL - Tutorial

 Solution 1 Solution 2

 ∳ Z←X Against1 Y ∳ Z←X Against2 Y ;which
[1] :If X>Y [1] which←2+(X>Y)-(X<Y)
[2] Z←'Won' [2] Z←(3 4∰'LostDrawWon ')[which;]
[3] :ElseIf X=Y ∳
[4] Z←'Draw'
[5] :Else
[6] Z←'Lost'
[7] :EndIf
 ∳

Which solution you prefer is probably a matter of taste and previous experience, both yours

and of whoever is to read and maintain the programs you write.

4.3 Disparate Conditions

4.3.1 - Clauses ... (:Select / :Case / :CaseList)

Sometimes it is necessary to execute completely different sets of statements, depending on the

value of a specific control expression, hereafter called the control value.

To achieve this, we use ":Select", with additional ":Case" or ":CaseList" clauses.

The sequence begins with :Select followed by the control expression.

It is followed by any number of blocks, each of which will be executed if the control value is

equal to one of the values specified in the corresponding clause:

 :Case for a single value

 :CaseList for a list of possible values

The sequence ends with :EndSelect.

You can have as many :Case or :CaseList clauses as you need, and in any order.

If there is no ":Else" clause and the control variable is not equal to any of the specified

values, nothing is executed.

The blocks are mutually exclusive. The :Case statements are examined from the top, and

once a match is found and the corresponding block of statements has been executed, execution

will continue with the first line after the :EndSelect statement - even if the control value

matches other :Case statements.

 Chapter D – User-Defined Functions 175

Figure D-17

:Select District The control expression is District

:Case 50

 Block 1 Executed if District is equal to 50

:Case 19

 Block 2 Executed if District is equal to 19

:CaseList 41 42 53

 Block 3 Executed if District is equal to 41, 42, or 53

:Else

 Block 4 Executed if District is not equal to any of the

values listed in the :Case clauses above

:EndSelect

4.3.2 - Remark

Values specified in :Case or :CaseList clauses can be numbers, characters, or even nested

arrays:

:CaseList 'yes' 'no' 'doubt' 3 possible values

:CaseList (2 7)(5 1)'Null' 3 different possible vectors

:Case 'BERLIN' 1 single word

:Caselist 'PARIS' 5 possible letters

Be careful with the last two examples where a character vector is used:

 If the keyword is :Case, the control value must match the entire character vector

"BERLIN".

 If the keyword is :CaseList, the control value may be any one letter out of the 5 letters

in "PARIS". Any subset, like "PAR" will not be recognised as matching.

4.3.3 - Attention

The control value must be strictly identical to the value(s) specified in the :Case clause(s).

For example, in the preceding diagram, there is a clause :Case 50 (scalar).

If the control value is equal to 1∰50 (a one-item vector), it is not strictly identical to the

specified array (the scalar 50), and the corresponding set of statements will not be executed.

176 Dyalog APL - Tutorial

4.4 Predefined Loops

4.4.1 - Basic Use .. (:For / :In / :EndFor)

In many iterative calculations a set of statements is repeated over and over again, and on each

iteration a new value is given to a particular variable. We will refer to this variable as the

control variable.

If the values of the control variable can be predefined before the beginning of the loop, we

recommend that you use the:For clause, with the following syntax:

:For Control variable :In List of values

The keyword :For is followed by the control variable name.

In the same statement, the keyword :In is followed by an expression returning the list of

values to be assigned to the control variable on each iteration. Here is an example:

Figure D-18

:For Zap :In 50 82 27 11 The control variable is Zap

 Block
of

statements

 This block of statement will be executed 4 times: Once

with Zap←50, then with Zap←82, again with

Zap←27, and finally with Zap←11

:EndFor

Generally, the block of statements makes some reference to the control variable, for example,

as part of a calculation, but this is not mandatory.

This technique has one great advantage: the number of loops is predefined, and it is

impossible to accidentally program an endless loop.

4.4.2 - Control of Iterations

The values assigned to the control variable can be whatever values are needed by the

algorithm:

A list of numeric values 66+4×∯20

A nested vector ... (5 4)(3 0 8)(4 7)(2 5 9)

A list of letters .. 'DYALOG'

A list of words .. 'Madrid' 'Paris' 'Tokyo' 'Ushuaia'

It is also possible to use a set of control values, rather than just a single one.

 Chapter D – User-Defined Functions 177

For example, with: :For (Code Qty) :In (5 8)(2 3)(7 4)

The loop will be executed first with Code ← 5 and Qty ← 8
then with Code ← 2 and Qty ← 3

and finally with Code ← 7 and Qty ← 4

In most cases this kind of iterative process is executed to completion. However, it is possible

to take an early exit when some condition or other is met. This can be done using the :Leave
clause, or using an explicit branch like →0 or →(Total=0)/Next. These methods will be

explained later.

A special variant of :In named :InEach is explained in the Specialist's Section at the end of

this chapter.

Example

Let us try to find all the possible divisors of a given integer. We can divide that value by

integers starting from 1, up to the number itself. If the division gives an integer result, the

integer can be appended to the vector of results, which has been initialised as an empty vector.

 ∳ Z←Divisors1 Y;res;div
[1] Z←⍬ Start with an empty vector

[2] :For div :In ∯Y All possible control variable values
[3] res←Y÷div Calculate the quotient
[4] :If res=⌊res Is it integer?
[5] Z←Z,div If yes, keep div as a valid divisor
[6] :EndIf
[7] :EndFor
 ∳

 Divisors1 3219
1 3 29 37 87 111 1073 3219

This example hopefully shows that it is straightforward to write simple, predefined loops

using control structures. If you are used to other programming languages that do not offer

array processing features, you may even find this way of writing programs very natural.

However, it turns out that many simple, predefined loops like this one are very tightly coupled

to the structure or values of the data that they are working on: The number of items in a list,

the number of rows in a matrix, or, as in the example, the number of integers less than or

equal to a particular value.

In such cases it is very often possible to express the entire algorithm in a very straightforward

way, without any explicit loops. Usually the result is a much shorter program that is much

easier to read, and which runs considerably faster than the solution using explicit loops.

178 Dyalog APL - Tutorial

For example, in the example above it is possible to replace the loop by a vector of possible

divisors produced by the Index generator. The algorithm is unchanged, but the program is

shorter, and runs about 10 times faster:

 ∳ Z←Divisors2 Y;res;bin
[1] res←Y÷∯Y Divide by all possible integers in one go
[2] bin←res=⌊res Test all the results
[3] Z←bin/∯Y Select those giving integer quotients
 ∳

 Divisors2 3219
1 3 29 37 87 111 1073 3219 We get the same results, of course

Of course, sometimes the processing that is to take place inside the loop is so complex that it

is infeasible to rewrite the program so that it doesn’t use an explicit loop. Likewise, if there is

a dependency such that the calculations taking place in the n
th

 iteration are dependent on the

results produced in the (n-1)
th

 iteration, it is in general necessary to program an explicit loop.

4.5 Conditional Loops

In the previous section we used the term "Predefined loops", because the number of iterations

was controlled by an expression executed before the loop starts. It is also possible to program

loops which are repeated until a given condition is satisfied.

Two methods are available: :Repeat … :Until

 :While … :EndWhile

The two methods are similar, but there are some important differences:

 :Repeat - When the loop is initialised, the condition is not yet satisfied (generally).

 - The program loops until this condition becomes satisfied.

 - The "Loop or Stop" test is placed at the bottom of the loop.

 - The instructions in the loop are executed at least once.

 :While - When the loop is initialised, the condition is (generally) satisfied.

 - The program loops as long as it remains satisfied.

 - The "Loop or Stop" test is placed at the beginning of the loop.

 - The instructions in the loop are not necessarily executed at all.

4.5.1 - Bottom-Controlled Loop..................................... (:Repeat / :Until)

The control variables involved in the test are often initialised before the loop begins, but they

can be created during the execution of the loop, because the test is placed at the bottom.

Then the block of statements delimited by :Repeat / :Until is executed repeatedly up to the

point where the condition specified after :Until becomes satisfied.

 Chapter D – User-Defined Functions 179

This condition may involve one or more variables. It is obvious that the statements contained

in the loop must modify some of those control variables, or import them from an external

source, so that the condition is satisfied after a limited number of iterations. This is the

programmer's responsibility.

Figure D-19

Rate ← 0.02
Amount ← 1000

 Some variables are initialised.

:Repeat

Block
of

statements

 This block will be executed repeatedly, until the final

condition is satisfied.

 It must contain statements which modify one or more

of the variables involved in the final test, or you will

have created an infinite loop.

For example: Amount ← Instruction

 Rate ← Instruction

:Until 500 < Amount×Rate When the final condition is satisfied, the loop stops

The test is made on the bottom line of the loop, immediately after :Until, so the loop is

executed at least once.

The "Loop or Stop" control is made at the bottom of each loop, but it is also possible to add

one or more intermediate conditions which cause an exit from the loop using a ":Leave"

clause or a branch arrow (this will be explained in 5.3).

Example

In this example we will read a text file.

We have not yet seen how we can actually do that, but for the moment let us assume that we

have available three functions: OpenFile opens the file and returns a "handle" (which is just

a number) that identifies the open file, ReadFile reads a number of characters sequentially

from the file, and CloseFile closes the file after it has been used. How these functions may

be programmed is not important for this example.

The function that reads from the file will only return a limited number of characters at a time,

so if the file is larger than that we must continue to collect chunks until nothing more is

returned:

180 Dyalog APL - Tutorial

 ∳ text←ReadTextFile filename;handle;newtext
[1] text←'' Start with an empty vector
[2] handle←OpenFile filename Open the file
[3] :Repeat
[4] newtext←ReadFile handle Read a chunk of text
[5] text←text,newtext Add it to the result
[6] :Until 0=∰newtext Finished if we did not get anything
[7] CloseFile handle Close the file
 ∳

Special case

It is possible to replace :Until by :EndRepeat. However, because there is no longer a pre-

specified exit condition, the program would loop endlessly. For this reason it is necessary to

employ intermediate tests to exit the loop when using this technique.

4.5.2 - Top-Controlled Loop (:While / :EndWhile)

Because the test is now placed at the top of the loop, control variables involved in the test

must be initialised before the loop begins.

Then the block of statements limited by :While / :EndWhile will be executed repeatedly as

long as the condition specified after :While remains satisfied.

This condition may involve one or more variables. It is obvious that the statements contained

in the loop must modify some of those control variables so that the condition is satisfied after

a limited number of iterations. This is the programmer's responsibility.

Figure D-20

Vcon ← StartValue
Limit ← 1000

 Some variables are initialised

:While Vcon < Limit A test decides whether the loop must go on or not

Block
of

statements

 This block will be executed repeatedly, as long as

Vcon is smaller than Limit.

 It must contain statements which modify one or more

of the variables involved in the test.

For example: Vcon ← Vcon + Number
 Limit ← Limit + 1

:EndWhile Sometimes replaced by an :Until clause

A test is made in the top line of the loop, immediately after :While, so it is possible that the

block of statements inside the loop will never be executed.

The "Loop or Stop" control is made at each beginning of a new loop, but it is also possible to

add a second control at the bottom of the loop by replacing ":EndWhile" by a clause

":Until", as we did for the :Repeat loop.

 Chapter D – User-Defined Functions 181

4.6 Exception Control

4.6.1 - Skip to the Next Iteration ... (:Continue)

In any kind of loop (For-EndFor / Repeat-Until / While-EndWhile) this clause indicates

that the program must abandon the current iteration and skip to the next one.

In a :For-loop this means that the next value(s) of the control variable(s) are set, and the

execution continues from the line immediately below the :For-

statement.

In a :Repeat-loop this means that the execution continues from the line immediately below

the :Repeat-statement.

In a :While-loop this means that execution continues from the line containing the

:While-statement.

4.6.2 - Leave the Loop .. (:Leave)

In any kind of loop this clause causes the program to skip the current and all remaining

iterations, abort the loop immediately, and continue execution from the line immediately

below the bottom end of the loop.

4.6.3 - Jump to Another Statement ... (:GoTo)

This clause is used to explicitly jump from the current statement to another one, with the

following syntax:

 :GoTo Destination

In most cases, Destination is the Label of another statement in the same program.

A Label is a word placed at the beginning of a statement, and followed by a colon. It is used

as a reference to the statement. It can be followed by an APL expression, but for readability, it

is recommended that you put a label on a line of its own. For example:

[14] Next: Next is a Label
[15] Val←Goal-Val÷2

Next is considered by the interpreter to be a variable, whose value is the number of the line on

which it is placed (14 in our example). It is used as a destination point both by the traditional

Branch arrow and by the :GoTo clause, like this:

 :GoTo Next Do not type the colon after the label here

Equivalent to →Next This will be studied in Section 5

182 Dyalog APL - Tutorial

The following conventions apply to the Destination of a jump:

Figure D-21

Destination Consequence of :GoTo Destination

 or → Destination

Valid label

0

⍬

Skip to the statement referenced by that label.

Quit the current function, and return to the calling environment.

Do not skip at all, but continue on to the next statement.

4.6.4 - Quit This Function ... (:Return)

This clause causes the function to terminate immediately, and has exactly the same effect as

→0 or :GoTo 0 (explained later). Control returns to the calling environment.

4.7 Endless Loops

Whatever your skills you may inadvertently create a function which runs endlessly. Usually

this is due to an inappropriate loop definition.

However, sometimes execution may appear to take an inordinate amount of time, not because

APL is unneccessarily executing the same set of statements again and again in an endless

loop, but because it has to process a very large amount of data.

Fortunately you can interrupt the execution of a function using two kinds of interrupts: weak

and strong. Let us see what this means.

4.7.1 - A Time Consuming Function

Let us consider the function below:

 ∳ Endless;a;b;i;r
[1] i←0
[2] :Repeat
[3] b←15000-a←∯10000
[4] a←1000 1000∰1.07×a
[5] b←1000 1000∰1.07×b
[6] r←+/,(a∲a∮b)⌈(b∲b∮a)
[7] +i←i+1
[8] :Until i=20
 ∳

 Chapter D – User-Defined Functions 183

This function is not really endless, but Endless[6] needs a lot of computing time because it

processes two rather large matrices, each made of one million floating-point values.

Endless[7] displays the iteration number, so that you will see the program running.

Depending on the speed of your computer each iteration may take from 1 to 5 seconds.

Don't run it yet!

4.7.2 - Weak and Strong Interrupts

If you issue a Weak interrupt, the computer will complete the execution of the statement that

it is currently processing. Then it will halt the function before executing the next statement.

We recommend using a weak interrupt, because it allows the user to restart the function at the

very point it was interrupted (see Chapter E).

If you issue a Strong interrupt, the computer will complete the execution of the APL

primitive that it is currently processing. Then it will interrupt the function before executing the

next primitive.

For example, in the Endless function shown above, it could calculate a∮b, and stop before

executing the multiplication a∲a∮b. Of course, if the user restarts the statement, it will be

executed again in its entirety (it is impossible to resume execution in the middle of a

statement).

Note that it is impossible to interrupt the execution of a primitive like a∮b itself, and

sometimes the execution of a primitive may take a long time.

4.7.3 - How Can You Generate an Interrupt?

A Weak interrupt can be generated by pressing Ctrl together with the "Pause/Attn" (or

"Pause/Break") key on your keyboard.

Alternatively, you can also select the Action Interrupt menu option in the APL menubar.

Otherwise, both Weak and Strong interrupts can be generated using the menu obtained by

clicking on the APL icon in the Notification area of your Taskbar (also known as the System

Tray), at the bottom right of your screen, as shown below:

184 Dyalog APL - Tutorial

Figure D-22

Be patient! Because the loop needs a lot of computing resources, there may be a few

seconds delay from when you click the APL icon until this menu appears.

Then there may be a few more seconds delay after you select Weak or

Strong Interrupt before the interrupt actually occurs.

Now, let’s test it.

4.7.4 - First a Weak Interrupt

Run the function, and after one or two iterations, press Ctrl+Pause.

 Endless Run the function

1 Iteration numbers are displayed
2
3 Press Ctrl+Pause

Endless[7] After a few seconds, the program stops

The message issued means that the function has been interrupted just before executing line

number [7], and you can be sure that line [6] has been finished entirely.

 Chapter D – User-Defined Functions 185

Figure D-23

If you run Dyalog APL with the default

configuration, a trace window is displayed

with the function in yellow on black, while

the next statement to be executed is white on

red.

You can see that the function was interrupted

just before executing line [7]

To back out from the interrupted state of execution, press the Escape key as many times as

needed, or execute the command)Reset, which will be explained in the next chapter.

Then try again to interrupt that function using the menu associated with the APL icon in the

Notification area.

4.7.5 - And Now a Strong Interrupt

Run the function again, and after some seconds or some iterations, activate the menu

associated with the APL icon in the Notification area. It may take a few seconds before the

options become selectable (white on blue), but then choose "Strong Interrupt".

The result is slightly different, as you can see here:
Figure D-24

 Endless
1
2
3
4
INTERRUPT
Endless[6] r←+/,(a∲a∮b)⌈(b×b∮a)
 ∧
You can see that the function was interrupted

while executing statement [6]

The caret under the message clearly indicates that the function has executed b∮a, and was

then interrupted just before the multiplication.

186 Dyalog APL - Tutorial

5 - Traditional Flow Control

5.1 Conditional Execution

In early versions of APL, a unique symbol, the Branch arrow (→) provided the only means to

override the order in which statements were executed. Today you should only use this

mechanism when maintaining code which is already written in this style.

The branch arrow works in exactly the same way as the :GoTo clause.

 → Destination and :GoTo Destination are strictly equivalent.

Destination should always be a Label. Remember: a Label is a word placed at the beginning

of a statement, and followed by a colon. Specifying a statement number (i.e. →47) would

become invalid as soon as you add or remove lines before that line number.

5.1.1 - Equivalent of :If … :EndIf Controls

Using small tricks it is possible to use → to program conditional execution.

Just remember that jumping to an empty Destination does nothing, so that statements are

executed sequentially.

Consider the following program:

[10] Any statement
[11] →(~Price≥10)∰Cheap This simulates an :If clause
[12] Any statement
.... ...
[19] Any statement
[20] Cheap: This label acts as an :EndIf clause
[21] Any statement

Suppose that Price is equal to 7; let us see how the statement works:

Price≥10 is 0

~Price≥10 is 1

Cheap is 20 A label is considered to be a variable, in this case 20

1∰Cheap is 20

→20 make the program jump to statement [20]

 Chapter D – User-Defined Functions 187

Now, suppose that Price is equal to 33

Price≥10 is 1

~Price≥10 is 0

0∰Cheap is ⍬ Empty result

→⍬ the program does not jump, and statement [12] is processed

normally

So, when Price<10 is satisfied, the program skips statements [12 to 19], otherwise it

executes them.

This kind of conditional jump can be summarised like this:

→(~ Condition)∰ Destination

Using control structures, we would have written:

[10] Any statement
[11] :If Price≥10
[12] Any statement
.... ...
[19] Any statement
[20] :EndIf
[21] Any statement

We have programmed something equivalent to an :If … :EndIf control structure, but it is

less easy to read.

5.1.2 - Equivalent of :If … :Else … :EndIf Controls

Suppose we want to create a monadic function which performs the following operations:

 It says "Hello".

 It displays "Even" or "Odd", depending on the parity of its argument.

This can be obtained using Residue (see Section C-2.6).

 If even, it calculates the half of the value and displays it.

 If odd, it calculates 1 plus three times the value, and displays it.

 … and finally it says "Good bye".

We could write the function without any flow control, but we are here to compare two flow

control techniques, so let us use them:

188 Dyalog APL - Tutorial

With Control structures With Branch arrow

 ∳ Syra1 Y
[1] 'Hello'
[2] :If 0=2|Y
[3] Y'is Even'
[4] 'Calculated:'(Y÷2)
[5] :Else
[6] Y'is Odd'
[7] 'Calculated:'(1+3×Y)
[8] :EndIf
[9] 'Good bye'
 ∳

 ∳ Syra2 Y
[1] 'Hello'
[2] →(0=2|Y)/Even
[3] Y'is Odd'
[4] 'Calculated:' (1+3×Y)
[5] →Quit
[6] Even:
[7] Y'is Even'
[8] 'Calculated' (Y÷2)
[9] Quit:
[10] 'Good bye'
 ∳

Of course, both functions work properly, as you can see:

With Control structures With Branch arrow

 Syra1 28
Hello
28 is Even
 Calculated: 14
Good bye

 Syra2 87
Hello
87 is Odd
 Calculated: 262
Good bye

If we compare the code, the use of Control structures produces more readable code, with a

clear organisation of statement blocks. The use of Branch arrows requires a lot of labels (for

which it may be difficult to find meaningful names…), the statement blocks can be placed in

any order, and the programmer must take care not to overlap segments of code. For example,

if statement [5] had been forgotten in Syra2, when an odd argument is processed, the

function would first display for example "15 is Odd" , calculate 46, and immediately after

would display "15 is Even".

Advice: Prefer control structures.

5.1.3 - Loops

With Control structures, we have three techniques to control loops: For, Repeat, and While.

When we use Branch arrows the only possibility is to branch back to the beginning of the

loop, and include a conditional exit, using the same technique as above.

Among many possible approaches, here are two typical constructs.

 In the first approach, a test is placed at the bottom of the iterative part. As long as the

condition is true, the program skips back to the label at the start of the block; when it

becomes false, the program goes on and executes the statements which follow the test.

 Chapter D – User-Defined Functions 189

It is very similar to :Repeat ... :Until, with the difference that Until is followed by the

"exit" condition, while here the branch arrow is followed by the "loop again" condition.

Figure D-25

Block 1

Head: Top of loop

Block 2 Iterative part

→(Length<30)/Head Return to Head as long as Length<30

Block 3 Body of the program

 In the second approach, a branch arrow placed at the bottom causes an unconditional jump

to the start of the loop. The loop must therefore include a test that causes a jump to a label

placed outside of the loop.

It is very similar to :Repeat ... :EndRepeat. If the conditional exit is placed at the very

top of the loop, it is very similar to :While … :EndWhile.

Figure D-26

Block 1

Begin: Top of loop

Block 2

→(Amount=0)/Body Test to exit the loop

Block 3 Executed as long as Amount≠0

→Begin Bottom of loop; jump back to the head

Body: Destination label to exit the loop

Block 4

5.1.4 - Other Conditional Expressions

Using a branch arrow, the way to program conditional jumps is to write an expression which

returns the value of the destination label (jump), an empty vector (no jump), or zero (quit the

function).

Since the expression following the branch arrow is an ordinary APL expression, one can

imagine a large number of different expressions which will provide the branch arrow with an

appropriate destination.

For example: condition/Label, condition↑Label, condition∰Label will all return the

value of Label if the condition is satisfied, or an empty vector if it is not.

190 Dyalog APL - Tutorial

Here are some typical examples:

Jump if true or continue if false

→(Condition)/Destination

→(Condition)∰Destination

→Destination∲∯Condition

→(Condition)↑Destination This symbol will be studied in the next chapter

You shall discover some other conditional executions in the Specialist's section.

Jump if false or continue if true

→(Condition)∸Destination This symbol will be studied in the next chapter

Jump if true or quit the function if false

→Destination×Condition

5.2 Multiple Conditions

5.2.1 - Transform a Value into a Destination

Because it is possible to jump to different parts of a function depending on the result of an

expression it is even possible to write a program that is similar to :Select … :Case …

:EndSelect.

Consider the following expression:

 →(Dest1,Dest2,Dest3)[Value]

Whether Value is equal to 1, 2 or 3, this statement will produce a jump to the corresponding

destination. If Value is an empty vector, the program will not jump, so it will execute the next

statement.

If we combine this observation with the use of dyadic Iota we can easily test for other values

than 1, 2, 3. For example, suppose that we need to jump to 3 different locations depending on

the value of a variable named Value. We could write:

 Chapter D – User-Defined Functions 191

 →(Case1,Case2,Case3,Case3,CaseElse)[100 20 30 0 ∯ Value]
 Case1:
 ...
 →EndSelect
 Case2:
 ...
 →EndSelect
 Case3:
 ...
 →EndSelect
 CaseElse:
 ...
 →EndSelect
 EndSelect:

This is equivalent to this control structure block:

 :Select Value
 :Case 100
 ...
 :Case 20
 ...
 :CaseList 30 0
 ...
 :Else
 ...
 :EndSelect

5.2.2 - Multiple Conditions and Destinations

 →((Cond1),(Cond2),(Cond3))/Dest1,Dest2,Dest3

Conditions and destinations are concatenated to return a Boolean vector to the left of the

Compress function, and a vector of destinations (line numbers) to the right of it. The program

jumps to the destination attached to the first satisfied condition, even if several conditions are

satisfied.

This is because the branch arrow accepts a vector of values (destinations) as its right

argument. However, it ignores everything but the first item in the vector.

Therefore this statement is similar to:

 :If Cond1
 ...
 :ElseIf Cond2
 ...
 :ElseIf Cond3
 ...
 :EndIf

192 Dyalog APL - Tutorial

5.3 Modern and Traditional Controls Cooperate

It is sometimes convenient to mix modern and traditional flow control in order to simplify the

code.

Consider a loop in which we must terminate the execution of the function if the condition X<3

becomes satisfied.

With modern control structures, the function could be written like this:

:Repeat
 Statements
 :If X<3
 :Return Exit from the function
 :EndIf
 Statements
:EndRepeat
Body ...

Because each opening clause must be paired with a closing one, the exit test needs 3 lines; this

is a bit heavy. It is possible to use fewer statements using an explicit branch:

:Repeat
 Statements

 :Goto (X<3)/0 Simpler , but perhaps less readable (remember
 Statements that a jump to 0 means exit from the function)
:EndRepeat
Body ...

The exit statement could also have been written

 →(X<3)/0

since the branch arrow and the :Goto keyword are equivalent.

Something very similar could be written if we need to leave a loop when a given condition,

for example A=B, becomes satisfied:

Using control structures Control structure with a traditional branch

:Repeat :Repeat
 Statements Statements

 :If A=B →(A=B)/Hell
 :Leave Statements

 :EndIf :EndRepeat
 Statements Hell:

:EndRepeat Body ...
Body ...

 Chapter D – User-Defined Functions 193

Remark Branching using → or :GoTo is not recommended as a general tool for

programming flow control. It is explained here mainly in order to help you

understand existing code, and to show that the technique may be useful and

feasible in special situations. You should in general either use control structures

or use statements which do not require conditions.

Caution! Colons are placed before a keyword (:For), but after a label (Next:)

6 - Input, Output, and Format

Up to now, our functions processed values passed as arguments, and returned results which

could be used in an expression, assigned to a variable, or displayed. But a function can also

get data from other sources, and/or it can produce results which are not APL variables, but, for

example, printed material, or data files. In this section you will learn some useful techniques

to write such functions.

This section will also help you use data that you may already have stored in Excel worksheets

or in text files on disk.

6.1 Some Input and Output Methods

Here are some of the most typical methods used by a function to get data or output results.

Some Input/Output methods Input Output §

A function returns a result, it is displayed at function completion X

A function can also display intermediate values during execution X 6.3

A function can use or modify a global variable X X 6.4

It can exchange data with a spreadsheet, like Microsoft Excel X X 6.5

It can read or write data from/to a file (or a database) X X 6.6

A function can print data on a printer X 6.7

A function can exchange data with a graphical user interface X X 6.8

A function can get data typed by the user on the keyboard X 6.9

A function can use Internet facilities to input or output data X X

194 Dyalog APL - Tutorial

All of these possibilities will not be explained here; we shall limit our investigations to some

simple methods that you may test immediately, using some utility functions which are

provided in the associated workspace.

We also provide some text files and spreadsheets that you can use for experimentation:

Excel workbooks: xldemo.xls
worldsales.xls

Text files mlk.txt
report.txt

We recommend that you place those files in a reference directory where they will be

preserved, and copy them to a test directory where you will be able to make some experiments

and modify them at will.

Also create a global variable in your WS with the path to that test directory, to avoid repeating

it in all the tests you will do.

For example: MyPath←'d:\mydir\apltests\'

In the following sections we will refer to the variable MyPath.

6.2 Format

In the preceding pages, we found that we can display, on the screen, any kind of results:

numbers, text, or a mixture of numbers and characters in nested arrays. Now we shall try to

output data to external media, like graphic interfaces, disk files, or printers. Most of those

media only accept text. For example, it is impossible to send numbers to a printer: we must

first convert them to printable characters.

The APL language includes two such conversion tools: a function named Format, represented

by the symbol ⍃, and a System function named ⎕FMT.

These facilities will be studied in detail in Chapter F, but we will introduce here the basic use

of Format.

6.2.1 - Monadic Format

Monadic Format converts any array (numbers, characters, and nested arrays) into its character

representation. The result is exactly the same as what you see when you display the array in

the APL session, because in fact, APL internally uses monadic Format to display arrays.

 Character values are not converted: they remain unchanged.

 Numeric and nested values are transformed into vectors or matrices of characters.

 Chapter D – User-Defined Functions 195

 ∰⍃'album' A character vector is unchanged
5

 ∰Chemistry Chemistry is a character matrix
3 5

 ∰⍃Chemistry It is not modified by ⍃
3 5

 ∰52 69 76 This numeric vector has 3 items
3

 ⍃52 69 76
52 69 76 Once converted, it is an 8-item character vector

 ∰⍃52 69 76
8

In Chapter B we used a 2 by 3 nested matrix named NesMat. It can be converted into text:

 ∰ NesMat The nested matrix had 2 rows and 3 columns
2 3

 ∰u ← ⍃NesMat Once converted into text, it is 20 characters wide
3 20 and it has 3 rows, because the second row

 u contained two small matrices
 Dyalog 44 Hello
 27 8 6 1 2 0
 2 4 0 0 5

6.2.2 - Dyadic Format

Dyadic Format applies only to numeric values. It converts them into text in a format

controlled by the left argument, which is made up of two numbers:

 The first number indicates the number of characters (the width of the output) to be used to

represent each numeric value.

 The second number indicates how many decimal digits will be displayed.

Let us make some experiments with the following matrix:

 MN
 608.1 928.24 1293.14 849.95 This is the normal display, and this is also how
1127.84 970.27 1249 1168.29 monadic Format would present it.
 775.12 1065 670.69 1091.7

 8 2⍃MN Each number will be represented by 8 characters,
 608.10 928.24 1293.14 849.95 right aligned, with 2 decimal digits.
 1127.84 970.27 1249.00 1168.29
 775.12 1065.00 670.69 1091.70

 ∰8 2⍃MN The result has of course 3 rows and 32 columns

3 32 (4 times 8 characters).

196 Dyalog APL - Tutorial

 6 0⍃MN Each number will be represented by 6 characters
 608 928 1293 850 right aligned, with no decimal digits.
 1128 970 1249 1168
 775 1065 671 1092

 ∰6 0⍃MN The result has 3 rows and 24 columns.

3 24

Remarks Values are not truncated, but rounded.

Any attempt to apply dyadic ⍃ to characters will cause a DOMAIN ERROR

Format will be studied in detail in Chapter F.

6.3 Displaying Intermediate Results

During normal execution, most applications do not use the session window (the development

environment); all input/output is typically done with more user-friendly interfaces. However,

during the development of an application, it may be useful for experimental purposes to have

a function display intermediate results.

This can be accomplished in 3 different ways:

 If the result of an expression is not assigned to a variable, it is displayed:

[3] 'The cost is: ',(9 2⍃ Val),' US Dollars'

This text vector is not assigned to a name, so it will be displayed on the screen.

 It is possible to display the value of a variable using the identity function (monadic + sign),

but this applies only to the leftmost calculated value in an statement:

[8] +Sel←(vector>0)/vector←Old,New

The result of the expression is assigned to a variable (Sel), and displayed. Please note that

it is not considered good programming practice to assign a value to a variable and then

reference the variable elsewhere in the same expression. However, you may encounter

existing code that looks like this.

 Any intermediate result can be displayed by assigning it to the Quad symbol (⎕), and this

assignment can be placed anywhere in the middle of an statement:

[5] VAT←(⎕←+/Purchased)×⎕←Rates[⎕←Segment]

Three values will be displayed one after the other, on three successive lines of the screen,

in the order that the respective expressions are evaluated:

First Segment
then Rates[Segment]
and finally +/Purchased

We recommend that you use this last method, which is the most explicit, and which can

be easily detected by any text search utility function.

 Chapter D – User-Defined Functions 197

6.4 Using Global Variables

A function can use (input) or modify (output) the contents of one or more variables which are

global to it. The variables may be completely global, or they may be local to a calling function

(so-called semi-global variables).

For example, as we suggested earlier, a global variable may contain a path used by dozens of

functions in a workspace:

MyPath ← 'g:\common\finance\archives\2007\'

It will be possible for any function to use this path to prefix some file names:

File1 ← MyPath,'sales.xls'

File2 ← MyPath,'customers.txt'

Storing common parameters like a folder path in global variables can often be very

convenient. For example, it makes it very easy to have the system use another set of files,

without changing any functions. This technique can for example be used to switch between

running on test data and on production data.

Similarly, a function can output values into global variables, which may be used by many

other functions sharing the same workspace:

CountryCode ← Any expression

CountryPrefix ← Any expression

Currency[index] ← Any expression

Those 3 variables may again be localised at a higher level, in a calling function, or they may

be global to the whole workspace.

You must be very cautious when using this technique:

 Maintenance of functions using global variables is complex because it is difficult to keep

track of the different statements which use or update those variables.

 If an error occurs, and if several functions can modify these global variables, it may be

very difficult to determine which of them had last modified a variable involved in the

error.

 If function execution is interrupted and restarted, global values set before the interruption

may conflict with new ones calculated in a different context. For example, if the function

increments a global variable in line [1], but crashes in line [2], and you restart the

function, you will have the global variable incremented twice instead of once, as you had

expected. Such errors are very nasty, as they can lead to other errors or breakdowns much

later in the execution. It can be close to impossible to find the causes of such errors.

Such a technique should be restricted to a limited number of variables, clearly identified and

documented by any convenient method: a common name prefix, an automated system of

references, etc.

198 Dyalog APL - Tutorial

Sometimes when starting an application it is necessary to read a lot of settings from a file and

make the settings available to all the programs that constitute the application. In such a

situation it would make sense to write a program to read the settings from the file and store

them in global variables in the workspace.

Advice: Whenever possible, favour explicit exchange of values through arguments and

results.

6.5 Exchanging Data With an Excel Worksheet

Many applications are based on an intelligent partnership between Excel and APL:

 Some users enter data in a set of worksheets with a predefined structure.

 APL reads the sheets, and processes the data with much greater power, precision and

flexibility than Excel is capable of.

 Finally, APL outputs results into one or more worksheets, in which the user can modify

the presentation, define additional simple calculations, and produce simple graphs.

To help you explore those techniques, we provide (in Utils_01.dws) two functions that will

help you exchange data with an Excel worksheet:

 XLGet imports data from a worksheet into your WS

 XLPut exports data to a worksheet

These functions have been developed for learning purposes, and you can use them for light

applications.

The workspace "loaddata.dws", distributed as part of the Dyalog APL system, contains a set

of professional grade functions to read from and write to text files, Excel workbooks, SQL

databases, and XML files.

"loaddata.dws" contains the functions LoadXL and SaveXL, which are similar to XLGet and

XLPut, but with a slightly different syntax.

6.5.1 - Importing Data

XLGet Has the following syntax: Variable ← XLGet Fileid Sheet Range

Where:

Variable is any variable you wish to create or modify.

Fileid is the full path and name of the workbook.

For example:'c:\mydir\subdirectory\mydata.xls'

 Chapter D – User-Defined Functions 199

Sheet is the name of the worksheet inside the workbook, for example 'Sales'

If left empty, the function will read the active worksheet.

Range is the part you want to get, specified using Excel notation, for example
'B4:H8'
If empty, the function will read all the contents of the selected sheet.

Examples Val1 ← XLGet (MyPath,'worldsales.xls') 'Madrid' ''

Val2 ← XLGet (MyPath,'xldemo.xls') '' 'A5:E10'

In the first example, we get all the contents of the Madrid sheet (no Range was specified).

In the second one, we get a small part (A5 to E10) of the active worksheet (no Sheet

specified).

As one cannot predict which was the active worksheet when the workbook was last saved, this

second method should be reserved to single-sheet workbooks.

6.5.2 - Exporting Data

XLPut Has the following syntax: Values XLPut Fileid Sheet StartCell

Where:

Values are the values to write to the target worksheet.

Fileid has the same meaning as in XLGet.

Sheet is the name of an existing worksheet in that workbook. It will be modified.

 If empty, a new worksheet will be inserted, with a default name.

StartCell is the top left cell to be written; for example 'E5'.

The function will automatically deduce the corresponding Range from StartCell

and ∰Values.

Example Val1 ← 'Fiat' 'Venturi' 'Opel' , (3 3∰∯9)

Val1 XLPut (MyPath,'worldsales.xls') 'Denver' 'A16'

Don't modify this workbook further, as it will be used again in Chapter Q.

If you want to experiment further, you can use a copy of this workbook or a different one.

6.6 Reading or Writing a Text File

Files can have many different formats. Some contain integer or decimal numbers, some

contain APL variables (vectors, arrays, nested values), as we shall see in Chapter N, but most

files contain plain text.

200 Dyalog APL - Tutorial

In this chapter, we shall limit our investigations:

 to text files, which can be viewed and modified using a text editor like Microsoft Notepad,

 to rather small files that can be read or written as a whole in a single operation (depending

on your workspace size, you can easily read/write several thousands of lines of text).

Such a file can be considered as a long text vector containing special line separation

characters ("carriage return" and "line feed"). For that reason, when edited with Notepad, they

look more or less like APL character matrices.

Except for special purposes, to exchange data between APL and a text file, one needs to:

 convert the data read from a file as a character vector into a more convenient APL

character array (read),

 or convert an APL character array into a special character vector with embedded line

separators (write).

Those conversions require some techniques we haven't seen yet. This is the reason why we

give you some predefined functions. You will find them in a workspace named Files.dws,

delivered with Dyalog APL. It contains a Namespace (you can read about namespaces in

Chapter O) which itself contains the functions. To use them, you must:

 Copy the Namespace containing them (be careful with the case):)copy files Files

 Set an access path to the NameSpace contents: ⎕Path ← 'Files'

ReadAllText Reads the contents of a text file and returns a charatcer vector.

 The lines of the text are separated by two special characters: Carriage

Return and Line Feed.

Syntax Result ← ReadAllText Path,Fileid

Example Dream ← ReadAllText MyPath,'mlk.txt'

ReadAllLines Reads the contents of a text file and returns a nested vector of character

vectors, one vector per line of text in the file.

Syntax Result ← ReadAllLines Path,Fileid

Example Dream ← ReadAllLines MyPath,'mlk.txt'

PutText Writes a character matrix (or vector) to a file. If a file with the same name

already exists, it is replaced by the new file. The function returns the number

of characters written to the file.

Syntax Number ← TextMatrix PutText Path,Fileid

Example Number ← Chemistry PutText MyPath,'newfile.txt'

 Chapter D – User-Defined Functions 201

The workspace "loaddata.dws", distributed as part of the Dyalog APL system, contains a set

of professional grade functions to read from and write to text files, Excel workbooks, SQL

databases, and XML files.

"loaddata.dws" contains two functions LoadText and SaveText to complement the set of

functions described above. LoadText and SaveText are designed to work with comma

separated files (.CSV files) and fixed field width text files.

We have only used text files. Dyalog APL also includes an advanced file system designed to

work very easily and efficiently with APL arrays, as well as a generalised interface to SQL

databases. The APL file system is described in chapter N. The SQL interface is not described

in this tutorial; please refer instead to the specialised brochures.

6.7 Printing Results on a Printer

An APL function can print data on a printer using the resources provided by the system.

However, many parameters need to be specified: orientation of the paper, position of what you

want to print, font shape, size, body, colour, etc., and these details must be specified for all the

things you expect to print on a page. This is a bit too soon for a beginner.

Most people prefer to use predefined utility software, like NewLeaf, a built-in component of

Dyalog APL, which allows you to easily print thousands of pages, produce PDF files, and

produce attractive business reports.

We strongly recommend you to have a quick look at Chapter S, to discover both Newleaf and

RainPro, another powerful software to produce very convenient business graphics..

For now, we would like to give you a very basic tool which just allows you to print limited

character matrices. All the parameters are defaulted:

 The printer is your default printer.

 The font, "APL385 Unicode", is a fixed pitch font, which displays data in the same tabular

presentation as the APL session.

 Depending on whether you print in "Portrait" or "Landscape" orientation, the function will

print 60 or 40 lines of text per page, and the width of your matrix will also be limited to 75

or 110 characters.

The function accepts the matrix to print as a right argument, and 'L' or 'P' (the default) as

optional left argument; for example:

 Print XG10 Where XG10 is a given text matrix

 'L' Print 5 0⍃20 22∰Tickets The numeric vector Tickets is converted

 to a text matrix and printed in Landscape

202 Dyalog APL - Tutorial

6.8 Using a Graphical User Interface

We shall see later in this tutorial (Chapter P) how easy it is to create graphic user interfaces

(GUI) which allow both input and output of information.

In the example shown below, the user can select a currency, a customer typology, a

geographic zone, etc. These actions interact with the application and can be transformed into

values assigned to some variables. This is an example of using a GUI for input purposes.

When the user presses the "Select" button, the associated application performs some

operations, and displays a list of customers with some figures. This is an example of using a

GUI for pure output if the grid has been specified "Read only", or Input/Output if the user is

also allowed to modify the values in the cells.

Figure D-27

 Chapter D – User-Defined Functions 203

6.9 Requesting Values From the Keyboard

Here again, if the user of an application is required to enter some input data, this is often done

via some user friendly GUI interface like the previous one, or from a web page. However,

during the development phase or for a light application, it may be simpler to use a very basic

Question/Answer mode.

Two symbols are used to request input from the user:

Quad val ← ⎕ is used to enter one or more numbers.

Quote-Quad val ← ⍞ is used to enter any string of characters.

6.9.1 - Quad Evaluated Input

This first method is no longer in common use, but can be useful when prototyping an

application which needs to request input. Also, you can easily accidentally type ⎕ in the

session and activate Quad evaluated input, so it is worth studying briefly.

Quad causes a pause in the execution of a function, and allows the user to type any kind of

expression. That expression is evaluated like any APL expression entered in the session, and

its result is the result of the Quad function.

 When a function executes a Quad, it displays ⎕: at the left margin of the screen to inform

the user that he or she is expected to enter one or more values.

 If any error occurs during evaluation, the input Quad is redisplayed over and over again,

until the user succeeds in entering a valid expression.

In the following example, a function is supposed to count how many items of its right

argument there are between two limits. These limits could be passed via a left argument, but

in this case we choose to ask the user to enter them during execution of the function:

 ∳ Prompt1 Vector;lim1;lim2;nb
[1] 'What are the limits?'
[2] (lim1 lim2)←⎕
[3] nb←+/(Vector>lim1)∧(Vector<lim2)
[4] (⍃nb),' values are comprised between ',(⍃lim1),' and ',⍃lim2
 ∳

 Prompt1 Salaries
What are the limits? Prompting message
⎕: Prompt
 2000 2500 The user's answer
5 values are comprised between 2000 and 2500

204 Dyalog APL - Tutorial

Let us make an error while executing the function again

 Prompt1 Salaries
What are the limits?
⎕:
 mylims We tried to answer with a variable name, but that

VALUE ERROR variable does not exist. An error message is

issued.

 mylims This is not very user friendly!
 ∧ Then the user is automatically requested again to
⎕: provide a value.
 ⌊0.5+0.9 1.1×Average Salaries
4 values are comprised between 2653 and 3243

The expression has been evaluated (using a variable, a defined function, and some primitives)

and the result (2653 3243) has been assigned to lim1 lim2.

Hint: If you accidentally start evaluated input in the session, hit Ctrl+Break to

generate an interrupt.

6.9.2 - Quote-Quad Character Input

Quote-Quad allows the user to enter a string of characters. That string is returned as the result

of the Quote-Quad function.

If the user types nothing and just presses the Enter key, the returned value is an empty text

vector.

 ∳ Prompt2;tex
[1] 'Type any string of characters'
[2] tex←⍞
[3] '"',tex,'" is a vector of length ',⍃∰tex
 ∳

 Prompt2
Type any string of characters
Are you serious?
"Are you serious?" is a vector of length 16

You can see that the Quote-Quad does not display any prompt sign.

Advice Avoid using Quad evaluated input.

Quote-Quad remains useful for quick tests, the development of light interactive

functions, or scripting applications which work with redirected input and output.

 Chapter D – User-Defined Functions 205

7 - Syntax Considerations

7.1 Comments & Statement Separators

7.1.1 - Comments

It is possible to write comments in a function to make it easier to read, explain how it should

be used, and help future maintenance or evolutions.

Comments begin with the symbol Lamp: ⍝ (because it "illuminates" the code)

They can be placed alone on a dedicated line, or to the right of any statement, including the

function header. All the characters placed to the right of the Lamp are ignored by the

interpreter.

7.1.2 - Statement Separators

Several statements can be placed on the same line of a function, using the statement separator

Diamond ⋄. Statements are executed starting from the leftmost one.

Putting several statements on a same line does not save computing time, and generally does

not improve the readability of a function. It should be reserved for short, straightforward

statements.

The diamond separator can also be used in Multithreaded programming to force the

execution of a set of statements without any switch to another thread. But this is outside the

scope of this tutorial.

Example

Let us demonstrate these concepts on the function Interlace, written some pages ago:

 ∳ R←A Interlace B;size;even ⍝ This is just a demo
[1] ⍝ A & B are matrices of the same shape
[2] size←1 2∲∰A
[3] R←size∰0 ⍝ Build a matrix full of zeroes
[4] even←2∲∯(∰B)[2] ⍝ Calculate the even column numbers
[5] R[;even]←B ⋄ R[;even-1]←A ⍝ Interlace
 ∳

206 Dyalog APL - Tutorial

We have placed some comments: in the header, on a dedicated line, and to the right of some

statements. We have also grouped the last two statements on a single line, separated by a

Diamond.

This separator is often used in a loop to execute a statement and quit the function or skip to

another statement:

 New ← Old+20 ⋄ →0

or: Total ← 0 ⋄ →Mummy Mummy is a label

7.2 Why Should a Function Return a Result?

During the execution of a function, any result which is not assigned to a variable name is

immediately displayed on the screen; we used that in our functions Syra1 & Syra2.

So, let us compare two very similar functions and their usage:

This one returns a result This one does not

 ∳ Z←X Plus Y

[1] Z←X+Y

 ∳

 ∳ X PlusNoRes Y

[1] X+Y

 ∳

 6 Plus 8
14

 6 PlusNoRes 8
14

Apparently, both functions work very well:

 The left one calculates a local variable Z, which has been declared to be the function result.

The function returns the value of Z as its result, and because the result is not assigned or

used, it is displayed on the screen.

 The right one calculates X+Y. Because this sum it is not assigned, it is immediately

displayed.

But now, let us try to include these functions in more complex expressions:

 10×6 Plus 8
140

 10×6 PlusNoRes 8
14
VALUE ERROR
 10×6 PlusNoRes 8
 ∧

 Chapter D – User-Defined Functions 207

Something went wrong!

 The leftmost function returns a result. The result is available to the calling expression, in

this case as the right argument to the multiply function, so that we obtained the answer we

wanted.

 But the rightmost function returns no result. The value calculated in the 1
st
 statement is just

displayed (though we did not need it); it is not returned as a result. So, the multiply

function has an argument on its left (10), but nothing on its right, hence the error message.

Advice: Whenever you can, write functions which produce an explicit result.

You can always throw the result away if you don't need it.

7.3 Different Types of Functions

7.3.1 - What Is an Explicit Result?

We have seen that some functions (like Average, or Plus) return a result; we describe the

result as being Explicit. It means that once the function has been executed, the result is passed

on to the next part of the expression which is being evaluated or, if there is none, it is

displayed on the screen.

Some other functions (like PlusNoRes) do not return an explicit result. This does not mean

that they do nothing; perhaps they read or write data from/to a file or an Excel worksheet,

perhaps they print a graph on a printer, or perhaps they build a graphic user interface. All

these consequences which arise from the execution of the function can be called Implicit or

hidden results. Anything that happens during the execution of a function and that is not

communicated directly in the function's result is generally called a side effect of the function

(and perhaps its sub-functions).

7.3.2 - Six Major Types of Functions (Valence)

The number of arguments of a function is termed its Valence.

You have already met functions with one or two arguments (Monadic or Dyadic), you can

also write functions which take no arguments at all; they are called Niladic. Though they do

not receive values through arguments, they can process data introduced via the various

techniques described in Section 6.

Depending on whether or not they return an explicit result, functions can be classified as

follows:

208 Dyalog APL - Tutorial

Valence With an explicit result Without an explicit result

Niladic ∳ Z ← Function ∳ Function

Monadic ∳ Z ← Function Y ∳ Function Y

Dyadic ∳ Z ← X Function Y ∳ X Function Y

Niladic functions which return no result are very similar to programs written in other

languages.

The functions which we have already written can be classified as follows:

Syntax With result Without result

Niladic Endless

Monadic Meanval / Willitwork Syra1 / Syra2

Dyadic Interlace / Plus / Times PlusNoRes

7.3.3 - Ambivalent Functions

Most APL symbols are used to represent both monadic and dyadic primitive functions. For

example, the symbol ∰ represents both the Shape (∰A) function and the Reshape (A∰B)

function, and ⌈ represents both Ceiling (⌈A) and Maximum (A⌈B). These symbols are said to

be Ambivalent.

To write an ambivalent user-defined function the name of the left argument in the header, is

sspecified within braces (to show that it is optional), like this:

∳ Result ← {Left} Function Right

We are now faced with a problem; this function must work correctly whether or not a left

argument is provided, so we must test for its presence. To test for the current use of a name,

we can use the System function ⎕NC. Traditionally NC stands for Name Class, but we will

here use the term Name Category in order to avoid confusion with the class concept used in

Object Oriented Programming.

We shall see in Chapter L that: the Name Category of a variable name is 2

the Name Category of a function name is 3

the Name Category of an unused name is 0

So, we must include in the function the expression: ⎕NC 'Left'

 If a left argument was provided, the answer will be 2.

 If no left argument was provided, the answer will be 0 (even if the workspace contains

a global function or variable named Left, because Left is here a local name).

 Chapter D – User-Defined Functions 209

Just to check that it works, let us write a useless ambivalent function:

 ∳ {Left} Useless Right
[1] ⎕NC'Left'
 ∳

 23 Useless 78
2 This means that a left argument is present.

 Useless 71
0 This means that no left argument was provided.

7.3.4 - Example

The following function rounds a numeric value to its N
th

 decimal digit:

 ∳ Res←N Round Val
[1] Res←⌊0.5+Val×10*N
[2] Res←Res÷10*N
 ∳

 2 Round 41.31875 82.92413 127.71625
41.32 82.92 127.72

 2 0 3 Round 41.31875 82.92413 127.71625
41.32 83 127.716

Now, suppose that we usually want to round values to the second decimal digit; we can decide

that if we do not specify a left argument, this will be the default behaviour of our function.

The necessary modifications appear in black:

 ∳ Res←{N}Round Val
[1] ⍝ Rounds "Val" to its "Nth" decimal
[2] :If 0=⎕NC'N'
[3] N←2 ⍝ By default, if omitted, N is set to 2
[4] :EndIf
[5] Res←⌊0.5+Val×10*N
[6] Res←Res÷10*N
 ∳

Now, the left argument is optional, and an :If … :EndIf clause detects its presence. If

absent N is set to 2. The expressions shown below illustrate the two ways in which the

function can be used. This function really is ambivalent.

 2 0 3 Round 41.31875 82.92413 127.71625
41.32 83 127.716

 Round 41.31875 82.92413 127.71625
41.32 82.92 127.72

210 Dyalog APL - Tutorial

7.3.5 - Shy Result

A Shy result is a result which is returned, but not displayed.

Consider a function which deletes a file from disk and returns a result equal to 1 (file deleted)

or 0 (file not found). Usually, one doesn't care if the file did not exist, so the result is not

needed. But sometimes it may be important to check whether the file really existed and has

been removed. So, sometimes, a result is useless, and sometimes it is useful … this is the

reason why shy results have been invented.

A shy result is specified by putting the name of the result in braces:

∳ {Result} ← X Function Y

Let us write a demonstration function:

 ∳ {Z}←A ShyFun B
[1] Z←A∲B
 ∳

 17 ShyFun 3 The result is returned, but not displayed.

 ⎕←17 ShyFun 3 Here we explicitly ask for the result to be shown.
51

 10×17 ShyFun 3 The result can be used for any calculation.
510

7.3.6 - An Argument Used as a Result

It is possible to use the same name for the result as one of the arguments. For example, these

are two valid headers:

∳ X←X Fun Y or ∳ Y←X Fun Y

This may be useful when a condition causes the function to terminate without any processing.

Suppose that you want to repeatedly divide the right argument by 2, until the result becomes

odd. A simple loop will do it, but if the argument is already odd, the loop stops immediately,

and the result is equal to the argument:

 ∳ Y←DivideIt Y
[1] :While 0=2|Y As long as Y is even, we divide it
[2] Y←Y÷2
[3] :EndWhile
 ∳

If Y is even the loop is executed at least once.

If Y is odd the function exits immediately and returns the unmodified value of Y as its result.

 Chapter D – User-Defined Functions 211

7.4 Nested Argument and Result

7.4.1 - Nested Right Argument

Both the left and right arguments of a function can be nested vectors, as shown here:

 Function 'London' 'UK' 7684700 40

A composite argument of this sort is often split (dispatched) into a number of separate local

variables using multiple assignment, as illustrated in the first statement of this example:

 ∳ Dispatch Vector;town;country;population;prefix
[1] (town country population prefix) ← Vector
[2] Other statements
 ∳

A more elegant way to achieve the same thing is to specify the composite nature of the

argument directly, as follows:

 ∳ Dispatch (town country population prefix)
[1] town
[2] country
[3] population
[4] prefix
 ∳

Using this syntax, the items of the right argument are automatically allocated into local

variables, as you can see:

 Dispatch 'London' 'UK' 7684700 40
London
UK
7684700
40

Important: This special syntax applies only to the Right argument, not to the left one.

If a nested vector is passed on the left it can be split (dispatched) by multiple

assignment, as suggested earlier.

7.4.2 - Choice of Syntax

When a function Fun is to receive two values A and B, you now have the choice between two

syntaxes:

Dyadic: ∳ A Fun B for example ∳ R ← A Plus B
Monadic: ∳ Fun (A B) for example ∳ R ← Add A B

212 Dyalog APL - Tutorial

The dyadic way has the advantage that the function can be used with Reduction, while the

monadic version cannot.

For example, we can use Plus in this kind of expression: Plus/14 10 52 1 12 43

7.4.3 - Nested Result

Similar notation can be applied to the result of the function. Suppose that you want to return a

vector of 3 separate (local) variables (named one, two, and three) as the result of the

function. One way is to declare that the function returns a single named result, and to assign

the 3 local variables into the result before the function terminates. Another approach is to

simply declare the structure of the result in the header as illustrated below. As these names

(one, two, and three) appear in the header; they are local.

 ∳ (one two three) ← Left NestedRes Right
[1] one←Left+Right
[2] two←Right[Left]
[3] three←two∲one[1] Ever seen such a stupid function?
 ∳

 DISPLAY 3 NestedRes 12 45 78
┌→───────────────────┐
│ ┌→───────┐ │
│ │15 48 81│ 78 1170 │
│ └~───────┘ │
└∮───────────────────┘

7.5 Choice of Names

The names that you use to specify the arguments and the result of a function may be any valid

APL name:

For example: ∳ Cain ← Adam PLUS Eve
or: ∳ Dumb ← Man WITHOUT Voice

However, it is recommended that you use simple names, names that are easy to remember,

and names that are consistent from one function to the other. This is especially important if

several people have to maintain a common set of functions; any of them should be able to

understand immediately which variables represent the arguments and which the result…

This recommendation is really about adopting a strict naming convention, and this applies to

any serious programming project, whether it uses APL or not.

Here are some simple conventions that you might consider:

 Chapter D – User-Defined Functions 213

∳ Z ← X Function Y Often used by English-speaking developers

∳ R ← G Function D Often used by French-speaking developers

∳ R ← A Function B and so on…

However, we advise you to adopt meaningful words to indicate the nature of the arguments;

for example:

NumVec or TexVec For numeric or character vectors

NumMat or TexMat For numeric or character matrices

We also recommend that you avoid modifying the arguments in the body of the function:

otherwise you could make maintenance much more difficult.

8 - Multi-Line Direct Functions

The Direct functions we wrote in Section 2 were limited to a single statement; we will now

use the text editor to define multi-line Direct functions.

8.1 Characteristics

 Generally, the opening and closing braces are placed alone on the first and last lines. This

is not mandatory, it is just a convention.

 Like procedural functions, they can be commented at will.

 One can create as many variables as needed: they are automatically deemed to be local

variables. Note that this is opposite to procedural functions, in which names are considered

global, unless they are localised.

 The arguments ∱ and ∭ retain the values passed to them as argument and may not be

changed.

Any attempt to modify them causes a SYNTAX ERROR to be reported, except when

defaulting the left argument (cf. Section 8.3.1).

 As soon as an expression generates a result that is not assigned to a name or used in any

other way, the function terminates, and the value of that expression is returned as the result

of the function. If the function contains more lines they will not be executed.

 Control structures, branch arrows, and labels cannot be used in D-fns.

214 Dyalog APL - Tutorial

Let us write a function, deliberately broken up into several statements, to calculate an average

value:

 ∳ DirFun1←{ ⍝ Even the header can be commented
[1] vector←,∱ ⍝ If ∱ is a scalar
[2] size←∰vector
[3] sum←+/vector
[4] sum÷size This will be our result

[5] sum×size This line will not be executed
[6] }
 ∳

 DirFun1 3 9 4 7 6
5.8

You can check that any attempt to reference the values of vector, size or sum generates a

VALUE ERROR, as they are local variables.

You can also see that statement [5] has not been executed, because the result of statement

[4] is the final result, and the function terminated there. Such superfluous statements should

be avoided, as they will sooner or later cause unnecessary confusion.

As a debugging tool, it is possible to modify statements to display intermediate results, like

any other function,:

[2] ⎕←size←∰vector
[3] ⎕←sum←+/vector

 DirFun1 13 29 34 27 51
5
154
30.8

Be careful: If you display the value calculated in line [4], the value calculated in that line is

no longer unused, and execution would now continue in line [5] - an example of the

confusion mentioned above:

[2] ⎕←size←∰vector
[3] ⎕←sum←+/vector
[4] ⎕←sum÷size

 DirFun1 13 29 34 27 51
5
154
30.8
770 The result is now the value calculated in line

[5]!

 Chapter D – User-Defined Functions 215

8.2 Guards

We said that control structures or traditional branch arrows cannot be used in D-Fns.

However, it is possible to have a D-Fn conditionally calculate a result, by using a Guard.

A Guard is any expression which generates a one-item Boolean result, followed by a colon.

The expression placed to the right of a Guard is executed only if the guard is true. This syntax

is similar to an :If … :ElseIf … :ElseIf … :Else … :EndIf control structure.

For example, this function will give a result equal to 'Positive', 'Zero', or 'Negative'

if the argument ∱ is respectively greater than, equal to, or smaller than zero:

Sign←{
 ∱>0: 'Positive'
 ∱=0: 'Zero'
 'Negative' This will not be executed if ∱ is positive or zero!
 }

8.3 Syntax Considerations

8.3.1 - Default Left Argument

A dyadic D-Fn can always be used monadically; syntactically, its left argument ∭ is always

optional. If the left argument is not present it is possible to assign a default value to ∭ by a

normal assignment, for example: ∭←10. The assignment will not be carried out if ∭ already has

a value.

Consider a function which calculates the N
th

 root of a number, but which is normally used to

calculate square roots (N=2). You can specify that the default value of the left argument

(when omitted) is 2, as follows:

Root←{
 ∭←2 When omitted ∭ is set to 2

 ∱*÷∭ In any case calculate a root using ∭
 }

 4 Root 625 If specified, ∭ is used
5 5 is the 4th root of 625

 Root 625 If not specified, ∭ takes the default value 2
25 and the square root is calculated

The expression to the right of ∭← is evaluated only if the function has been used monadically.

For this reason the expression should not have any side effects, as illustrated by this (silly)

example:

216 Dyalog APL - Tutorial

 ∳ Silly←{
[1] a←1 Always executed
[2] ∭←a←2 Not executed if ∭ already has a value
[3] a Let us see the value of "a"
[4] }
 ∳

 Silly 0 ∭ is not specified
2 As set in line [2]

 0 Silly 0 Now ∭ is specified
1 As set in line [1]; line [2] has not been

 executed

8.3.2 - Shy Result

Like procedural functions, D-Fns may produce a shy result. This happens when the last

expression that is evaluated is assigned to a (local) name, as opposed to just leaving the result

of the expression unassigned. Here is an example:

Function←{
 Any statement Here are the normal statements

 ...
 ∱>10:var← Any value If the Guard is true, the function will terminate,
 The body of the function and var will be returned as a shy result.

 Dum←… } This is the last statement and it is assigned; the result will be shy.

var and Dum are dummy variables, because they cannot be used anymore: the statements in

which they are assigned are the last ones executed.

8.3.3 - Local Sub-Functions

We have already defined a direct sub-function in a procedural function (see Willitwork2 in

Section 3.5), and we localised it in the function header. This can be done too in D-Fns, but

note that in D-Fns, sub-functions, like variables, are localised automatically.

In the function below, we calculate the square root of the average of the squares of some

numbers. Each of those three steps is done by a sub-function:

rms←{
 Root←{∱*0.5} Define Root
 Mean←{(+/∱)÷∰,∱} Define Mean
 Square←{∱×∱} Define Square
 Root Mean Square ∱ Apply these 3 functions to argument ∱
}

 rms 15 20 34 19 15 21 14
20.71576349

 Chapter D – User-Defined Functions 217

9 - Recursion

A function is Recursive when it calls itself, generally to calculate the N
th

 step of an algorithm

from its (N-1)
th

 step.

For example, the factorial of N can be defined as N times the factorial of N-1. Of course,

some condition must specify when the process is supposed to stop. In our example, the

factorial of 1 is not calculated, but set to 1. A recursive function could be written as follows:

 ∳ Z←Fact N
[1] Z←1
[2] →(N<2)/0
[3] Z←N∲Fact N-1 The function calls itself
 ∳

 Fact 8
40320

Be careful

Recursive solutions are generally very elegant, however:

 Because a function may call itself a great number of times before it reaches the exit

condition, this technique may need a lot of memory if the function works on huge arrays.

 When the function calls itself, the variables calculated during one step must not interfere

with the calling context. You must carefully localise all your variables (which is the reason

for the possible large memory consumption, as the local variables in all recursions may

exist at the same time).

Recursion is never mandatory. A recursive function can always be re-written using looping

instead of recursion.

Recursion in D-Fns

D-Fns, like procedural functions, can be recursive. A function can refer to itself explicitly (by

its own name), but one can also use the special symbol ∳ to represent this self-call.

For example, one can calculate a factorial with a recursive function; it can be defined with two

equivalent notations, one using its name, and one using the implicit self-reference Del (or

Carrot):

218 Dyalog APL - Tutorial

DFact1←{ DFact2←{
 ∱=1:1 ∱=1:1
 ∱×DFact1 ∱-1 ∱∲∳ ∱-1
} }

 DFact2 7
5040

An implicit self-reference using ∳ needs less interpretative overhead, and therefore it may

execute more quickly. Moreover, it will continue to work even if the function is renamed.

10 - Synonyms

Synonyms are defined on the spot by associating a new name with an existing primitive,

defined, or derived function. For example:

 Shape ← ∰ Synonym of a primitive function

 Mean ← Average Synonym of a defined function

 Sum ← +/ Synonym of a derived function

From now on, one can use the words Shape, Mean, and Sum instead of the corresponding

expressions:

Normal expressions Using synonyms

 +/12 47 31 23 Sum 12 47 31 23
113 113

 ∰Prod Shape Prod
5 2 12 5 2 12

 Average 12 47 31 23 Mean 12 47 31 23
28.25 28.25

Remark 1

It is important to notice that this is not a way of creating a new function by assembling a

collection of symbols or functions together. For example, we defined a synonym for ∰,

because it is a single function, but we cannot do the same for Rank, because that would need

the use of two primitive functions.

Rank ← ∰∰ would cause a SYNTAX ERROR

Sum ← +/ is not an exception because +/ represents a single derived function

 Chapter D – User-Defined Functions 219

Remark 2

When defining a synonym, the contents of the original function are not duplicated.

For example, if you type Copy ← Meanval the word Copy just contains a link to Meanval,

but the code of Meanval is not duplicated.

As evidence of this, if you try to display the code of Copy using ⎕VR 'Copy', you will see

the code of Meanval, as shown below:

 Copy ← Meanval Create the synonym

 ⎕vr 'Copy'
 ∳ res←Meanval vec;sum;nb Though this is the Visual Representation of Copy
[1] sum←+/vec this is the header of Meanval

[2] nb←∰vec
[3] res←sum÷nb
 ∳

Furthermore, if you were to modify some statement in Meanval (for example to multiply the

result by 100), Copy is still pointing to the same code, and the two functions remain the

same:

 ⎕vr 'Copy'
 ∳ res←Meanval vec;sum;nb
[1] sum←+/vec
[2] nb←∰vec
[3] res←100×sum÷nb The modification was made in Meanval but

 ∳ Copy points to this new code

Warning!

Some typing errors may create involuntary synonyms:

For example, you intended to type: Val ← Average 41 11 19

But you inadvertently pressed the Enter key and just typed: Val ← Average

You created a synonym! And now, if you try again to enter the correct expression, it doesn't

work:

Val ← Average 41 11 19 would cause a SYNTAX ERROR because Val is now a function!

In such a case, the only thing you can do is:)erase Val

More generally, once a Synonym has been defined, it cannot be modified using Dyalog's

function editor. Unless a new function assignment is made one can only delete and recreate it.

220 Dyalog APL - Tutorial

11 - About the Text Editor

Most of the features of the built-in Dyalog APL editor are very similar to those of other

familiar editors, but some are very specific, and we therefore provide a brief description of the

specific editing facilities of Dyalog APL.

11.1 What Can You Edit?

The following table shows the different item types that can be displayed using the text editor.

Some of them can be modified (Editable), some others cannot: they can only be viewed

The table contains a list of the item types, the default foreground and background colours

(FCol / BCol) used to represent them, and a Yes or No depending on whether they can be

modified or not.

Item type FCol BCol Editable

Function various White yes

Character matrix Green Black yes

Character vector Black White yes

Vector of text vectors Blue Black yes

Any numeric array White Grey no (*)

Mixed array Blue Grey no

Object representation (⎕OR) White Red no

(*) Note that numeric matrices can be edited using the numeric editor tool. Just place the

cursor on the variable name and click on the button. This does not apply to vectors

or higher rank variables.

 Chapter D – User-Defined Functions 221

11.2 What Can You Do?

11.2.1 - Cut / Copy / Paste

It is possible to Cut / Copy / Paste text inside an edit window, but also from one edit window

to another one. It is also possible to copy text from the session window and paste it into any

function, operator, or editable variable, or the reverse. So, if you have entered some

experimental expressions in the session, you can drag and drop them into a defined function.

The standard Windows clipboard is used, so you can also copy and paste between Dyalog

APL and other applications, or between multiple Dyalog APL sessions.

Some older APL keyboard layouts are in conflict with the newer Windows shortcuts for Cut,

Copy and Paste (Ctrl+X, Ctrl+C and Ctrl+V). If these keystrokes produce APL characters,

use the Edit menu, or use the three following shortcuts, which are the original Windows

shortcuts:

Cut Shift+Delete

Copy Ctrl+Insert

Paste Shift+Insert

11.2.2 - Drag/Drop Restrictions

You may move or copy text using drag/drop, but the following behaviour applies:

 If you drag/drop text within the same Edit window, the default operation is a move. If

you press the Ctrl key at the same time, the operation is a copy.

 If you drag/drop text from one window to another window, the operation is always a

copy.

 If you drag/drop text within the Session window, the operation is always a copy.

11.2.3 - Open a New Line or Statement

The simplest way to open a new line is as follows: place the cursor at the left or right end of a

line, check that the keyboard is in Insert mode (the default), and press the Enter key.

It is also possible to activate the menu Edit Open Line, or depress Ctrl+Shift+Insert.

222 Dyalog APL - Tutorial

11.2.4 - Delete a Line or Statement

The simplest way to delete a single line is to press Ctrl+Delete, or use Edit Delete line.

To delete a block of lines, just select the text with the keyboard or with the mouse, and press

the Delete key.

11.2.5 - Exit the Editor

We have already seen the three main ways of leaving the editor:

 Press the Escape key, or activate the menu option File Exit. This fixes the modifications

and closes the edit window.

 Press Shift+Escape or activate File Abort. This leaves the editor without saving the

modifications; they are lost.

 File Fix fixes the modifications but does not close the edit window.

11.3 Undo, Redo, Replay

11.3.1 - Undo

As long as the contents of an Edit window have not been fixed, it is possible to undo all the

modifications made since the last fix.

To undo modifications, you can:

 Press Ctrl+Shift+BackSpace as many times as needed

 Or activate the menu Edit Undo

When all the modifications have been removed, a warning dialog box displays "No more".

This is similar to the Ctrl-Z keyboard shortcut available in many other Windows programs.

11.3.2 - Redo

Having used undo, it is possible to restore the changes that you have undone, one by one.

To redo modifications, you can:

 Press Ctrl+Shift+Enter as many times as needed

 Or activate the menu Edit Redo

 Chapter D – User-Defined Functions 223

When all the modifications have been restored, a warning dialog box displays "No more"

It must be emphasised that the Undo/Redo facility applies only to the current window. If some

pieces of text have been copied to another window, the contents of the other window are not

affected by the Undo or Redo operations.

This is similar to the Ctrl-Y keyboard shortcut available in many other Windows programs.

11.3.3 - Replay Input Lines

The same keyboard shortcuts (Ctrl+Shift+BackSpace and Ctrl+Shift+Enter) can be used to

scroll up and down the statements that you have previously entered into the session window.

For example, suppose you have typed:

 (Prod×1.07)-⌈/,Forecast
Result

 250 17∰BigNum
Result

 5 10 3 17∰Boys
Result

Suppose now that you want to re-execute the first statement with 1.17 instead of 1.07. You

could scroll back through the considerable amount of output (generated by the 3 expressions)

to find this statement. However instead, you can search just through the input statements (only

the lines that you have entered, excluding any output), which are stored in a dedicated Input

History buffer:

 Press Ctrl+Shift+BackSpace to scroll back through the Input History buffer as many times

as needed.

 Press Ctrl+Shift+Enter to scroll forward, if you went too far back.

Once you have found the line, you can change it (or not) and then execute it again by pressing

the Enter key.

The size of this dedicated buffer is controlled by the following configuration parameter:

Options Configuration Log History buffer size [Kb]

11.3.4 - Advice

When you type into any of the lines displayed on your session screen, these lines are marked

as active, even if you havn’t actually changed anything. All active lines will be executed again

from top to bottom when you press the Enter key.

If you want to de-activate one of them, place the cursor on it and press Shift+Escape. You can

do the same if you do not want to execute something you typed.

224 Dyalog APL - Tutorial

11.4 Miscellaneous

11.4.1 - Reformat

When writing a long function with many control structures, it is convenient to see the lines

indented. Indentation is easily lost during editing, but you can reformat the function at any

time by pressing Ctrl+Keypad Slash (/), or by selecting the menu item Edit Reformat.

11.4.2 - Show/Hide Line Numbers

Whether or not you prefer to have line numbers displayed is just a question of taste. This is

controlled by the configuration parameter:

Options Configuration General Show line numbers

This configuration parameter determines the status when Dyalog APL is started. If you change

the setting it will not have any effect until next time Dyalog APL is started.

Regardless of this parameter setting you can always toggle line numbers on/off in the current

session in one of the following ways:

 Press Ctrl+Keypad minus

 Press the

button.in the session toolbar

 In your edit window, activate: View Line numbers

The change immediately applies to all edit windows, but will not be remembered when the

Dyalog APL session is closed.

11.4.3 - Localise Names

To avoid forgetting to add a name to the list of local names in the function header, you can

declare it local/global when typing it.

 The easy way: when typing the name, press Ctrl+Up. This toggle works when the cursor is

placed on the name or on its borders (just before or just after).

 The heavy way: in your edit window, activate: Edit Toggle local name

11.4.4 - Comment / Uncomment Lines

It is often useful to (perhaps temporarily) neutralise a set of statements in the middle of a

function.

 Chapter D – User-Defined Functions 225

Just select the corresponding statements with the mouse or with the keyboard, and use the Edit

menu:

Edit Comment selected lines to neutralise the statements

Edit Uncomment selected lines to activate them again

You can also use Ctrl-Alt-, (Ctrl-Alt-Comma) to comment them all at once, and Ctrl-Alt-.

(Ctrl-Alt-Period) to uncomment them all.

12 - SALT

Up to now, all the functions and operators we defined were created with an APL code editor,

and stored in an APL workspace.

This monolithic one-workspace approach to application development works well for small

applications developed by single programmers, but is often inappropriate for large

applications developed by teams of programmers. Some groups have tackled this problem by

storing code in ancillary workspaces or special files. Code is then copied dynamically into the

main workspace when required, using techniques that will be explained later.

Had the same application been developed in a more traditional language, programs would be

entered and modified using a text editor, stored in separate text files, and maintained

independently from one another under the aegis of a source-code management system that

allows the team of programmers to coordinate their activities and keep track of changes.

This type of application development approach is also available in Dyalog APL, using a

source code management system named SALT, for Simple APL Library Toolkit.

SALT makes it possible to store sets of APL functions, operators, and variables in text files

that may be edited and managed using either the built-in APL code editor or industry standard

tools. This makes it easier to share code between projects and teams of developers.

To take full advantage of this new technique of developing applications, you should first learn

about Namespaces and related topics, notations, and commands. For this reason, SALT will be

studied in Chapter R.

226 Dyalog APL - Tutorial

 Chapter D – User-Defined Functions 227

Exercises

D-11 Write a multi-line direct function which displays the greatest value in a numeric matrix, and

its position (Row and Column) in the matrix, for example:

 MaxPlace Actual
The greatest value: 507, is in row 2, column 6

D-12 Conversions from Celsius to Fahrenheit degrees and back can be done using the following

formulas:
F ← 32+9∲C÷5 C ← 5×(F-32)÷9

Can you program a function that makes the conversion C→F or F→C according to its right

argument?

 86 32 212 Convert 'F-C'
30 0 100

 7 15 25 Convert 'C-F'
44.6 59 7

D-13 Summing the items of a vector is so simple in APL (+/vec), that one cannot understand why

this simple problem needs a loop in traditional languages! Just for fun, can you program such

a loop in APL? Use control structures.

 +/ 31 37 44 19 27 60 42
260

 LoopSum 31 37 44 19 27 60 42
260

D-14 In exercise D-3, you were asked to reverse the order of a vector of items. Even if it is a strange

idea, can you do the same operation using a loop, moving letter after letter?

 ReverLoop 'The solution without loop was much better'
retteb hcum saw pool tuohtiw noitulos ehT

228 Dyalog APL - Tutorial

D-15 In a given numeric matrix with N columns, we would like to insert subtotals after each group

of G columns (where G is a divisor of N).

Try to write a function to do that, following these 3 steps:

 Reshape the matrix so that it fits in G columns only, with the necessary number of rows to

contain all the values.

 Concatenate, on the right, the totals of each row.

 Then reshape again that new matrix to obtain the final result.

In the examples below, the original matrix appears in grey, and the inserted subtotals appear

in black:

 Twelve
51 40 18 90 72 75 13 4 35 18 95 29
85 20 87 6 60 3 53 73 32 34 10 36
40 60 56 33 60 3 15 60 63 18 63 5

 3 SubSum Twelve
51 40 18 109 90 72 75 237 13 4 35 52 18 95 29 142
85 20 87 192 6 60 3 69 53 73 32 158 34 10 36 80
40 60 56 156 33 60 3 96 15 60 63 138 18 63 5 86

 6 SubSum Twelve
51 40 18 90 72 75 346 13 4 35 18 95 29 194
85 20 87 6 60 3 261 53 73 32 34 10 36 238
40 60 56 33 60 3 252 15 60 63 18 63 5 224

D-16 This is a very classic problem: we want to partition a text vector each time a given separator is

found, and make a matrix from these pieces. We will see later a solution without a loop, but

for the moment, sorry, you will need a loop.

 '/' Sorry 'You/will/need a/loop/to solve/this/exercise'
You
will
need a
loop
to solve
this
exercise

 Chapter D – User-Defined Functions 229

D-17 Given any positive integer N, derive from it a series of values, like this:

 The first item is the number N itself

 If the current value of N is even, the next value will be N÷2

 If the current value of N is odd, the next value will be 1+3×N

It appears that after a certain number of iterations, the final value of N will be 1.

This property, which has never been proven, is known as the Syracuse (or Collatz or Ullam)

conjecture. In mathematics, a conjecture is a theory which appears to always be true, but

nobody has been able to prove that it must be true.

Can you write a function to calculate the values generated from a given start value:

 Syracuse 37
37 112 56 28 14 7 22 11 34 17 52 26 13 40 20 10 5 16 8 4 2 1

You can write it using loops or recursion, and write a procedural or a direct function.

230 Dyalog APL - Tutorial

The Specialist's Section

Each chapter is followed by a "Specialist's Section" like this one.

This section is dedicated to skilled APLers, who wish to improve their knowledge.

You will find here rare or complex usages of the concepts presented in the chapter, or discover

extended explanations which need the knowledge of some symbols that will be seen much

further in the book

If you are exploring APL for the first time,

skip this section and go to the next chapter

Spe-1 Shadowed Names

A name can be localised in a Trad-function only if the programmer explicitly specifies its

name in the function header. But a function can dynamically define new variables or new

functions, using Execute (⍎) and ⎕FX.

So during function execution, names of new variables and functions may be created

dynamically. They could not therefore be localised explicitly when the function was written,

but they can be localised, or Shadowed dynamically at run-time.

One or more names can be shadowed using the System function ⎕SHADOW, which accepts a

vector of names separated by blanks, or a matrix of names, with one name per row (but not a

nested vector of names). For example:

Dummy is the textual representation of a niladic function named Demonstration, as a

character matrix (also know as the function's Canonical Representation):

Demonstration
'This is just'
'a demo function'

Ombra is a function with no localised names:

 ∳ CanRep Ombra Text
[1] ⎕SHADOW Text,' ',CanRep[1;]
[2] ⍎Text,'←1'
[3] ⍎⎕FX CanRep
[4] ∬ ⍝ Intentional error
 ∳

 Chapter D – User-Defined Functions 231

Let us execute it: Dummy Ombra 'New'

[1] The function shadows "New" and "Demonstration"

[2] It dynamically creates a variable named "New"

[3] It fixes a new function named "Demonstration" and executes it

When the function is interrupted in [4], it is easy to see that those items have been created.

But when the function completes, New and Demonstration disappear: they were only local

names.

Spe-2 Loop Control

Loops programmed with traditional branch arrows are controlled by the APL statements.

Loops using Control structures are controlled by the interpreter. For that reason, if you trace

loops programmed with Repeat, or For, you will see that the first statement of the loop is

executed only once, the following iterations execute only the "useful" statements. It is

different for a While loop, because the test is placed in the first statement.

This has a surprising consequence. Imagine a For loop, using a control variable named Again

which is supposed to take three successive values: 12 54 86.

But the programmer erroneously alters the value of Again during execution:

 ∳ Mess;Again
[1] :For Again :In 12 54 86
[2] Again
[3] Again←'Who modified me?'
[4] Again
[5] :End
 ∳

 Mess
12
Who modified me? At each iteration, Again is modified
54 But it is automatically reset to the correct value

Who modified me? at each new iteration
86
Who modified me?

Spe-3 Labels and the Branch Arrow

Spe-3.1 - Niladic Arrow

A niladic Branch arrow → means: quit the current execution, i.e. quit the current function and

all the calling functions, whatever the depth of the execution stack.

232 Dyalog APL - Tutorial

This is different from branching to zero →0 which means: quit the current function and resume

execution in the calling environment.

When an execution is interrupted, a niladic Branch arrow clears its execution stack.

When an evaluated input value is requested by a Quad (⎕), a niladic Branch arrow stops the

request and forces an exit from the function and from all the calling functions.

Note, however, that a niladic Branch arrow only clears the most current execution stack. If

several functions have been interrupted and new ones started without first clearing the

execution stack, you may have several active stacks. Each stack is identified by an asterisk to

the right of the name of the interrupted function:

)si Show all three execution stacks
#.foo[4]*
#.goo[1]
#.foo[4]*
#.goo[1]
#.foo[4]*
#.goo[1]

 → Clear the uppermost stack, leaving two

)si
#.foo[4]*
#.goo[1]
#.foo[4]*
#.goo[1]

)reset This will clear all execution stacks in one go

)si

Spe-3.2 - Branch to a Wrong Label

We said that a Label is processed as a numeric local variable which takes its value from the

line number on which it appears. For example, if a function contains the statement:

[23] Next: NewPrice←OldPrice∲(1-Discount)

Then Next is a numeric value equal to 23. It is like a "read only variable", since you cannot

modify it: Any assignment to Next would cause a SYNTAX ERROR. However, the value of

Next will change if some lines are deleted or inserted before line 23.

For this reason, the statements →Next and :GoTo Next are equivalent to →23 - but only as

long as the label Next appears in line no. 23!

We also said that a branch to zero causes an exit from the current function. This is also the

case for any jump to a line number which is outside the number of lines in the function. For

example →50 would terminate any function which has less than 50 lines.

 Chapter D – User-Defined Functions 233

Now imagine two functions, one calling the other:

 ∳ MainFun ∳ SubFun
[1] Any statements [1] Any statements
... ...
[12] SubFun [9] :GoTo Special
[13] 'You are back!' [10] 'This will not work'
... ∳
[87] Special: Instruction
...
 ∳

 When MainFun is executed, "Special" immediately becomes a read-only variable whose

value is 87.

 When SubFun is called, Special is local to MainFun, but global to SubFun, so it is

visible, and is equal to 87.

 When evaluated, the jump :GoTo Special (or →Special) is equivalent to :GoTo 87.

 But because the function has only 10 lines this will terminate SubFun.

 Execution then continues at MainFun[13], not at MainFun[87].

Conclusion: Be very careful when using labels and un-localised names in general!

Spe-4 Other Conditional Execution

In the course of this Chapter you have learned how to program conditional execution, using

control structures or traditional branching techniques.

APL provides two other methods: The Execute function and the Power operator.

Spe-4.1 - Conditional Execution Using Execute

The function Execute (⍎) will be studied in Chapter F; it executes any character vector given

as a right argument, as if it were an expression that had been typed into the APL session

window. But if the vector is empty, nothing will be executed. This feature can be used to

conditionally execute a statement. Let us consider the following expression:

⍎(Diff<Limit)/'Range←¯5 5'

If (Diff<Limit)is satisfied:

1/'Range←¯5 5' gives 'Range←¯5 5'

and ⍎'Range←¯5 5' will execute the expression, so Range will be set to ¯5 5.

If (Diff<Limit)is not satisfied,

0/'Range←¯5 5' gives an empty vector,

and ⍎'' does nothing, so Range will not be assigned.

234 Dyalog APL - Tutorial

More generally, one can write: ⍎(Condition)/Text

When the expression on the right contains quotes, they must be doubled, and the expression

may become more complex to read. Using Execute will in general compromise the ability to

analyse the code in order to, for example, search for references to a given function or global

variable. For these reasons, and also because executed expressions may run slightly slower

than ordinary statements, this technique should be avoided. It is mentioned only because it has

been used for years by many programmers, before better tools became available in APL.

Advice: Prefer control structures.

Spe-4.2 - Conditional Execution Using the Power Operator

The Power operator (⍣) will be studied in Chapter J; it must not be confused with the Power

function (*).

Power executes a given function N times. Of course, if N is equal to 1, the function is

executed once, and if N is 0, the function is not executed at all. For example, in 7.3.4, we

wrote a function which rounds a vector of values:

 A ← 37 Let us prepare two variables

 Vec ← 17.4269 69.8731 82.3137

 Round Vec This is the normal use of Round
17.43 69.87 82.31

 (Round⍣(A>20))Vec When the right argument of Power is 1
17.43 69.87 82.31 Round is applied once

 (Round⍣(A>80))Vec When the right argument of Power is 0
17.4269 69.8731 82.3137 Round is not applied: the vector is unchanged

We must separate the operator’s right argument from the resulting derived function’s

argument.

We can use a "no-op" function like + as a separator or use parentheses.

More generally, one can write: {LeftOp} (Function⍣(Condition)) RightOp

Spe-5 Name Category of Synonyms

The System function Name Category (⎕NC) indicates if a name currently represents a variable,

a function, an operator, and so on.

When applied to a nested vector of names, it returns an extended result, which gives more

precision. For example:

 Chapter D – User-Defined Functions 235

 ⎕nc 'Round' 'Average'
3.1 3.2

3.1 means that Round is a Procedural function

3.2 means that Average is a Direct function

Let us now create some synonyms:

 SynRound←Round Synonym of a Procedural defined function

 SynAverage←Average Synonym of a Direct defined function

 Rho←∰ Synonym of a Primitive function

 Sum←+/ Synonym of a Derived function

 ⎕NC 'SynRound' 'SynAverage' 'Rho' 'Sum'
3.1 3.2 3.3 3.3

This makes clear that:

 Synonyms of defined functions have the same Name Category as the corresponding

defined functions.

 Synonyms of primitive or derived functions have a Name Category equal to 3.3

Spe-6 Bare Output

When using Quote (⎕) to input data the prompt and the user's answer appear on different lines

on the screen.

When using a Quote-Quad (⍞) to input data, it is possible to force the system to issue the user

with a prompt and collect his or her input on the same line of the screen. This is done by first

assigning the prompt (a character vector) to ⍞, and then referencing ⍞. When the assignment

and reference is performed like this as successive operations, the system does not throw a

new-line after the prompt, and the user-input is collected on the same line as the prompt. This

is called "Bare Output".

Here is an example:

 ⍞←'This is my question:' ⋄ Z←⍞
This is my question:And this is my answer

In this example, the question appears on the screen (here in black), and the user answered on

the same line (in red).

What we get in Z is the complete line: Question + Answer:

 Z
This is my question:And this is my answer

236 Dyalog APL - Tutorial

Using Take and Drop, it is possible to remove the question, like in this demonstration

function:

 ∳ Z←Demo;FN;NA;CY
[1] ⍞←20↑'First name'
[2] FN←20∸⍞
[3] ⍞←20↑'Name'
[4] NA←20∸⍞
[5] ⍞←20↑'Country.................'
[6] CY←20∸⍞
[7] Z←FN,' ',NA,' ',CY
 ∳

 Demo
First nameCharles
NameDarwin The answers are well aligned
Country.............UK
Charles Darwin UK We get only the user's answers

Spe-7 :InEach

The control phrase :For … :In can be used to assign values to several control variables. One

can also use :InEach which assigns one item from each of a set of nested values to the

corresponding control variable. Sometimes :In is more convenient than,:InEach and

sometimes the reverse is true, as we will now show:

Let us assume that data for an invoice is represented as a number of lines, each with a quantity

and a price:

 Invoice1 ← (10 100)(20 200)(30 300)

Then we can process each line in a loop using this function:

 ∳ z←Process1 Invoice
[1] :For (q p) :In Invoice
[2] q×p ⍝ "Process" this invoice line
[3] :EndFor
 ∳

 Process1 Invoice1
1000
4000
9000

Some day somebody decides to deliver the invoice data in a slightly different way: First all

quantities, then all prices:

 Invoice2 ← (10 20 30)(100 200 300)

 Chapter D – User-Defined Functions 237

Then we only need to modify our processing function to use :InEach instead of :In:

 ∳ z←Process2 Invoice
[1] :For (q p) :InEach Invoice
[2] q×p ⍝ "Process" this invoice line
[3] :EndFor
 ∳

 Process2 Invoice2
1000
4000
9000

Rules:

In :For Vars :InEach NesVec ∰Vars is equal to the shape of NesVec.

In :For Vars :In NesVec ∰Vars is equal to the shape of each item in

 NesVec.

238 Dyalog APL - Tutorial

239

Chapter E: First Aid Kit

It's a pity, but it is impossible to develop applications that work perfectly. Applications always

contain errors due to programming mistakes, incorrect use of function calls, or external

reasons, such as a missing file or the abnormal termination of an external (non-APL) piece of

code.

All these problems may interrupt the normal processing of an application, and require

immediate corrective action. The aim of this chapter is to give you the basis to deal with these

situations, and work through the experience.

Later, in Chapter M you will see that it is possible to trap and hide unpredictable errors or

events, in order to provide a safe environment for the user.

Because APL is an interpreted language, program execution is not aborted, just suspended

when an exception occurs. Then the programmer has access to all the application variables,

and can diagnose the problem. If he can modify the code or correct some environmental

dependency, he may be able to restart the program from the very point it had been interrupted,

until a new exception occurs, and so on. This gives great flexibility when debugging

applications.

In this chapter, you will learn how to:

 interpret error messages,

 interpret the information provided by various system indicators,

 trace the execution of an application step by step,

 set break-points in strategic places to help debugging.

A forgotten comma, an incorrect axis, a missing parenthesis, a scalar where you expected a

vector, can all cause an error and it may sometimes be very difficult for a beginner to

understand the reason. Try to get help from people who have a better understanding of APL:

you will save time, and learn a lot from them.

240 Dyalog APL - Tutorial

1 - When an Error Occurs

1.1 Our First Error

Even when you use a function, that is in itself perfectly correct, errors may occur if you call it

with arguments that are not consistent with the function's requirements. We will use this type

of mistake to illustrate what happens when an error occurs.

In the previous chapter, we wrote a function to interlace two matrices of the same shape. This

function works perfectly if you stick to its rules, but what happens if you call it with matrices

that don't have the same shape?

1.1.1 - Your Environment and Indicators

Let us try to interlace Forecast (4 rows / 6 columns) with a 3 by 5 matrix, and see what

happens:

 Forecast Interlace 3 5∰∯15
LENGTH ERROR First, an error message is issued
Interlace[4] R[;even]←B
 ∧

 Simultaneously a trace window appears
Figure E-1

And in the lower right corner of

your session screen, you can see

information displayed in red

 Chapter E – First Aid Kit 241

APL will preserve the entire execution context (local variables, and program status

indicators); so that you can resume function execution once the error has been diagnosed and

repaired.

Let us now examine the meaning of these things.

1.1.2 - The Diagnostic Message

The Diagnostic Message is displayed on three rows of the screen which show:

 The type of error (explained in Section 2.1).

 The function name [and line number] - the statement that can't be executed.

 A caret which is placed where the statement was interrupted.

A System function named ⎕DM returns the latest Diagnostic Message. It is a 3-item nested

vector, with a sub-vector for each of the 3 lines, as shown below:

 DISPLAY ⎕DM
┌→───┐
│ ┌→───────────┐ ┌→──────────────────────┐ ┌→────────────┐ │
│ │LENGTH ERROR│ │Interlace[4] R[;even]←B│ │ ∧│ │
│ └────────────┘ └───────────────────────┘ └─────────────┘ │
└∮───┘

⎕DM retains this value until a new error occurs to replace it, or until we explicitly clear it.

1.1.3 - State Indicator and Line Counter

Whenever function execution is interrupted for any reason, Dyalog APL keeps track of the

exact point where the interrupt occurred in the State Indicator (SI for short). This value of the

State Indicator may be obtained using a system command or a system function:

 System command System function

)SI ⎕SI
 #.Interlace[4]* Interlace

The system function ⎕SI returns a nested vector containing only the names of interrupted

functions; in this example only one name appears.

The system command)SI reports, for each function in the execution stack:

 A path (here #.) which will be explained later, in Chapter O. Ignore it for now.

 The function name (Interlace).

 The number of the statement on which function execution has stopped [4].

 An asterisk which means that this function has been interrupted.

242 Dyalog APL - Tutorial

What you see in red in the bottom right-hand corner of your session (⎕SI:1) is the number

of functions referenced in the State Indicator. Normally, this number should be zero, and

displayed in black; as soon as an error or an interrupt occurs, it is displayed in red as a

warning.

APL also keeps, in a Line Counter, the list of function lines waiting for execution. In this case

there is only one. It can be obtained from the System function ⎕LC:

 ⎕LC
4 A function has been interrupted on line 4

1.1.4 - The Trace Window

If you are running Dyalog APL using the default Tracer behaviour, a window pops up, with

the function text displayed in yellow on a black background, and the statement in error shown

in white on red.

If it does not appear spontaneously, just press Ctrl+Enter.

Then activate: OptionsConfigurationTrace/Edit, and select "Show trace stack on error".

We shall see later how this trace window can be used. Do not close it for the moment.

1.1.5 - You Can See the Local Variables

Your cursor may not be in this (Trace) window: it may remain in the session window, so that

you can conveniently enter expressions to diagnose what has happened. If the trace window

does have the focus you can just switch the focus to the session window and work there,

without closing the trace window.

Because the function has been interrupted, all its local variables are visible:

 You can look at their values.

 You can even modify them (sometimes this may help).

 ∰B
3 5
 size The future result size is correct.
4 12
 ∰R[;even] But we cannot assign the 3 rows of B
4 5 into the 4 rows of R.

1.1.6 - What Can We Do?

Obviously, in this case there is nothing we can do: the function is correct, we just misused it!

We could perhaps forget about it and go on to do something else. However, if we do so, APL

will retain the entire execution stack of functions and local variables in its interrupted state. If

we are not going to continue debugging, we should really clean up by getting the system out

of this state.

 Chapter E – First Aid Kit 243

There are 3 ways to achieve this. If you want to try out all three of them, you will need to

reproduce the same error after each exit operation:

 First option: close the trace window. You can use the standard Windows methods to close

it, or you can click on it to give it the focus, and then press Escape to close it.

 Second option: type a branch arrow → in the session window (see Chapter D, Section Spe-

3).

 Third option: execute the)Reset command in the session window.

Whichever option you chose, you can verify that:

 Both)SI and ⎕SI now give an empty result.

 The red indication ⎕SI:1 is replaced by a black ⎕SI:0 in the session status bar.

 However, there is a little difference: with the first two methods, ⎕DM retains its value (and

keeps track of the latest error), while)Reset also clears ⎕DM.

1.2 Cascade of Errors

We shall now see what happens when an error occurs in a sub-function.

1.2.1 - Preparation

A palindrome is a string of characters which remains the same when it is reversed, after any

non-alphabetic characters (including spaces) have been removed.

For example: Cigar: toss it in a can. It is so tragic
or Was it a car or a cat I saw?

We shall try to write a function which detects whether or not a given string of characters is a

palindrome. We are going to use two sub-functions:

Upper removes all non-alphabetic characters, and transforms the remaining letters

into upper-case characters:

 ∳ Z←Upper text;low;up;all
[1] low←'abcdefghijklmnopqrstuvwxyz'
[2] up ←'ABCDEFGHIJKLMNOPQRSTUVWXYZ'
[3] all←low,up
[4] text←(text∮all)/text
[5] Z←(up,up)[all∯text]
 ∳

Upper 'Visit New York' VISITNEWYORK

244 Dyalog APL - Tutorial

Reverse reverses the items of a vector. This is one possible solution to exercise D-3,

written by someone who was unaware that APL has a reverse primitive (see

Chapter G):

 ∳ Z←Reverse vec;index
[1] index←(1+∰vec)-∯∰vec
[2] Z←vec[index]
 ∳

Reverse 'Demonstration' noitartsnomeD

Palindrome compares the upper-cased original vector and its reversed version:

 ∳ Z←Palindrome vector;torvec
[1] vector←Upper vector
[2] torvec←Reverse vector
[3] Z←∧/torvec=vector
 ∳

Let’s try it out:

 Palindrome 'Was it a car or a cat I saw?'
1 This a palindrome.
 Palindrome 'Am I a palindrome?'
0 This is not a palindrome.

Now, in Palindrome we decide to replace Reverse by ReverBug, a deliberately faulty and

obtuse version. Not only does it use an unnecessary loop, but it includes some (intentional)

errors:

 ∳ Z←ReverBug Vec;From;To ⍝ Intentionally faulty
[1] Z←(∰Vec)∰'?'
[2] From←0
[3] :Repeat
[4] From←Frm+1
[5] To←(∰Vec)-From
[6] Z[To]←Vec[From]
[7] :Until From=∰Vec
 ∳

All these functions are provided in the associated workspace.

1.2.2 - Let Us Create More Errors

First, let us execute the little function Plus, shown below, with incorrect arguments, so as to

obtain a LENGTH ERROR:

 ∳ Z←X Plus Y
[1] Z←X+Y
 ∳

 Chapter E – First Aid Kit 245

 5 1 7 Plus 6 2 9 4
LENGTH ERROR
Plus[1] Z←X+Y
 ∧

As in the previous example:

 An error message is issued, and a trace window pops up.

 ⎕SI:1 is now displayed in red in the status bar, and)SI contains one line.

 ⎕LC contains the value 1 (the function is interrupted on line 1).

We shall intentionally ignore this error. Do not close the trace window.

And now, let us execute Palindrome. An error is immediately reported.

 Palindrome 'Was it a car or a cat I saw?'
VALUE ERROR
ReverBug[4] From←Frm+1 The word From has been misspelled.
 ∧

 A second error message is issued.

 In the bottom right corner of our session, we now have the information ⎕SI:3.

 ⎕LC contains three values: 4 2 1.

 And we now have 3 trace windows instead of one:

o One window contains Plus, unchanged.

o A second window contains Palindrome, on a grey background.

o And on top of that, a window contains ReverBug.

246 Dyalog APL - Tutorial

Figure E-2

Let us consult the indicators we know. ⎕DM still shows the latest known error, and ⎕SI gives

the names of the three interrupted functions, the last one being displayed first:

 ⎕DM
 VALUE ERROR ReverBug[4] From←Frm+1 ∧

 ⎕SI
 ReverBug Palindrome Plus

 Chapter E – First Aid Kit 247

)SI
#.ReverBug[4]* The star means that this function is interrupted.
#.Palindrome[2] There is no star to the right of this one, it is

"pending".
#.Plus[1]* This function has also been interrupted.

As you can see,)SI is a stack. Starting from the bottom, it indicates that Plus was

interrupted on line [1]. Then Palindrome[2] has called ReverBug, and finally ReverBug

caused an error in line [4].

Both ⎕SI and ⎕LC report the most recently interrupted function first, followed by the others.

Palindrome has not itself generated an error: it is just waiting for the completion of

ReverBug. The Palindrome function is said to be Pending.

For that reason:

 There is no star to the right of Palindrome in)SI.

 The background of its trace window is grey instead of black.

1.2.3 - Switch to Edit Mode

In this case, the error is obvious and we can try to correct it, but the text displayed in the trace

window cannot be edited directly; we must first turn the trace window into an edit window.

To do this, ensure that your cursor is over an empty space in the session window (it must not

be over another name) and then:

 just double-click (on nothing),

 or press Shift+Enter.

Alternatively, you can switch focus to the trace window and place the cursor before the start

of any function line and press Shift+Enter.

All three methods turn the black trace window into a white edit window.

You can now modify the incorrect statement (change Frm into From), and press Escape to fix

the modification. The system switches back to the black trace window, showing the newly

corrected statement.

1.2.4 - Continue Execution

After making the correction, you can choose to either:

 Restart the function from the interruption point.

 Or continue by tracing its execution, statement by statement, to see what happens.

248 Dyalog APL - Tutorial

Let us choose the first option. This can be achieved using one of the following methods:

 First method: in the session window, execute →⎕LC, which is equivalent to →4 2 1.

The branch arrow ignores the two last numbers, so the program resumes execution

from line number 4 in the function at the top of the stack (ReverBug in this case).

 Second method: in the trace window toolbar, press the (Continue execution)

button.

The function restarts but, unfortunately, a second error immediately appears:

INDEX ERROR
ReverBug[6] Z[To]←Vec[From]
 ∧

The indicators are nearly the same; they now tell us that the function is no longer interrupted

on line 4, but on line 6.

To diagnose the problem, we can look at the values of our local variables. We can either

double-click on their names (which will open each one in a new window), or just type their

names in the session; let us use the latter approach:

 Z Something is wrong: the first letter (W) should

ASITACARORACATISAW? be in the last position where the "?" is.

 ∰vec We had an argument with 19 letters.

19
 From And we are trying to move the 19th letter.

19

 To But the last index equal to zero causes an error.

0

Our statement in line [5] calculated the wrong index! It would be insufficient to correct the

statement and continue with the current execution, because the variables are already wrong. A

better solution would be to exit from ReverBug, and restart from where Palindrome called

it.

If we want to return to the calling function, we cannot execute)Reset nor →, because that

would cause a complete exit both from ReverBug and from Palindrome. The only way back

is to ensure that the ReverBug trace window has the focus and then press Escape to get out of

ReverBug and return to Palindrome.

We are now back in the calling environment:

)si
#.Palindrome[2]*
#.Plus[1]*

Notice that ReverBug is no longer present in the state indicator and that the asterisk is now

displayed alongside Palindrome, because Palindrome is now the interrupted function.

 Chapter E – First Aid Kit 249

Let us modify the 5
th

 statement of ReverBug like this: To←(1+∰vec)-From

Then, resume the execution of Palindrome exactly as we restarted Reverbug:

 Execute →⎕LC in the session.

 Or press the (Continue execution) button in the trace window toolbar.

 →⎕LC Restart the execution.
1 Final result: Yes, it is a palindrome!

)SI
#.Plus[1]* We still have an old interrupted function.

 ⎕DM
 INDEX ERROR ReverBug[6] Z[to]←vec[from] ∧

As you can see, ⎕DM does not report the stack of errors, just the last one that occurred.

The best thing we can do now to restore a clean environment is to execute:

)Reset

1.3 Information and Actions

1.3.1 - Indicators

When an error occurs, a number of program status indicators are available for the developer's

use. Not all of them will be described here; we shall just explore the most useful ones.

)SI State indicator List of suspended functions with line numbers and

state.

⎕SI State indicator Nested vector of suspended functions names.

⎕DM Diagnostic message 3-item nested vector which reports the message

associated with the very latest error.

⎕LC Line Counter Numeric vector containing the line numbers of

functions that are pending or suspended and waiting for

execution, the last one being displayed first – the same

order as ⎕SI.

⎕EN Event Number Every type of error or exception is identified by a

number. The number of the very latest error is reported

by ⎕EN.

250 Dyalog APL - Tutorial

Here are some very common Event Numbers; they will be explained in the next Section:

 1 WS FULL
 2 SYNTAX ERROR
 3 INDEX ERROR
 4 RANK ERROR
 5 LENGTH ERROR
 6 VALUE ERROR
 11 DOMAIN ERROR

A full list of Event Numbers is given in Appendix 6.

1.3.2 - Some Possible Actions

→⎕LC Continue the interrupted function from the very statement on which it was

interrupted.

→0 Quit the interrupted function, and return to its calling environment, which may

be the session, or a calling function. In the latter case execution will be resumed

in the calling function.

→ Quit the interrupted function and all its calling functions, and return to the

session. If other functions are suspended, they remain in the State Indicator.

)Reset Quit all suspended functions, reset the State Indicator.

⎕SI, ⎕DM, and ⎕LC are reset to empty vectors, and ⎕EN is set to zero.

1.4 Why Should You Reset Your State Indicator?

Please change the 5
th

 statement of ReverBug back to reproduce the second error:

Instead of the correct statement: To←(1+∰vec)-From

introduce the error again: To←(∰vec)-From

In the previous chapter, exercise D-6, we asked you to write a dyadic function which returns

the list of integer values in the range specified by its two arguments. For example:

 17 To 25
17 18 19 20 21 22 23 24 25 It works; you're a genius!

Now, let us run our erroneous function: ReverBug 'This function does not work'

An error occurs, but we decide not to reset the State Indicator.

 Chapter E – First Aid Kit 251

Let us now execute our little function To again:

 17 To 29

17 0 29 Horror: it no longer works!

 DISPLAY 17 To 29
┌→──────────┐ It returns an incorrect result.
│ ┌→┐ │
│ 17 │0│ 29 │
│ └~┘ │
└∮──────────┘

In fact, our To function is no longer visible; it is hidden by the To variable, which is local to

the erroneous function. At the present time, To refers to a one-item vector whose value is zero.

That explains the result we obtained.

As soon as we reset the State Indicator, the local variables of ReverBug disappear, and the

function can be invoked again:

)Reset Reset the execution stack.
 24 To 30
24 25 26 27 28 29 30 Who said that it did not work?

So, having a "dirty" state indicator can easily lead to a lot of confusion.

You should also be aware that because APL preserves the full context in which a function

stopped or crashed, all the local variables are retained too; this may require a lot of memory

space!

Recommendation When a function crashes, always try to clear the stack if you can:

 Try to correct the problem, and resume execution.

 Or, if that is impossible, abort it and reset the execution context

by executing)Reset.

 If you can’t fix it now, Dyalog will allow you to)SAVE the

workspace and try again later.

252 Dyalog APL - Tutorial

2 - Most Frequent Error Messages

2.1 Execution Errors

For each common error, we shall give you the most probable reason for the error, some rare

cases which may be difficult to debug, and suggest some immediate experiments that you can

carry out to help diagnose the problem.

Among the 6 most common errors, 4 are really easy to diagnose, but the last two ones are a bit

more complex.

2.1.1 - VALUE ERROR ... (⎕EN=6)

You used a name which does not have a value; it does not represent a variable, a function, or

an operator.

Here are some possible reasons:

 Perhaps you misspelled the variable (or function) name, entered the incorrect mixture of

upper and lower case characters, or confused the letter "O" with the digit "0", etc.

 You tried to use the result of a function which actually produces no result because in its

header line you forgot to specify the name that represents its result. See D-7.2.

 You tried to reference one of the local variables of a function before it was assigned a

value. Remember that all the names referenced in the function header are local, including

the result.

 Another common cause is an erroneous function header, as explained below.

For example, you intended to create a function named Travel, with two arguments named

West and East. When you entered the header, you forgot the space between Travel and

East, so that the function looks like this:

 ∳ Z←West TravelEast
[1] Z←West-East
 ∳

Instead, you have defined a monadic function named West, with a right argument named

TravelEast. When you try to use Travel, it does not exist, and you get an error.

 Chapter E – First Aid Kit 253

If you suspect that this has occurred, and you can remember the syntax of the function, check

to see if you have a different function whose name is the same as your intended left argument.

If you do not spot it immediately, you can use the (Search) tool, provided in the Dyalog

APL toolbar or via the menu, Tools Search.

In the Advanced tab, type the name that you want to search for (here circled in red), deselect

"Match Whole Word", and, if you are not sure of the case, also deselect "Match Case", then

click on "Find now". You should then discover what the name of the misspelled function

really is.

Figure E-3

2.1.2 - LENGTH ERROR .. (⎕EN=5)

A Length Error usually involves two arguments, because their shapes are inconsistent for a

given operation. For example:

4 6 8 + 3 7

Suggestion If an operation like X+Y causes a Length Error, look at the shapes of

both arguments X and Y, and see if they are compatible with one

another.

254 Dyalog APL - Tutorial

Also remember that:

 A matrix with only one row looks like (but is not) a vector: see B-3.4.2.

 A matrix or vector with only one element looks like (but is not) a scalar: see B-3.4.2.

 An incorrectly specified axis may also cause such an error. For example:

Let us create: MatA←3 4∰∯12 and MatB←5 4∰∯16

Both MatA,MatB and MatA,[2]MatB would cause a Length Error.

But MatAⓐMatB or MatA,[1]MatB will work.

2.1.3 - RANK ERROR .. (⎕EN=4)

A Rank Error means that you tried to do something which is not consistent with the Rank of

an array. This may involve one or more variables. Here are some common examples:

Forecast[3 5] Is incorrect, because Forecast is a matrix, not a vector.

A semi-colon is needed somewhere: [;3 5] or [3;5], or [3 5;].

Matrix+Vector This cannot work, even if Matrix has only one row, and looks very

much like a vector.

Sometimes incorrect syntax can lead to a Rank Error. For example, to concatenate the two

matrices shown above, the correct syntax is: MatA,[1]MatB. But now, suppose that you

write:

MatA[1],MatB The comma is in the wrong place, and APL tries to calculate
MatA[1]
This leads to a Rank error because MatA is a matrix, and not a

vector.

Suggestion If a statement causes a Rank Error, look at the shapes of all the arrays

involved in the expression.

2.1.4 - INDEX ERROR .. (⎕EN=3)

You tried to index a variable, but your index was wrong. For example, you tried to get the 20
th

element of a vector which has only 17 elements.

This occurs when the index (or one of the items of the index) is:

 Smaller than or equal to zero.

 Greater than the length of the variable, along the specified axis.

 Not an integer.

Forecast[5;5] This is wrong. Forecast has 6 columns, but only 4 rows: the second

index is good, but the first one is not.

 Chapter E – First Aid Kit 255

The same diagnostic message is issued when an Axis is not correct, except that a non-integer

axis is required for Laminate. For example:

MatA,[3]MatB This cannot work, because MatA does not have 3 dimensions.

Vector,[2]100 A vector has only one dimension. Here again, an Index Error occurs.

Suggestions If the error occurs in an indexing operation like

Var[IndexA;IndexB;…], look at the shape of Var, and check if

IndexA, IndexB, etc. contain values which are compatible with the

size of Var.

 If the error occurs in an Axis specification like +/[Axis]Var or

VarA,[Axis]VarB, look at the shape(s) of the variable(s) involved in

the operation, and check that Axis is compatible.

2.1.5 - DOMAIN ERROR .. (⎕EN=11)

This error is much more complex to diagnose.

It usually means that some function cannot be applied to a particular value or type of data; the

data is outside the domain in which the function is designed to operate. Here are some very

common circumstances in which a DOMAIN ERROR occurs:

Values ÷ Div This is perfectly correct; except if Div contains one or more zeroes

and Values does not contain zero in the same places.

You + Me Is correct; except if one of the arguments is not numeric. Beware: this

may be difficult to see when a variable contains numeric characters

such as '0123456789'. Hint: for a simple array You the expression

0=1↑0∰You returns 1 if the array is numeric, and 0 if it is character.

Values[Index] The same problem if Index contains characters or non-integer

values.

Bin1 ∶ Bin2 The symbol ∶ is a Boolean operation; it would cause a DOMAIN
ERROR if either argument contains values other that 0 and 1.

∲/ ∯Max If Max is too big the result would be larger than the largest number

that the computer can represent.

More generally, all these statements are in themselves perfectly correct when applied to

appropriate data. However, they may fail when applied to other, inappropriate data.

Suggestion Do not worry too much about the syntax of your statement: it is

probably good. You should instead try to determine which values are

appropriate to the operation, and check whether the actual values are

within the operation's domain.

256 Dyalog APL - Tutorial

2.1.6 - SYNTAX ERROR .. (⎕EN=2)

This error may also be a difficult one. It means that a statement is ill-formed! Do not worry

about your data: the problem arises from the statement itself.

Typically, the reason is that you have entered the wrong number of parentheses, quotes, or

brackets: check that your parentheses, quotes, brackets are well balanced.

Here are some incorrect expressions: (A+B)*C) or 'ISN'T IT?' or Vec[Set[Old]

Some other typical sources of Syntax errors:

 Monadic use of a dyadic primitive or user-defined function: Interlace Actual

 or: <45 67

 Use of the upper minus sign with a name: ¯5 is correct

 ¯Var is not. One should write -Var

 A missing :End clause in a control structure, or other inappropriate use of control

structures.

2.1.7 - WS FULL ... (⎕EN=1)

You have probably tried to create an array that would be larger than the amount of available

memory in the workspace.

 If it happens on Reshape (Shape∰Contents), check whether the left argument is much

bigger than you anticipated.

 If it happens on Compress/Replicate (Numbers/Variable), check that the left argument

does not contain large numeric values:

101101/Variable is not the same as: 1 0 1 1 0 1/Variable

A WS FULL may also happen when a recursive function working on a large amount of data

calls itself a large number of times. If this happens, consider whether a plain loop might be a

safer solution.

 Chapter E – First Aid Kit 257

2.2 Some Other Errors

2.2.1 - Can't Fix

This is not an execution error. It happens only when you try to define a function, and APL

cannot fix it because its header is incorrect. Here are some things you should check:

 Check that all your local variables are separated by semi-colons and not by some other

characters (dot, comma, blank …), and check that there is no extra semi-colon to the right:

FUN Rarg ;loca,locb;locc is invalid: there is a comma instead of a semi-colon.

FUN Rarg ;loca;locb;locc; is invalid: there is an extra semi-colon.

 Check that you havn’t tried to specify a nested left argument. This is only allowed for the

right argument:

Left FUN (one two three) is correct.

(one two three) FUN Right is invalid.

 Check the name of your function. If the name you have chosen is already in use as a

variable, you cannot redefine the name as a function.

2.2.2 - Not Saved, This Ws Is…

You started with a clear workspace, and spent hours developing a set of functions. At the end

of the day you decide to save it:

)save D:\Washington\APL\WS\Bidou
Not saved, this ws is CLEAR WS

Don't panic! This does not mean that your workspace is empty and that you have lost all your

work; it is just a friendly warning.

It so happens that in this case a saved workspace named BIDOU already exists, and Dyalog

APL refuses to overwrite it with the active workspace.

Had your workspace been named Tartempion, the warning message would have been:

Not saved, this ws is Tartempion

But because you started with a CLEAR WS and you have not explicitly renamed the workspace,

APL will not allow you to save it until you give it a name. Hence the message:

Not saved, this ws is CLEAR WS

For this reason, always prefer the "Windows" or "Windows-like" procedure when saving your

workspace, using a file search dialog box.

258 Dyalog APL - Tutorial

3 - Trace Tools

3.1 Invoke and Use the Tracer

3.1.1 - Invoke the Tracer

In the default configuration for the Tracer, accessed by OptionConfigurationTrace/Edit, the

option "Show trace stack on error" should be selected. This means that as soon as an error

occurs, a trace window pops up, as we saw in the previous sections. If this option is not

selected, you must invoke the tracer manually when needed.

When an error occurs, check that your cursor is on an empty line (it should be), and just press

Ctrl+Enter or activate ActionTrace in the toolbar. This is called a "Naked Trace".

But sometimes it is better to anticipate that there will be errors, and trace the execution from

the beginning. You can type any valid statement and instead of pressing Enter to execute it,

press Ctrl+Enter (the easy way) or activate ActionTrace in the session toolbar to trace it. All

the functions referenced by this statement will be traced.

Using this technique, you can trace the execution of a function from the very beginning.

3.1.2 - Trace Actions

All of the things you can do may be actioned using the keyboard or the little toolbar which

appears on top of the trace window. In the table below, you will find the icons displayed on

these buttons, what they do, and the equivalent keyboard shortcuts. Preferably use the

keyboard: you will save time.

 Chapter E – First Aid Kit 259

Figure E-4

Icon Usage Keyboard shortcut

Execute this statement

Execute this statement and trace the sub-functions

Go back to the previous statement

Skip this line (do not execute it)

Continue the trace automatically

Continue execution, without tracing

Restart all threads

Edit the variable or function pointed to by the cursor

Quit this function, and return to its environment

Interrupt (when in "Continue trace" mode)

Remove break-points (see Section 3.3)

Enter

Ctrl+Enter Ctrl+Enter

Ctrl+Shift+BackSpace

Ctrl+Shift+Enter

→⎕LC

Shift+Enter

Escape

3.1.3 - Trace Strategies

Usually, the tracer is employed to execute a function step by step, by repeatedly pressing the

Enter key. At each step, you can check the values of your variables. You might perhaps

monitor the values of certain significant variables, each in its own window, and see how they

change when the function is executed, step after step, or in continuous mode.

When the current statement includes a call to one or more user-defined sub functions, you

must decide how it should be processed:

 If you are confident in those sub functions and have no doubt about them, just press the

Enter key, and the current line will be executed.

 If you think that a sub function requires investigation, press Ctrl+Enter or click on the

"Trace into expression" button. This will open the Tracer on each of the sub functions in

turn. You can continue tracing to any depth of function call.

260 Dyalog APL - Tutorial

In the example shown in figure E-5 below, we traced the execution of Palindrome.

 Palindrome 'Just to show a function call'

On its 1
st
 statement, it calls Upper: we did not trace it, but executed it by pressing Enter.

On its 2
nd

 statement, it calls ReverBug: we decided to trace it as shown above and to display

the values of From, To and Z. Here is the window configuration after 16 executions of the

loop:

Figure E-5

You can see that Palindrome is on a grey background because it is pending. It has called

ReverBug, and once the variables were calculated for the first time we opened three edit

windows to see their values changing loop after loop.

 Chapter E – First Aid Kit 261

You can also move the red line to skip some statements:

 Backward if you want to re-execute some statements after you have changed some

parameters or variables, or changed the code, etc. Press Ctrl+Shift+BackSpace , or use the

"Go back one line" button.

 Forward, to skip some insignificant statements. Press Ctrl+Shift+Enter, or use the "Skip

current line" button.

Sometimes an error appears only after an unpredictable number of iterations, and tracing the

execution statement after statement would take much too long. In a situation like this, you can

display some important variables as shown above, and run the function in automatic mode

(press the "Continue trace" button). You can then stop execution with the "Interrupt" button

when a given variable is about to take what you suspect might be a critical value.

When you have finished your investigations you can:

 Resume execution automatically by pressing the "Continue execution" button, or by

executing →⎕LC.

 Abort the execution by pressing the "Quit" button, or by typing →0, or → , or)Reset,

depending on your intentions.

3.2 Choose Your Configuration

If your program is interrupted in a very deep stack of functions, you will get as many trace

windows as you have suspended functions. Those windows may occupy most of the screen.

Sometimes this default behaviour may be unhelpful.

This is why the configuration panel offers the option "Single trace window". If this option is

selected, there is only a single trace window. When the execution enters a sub function, or

returns to its calling function, the contents of the trace windows are replaced by the new

current function.

This setting may be convenient when big functions call other big functions, deeply. But it is

not very convenient when tracing recursive functions.

It is up to you to decide which configuration is most convenient for you. In any case, this can

be changed dynamically, without restarting APL.

262 Dyalog APL - Tutorial

3.3 Break-points and Trace-controls

3.3.1 - Set Break-points

When one wants to investigate the behaviour of a set of statements nested in a very deep sub-

function, the best option is to run the main function but tell the system to interrupt the

execution just before a particular statement is executed. To achieve this, one can place break-

points (sometimes names Stops) on one or more statements.

When you edit or trace a function, you normally have a blank column to the left of the

function body, as shown below. If this is not the case, activate the menu ViewStop (deselect

the two other options: "Trace" and "Monitor").

Figure E-6

You can set or remove break-points by clicking the mouse in this column, on the line on

which you wish to toggle the break-point. A red dot shows that the break-point is set. You can

set and clear break-points in edit windows as well as in trace windows, and they can be

changed at any time.

When one of the marked functions is executed, it stops before each break-point:

 Chapter E – First Aid Kit 263

 ReverBug 'Just for fun'
ReverBug[6] We have stopped on line [6].

 ⎕DM The function is just stopped, so there is no error
 #.ReverBug[6] Z[To]←Vec[From] reported in ⎕DM, just the statement.

You can then make all the experiments you need to do, and restart the function at will, in

continuous or trace mode.

3.3.2 - Remove Break-points

Each break-point can be removed individually with the mouse, as explained before. But after a

long period of testing and debugging, it may be difficult to remember where break-points

were set, and it is unacceptable to hand over a finished application to the end-user if it

contains break-points.

For this reason, always remove all the break-points by clicking the button. This button

removes all of the break-points from all of your functions, throughout the entire workspace.

In fact you may choose to display up to 3 blank columns to the left of the function body to

show break-points, trace-controls, and monitored lines too. To do this, check or clear the

Trace, Stop and Monitor items shown in the View menu.

When you move the mouse-pointer into this area, its shape changes to a red circle (break-

point), a yellow circle (trace-control; see 3.3.3) or a clock (monitored line; this will be

explained in Chapter L, paragraph Spe-9), to indicate which of these will be set or cleared

when you click the mouse.

3.3.3 - Trace-controls

Earlier, we saw a very convenient way of tracing functions. There is another debugging

technique in which functions are executed normally; no trace windows are employed and

there is no need to execute statements step by step. To set this up, before execution, the

developer sets trace-controls on selected statements in one or more functions. Whenever a line

marked by a trace-control is executed, the last value calculated on that line will be displayed

in the session, without interrupting execution. Let us explore this technique.

First, in Palindrome, let us replace ReverBug by another looping function, ReverLoop (see

below), a possible solution to exercise D-14 and one that is more appropriate for this test.

In the View menu of any function, for example Palindrome, select "Trace" just as we

selected "Stop" earlier. An additional column will open to the left of the function body, in

which you can set trace-controls (yellow dots).

Let us set trace-controls on lines 1 and 2 of Palindrome, and 3 of ReverLoop, as shown

below:

264 Dyalog APL - Tutorial

Figure E-7

We can now close these windows and execute the function. Each time a statement, on which a

trace-control is set, is executed, Dyalog APL displays the name of the function, the line

number, and the last value calculated on that line:

 Palindrome 'Boring'
 Palindrome[1] BORING The result of Upper

 ReverLoop[3] B The result of the first loop in ReverLoop
 ReverLoop[3] OB
 ReverLoop[3] ROB
 ReverLoop[3] IROB
 ReverLoop[3] NIROB
 ReverLoop[3] GNIROB The result of the last loop

 Palindrome[2] GNIROB The value of torvec
0 The final result

In fact, for each trace-control, depending on the context, APL displays:

 The last value calculated in that line Value←Statement

 The result of a branch statement →(Condition)/Value

 The "pass-through" value of an assignment Vec[Index]←Value

As you might imagine, if the traced functions perform many loops, this approach may produce

pages and pages of output, especially if the results are large. In this case, you will probably

most often prefer the previous method.

Trace-controls can be removed one-by-one as described above or, more conveniently, all at

once by clicking the button.

 Chapter E – First Aid Kit 265

3.3.4 - Intentional Interruption

When an application is running in its normal production context, it is possible that some

unexpected circumstances may cause it to crash at an unpredictable point. To cater for this

eventuality, it is common practice to set a general error trap, using the techniques described in

Chapter M, and halt execution in a controlled manner at a predefined point in the program, so

that the developer is able to diagnose and correct the problem.

To deliberately make a function stop under program control, one can use ⎕Stop (see the next

section), or generate an intentional error. The latter is probably easier, even for a beginner.

There are many ways to do this, but a common one is to jump to a dedicated erroneous

statement containing the single character "∬", or Jot, obtained by pressing Ctrl+J:

[14] ∬

This symbol alone does not mean anything, so it causes a SYNTAX ERROR. You may

encounter this in existing applications.

3.4 System Functions

Break-points and trace-controls can also be set and removed using two system functions,

which share the same syntax:

Lines ⎕Trace 'Function'

Lines ⎕Stop 'Function'

For example: 1 2 9 ⎕Trace 'Palindrome' 9 will be ignored for this function

or: 4 6 0 ⎕Stop 'ReverBug'

Where:

 Numbers outside the range of available statements are ignored.

 Zero means that a break-point or a trace-control will be placed immediately prior to

exiting from the function.

Both functions return a numeric vector indicating the lines in which break-points or trace-

controls have been actually set, as a shy result. If a new set of values is provided, it replaces

the previous one. For example:

 ⎕←4 6 0 ⎕Stop 'ReverBug' Display the shy result.

0 4 6 The result is in ascending order.
 ⎕←5 ⎕Stop 'ReverBug' We change our mind.
5 The previous list has been replaced.

266 Dyalog APL - Tutorial

The monadic usage of these functions returns the current stop or trace settings for a function:

 ⎕Stop 'ReverBug'
5
 ⎕Trace 'Palindrome'
1 2 The value 9, out of range, has been ignored.

The break-points and trace-controls can be removed by specifying an empty vector:

For example: ⍬ ⎕Trace 'Palindrome'

or: ⍬ ⎕Stop 'ReverBug'

What now?

This is enough for the moment. With a little practice, you should be able to diagnose and

correct programming errors. But if you intend to program very professional end-user

applications, you must protect your code against unexpected circumstances. This can be done

using "Exception processing".

Please refer to Chapter M, which usefully complements the present one.

 Chapter E – First Aid Kit 267

Exercises

There are no exercises in this chapter. Enjoy the break!

What kind of APLer are you now?

268 Dyalog APL - Tutorial

The Specialist's Section

Each chapter is followed by a "Specialist's Section" like this one.

This section is dedicated to skilled APLers, who wish to improve their knowledge.

You will find here rare or complex usages of the concepts presented in the chapter, or discover

extended explanations which need the knowledge of some symbols that will be seen much

further in the book

If you are exploring APL for the first time,

skip this section and go to the next chapter

Spe-1 Value Errors

Spe-1.1 - Namespaces

If a VALUE ERROR occurs when you reference a function name, for example GetText,

perhaps this function is not "visible" because it is located in a different Namespace. Check to

see if you have some Namespaces by typing the command)OBS, and search through them to

find the function.

Imagine that GetText exists in a Namespace called Files. You have two ways to execute it

from the root namespace:

 Give its full path when calling the function: Files.GetText Argument

 or: #.Files.GetText Argument

 Set a global path to this Namespace ⎕PATH←'Files'
Then call the function normally GetText Argument

Spe-1.2 - Nightmare

You expected to define a function named Travel and wrongly defined a function named

West (see Section 2.1.1):

 ∳ Z←West TravelEast
[1] Z←West-East
 ∳

If you try to execute West, (for example, type: West 100), you will get a VALUE ERROR on

the first statement if East does not exist as a global variable.

 Chapter E – First Aid Kit 269

But suppose that you do have a numeric global variable named East. Then the first statement

will be executed successfully, and West will call itself recursively, endlessly applying to the

same argument (-East), with no exit condition, until the execution stack fills up the

workspace. You will then have an error message like "The current trace stack is 395967 levels

deep, etc.". In the status field that displays the depth of the State Indicator, you will see a high

value.

Trying to do anything at this point, even a naked branch, may not work simply because you

have run out of workspace, and APL will issue WS FULL on any attempt to resolve the

situation.

Just type)Reset to get out of this nightmare, then go and have a strong cup of coffee.

While drinking it, you can think about how you learned in section D-4.7 to interrupt a

function, so that you do not have to wait for the workspace to be eaten up before you can

regain control, if (read: when) this happens again.

Spe-2)SINL

When diagnosing a problem, you generally use)SI. However, you can obtain additional

information with)SINL, which also gives all the local names used by the suspended

functions, whether or not they have already been calculated. NL stands for "Name List'.

For example, when Palindrome crashes:

)SINL
#.ReverBug[4]* Vec Z From To
#.Palindrome[2] vector Z torvec

When the crash occurred To and torvec did not exist, but their names are nevertheless

reported by)SINL.

Spe-3 Namespaces and Indicators

Spe-3.1 - Extended State Indicator

When a function crashes, the information reported by)SI includes the full path to the

functions on the execution stack. This is why all the lines begin with a Hash: the Root

namespace identifier.

For example, suppose that we write a function named MyFile, which calls GetText which is

located in the Namespace Files, and this last function crashes:

)SI
#.Files.GetText[3]* This function runs in a Namespace.
#.MyFile[1] The calling function is at the Root level.

270 Dyalog APL - Tutorial

Note that ⎕SI only reports the function names, not the full paths to them. You can obtain that

information using the Extended SI, represented by the system function ⎕XSI, as shown:

 ⎕XSI
 #.Files.GetText #.MyFile

This may help you to open a function in the editor, even if it is being executed in a different

Namespace reached using ⎕CS.

For example, you could edit the functions in the stack using:

 ⎕ED ⎕XSI To edit all the functions.
 ⎕ED 1⊃⎕XSI To edit only the first one.

Spe-3.2 - Namespace Indicator

A function located in a Namespace can be called from any other namespace. It may be

important to know from where it was called. This information is given by ⎕NSI.

Let us consider the following scenario:

A workspace contains two Namespaces: ToolBox contains some user-defined functions.

 Files is a Dyalog provided set of utilities.

This workspace contains the following function:

 ∳ Z←Application FileName;Sink
[1] Sink←'Any top level statements'
[2] Z←].ToolBox.Control FileName
 ∳

This main program calls Control (located in ToolBox):

 ∳ Z←Control FileName;Sink
[1] Sink←'Any ToolBox statements'
[2] ⎕CS'#'
[3] Z←Files.GetText GloPath,FileName
 ∳

And on the line before Control calls GetText (located in the Namespace Files), it

switches execution (it is running in #.ToolBox) to the Root namespace (⎕CS'#') in order to

execute the expression Files.GetText from #.

When we try to apply the main function to a missing file, an error occurs:

 Application 'milk.txt'
FILE NAME ERROR
GetText[3] tn←name ⎕NTIE 0
 ∧

 Chapter E – First Aid Kit 271

⎕SI only reports the suspended functions: GetText Control Application

This is a bit poor, because we cannot see whether or not these three functions are in the same

Namespace. However, ⎕XSI and ⎕NSI give us more information:

⎕XSI #.Files.GetText #.ToolBox.Control #.Application
⎕NSI # # #

⎕XSI Indicates where each function is located: GetText in Files, and Control in
ToolBox.

⎕NSI Indicates from where each function has been called:

Application was of course executed in the Root.

Control was called by Application from the Root, using its full path.

GetText was called by Control. But because that function had just

 executed ⎕CS'#', it was running in the Root Namespace.

 So, GetText was finally called from the Root, too.

This explains why the three functions have been called from the Root.

The traditional State Indicator has also been extended in Dyalog APL:

)SI
#.Files.GetText[3]*
[#] #.ToolBox.Control[3] The [#] means that

#.Application[2] there has been a switch to that namespace.

Let us change Control a little so that this function no longer executes its last line in the Root

namespace (the second statement is commented out). This needs some minor changes to the

third statement so that it can "see" the global names:

 ∳ Z←Control FileName;Sink
[1] Sink←'Any statement'
[2] ⍝ ⎕CS'#'
[3] Z←#.Files.GetText #.GloPath,FileName
 ∳

Of course, the execution fails again, but we now get slightly different information:

⎕XSI #.Files.GetText #.ToolBox.Control #.Application
⎕NSI #.ToolBox # #

272 Dyalog APL - Tutorial

Nothing has changed in ⎕XSI (the functions are still located in the same places), but now

⎕NSI reports that GetText was no longer called from the Root, but was called from ToolBox
where Control was executing. This is also visible in the State Indicator:

)SI
#.Files.GetText[3]*
#.ToolBox.Control[3] The [#] has disappeared
#.Application[2]

273

Chapter F: Execute & Format Control

1 - Execute

1.1 Definition

Execute is a monadic function represented by ⍎; its dyadic use will be explained in the

Specialist's Section at the end of this Chapter.

Execute takes a character vector (or scalar) as its argument.

If the character vector represents a valid APL expression, Execute will just … execute it, as if

it had been typed on the keyboard. Otherwise, an error will be reported.

 Letters ← '5×6+2' This is a plain character vector.

 Letters
5×6+2

 ⍎ Letters Let us execute it.
40

The argument can contain any valid expression:

 Numeric or character constants, or variables

 Left arrows (assignment) or right arrows (branch)

 Primitive or defined functions and operators

 Calls to other Execute functions

In the expression below, Execute calls a defined function and creates a new variable:

 ⍎ 'New ← 3 + Average 8 9'

 New A new variable has been created.
11.5

If the expression returns a result it will be used as the result of Execute.

For example:

 Res ← ⍎ 'Average 10 11 12'

 Res
11

274 Dyalog APL - Tutorial

We could just as well have written: ⍎ 'Res ← Average 10 11 12'

Beware!

Note that if the argument does not return a result, it can still be executed, but Execute will not

return a result, and any attempt to assign it to a variable or to use it in any other way will

cause a VALUE ERROR.

Assuming that PlusNoRes is a function which does not give a result:

 These expressions These expressions ... because they are
 will work will fail... equivalent to:

⍎'' Res←⍎'' Res←
⍎' ' Res←⍎' ' Res←
⍎'→There' Res←⍎'→There' Res← →There
⍎'3 PlusNoRes 5' Res←⍎'3 PlusNoRes 5' Res←3 PlusNoRes 5

1.2 Some Typical Uses

1.2.1 - Convert Text into Numbers

Execute may be used to convert characters into numbers. One common application of execute

is to convert numeric data, stored as character strings in a text file (for example, a .csv file),

into binary numbers. You can just read in a string such as “123, 456, 789” and execute it to

obtain the corresponding 3-item vector:

 ⍎'123 456 789'
123 456 789

We saw in Chapter D that Format can be used to convert numbers to characters; the reverse

can be done using Execute. This explains why those two functions are represented by

"reversed" symbols, as shown here:

 Chapter F – Execute & Format Control 275

There is, however, a major difference: Format can be applied to matrices, whereas Execute

can only be applied to vectors.

 BirthDate ← 'October 14th, 1952'

 +/ ⍎ ⎕←BirthDate[9 10,13+∯5]
14 1952 These are 7 characters.
1966 They have been converted to numbers and added.

Because Execute can only be applied to vectors, a matrix of numeric characters can only be

converted after it has been ravelled. But to avoid characters of one row being attached to those

of the previous row, it is necessary to catenate a blank character before ravelling.

Given the character matrix Mat shown here 845
 1237
 933
 2607

Ravel would give ... 8451237 9332607

The correct conversion will be obtained by first catenating a blank, as shown below:

 ⍎,Mat,' '
845 1237 933 2607

1.2.2 - A Safer and Faster Solution

Using Execute to convert characters into numbers may cause errors if the characters do not

represent valid numbers. So, we strongly recommend that you instead use ⎕VFI (for Verify

and Fix Input). This is a specialised System function that performs the same conversion, but

securely, and is about twice as fast as Execute. ⎕VFI will be studied in Chapter L.

1.2.3 - Other Uses

Execute can be used for many other purposes, including some that may be considered to be

rather advanced programming techniques. Some examples are provided in the Specialist's

Section at the end of this chapter:

 Conditional execution (rather obsolete)

 Case select (also obsolete)

 Dynamic variable creation

276 Dyalog APL - Tutorial

1.3 Make Things Simple

The vector submitted to Execute is often constructed by catenating pieces of text, or tokens.

These tokens may contain quotes (which must then be doubled), commas, parentheses, etc.

But to build the final expression, you will also need quotes (to delimit the tokens), commas (to

concatenate them), parentheses, and so on.

By now, the expression is becoming extremely complex. It may be difficult to see if a comma

is part of a token or is being used to concatenate two successive tokens. It may be hard to see

whether or not the parentheses and quotes are properly balanced. If the final expression is

correct, it doesn't matter, but if it is wrong, maintenance may be difficult.

To simplify maintenance, it is good practice to assign the text to a variable before executing it.

If the operation fails for any reason, you can just display the variable to see if it looks correct.

For example, here is a statement involving Execute:

 ⍎'Tab',(⍃Size),'←(4 ',(⍃Size),'∰'') '''

That's rather obscure! If any problem occurs, it will be difficult to spot the cause.

Let us insert a variable just before the Execute function:

 ⍎Debug←'Tab',(⍃Size),'←(4 ',(⍃Size),'∰'') '''

If any problem occurs, it will be easy to see if the value of Debug is what we expected.

For example, if Size is 43, Debug will contain: Tab43←(4 43∰') '.

Obviously, this is not a correct statement, so it would fail if we tried to execute it.

2 - The Format Primitive

The Format primitive function has already been briefly described in Chapter D, Section 6.2.

We shall cover it in more depth in this section.

2.1 Monadic Format

Monadic Format converts any array, whatever its value, into its character representation. This

applies to numbers, characters, and nested arrays. The result is exactly the same as you would

see if you displayed the array on your screen, because APL internally uses monadic Format to

display arrays.

 Chapter F – Execute & Format Control 277

 Character arrays are not converted; they remain unchanged.

 Numeric and nested arrays are converted into vectors or matrices of characters.

 ∰Chemistry Chemistry is a character matrix.
3 5

 ∰⎕←⍃Chemistry It is not modified by ⍃.
H2SO4
CaCO3
Fe2O3
3 5

 ∰52 69 76 This numeric vector has 3 items.
3

 ∰⎕←⍃52 69 76
52 69 76 Once converted, it is an 8-character vector.
8

In Chapter B, we used a 2 by 3 nested matrix called NesMat. It can be converted into text:

 ∰ NesMat The nested matrix had 2 rows and 3 columns.
2 3

 ∰⎕← ⍃NesMat Once converted into text, it is 20 characters wide

 Dyalog 44 Hello and it has 3 rows, because the second row of

 27 8 6 1 2 0 NesMat contained two small matrices.
 2 4 0 0 5
3 20

2.2 Dyadic Format

2.2.1 - Definition

Dyadic Format applies only to numeric values; any attempt to apply it to characters will cause

a DOMAIN ERROR.

The general syntax of Format is: Descriptor ⍃ Values

Where Values can be an array of any Rank.

It converts numbers into text in a format controlled by the left argument, the Descriptor.

The Descriptor is made up of two numbers:

 The first number indicates the number of characters to be assigned to each numeric value;

or to put it another way, the width of the field in which each numeric value is to be

represented.

 The second number indicates how many decimal digits will be displayed.

278 Dyalog APL - Tutorial

 MN
 608.1 928.24 1293.14 849.95 This is the normal display, and this is also how
1127.84 970.27 1249 1168.29 monadic Format would present it.
 775.12 1065 670.69 1091.7

 8 2⍃MN Each number will be represented by 8 characters,
 608.10 928.24 1293.14 849.95 right aligned, with 2 decimal digits.
 1127.84 970.27 1249.00 1168.29
 775.12 1065.00 670.69 1091.70

¯¯¯¯'¯¯¯¯|¯¯¯¯'¯¯¯¯|¯¯¯¯'¯¯¯¯|¯¯ To help you count the characters, we have drawn

 a ruler (which is not part of the result).

 ∰8 2⍃MN The result has of course 3 rows and 32 columns

3 32 (8 characters for each of the 4 columns).

 6 0⍃MN Here, each number will be represented by 6

 608 928 1293 850 characters, right aligned, with no decimal digits.
 1128 970 1249 1168
 775 1065 671 1092

 ∰6 0⍃MN The result has 3 rows and 24 columns.

3 24

Remark You can see that the numbers to be formatted are rounded rather than truncated

when the specified format does not allow the full precision of the numbers to be

shown.

2.2.2 - Overflow

If a column is not wide enough to represent some of the numbers, these numbers will be

replaced by asterisks:

Small is the following matrix: 207.11 ¯33.24 1293.14 732.55
3302.12 32406.74 833.6 8231.52
 306.91 4231.8 ¯18.23 78.02

This format gives a nice presentation: 9 2⍃Small
 207.11 ¯33.24 1293.14
732.55
3302.12 32406.74 833.60
8231.52
 306.91 4231.80 ¯18.23
78.02

If we reduce the width of the columns, the 8 2⍃Small
value in row 2, column 2 is adjacent to the 207.11 ¯33.24 1293.14 732.55

value on its left. This is difficult to read: 3302.1232406.74 833.60 8231.52
 306.91 4231.80 ¯18.23 78.02

 Chapter F – Execute & Format Control 279

If we further reduce the width of the columns, 7 2⍃Small
the largest value cannot be represented 207.11 ¯33.241293.14 732.55
and is replaced by asterisks. Some other 3302.12******* 833.608231.52
numbers are now adjacent to their neighbours 306.914231.80 ¯18.23 78.02

Remark To calculate the width required to represent a number you must allow for the

minus sign, the integer digits, the decimal point, and as many decimal digits as

specified in the Descriptor.

2.2.3 - Multiple Specifications

One can define a different format for each column of numbers. Each format definition is made

of 2 numbers, so if the matrix has N columns, the left argument must have 2×N items:

 4 0 12 2 9 3 7 0⍃ MN In this case, each column has its own format:

 608 928.24 1293.140 850 4 0, then 12 2, then 9 3, and 7 0.
1128 970.27 1249.000 1168 Some columns are narrow, some are wide; some
 775 1065.00 670.690 1092 have decimal digits, and some have not.

¯¯¯¯'¯¯¯¯|¯¯¯¯'¯¯¯¯|¯¯¯¯'¯¯¯¯|¯¯ This ruler is not part of the result.

If the format descriptor (the left argument) does not contain enough pairs of values, it will be

repeated as many times as needed, provided that the width of the matrix is a multiple of the

number of pairs.

In other words, in Desc ⍃ Values, the residue (∰Desc)|2∲¯1↑∰Values must be equal to

0 (otherwise a LENGTH ERROR is reported).

 8 0 5 0⍃MN
 608 928 1293 850 Columns 3 and 4 re-use the format used for
 1128 970 1249 1168 columns 1 and 2. This is equivalent to:
 775 1065 671 1092 8 0 5 0 8 0 5 0⍃MN

2.2.4 - Scalar Descriptor

When the Descriptor is reduced to a simple scalar, it specifies the number of decimal digits.

The columns are formatted in the smallest width compatible with the values they contain, plus

one separating space. For example:

 2⍃3302.1275 306 813.6 81231.752
 3302.13 306.00 813.60 81231.75

 3⍃Small
 207.110 ¯33.240 1293.140 732.550 Numbers are displayed with 3 decimal

 3302.120 32406.740 833.600 8231.520 digits.
 306.910 4231.800 ¯18.230 78.020

Each column is separated from the preceding one (and from the left margin) by a single space.

This technique is convenient for experimental purposes, to have the most compact possible

presentation, but you cannot control the total width of the final result.

280 Dyalog APL - Tutorial

3 - The ⎕FMT System Function

The Format primitive function is inadequate for producing professional looking output, such

as one may require for common business purposes, because:

 Negative values are represented by a high minus sign, which is rather unusual outside the

APL world.

 A large value, like 5244172.68, is displayed in a single unpleasant block, where it should

be segmented like this: 5,244,172.68.

 National conventions differ from one country to another. It would be convenient if the

value shown above could be written 5,244,172.68 or 5 244 172,68 or again 5.244.172,68.

 It would be nice if negative values could have different styles of presentation, depending

on the usage and the context: -427 or (427).

For all these reasons, the ⍃ primitive is sometimes inappropriate, and it is better to use a

System function named ⎕FMT (where FMT also stands for Format).

3.1 Monadic Use

Monadic ⎕FMT, like its primitive counterpart, converts numbers into text, without any specific

control over the formatting.

The result of ⎕FMT is always a matrix, even if it is applied to a numeric scalar or vector. This

is different from ⍃:

 ∰⍃ 523 12 742
10

 ∰⎕FMT 523 12 742
1 10

The general presentation is the same, except for some very special cases.

 Chapter F – Execute & Format Control 281

3.2 Dyadic Use

3.2.1 - Overview

Like ⍃, dyadic ⎕FMT accepts a Descriptor for its left argument: Descriptor ⎕FMT Values

The right argument (Values) can be:

o a scalar, a vector, a matrix, but, unlike ⍃, not a higher rank array

o a nested scalar or a nested vector, whose items are simple arrays (not nested) of rank not

greater than 2

If Values is a nested vector, each of its items must be homogeneous (either character or

numeric). In other words, an item of Values may not itself be of mixed type.

The Descriptor is a character vector, made of a succession of elementary descriptors separated

by commas; for example:

'I6,4A1,F8.2' ⎕FMT Codes Boys Price

Each elementary descriptor is made up of:

o A letter, the Specification, specifying the data representation (integer, decimal, character).

o Numeric values which specify the width and the shape of the result.

o Qualifiers and Affixtures, used to specify further details of the formatting.

o Sometimes a Repetition factor, to apply the same description to several columns.

These elementary descriptors are used one after the other, from left to right, and applied to

successive values (or columns of values).

Usually each array specified on the right has its own specific descriptor on the left.

For example, in the statement above: 'I6' applies to................................... Codes
'4A1' applies to the 4 columns of Boys
' F8.2' applies to................................... Price

However, an elementary descriptor can apply to several arrays if they are to share the same

formatting, or a single array can require several descriptors when each of its columns is to be

formatted differently.

Matrices are formatted normally, whereas vectors are transposed vertically, into columns.

282 Dyalog APL - Tutorial

3.2.2 - Specifications I and F

These specifications are used to display numeric values: I for Integers

 F for Fractional

with the following syntax:

rIw w = the width (the number of characters) dedicated to each column of numbers

 r = the number of columns to which this format specification is to be applied (this is

the repetition factor mentioned earlier)

rFw.d w = the width (the number of characters) dedicated to each column of numbers

 d = the number of decimal digits to display

 r = the repetition factor

Let us work on this numeric matrix MN: 608.1 928.24 1293.14 849.95
1127.84 970.27 1249 1168.29
 775.12 1065 670.69 1091.7

And the vector Price that we used in Chapter C: 5.2 11.5 3.6 4 8.45

 'I4,2F9.1,I8,F6.1' ⎕Fmt MN Price
 608 928.2 1293.1 850 5.2
1128 970.3 1249.0 1168 11.5
 775 1065.0 670.7 1092 3.6
 4.0
 8.4

Comments

I4 The first column of MN is displayed 4-characters wide, as integers (the values are

rounded)

2F9.1 Two columns are displayed 9-characters wide, with only one decimal digit

I8 The last column of MN is displayed 8-characters wide, as integers

F6.1 The vector is displayed vertically 6-characters wide, with 1 decimal digit

 Vectors are displayed vertically

 Numbers are rounded to the nearest value

 ⎕FMT tolerates the fact that Price has more items than the number of rows in MN

In the Specialist's Section you will see that you can also display numeric values using

scientific (or Exponential) format, using the E specification, which is very similar to F.

 Chapter F – Execute & Format Control 283

3.2.3 - Specification A

This specification is used to format characters (mnemonic: A = Alphabet) with the following

syntax:

rAw w = the width (the number of characters) dedicated to each column of characters

 r = the number of columns to which this format applies (the repetition factor)

Let us again use these two variables: MonMat Chemistry

January H2SO4
February CaCO3
March Fe2O3
April
May
June

 '8A1,A4,9A1' ⎕fmt MonMat Chemistry
January H2SO4
February CaCO3
March Fe2O3
April
May
June
¯¯¯¯'¯¯¯¯|¯¯¯¯'¯¯ To help you count the characters, we have drawn a ruler.

8A1 The 8 columns of MonMat are displayed in 8 columns, each of which is 1-character

wide.

A4 The first column of Chemistry, displayed in a 4-character wide column, produces a

separation of 3 blanks.

9A1 The subsequent columns of Chemistry are displayed in (up to) 9 columns, each of

which is 1-character wide.

Remarks

 Specifications (I F A …) must be specified in upper case (i f a would cause

errors).

 We specified 9A1 though we had only 4 remaining columns to format, with no

problems; ⎕FMT ignores excess repetition factors.

But, what would happen if the first descriptor was larger than necessary?

284 Dyalog APL - Tutorial

 '10A1,A4,4A1' ⎕fmt MonMat Chemistry
January H2 SO4
FebruaryCa CO3
March Fe 2O3
April
May
June

 10 columns (8 from MonMat and 2 from Chemistry) are displayed in columns which

are each 1-character wide.

 The next column of Chemistry is displayed in a column which is 4-characters wide.

 The last two columns of Chemistry are displayed in columns which are each 1-

character wide (again we have specified more columns than are needed).

In the following expression, a single descriptor applies to all the columns of the right

argument:

 'A3' ⎕FMT Chemistry
 H 2 S O 4
 C a C O 3 Each character is formatted in a 3-character wide

 F e 2 O 3 column, and right-justified.

3.2.4 - Specification X

Suppose that we want to number the rows by displaying the characters '123' to the left of

Chemistry. The following method would produce a poor presentation:

 'A1,5A1' ⎕FMT '123' Chemistry
1H2SO4
2CaCO3 '6A1' would produce the same result.
3Fe2O3

To separate the digits on the left from Chemistry, we could specify a different format for the

first column of Chemistry. It is however simpler to include a specific descriptor for the

separation; this is the role of the X specification.

rXw w = the width (the number of characters) of the blank column to insert

 r = the repetition factor

For example, to insert a blank column that is 3-characters wide we can specify:

 'A1,X3,5A1' ⎕FMT '123' Chemistry
1 H2SO4
2 CaCO3
3 Fe2O3

'X3' and '3X1'are synonymous, but the first description is simpler.

 Chapter F – Execute & Format Control 285

3.2.5 - Text Inclusion Specification

It is sometimes convenient to separate two columns of the formatted result by a string of

characters.

This string of characters must be inserted in the format description, embedded between a pair

of delimiters. You can choose from the following delimiters:

< characters >
⊂ characters ⊃
¨ characters ¨
⎕ characters ⎕
⍞ characters ⍞

Of course, if the delimiters are ⊂ ⊃, the character string cannot contain ⊂ or ⊃. Similarly for

the other pairs of delimiters.

For the remainder of this Chapter, we shall only use ⊂ ⊃ or < >.

Let us use the Rates variable that we specified earlier (0.08 0.05 0.02) to calculate a

result and display it. In the example below, the inserted characters are shown in black:

 Res ← MN[;4]×Rates

 For ← '⊂| ⊃,5A1,⊂ | ⊃,4F8.2,⊂ ∲⊃,I2,⊂% =⊃,F7.2,⊂€⊃'

 For ⎕FMT Chemistry MN (Rates×100) Res

| H2SO4 | 608.10 928.24 1293.14 849.95 × 8% = 68.00€
| CaCO3 | 1127.84 970.27 1249.00 1168.29 × 5% = 58.41€
| Fe2O3 | 775.12 1065.00 670.69 1091.70 × 2% = 21.83€

This format specification contains 9 descriptors. To avoid a single long statement, it is

possible to prepare the description, save it in a variable, and use it later, as shown above.

3.2.6 - Specification G – The Picture Code

The specifications we saw earlier (I F X A) are very similar to those used in the "FORMAT"

statement in a very popular scientific language, FORTRAN. Another traditional language,

COBOL, uses a different approach in its "PICTURE" statement.

The G specification in APL is very similar to the COBOL “PICTURE” statement.

In this specification, the letter G is followed by any string of characters, in which the

characters Z and 9 represent the positions in which numeric digits are to be placed in the

output.

The string is delimited by the same delimiters that we use for the text inclusion specification:

< > or ⊂ ⊃ or ¨ ¨ or ⎕ ⎕ or ⍞ ⍞

286 Dyalog APL - Tutorial

It works as follows:

 All the values are rounded to the nearest integer (no decimal digit will be displayed).

 Each digit replaces one of the characters Z or 9 included in the G format string.

 Unused 9's are replaced by zeroes, while unused Z's are replaced by blanks.

 All characters to the left of the first Z or 9, or to the right of the last Z or 9 are reproduced

verbatim.

 Characters inserted between some Z's or 9's are reproduced only if there are digits on both

sides.

Some examples may help:

Let us describe the formatting of this matrix Mat: 75 14 86 20
 31 16 40 51
 22 64 31 28

 '4G⊂(9999) + ⊃' ⎕FMT Mat
(0075) + (0014) + (0086) + (0020) +
(0031) + (0016) + (0040) + (0051) +
(0022) + (0064) + (0031) + (0028) +

Each descriptor "9" has been replaced by a digit of Mat, or by a zero, and all the other

characters have been reproduced from the model.

 MN
 608.1 928.24 1293.14 849.95
1127.84 970.27 1249 1168.29
 775.12 1065 670.69 1091.7

 '4G⊂ 9999⊃'⎕FMT MN
 0608 0928 1293 0850 Each value is padded by leading zeroes,
 1128 0970 1249 1168 and the decimal digits are lost.
 0775 1065 0671 1092

 '4G⊂ ZZZ9⊃'⎕FMT MN
 608 928 1293 850 Small values are not padded by zeroes, but

blanks.
 1128 970 1249 1168
 775 1065 671 1092

Decimal digits can be displayed only if we convert the values into integers, and insert

"artificial" decimal points between the Z's or 9's.

 'G⊂ ZZZZ9.99⊃' ⎕FMT 100×MN
 608.10 928.24 1293.14 849.95
 1127.84 970.27 1249.00 1168.29
 775.12 1065.00 670.69 1091.70

 'G⊂Value ZZ-ZZ/Z9⊃' ⎕FMT 621184 654 8 19346
Value 62-11/84
Value 6/54 As we said earlier, the symbols placed between
Value 8 descriptors Z and 9 are displayed only if they are

Value 1-93/46 surrounded by digits.

 Chapter F – Execute & Format Control 287

This characteristic is useful when displaying numbers according to national conventions:

 'G⊂ZZZ,ZZZ,ZZ9.99⊃' ⎕FMT 32145698710 8452 95732 64952465
321,456,987.10
 84.52 Anglo-American presentation
 957.32
 649,524.65

 'G⊂ZZZ ZZZ ZZ9,99⊃' ⎕FMT 32145698710 8452 95732 64952465
321 456 987,10
 84,52 French presentation
 957,32
 649 524,65

Here is a surprising example:

 'G⊂Simon ZZ Garfunkel ZZ⊃' ⎕FMT 4562.31 8699.84
Simon 45 Garfunkel 62
Simon 87

 The two numbers have been rounded like this: 4562 8700.

 Because vectors are shown in columns we get one printed line per item in the vector.

 On the first line 4562 has been split into 45 and 62.

 On the second line 8700 has been split into 87 and 00.

 But because we used a descriptor Z, these zeroes have been replaced by blanks.

 Then Garfunkel is no longer between non-blank digits and therefore not reproduced.

3.2.7- Specification T

Specification X was used to specify an offset between a field and its left neighbour.

Specification T (where T stands for Tabular) specifies a position from the left margin. This

makes it easy to position data in a sheet.

 'I2,T15,5A1,T30,4I6' ⎕FMT (75 91 34) Chemistry MN
75 H2SO4 608 928 1293 850
91 CaCO3 1128 970 1249 1168
34 Fe2O3 775 1065 671 1092
¯¯¯¯'¯¯¯¯|¯¯¯¯'¯¯¯¯|¯¯¯¯'¯¯¯¯|¯¯¯¯'¯¯¯¯|¯¯¯¯'¯¯¯¯|¯¯¯
 10 20 30 40 50

As you can see, Chemistry starts at the 15
th

 position, and the first column of MN starts at the

30
th

 position, but occupying 6 characters per column it is right-aligned at the 35
th

 character.

288 Dyalog APL - Tutorial

3.2.8- Specification K

Specification Kn is used to multiply a value by 10
n
 before it is displayed.

'F12.2'⎕fmt 123.45 would give 123.45

'K3F12.2'⎕fmt 123.45 would give 123450.00

'K¯1F12.2'⎕fmt 123.45 would give 12.35

In the first statement no K was used and the value remained as is. In the second statement, the

value has been multiplied by 1000, and in the last one, it has been divided by 10 (and rounded

afterwards).

Because specification G only displays integer values, it is often convenient to use specification

K to multiply decimal values by a power of 10 to obtain the correct display, as shown here:

 'G<ZZZ ZZZ ZZ9.99>'⎕FMT 75435.39 66054.17 7.2 1673.08
 754.35
 660.54 This representation gives the wrong idea about

the

 0.07 values.
 16.73

 'K2G<ZZZ ZZZ ZZ9.99>'⎕FMT 75435.39 66054.17 7.2 1673.08
 75 435.39
 66 054.17 The values have bee multiplied by 100, hence
 7.20 producing the correct representation.

 1 673.08

3.3 Qualifiers and Affixtures

Specifications I, F, and G can be associated with Qualifiers and Affixtures:

Qualifiers modify the presentation of numeric values.

Affixtures print additional characters when some conditions are satisfied.

Qualifiers and Affixtures must be specified to the left of the specification they modify.

3.3.1 - Qualifiers

B Replaces zero values by Blanks.

C Separates triads of characters by Commas in the integer part of a number.

L Aligns the value to the Left of its field.

 Chapter F – Execute & Format Control 289

Z Fills up the left part of the zone reserved for a field with Zeroes.

Ov⊂text⊃ Replaces Only the specific value v with the given text. If omitted, v is assumed

 to be zero. So replacing zeroes with a special text string is easy.

S⊂cs⊃ Replaces characters with Substitution characters.

cs is a list of couples of characters, where: c is the original character

 s is the substitute character

This applies only to the replacement of the following characters:

. The decimal separator.

, The thousands separator produced by qualifier C.

* The overflow character used when a value is greater than the space allowed

for it.

0 The fill character produced by qualifier Z.

_ The character indicating lack of precision (see the Specialist's Section).

3.3.2 - Examples of Qualifiers

 'ZI2,2(⊂/⊃,ZI2)' ⎕FMT 1 3∰ 9 7 98
09/07/98 Values have been padded with zeroes on their

left.

Note that a repetition factor may be applied to a list of specifications enclosed by parentheses.

 'CF13.2' ⎕FMT 74815926.03 Groups of 3 digits are separated by commas
74,815,926.03 (Anglo-American presentation).

 'S<, .,>CF13.2' ⎕FMT 74815926.03
74 815 926,03

In this last example, commas have been replaced by blanks, and the decimal point has been

changed into a comma, using the S qualifier, to obtain a French presentation.

Let us use the following numeric matrix Yop: 178.23 0 ¯87.64
 0 ¯681.19 42

 'BF9.2' ⎕FMT Yop
 178.23 ¯87.64 Zero values have been replaced by blanks.
 ¯681.19 42.00

 'O<none>F9.2' ⎕FMT Yop
 178.23 none ¯87.64
 none ¯681.19 42.00

Here, the qualifier O (the letter O) was used to replace zeroes (assumed by default) by "none".

To replace any other specific value with a text string, the value should follow the qualifier, as

shown in this example:

 'O42<Error>F9.2' ⎕FMT Yop
 178.23 0.00 ¯87.64
 0.00 ¯681.19 Error 42 has been replaced.

290 Dyalog APL - Tutorial

3.3.3 - Affixtures

M⊂text⊃ Replaces the Minus sign to the left of negative values with the given text.

N⊂text⊃ The given text will be added to the right of negative values.

P⊂text⊃ The given text will be added to the left of Positive or zero values.

Q⊂text⊃ The given text will be added to the right of positive or zero values.

R⊂text⊃ The given text will be repeated as many times as necessary to entirely fill the

printing zone, then the digits are overlaid on top. Positions which are not

occupied by the digits allow the text to appear. In other words, the text will act

as a background for the formatted value.

It is important to note that the width of the text added by an affixture must be counted in the

total width reserved for the column.

3.3.4 - Examples of Affixtures

 'M⊂(⊃N⊂)⊃F10.2' ⎕FMT Yop M⊂(⊃ will replace the minus sign with (
 178.23 0.00 (87.64) and N⊂)⊃ adds) on the right side.
 0.00 (681.19) 42.00

With affixtures M and N, negative values have been placed between parentheses, in accordance

with common accounting practice, but now they are no longer aligned with the positive

values. To achieve this, we should place a blank to the right of positive values, using affixture

Q:

 'M⊂(⊃N⊂)⊃Q⊂ ⊃F9.2' ⎕FMT Yop
 178.23 0.00 (87.64)
 0.00 (681.19) 42.00

 'R⊂\⊃I6' ⎕FMT Yop
\\\178\\\\\0\\\¯88 Vacant positions are filled by a replacement

\\\\\0\\¯681\\\\42 character.

Remarks

 Qualifiers and Affixtures can be cumulated, and can be placed in any order.

For example: 'S<, .,>CF13.2' ⎕FMT Values
and 'CS<, .,>F13.2' ⎕FMT Values
are strictly equivalent.

 Blanks can be inserted between specifications, qualifiers, and affixtures.

For example 'BS<, .,>CF13.2' ⎕FMT Values
and 'B S <, .,> C F 13.2' ⎕FMT Values

give exactly the same result

 Chapter F – Execute & Format Control 291

 A repetition factor can apply to a group of descriptors placed between parentheses:

'10A1,I4,3(A1,F8.2,I3),CF13.2' ⎕FMT Values

'4(I2,F6.2),X3,8A1,5(I6,A1,X3)' ⎕FMT Values

 Various errors may occur, all signalled by the message FORMAT ERROR. Here are some

frequent errors:

o A numeric value is matched with an A specification.

o Character data is matched with a specification other than A.

o The format specification is ill-shaped. Check that delimiters and parentheses are

well balanced.

o In decimal specifications (F and E), the specified width is too small, so the decimal

digits cannot be represented.

Dyalog APL programming is pure Art

292 Dyalog APL - Tutorial

The Specialist's Section

Each chapter is followed by a "Specialist's Section" like this one.

This section is dedicated to skilled APLers, who wish to improve their knowledge.

If you are exploring APL for the first time

please skip this section and go to the next chapter

Spe-1 Execute

Spe 1.1 - Name Conflict

Suppose that we would like to switch two letters inside a word. Let us write a function which

accepts the index of the letters to switch as its left argument, and the name of an existing

variable as its right argument.

It is important to note that the function works on the name of the variable, not on its value:

 Word ← 'MORAL' This is our variable.

 3 5 Exchange 'Word' We pass its name to the function

 Word
MOLAR and its contents have been changed.

Here is the function we wrote to obtain this result:

 ∳ Index Exchange VarName;V;text
[1] V←⌽Index
[2] text←VarName,'[Index]←',VarName,'[V]'
[3] ⍎text
 ∳

In our example VarName was equal to 'Word', so that statement [2] assigned the following

to text:

 'Word[Index]←Word[V]' When executed, this statement exchanged

 two letters in the variable named Word.

All is well up to now. But now, let us try again on another variable:

 V←'RATS'

 1 2 Exchange 'V'

 V
RATS This is wrong, we should have obtained ARTS

The reason is that our statement [2] now returns: 'V[Index]←V[V]'

 Chapter F – Execute & Format Control 293

But V is the name of a local variable in the function. When the last statement is executed, it

exchanges items inside that local variable, not in the global one, which remains unchanged!

In other words, be careful when Execute is expected to work on global names, as there may be

a risk of conflict with local names. In order to reduce this risk programmers sometimes use

complex and weird names for the local names in such functions.

Spe 1.2 - Conditional Execution

For many years Execute has been used to conditionally execute certain expressions in a

function.

 The general form ⍎(Condition)/'Statement'

 Example.............................. ⍎(Quantity>80)/'Discount←7'

If the condition is satisfied, Compress returns the character string unchanged, and the

statement is then executed. On the other hand, if the condition is not satisfied, Compress

returns an empty vector, and Execute does nothing.

This form is now considered obsolete and should be replaced by an :If …. :Endif control

structure.

:If Quantity>80
 Discount←7
:Endif

Spe 1.3 - Case Selection

Execute is sometimes used to select one case from a set of cases.

Consider the following scenario: a program allows the user to extrapolate a series of numeric

values. He has the choice between three extrapolation methods: Least Squares, Moving

average, and a home made method. Each can be applied using one of three functions:

LeastSqr, MovAverage, HomeXtra. We want to write a function that takes the method

number (1 to 3) as its left argument, and the values to extrapolate as its right argument. You

can compare two programming techniques:

 ∳ R←Method Calc1 Values
[1] :Select Method
[2] :Case 1
[3] R←LeastSqr Values
[4] :Case 2
[5] R←MovAverage Values
[6] :Case 3
[7] R←HomeXtra Values
[8] :EndSelect
 ∳

294 Dyalog APL - Tutorial

 ∳ R←Method Calc2 Values;Fun
[1] Fun←(3 11∰'LeastSqr MovAverage HomeXtra ')[Method;]
[2] R←⍎Fun,' Values'
 ∳

Let us analyse how Calc2 works: Suppose that the user has chosen the 3
rd

 method. Statement

[1] places the 3
rd

 word HomeXtra plus 3 trailing blanks in Fun.

Once this character vector is catenated to ' Values', we obtain: 'HomeXtra Values'

Then, Execute calls the appropriate function and returns the desired result.

This form too is considered obsolete and should be avoided, if only for clarity.

Spe 1.4 - Dynamic Variable Creation

Some very specific applications may require that a program creates variables whose names

depend on the context. This may seem a bit artificial, but imagine that we have three

variables:

 Prefix is the following text matrix: Prod
 Price
 Discount
 Orders

 Suffix is a vector: 'USA'

 Numbers is a numeric matrix: 623 486 739 648
 108 103 112 98
 7 6 7 5
 890 942 637 806

And we now want to create variables named ProdUSA, PriceUSA, and so on, and fill them

with the corresponding values. A simple loop should do that:

 ∳ BuildVars(Mat Vec Val);row;name
[1] :For row :In ∯1↑∰Mat
[2] name←Mat[row;],Vec
[3] name←(name≠' ')/name
[4] ⍎ ⎕← name,'←Val[row;]'
[5] :End
 ∳

Let us see the debugging output that we have added to line [4]:

 BuildVars (Prefix Suffix Numbers)
ProdUSA←Val[row;]
PriceUSA←Val[row;]
DiscountUSA←Val[row;]
OrdersUSA←Val[row;]

 Chapter F – Execute & Format Control 295

Spe 1.5 - Dyadic Execute

In the dyadic use of Execute the left argument must be the name of a Namespace. The

statement provided as the right argument will then be executed in the Namespace specified as

the left argument. For example:

 'ToolBox' ⍎ text1 Execute the statement in the ToolBox namespace.

 '⎕SE' ⍎ text2 Execute the statement in the session namespace.

 '#' ⍎ text3 Execute the statement in the root namespace.

Spe-2 Formatting data

Spe 2.1 - Lack of Precision

If the number of specified significant digits exceeds the computer’s internal precision, low

order digits are replaced with an underscore (_). This character can be replaced by another

one, using specification S. For example: S<_?>.

 'F20.1' ⎕FMT 1E18÷3 Normal

3333333333333333__._

 'S<_?>F20.1' ⎕FMT 1E18÷3 Substituted
3333333333333333??.?

Spe 2.2 - Scientific Representation

If the second item of a pair of Format descriptors is negative (e.g. 9 ¯3⍃Var), numbers are

formatted in Scientific notation (also described as Exponential notation; see Section B-Spe-2),

with as many significant digits in the mantissa as specified by the descriptor:

 11 ¯3⍃ Small
 2.07E2 ¯3.32E1 1.29E3 7.33E2
 3.30E3 3.24E4 8.34E2 8.23E3
 3.07E2 4.23E3 ¯1.82E1 7.80E1

 11 ¯5⍃ Small
 2.0711E2 ¯3.3240E1 1.2931E3 7.3255E2
 3.3021E3 3.2407E4 8.3360E2 8.2315E3
 3.0691E2 4.2318E3 ¯1.8230E1 7.8020E1

296 Dyalog APL - Tutorial

Spe 2.3 - Specification E

This specification in the left argument to ⎕FMT is used to display numeric values, but in

scientific (or Exponential) form.

Its syntax is very similar to the syntax of the F specification:

rEw.s w = the width (in number of characters) dedicated to each column of numbers

 s = the number of significant digits displayed in the mantissa

 r = the repetition factor

 'E12.4' ⎕FMT 12553 0.0487 ¯62.133
 1.255E4
 4.870E¯2
 ¯6.213E1
¯¯¯¯'¯¯¯¯|¯¯ Added ruler

You can see that each number is represented by 12 characters, with exactly 4 significant

digits. However, in order to make room for larger exponents the last column is left blank.

The result is normalized; i.e. there is always one digit before the decimal point, the other ones

are after it.

 'E16.7' ⎕FMT 2 2∰ 98675342 0.004257 ¯15 649
 9.867534E7 4.257000E¯3
 ¯1.500000E1 6.490000E2
¯¯¯¯'¯¯¯¯|¯¯¯¯'¯¯¯¯|¯¯¯¯'¯¯¯¯|¯¯

Spe 2.4 - Formatting Using the Microsoft.Net Framework

Dyalog APL has an interface to Microsoft.Net, which is introduced in Chapter Q. The .Net

Framework includes a vast collection of utility programs, including functions to interpret and

format data according to rules defined for a given locale, or culture or language (which you

can customise using Control Panel Regional and Language Options). For example:

 Chapter F – Execute & Format Control 297

The following examples briefly illustrate some of the capabilities of the String.Format

method.

 ⎕USING←'' Declares our intention to use .Net.

 ⎕← cc← System.Globalization.CultureInfo.CurrentCulture
da-DK In fact, cc is an object.

 cc.EnglishName Extract the value of a property of cc.
Danish (Denmark)

The String.Format function takes three arguments: An instance of the

NumberFormatInfo class, a format string, and a vector of data. An appropriate

NumberFormatInfo instance (i.e. the one that is the default for the current culture), can be

obtained from the NumberFormat property of our instance of the CurrentCulture object

cc.

String.Format returns a string, which appears in APL as a character vector:

 pi←ⓑ1

 System.String.Format cc.NumberFormat '{0:F}' (,pi)
3,14

The 0 in {0:F} is an index (selecting the first item in the data array), and F specifies fixed-

point formatting. The default number of digits and the decimal separator to use are specified

in the NumberFormatInfo object, which has a number of properties that we can inspect, if

we need to know more about how numbers are formatted in the selected culture:

 cc.NumberFormat.(NumberDecimalSeparator NumberDecimalDigits)
 , 2

298 Dyalog APL - Tutorial

Of course, we don’t have to use the default format; we can also specify the number of decimal

digits that we want. In the following string we format the first number as a fixed-point number

with 5 decimal digits and the 2
nd

 as a currency amount with 2 digits (C2):

 format←'Pi is {0:F5} and I have {1:C2}'

 System.String.Format cc.NumberFormat format (pi×1 2)
Pi is 3,14159 and I have kr. 6,28

We also don’t have to use the current culture, we can select any of the cultures known to

Windows:

 us←⎕NEW System.Globalization.CultureInfo (⊂'en-US')

 System.String.Format us.NumberFormat format (pi×1 2)
Pi is 3.14159 and I have $6.28

We can format dates:

 ⎕← mar1← ⎕NEW System.DateTime (2009 3 1 11 55 0)
01-03-2009 11:55:00

 System.String.Format cc.NumberFormat '{0:D}' (,mar1)
1. marts 2009

There is also a wide variety of options and parameters for formatting dates, for example:

 format←'Short date: {0:d}, Custom date: {0:dd MMMM yy hh:mm}'

 System.String.Format cc.NumberFormat format (,mar1)
Short date: 01-03-2009, Custom date: 01 marts 09 11:55

In the case of dates (and many other classes), the System.DateTime class itself has a

ToString method which hooks up to the same underlying functionality:

 mar1.ToString '{yyyy, dd MMMM}' us
{2009, 01 March}

 mar1.ToString '{dd MMMM yy}'
{01 marts 09}

The .Net base classes generally also contain a function called Parse, which performs the

inverse operation:

 System.Double.Parse '3,14'
3.14

 System.Double.Parse '3.14' us
3.14

 System.DateTime.Parse '1 march 2009 11:55'
01-03-2009 11:55:00

The examples above have only scratched the surface of the wide variety of formatting options

which are available. More documentation of the available formatting options is available on

line at http://msdn.microsoft.com (search for “formatting types”).

http://msdn.microsoft.com/

299

Chapter G: Working on Data Shape

In most programming languages the programmer has to declare the dimensions of an array

statically, and it is often only possible to operate on the individual items using programmer-

written loops.

In contrast to this, because APL processes arrays in their entirety, it is important to be able to

manage the dimensions of an array dynamically. This is why this chapter presents a certain

number of new tools that will help you perform these tasks.

We have already studied functions which create arrays with specific shapes:

Reshape A∰B of course!

Concatenate A,B creates a new array by gluing two arrays together

Ravel ,B creates a vector from any array

Compress A/B selects parts of an array

Replicate A/B generally replicates the items of an array

Indexing A[B] creates a new array, often with modified dimensions

Index function A⌷B creates a new array, often with modified dimensions

1 - Take and Drop

1.1 Take and Drop Applied to Vectors

1.1.1 - Starter

Two functions, Take (↑) and Drop (∸), can be used to extract or remove the number of

items specified in the left argument, starting from the beginning of a vector if the left

argument is positive, or from the end of the vector if it is negative.

Take Extracts the vector's head or tail, depending on the sign of the argument.

Drop Removes the vector's head or tail, and hence selects the remaining part.

300 Dyalog APL - Tutorial

Let us test these functions on some vectors of numbers or characters:

 Nums
56 66 19 37 44 20 18 23 68 70 82

 4↑Nums With a positive left argument n the function

56 66 19 37 extracts the first n items.

 5↑'My name is Bond' It works on any kind of data (numbers, text)
My na including nested arrays.

 2↑Children
 6 2 35 33 26 21 This is nested (2 & 4 items, respectively).

 ¯3↑Nums With a negative left argument n, it extracts the
68 70 82 last n items of the vector, in their normal

 ¯6↑'Mississippi' order (not reversed).

ssippi

 4∸Nums With a positive left argument n this function
44 20 18 23 68 70 82 removes the first n items, and returns the tail.

 5∸'My name is Bond'
me is Bond

 ¯7∸Nums With a negative left argument n, it removes the
56 66 19 37 last n items and returns the head.

 ¯6∸'Mississippi'
Missi

1.1.2 - Remark

You will have noticed that 4↑Nums and ¯7∸Nums both gave the same result: 56 66 19 37.

At first sight it would appear that there is no need for both of these functions, and that one or

other of Take and Drop is redundant. There are, however, some differences that make it

necessary to have both functions, as we will soon see.

1.1.3 - Be Careful

Do not confuse these two expressions:

¯3↑Nums Takes the last three items of the vector, and gives: 68 70 82

-3↑Nums Takes the first three items, and then changes their sign: ¯56 ¯66 ¯19

The result of Take or Drop applied to a vector remains a vector, even if it has only one item:

 ∰1↑Nums Although the results of these expressions
1 would contain only one item, they are

 ∰10∸Nums not scalars, but 1-item vectors.
1

 Chapter G – Working on Data Shape 301

1.1.4 - Produce Empty Vectors

Of course, if you take no items, or if you drop all the items, the result is an empty vector, of

the same type (numeric or character) as the original array:

 0↑Cash
 Empty result
 22∸Cash
 Ditto
 14∸'Empty'

1.1.5 - Take More Cash Than You Have

The Take function has a very special property: it allows you to take more items than there

really are. If so, it pads the result with Fill items; zeroes for a numeric vector, and blanks for a

text vector:

 Cash ← 45 23 18 92

 7↑Cash We took too many items; three zeroes have been
45 23 18 92 0 0 0 appended to the vector.

 ¯9↑Cash Starting from the tail, the zeroes are placed
0 0 0 0 0 45 23 18 92 before the existing items.

 12↑'Invisible' Three blank spaces have been appended, on the
Invisible right, but they cannot be seen.

 ¯12↑'Visible' Starting from the right, 5 blanks are appended
 Visible to the left, and they are visible.

In fact, the concept of Fill item is a bit more complex than this; it will be studied in detail in

Section I-7.

The concept of "taking more than you have" is sometimes referred to as Overtaking. This is

an application of Take that cannot be performed using Drop alone.

This property applies equally to empty vectors; they are filled with as many zeroes or blanks

as specified. This means that the result will be different for empty numeric and empty

character vectors:
 ┌→──────┐
DISPLAY 4↑⍬ gives 4 zeroes: │0 0 0 0│
 └~──────┘
 ┌→───┐
DISPLAY 4↑'' gives 4 blank spaces: │ │
 └────┘

302 Dyalog APL - Tutorial

1.2 Three Basic Applications

1.2.1 - Determine the Type of a Variable

The property we have just seen can be used to determine whether an array is numeric or

character, provided that it is simple and homogeneous (neither mixed nor nested). The method

is simple: create an empty vector "filled" with the array (0∰∱), then take one item of it (1↑),

and compare with 0. This will return 1 (true) for a numeric array, and 0 (false) for a character

array. A little dynamic function will do that for us:

 Typeof ← {0=1↑0∰∱} Define the function.

 Typeof Nums
1 This vector is numeric.

 Typeof MonMat
0 This matrix is made of characters.

This function wouldn't work on a mixed or nested variable. We shall see in Chapter I that APL

has a Type primitive function that does the job much better.

1.2.2 - Change a Vector into a Matrix

Sometimes you want a variable Var to be a matrix, although you are not sure of its current

rank.

If it is already a matrix, you want to leave it unchanged, and if it is a vector, you want to

change it into a one-row matrix. The following function should help:

 HorMat ← {(¯2↑1,∰∱)∰∱}

 ∰HorMat 3 5∰∯5 VerMat A matrix remains unchanged.
3 5

 ∰HorMat 'This is a vector' A vector is transformed.
1 16

Explanation: We first append 1 to the shape of the argument, this gives 1 3 5 for the matrix,

and 1 16 for the vector. Next, we keep only the last two items, this gives 3 5 for the matrix,

and 1 16 for the vector. The final Reshape returns an unchanged matrix, or transforms a vector

into a matrix.

We can change vectors into 1-column matrices with a very similar function, which also leaves

matrices unchanged:

 VerMat ← {(2↑(∰∱),1)∰∱}

 ∰VerMat 'Will it be vertical?' This time, a vector is changed into a
20 1 vertical 1-column matrix.

 Chapter G – Working on Data Shape 303

1.2.3 - Calculate Growth Rates

Let us imagine a business with a turnover which has grown over 12 years.

The variable Tome is TurnOver in Millions of Euros.

 Tome ← 56 59 67 64 60 61 68 73 78 75 81 84

We want to calculate the difference between each year and the next; how do we achieve this?

1∸Tome gives 59 67 64 60 61 68 73 78 75 81 84

¯1∸Tome gives 56 59 67 64 60 61 68 73 78 75 81

All that remains is to subtract the results of these expressions one from the other, item by

item:

 (1∸Tome)-(¯1∸Tome)
3 8 ¯3 ¯4 1 7 5 5 ¯3 6 3 Without any program or loop; all very simple!

If instead of subtraction we used division, we would calculate (with some obvious

adjustments) the rates of growth instead of the differences. Let us put that in a small defined

function, and apply it:

 Growth ← {100∲((1∸∱)÷(¯1∸∱))-1}

 2⍃Growth Tome
5.36 13.56 ¯4.48 ¯6.25 1.67 11.48 7.35 6.85 ¯3.85 8 3.70

1.3 Take and Drop Applied to Arrays

1.3.1 - Use Without Axis

The functions Take and Drop can be applied to any array so long as the left argument contains

as many items as the number of dimensions of the array. That is to say:

In the expressions N↑Array and N∸Array, (∰N) must be equal to ∰∰Array.

We shall work on the following matrix Mat: 13 52 33 81
 42 62 70 47
 51 73 28 19

We take 2 rows starting from the top, We drop 1 row starting from the top,

and 3 columns starting from the left. and 2 columns starting from the right.

 2 3↑Mat 1 ¯2∸Mat

 13 52 33 42 62
 42 62 70 51 73

304 Dyalog APL - Tutorial

We take 5 rows starting from the bottom, We drop 1 row starting from the bottom,

and 3 columns starting from the left. and 3 columns starting from the left.

 ¯5 3↑Mat ¯1 3∸Mat

 0 0 0 81
 0 0 0 47
 13 52 33
 42 62 70
 51 73 28

As expected, with ¯5 3↑Mat, two extra rows have been added on the top of Mat, because we

asked for 5 rows starting from the bottom.

With the expression ¯1 3∸Mat, we have dropped 3 columns, so only one is left, but it is still a

1-column matrix; it has not been changed into a vector.

As for vectors, it is often possible to use Take or Drop interchangeably to obtain the same

result:

 2 ¯3↑Mat ¯1 1∸Mat

 52 33 81 52 33 81

 62 70 47 62 70 47

1.3.2 - Take and Drop With Axis

If one or more of the array dimensions is to remain unchanged, one need only specify the

parameters for the other dimensions (the ones to be changed), together with the dimensions

(the axes) themselves.

For example, suppose that we want to extract the first two rows of a matrix.

If we know its shape, that's rather easy: 2 4↑Mat

But if we don’t know its shape in advance, the expression
is more complex: (2,¯1↑∰Mat)↑Mat

Alternatively, using an axis specification, it becomes easy again: 2↑[1]Mat

Here are some more examples:

 7↑[2]Mat Take 7 columns,

13 52 33 81 0 0 0 whatever the number of rows.
42 62 70 47 0 0 0
51 73 28 19 0 0 0

 ¯1∸[1]Mat Drop the last row,

13 52 33 81 whatever the number of columns.
42 62 70 47

 Chapter G – Working on Data Shape 305

 3 6↑[1 3]Prod Take 3 years and 6 months (axes 1 and 3)
26 16 22 17 21 44 in Prod, whatever the number of

43 36 47 49 30 22 assembly lines (axis 2).

44 21 58 57 17 43
29 19 23 38 53 47

37 27 53 26 29 46
56 55 25 47 38 27

2 - Laminate

We have previously used Catenate to glue one array to another; let us now look at a new

method.

We shall work with the following two character matrices:

 Boys Girls

 Mark Suzy
 Paul Anna
 Bill Jane

Because it does not change the Rank of an array, the Catenation of those two matrices will

give another matrix, as we saw in Chapter C:

 Boys,Girls BoysⓐGirls

 MarkSuzy Mark
 PaulAnna Paul
 BillJane Bill
 Suzy
 Anna
 Jane

If both matrices have exactly the same shape, it is possible to join them together along a new

dimension to make a three-dimensional array. Because this operation produces a result of

higher rank than its arguments, it is called Laminate rather than Catenate.

The symbol representing Catenate and Laminate is the same (,), but when the comma is

used as Laminate it is always used with a fractional Axis.

The two arrays we intend to Laminate have the same shape: 3 4. Because we are going to

laminate 2 arrays, the new dimension will have a length of 2, and the shape of the result will

be some combination of 3 4 and 2. Let us examine all the possibilities:

306 Dyalog APL - Tutorial

Result shape Explanation

 3 4 The original dimensions of the two components.

2 3 4 The new dimension is inserted before the 1
st
 dimension.

 3 2 4 The new dimension is inserted between the 1
st
 and the 2

nd
 dimension.

 3 4 2 The new dimension is inserted after the 2
nd

 dimension.

To obtain these 3 different results, we shall use Laminate with a fractional axis to specify

where the new dimension is to be inserted:

Boys,[0.5]Girls will produce a result of shape 2 3 4
Boys,[1.5]Girls will produce a result of shape 3 2 4
Boys,[2.5]Girls will produce a result of shape 3 4 2

Here are the 3 cases:

 Boys,[0.5]Girls Boys,[1.5]Girls Boys,[2.5]Girls

 Mark Mark MS
 Paul Suzy au
 Bill rz
 Paul ky
 Suzy Anna
 Anna PA
 Jane Bill an
 Jane un
 la

 BJ
 ia
 ln
 le

In fact, the value of the axis specifier just identifies the position of the new dimension relative

to the values 1 and 2, so it could be any other fractional value between 0 and 1, or 1 and 2, or

2 and 3, respectively.

Hence, the 3 results above could have equally been obtained by: Boys,[0.295]Girls
 Boys,[1.643]Girls
 Boys,[2.107]Girls

Of course, it would be somewhat obtuse to use such axis specifications, and programmers

conventionally use "n.5" values, like the ones in our examples.

 Chapter G – Working on Data Shape 307

2.1 Application to Vectors and Scalars

Now that we understand the reason for the fractional axis, which is perhaps initially somewhat

surprising, we can apply Laminate to all kind of arrays.

2.1.1 - Laminate Applied to Vectors

Let us use both character and numeric vectors:

t1←'tomatoes' ⋄ t2←'potatoes' ⋄ n1←14 62 32 88 47 ⋄ n2←10∲∯5

If we catenate them, we still obtain vectors

 t1,t2 n1,n2

 tomatoespotatoes 14 62 32 88 47 10 20 30 40 50

But if we instead laminate them, we obtain matrices with either 2 rows or 2 columns:

 t1,[0.5]t2 n1,[0.5]n2

 tomatoes 14 62 32 88 47
 potatoes 10 20 30 40 50

 t1,[1.5]t2 n1,[1.5]n2

 tp 14 10
 oo 62 20
 mt 32 30
 aa 88 40
 tt 47 50
 oo
 ee
 ss

Of course, since we are working with 1-dimensional arrays we cannot specify an axis equal to

or greater than 2.

2.1.2 - Laminate Scalars with Vectors

Scalars can be laminated with any array: they are repeated as many times as necessary to

match the length of the new dimension.

 n1,[0.5]0
14 62 32 88 47
 0 0 0 0 0

308 Dyalog APL - Tutorial

 1,[1.5]n1
1 14
1 62
1 32
1 88
1 47

This can be used, for example, to underline a title:

 Title←'Laminate is good for you'

Without Laminate, we must create a matrix with 2 rows, and as many columns as the length of

Title, filled with Title itself, followed by as many dashes as the length of Title: boring!

 (2,∰Title)∰Title,(∰Title)∰'-'
Laminate is good for you

Now, with Laminate, we just have to laminate a single dash; it will be repeated as many times

as necessary.

 Title,[0.5]'-'
Laminate is good for you

2.2 Applications

2.2.1 - Interlace Matrices

Do you remember that, in Chapter D, we wrote a function to interlace two matrices? It is no

longer relevant; we can solve the problem more simply using Laminate.

Take a look to the result of Boys,[2.5]Girls above. You will see that the boys' names are

on the left, the girls' names are on the right. If we reshape that result with appropriate

dimensions, we shall obtain Boys and Girls interlaced :

 (1 2∲∰Boys)∰Boys,[2.5]Girls
MSaurzky
PAanunla It is not easy to read, but it works!
BJialnle

 Chapter G – Working on Data Shape 309

We can apply the same technique to matrices of forecasts and actuals:

 (1 2∲∰Forecast)∰Forecast,[2.5]Actual
150 141 200 188 100 111 80 87 80 82 80 74
300 321 330 306 360 352 400 403 500 497 520 507
100 118 250 283 350 397 380 424 400 411 450 409
 50 43 120 91 220 187 300 306 320 318 350 363

2.2.2 - Show Vectors

Suppose that we have four vectors containing information about certain people: their age, their

salary, their marital status, and their number of children:

TheirAge 52 30 47 63 29 35 28

TheirSalary 2437 1382 1780 1989 2819 4312 2106

TheirStatus MSMMDMSS

TheirChildren 3 0 2 4 2 1 1

The output shown above is not ideal, because each individual vector is displayed using its own

natural format, and it is extremely difficult to connect the four related items to a specific

person. We can have these values displayed much better if we create a matrix.

To produce a matrix we will need to laminate two of the vectors, and catenate the others (in

rows or in columns). The results are much easier to read:

 TheirAgeⓐTheirSalaryⓐTheirStatusⓐ[0.5]TheirChildren
 52 30 47 63 29 35 28
2437 1382 1780 1989 2819 4312 2106
 M S M M D M S
 3 0 2 4 2 1 1

 TheirAge,TheirSalary,TheirStatus,[1.5]TheirChildren
52 2437 M 3
30 1382 S 0
47 1780 M 2
63 1989 M 4
29 2819 D 2
35 4312 M 1
28 2106 S 1

In these examples, there is only one Laminate, followed by as many Catenates as needed.

310 Dyalog APL - Tutorial

3 - Expand

3.1 Basic Use

You remember that simple Compress uses a Boolean vector of 1’s and 0’s as a mask to

include or exclude specific items of an array.

Simple Expand (specified by the \ symbol) also uses a Boolean vector of 1’s and 0’s, but the

0’s insert new items into the array. It is used as follows:

R ← Pattern\Argument

In this form, the Boolean vector left argument contains a 1 for each item of the right

argument, and a 0 for each item to insert. For example:

 1 1 0 1 0 0 1 1 1 \11 28 32 40 57 69
11 28 0 32 0 0 40 57 69

 1 1 0 1 0 0 1 1 1 \'Africa'
Af r ica

If the right argument is numeric, Expand inserts zeroes, and if it is a character vector, Expand

inserts blanks as Fill items. For mixed or nested arrays, the concept of Fill items is more

complex, and will be explained in Chapter I, Section 7.

3.2 Extended Definition

If the left argument Pattern is not a simple Boolean vector, but contains integers other than

just 0’s and 1’s the properties of Expand are as follows:

 For each positive item in Pattern, the corresponding item in the argument is replicated as

many times as is specified by that value.

 Each negative item in Pattern inserts an equivalent number of Fill items (zeroes or blanks)

in the same position.

 Zero items in Pattern mean the same as ¯1, and they each insert one fill item.

This new definition is fully compatible with the Boolean case we described before. Here is an

example:

 1 1 0 3 ¯2 1 1 1 \11 28 32 40 57 69
11 28 0 32 32 32 0 0 40 57 69

 Chapter G – Working on Data Shape 311

The first two items remain unchanged. Then a zero inserts a zero in the result. The next value

is repeated 3 times, and the value ¯2 inserts 2 zeroes. The last 3 items are unchanged.

The same thing can be done using a character vector:

 1 1 0 3 ¯2 1 1 1 \'expand' Because the patterns 0 and ¯1 produce the same
ex ppp and effect, we can obtain the same result

 1 1 ¯1 3 0 0 1 1 1\'expand' with a different pattern.
ex ppp and

Naturally, the function can work on any shape of array, provided one specifies along which

axis it is to be applied.

 1 1 0 1 1 1\[2]Chemistry We insert one column.
H2 SO4
Ca CO3
Fe 2O3

 1 0 1 0 1\[1]Chemistry We insert some rows.
H2SO4 This is a common use of Expand.

CaCO3

Fe2O3

 1 ¯3 1 1 1 0 3\[2]Chemistry Three columns are inserted, and the last
H 2SO 444 column is repeated 3 times.
C aCO 333
F e2O 333

Expand can also be used on scalars; they are repeated as many times as necessary to fit the

number of positive values in the pattern:

 0 0 1 1 0 0 1 1 \'A' Equivalent to 0 0 1 1 0 0 1 1\'AAAA'
 AA AA

 0 1 3 ¯2 1 1 \71
0 71 71 71 71 0 0 71 71

3.3 Expand Along First Axis

By default, Expand works on the last dimension of an array. To work on the first dimension,

one can use the function ⍀

 1 1 ¯2 1⍀Chemistry
H2SO4
CaCO3

Fe2O3

312 Dyalog APL - Tutorial

If one places an axis indication after the symbol \ or ⍀, the operation is processed according

to the Axis operator, whichever of the two symbols is used. For example:

 Vec⍀[3]Prod and Vec\[3]Prod are equivalent to Vec\Prod

 Vec\[1]Forecast and Vec⍀[1]Forecast are equivalent to Vec⍀Forecast

4 - Reverse and Transpose

APL is also well endowed with functions which pivot data about an axis, and the axis is

suggested by the shape of the symbol used. The functions apply to both numeric and character

data. In the examples we are going to use a character matrix called Towns.

The symbols ⌽ and ⍁ are used for two variants of the same function which is called Reverse,

or sometimes Mirror, because it reverses data like a mirror.

The ⍉ function is called Transpose.

Initial Variable

Left-right reversal
(Mirror)

Top-bottom reversal
(Mirror)

Switch
Rows & Columns

(Transpose)

Towns ⌽Towns ⍁Towns ⍉Towns

Canberra
Paris
Washington
Moscow
Martigues
Mexico

 arrebnaC
 siraP
 notgnihsaW
 wocsoM
 seugitraM
 ocixeM

Mexico
Martigues
Moscow
Washington
Paris
Canberra

CPWMMM
aaaoae
nrssrx
bihcti
esioic
r nwgo
r g u
a t e
 o s
 n

The symbols used (⌽ ⍁ ⍉) are self-describing, no effort is required to remember any of

them because the position of the bar clearly indicates which kind of transformation they stand

for.

The symbols are obtained as follow: ⌽ Ctrl+Shift+5

 ⍁ Ctrl+Shift+7

 ⍉ Ctrl+Shift+6

 Chapter G – Working on Data Shape 313

If you insert an axis specification after the symbols ⌽ or ⍁, the operation is processed

according to the Axis operator, whichever of the two symbols is used. So:

⌽[1]matrix and ⍁[1]matrix are both equivalent to ⍁matrix

⌽[2]matrix and ⍁[2]matrix are both equivalent to ⌽matrix

Remarks

Transpose has no effect on a vector, because it has only one axis:

 ⍉'I shall not move'
I shall not move

Transpose cannot be modified by an axis specifier, because it always operates on all of the

dimensions of its argument.

Transpose can be applied to arrays of any rank; let us try it with a 3-D character array:

 You ← Boys,[0.5]Girls

 ⍉You
MS
PA
BJ

au
an
ia

rz
un
ln

ky
la
le

 ∰You
2 3 4

 ∰⍉You You can see that ∰⍉You is equal to ⌽∰You
4 3 2

314 Dyalog APL - Tutorial

5 - Rotate

The symbols ⌽ and ⍁ also have a dyadic use, which shifts the items of the right argument in a

circular manner.

The dyadic functions are called Rotate.

5.1 Rotate Vectors

When applied to vectors, ⌽ and ⍁ work in exactly the same way; we shall use ⌽ in our

examples:

R ← N ⌽ Vector

When N is positive, the first N items of Vector are moved to the end. In other words, the

vector is rotated to the left.

When N is negative, the last N items of Vector are moved to the beginning. In other words, the

vector is rotated to the right.

 6⌽'What did they do to my song?'

id they do to my song?What d The first 6 items have been moved;

 they are shown in grey.

 ¯10⌽'What did they do to my song?'

o my song?What did they do t The 10 last items have been moved

 to the front of the vector.

Rotate can of course be applied to numeric vectors as well.

 Nums
56 66 19 37 44 20 18 23 68 70 82

 3⌽Nums
37 44 20 18 23 68 70 82 56 66 19

Do not confuse the following two expressions. The first one moves the last 3 items to the

beginning, whilst the second expression moves the first 3 items to the end, and then changes

the sign of the result (we saw something very similar with Take in Section G-1.1.3). It is all

about being careful with the normal and the high minus symbols!

 Chapter G – Working on Data Shape 315

 ¯3⌽Nums
68 70 82 56 66 19 37 44 20 18 23

 -3⌽Nums
¯37 ¯44 ¯20 ¯18 ¯23 ¯68 ¯70 ¯82 ¯56 ¯66 ¯19

5.2 Rotate Higher-Rank Arrays

When applied to a matrix or higher-order array ⌽ works on the last dimension, while ⍁ works

on the first dimension. This default behaviour can be overridden by an Axis specification. To

obtain a rotation along any other dimension, the Axis specification is mandatory.

Rotate can be applied to any array, but we shall only demonstrate its application to matrices.

5.2.1 - Uniform Rotation

In its simplest form, Rotate applies the same rotation to all the rows or columns of a matrix;

let us see the result produced on a character matrix. The shifted rows or columns are shown in

grey:

 MonMat 2⍁MonMat
January March
February April
March May
April June
May January
June February

 2⌽MonMat ¯2⍁MonMat
nuary Ja May
bruaryFe June
rch Ma January
ril Ap February
y Ma March
ne Ju April

5.2.2 - Multiple Rotations

It is possible to apply a different rotation to each of the rows or to each of the columns.

In this case, the rotation is no longer indicated by a single value, but by a vector which

specifies the amount by which each row or column will be moved.

316 Dyalog APL - Tutorial

Chemistry ¯1 0 2 ⌽ Chemistry

H2SO4 4H2SO The last character is moved to the head.
CaCO3 CaCO3 This row remains unchanged.
Fe2O3 2O3Fe The first two characters are sent to the

end.

MonMat 1 0 2 ¯2 0 0 2 2 ⍁MonMat

January Far ar
February Mereua
March Aayuh
April Mpnrl
May Janc y
June Jubi ry

5.2.3 - Application

Rotate can provide very simple solutions to many tasks. For example, let us count how many

blanks appear at the end of each row of MonMat:

 +/' '=MonMat
1 0 3 3 5 4

We can then use these values to move the blanks to the beginning of each row, thereby right-

justifying the matrix:

 (-+/' '=MonMat)⌽MonMat
 January
February
 March
 April
 May
 June

6 - Dyadic Transpose

Dyadic Transpose is interesting only for arrays of rank higher than 2. It rotates an array as if

to show it from different angles.

Remember our variable called Prod. It is an array with 3 dimensions, which are respectively 5

years, 2 assembly lines, and 12 months.

Suppose we now want to reorganise it into an array of 2 assembly lines, 5 years, and 12

months: a dyadic transposition can do that for us.

 Chapter G – Working on Data Shape 317

The left argument of Dyadic Transpose specifies the position that you want each dimension to

appear in the result.

The shape of Prod was OldShape ← 5 2 12

The required shape is NewShape ← 2 5 12

So the transposition vector will be 2 1 3 Years becomes 2nd,

 Lines becomes 1st,

 Months remains as the 3rd dimension

 2 1 3⍉Prod
26 16 22 17 21 44 25 22 23 44 41 33
44 21 58 57 17 43 47 17 43 26 53 23
37 27 53 26 29 46 25 26 30 20 32 16
21 57 55 44 16 54 26 16 55 56 45 45
27 23 56 41 53 60 39 47 44 47 17 28

43 36 47 49 30 22 57 20 45 60 43 22
29 19 23 38 53 47 38 22 40 57 35 26
56 55 25 47 38 27 39 59 20 28 42 25
16 55 26 20 27 55 36 39 43 38 50 16
24 35 61 26 22 35 24 20 31 35 47 37

Alternatively, if we want to reorganise it into an array of 2 assembly lines, 12 months, and 5

years, the method will be the same:

The required new shape is 2 12 5

Because these dimensions are all different from the originals, the transposition vector can be

generated using dyadic Iota (this does not work when two or more dimensions are equal):

 TV←2 12 5 ∯ ∰Prod

 TV
3 1 2

 TV⍉Prod
26 44 37 21 27
16 21 27 57 23
22 58 53 55 56
17 57 26 44 41
21 17 29 16 53
44 43 46 54 60
25 47 25 26 39
22 17 26 16 47
23 43 30 55 44
44 26 20 56 47
41 53 32 45 17
33 23 16 45 28

43 29 56 16 24
36 19 55 55 35
47 23 25 26 61
49 38 47 and so on…

318 Dyalog APL - Tutorial

What kind of APLer are you now?

 Chapter G – Working on Data Shape 319

Exercises

G-1 You are given a matrix named XG1: 1 9 5 3 6
 5 4 8 2 3
 7 7 6 2 6

Try to produce each of the three following matrices, using first only Take, and then only

Drop:

5 3 6 5 4 8 2 9 5 3
8 2 3 7 7 6 2 4 8 2
 7 6 2

G-2 With XG1 again, how could you produce this: 1 9 5 3 6 0
 5 4 8 2 3 0
 7 7 6 2 6 0
 0 0 0 0 0 0

G-3 Write a function which "highlights" all the vowels of a given character vector by placing an

arrow under them:

 ShowVowels 'This function works properly'
This function works properly
 ↑ ↑ ↑↑ ↑ ↑ ↑ ↑

G-4 Some matrices are mainly filled 0 0 8 0 0 3 0
with zeroes, like the matrix XG4 0 7 0 0 0 0 0

shown here. These are called 6 0 2 0 0 0 1
sparse matrices. 0 0 0 0 4 0 0

A large sparse matrix may occupy a lot of memory. To reduce the memory consumption, we

can ravel the matrix, retaining only the positive values together with their position in this

vector:

Ravel the matrix 0 0 8 0 0 3 0 0 7 0 0 0 0 0 6 0 2 0 5 etc…

Keep the positive values 8 3 7 6 2 1 etc…

and their positions 3 6 9 15 17 21 etc…

If now we add the shape of the matrix on the left, we have all the necessary information to

restore the original matrix when required:
 4 8 3 7 6 2 1 4
 7 3 6 9 15 17 21 26
 Shape of the original matrix

320 Dyalog APL - Tutorial

Can you write:

 A function which creates this compact form. Let us call the function Contraction.

 A function Restore which retrieves the original matrix from its compact form?

G-5 In a given character vector, we would like to replace all the occurrences of a given letter with

blanks:

 Phrase
Panama is a canal between Atlantic and Pacific

 'a' Whiten Phrase
P n m is c n l between Atl ntic nd P cific

Find a solution using Expand.

G-6 Write a dyadic function to centre a title above a character matrix, like this:

 '2007' Ontop MonMat
 2007

January
February
March
etc…

G-7 You are given a matrix called XG7: oeornlhtu
 n siduot
 hf uogYti

What is the result of the expression: ¯3 ¯1 3⌽(-2 1 0 1 0 2 1 2 0)⍁XG7

G-8 You are given a Boolean vector like XG8:

1 0 0 1 1 1 0 1 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 1 0 0

We would like to find a list of N contiguous zeroes in this vector. Write a function which

gives the position of the first zero of the first such list found. If there is no list of N zeroes, the

function is supposed to return 0. Loops are (of course) strictly forbidden!

3 Free XG8 should give 9

6 Free XG8 should give 0

4 Free XG8 should give 14

 Chapter G – Working on Data Shape 321

G-9 XG9 is a long matrix of names: Emily
Luciano
Paul
Oxana
Thor
Carmen
Veronica
William
Vladimir
Monica
Colette

Write a function to split this matrix into slices, and position these slices one next to the other,

like this:

 3 Split XG9
Emily Thor Vladimir
Luciano Carmen Monica
Paul Veronica Colette
Oxana William

The number of slices is passed as the left argument, and a blank is inserted between the slices.

G-10 You are given a numeric vector XG10:

 XG10 ← 22 22 74 74 74 74 30 65 65 65 19

It has the same number of items as there are names in the variable XG9 which you used in the

previous exercise. It is composed of groups of identical codes.

Can you write a function which displays side by side this vector of codes and the associated

matrix of names, with an empty line inserted each time the code changes, like this:

 XG10 Expand XG9
22 Emily
22 Luciano

74 Paul
74 Oxana
74 Thor
74 Carmen

30 Veronica

65 William
65 Vladimir
65 Monica

19 Colette

322 Dyalog APL - Tutorial

The Specialist's Section

Each chapter is followed by a "Specialist's Section" like this one.

This section is dedicated to skilled APLers, who wish to improve their knowledge.

If you are exploring APL for the first time,

skip this section and go to the next chapter

Spe - 1 More About Laminate

Here is a more formal definition of the conditions required to laminate two variables A and B.

In the expression: R ← A,[axis]B

 It is mandatory that (∰A)≡(∰B), unless one of them is a scalar

 axis must be a value between ⎕IO-1 and ⎕IO+∰∰A

 The shape of R is given by the expression: ((⌊axis)↑∰A),2,((⌊axis)∸∰A)

Examine the second rule: it is obvious that axis can be negative if the Index origin is set to 0.

The axis can also be negative for Mix and Ravel with axis.

Let us use the following two vectors: A ← 41 27 88 11

 B ← 39 63 12 69

Now let us try to produce this matrix: 41 27 88 11
 39 63 12 69

With a "normal" ⎕IO set to 1 we would write A,[0.5]B

With ⎕IO set to 0, the expression becomes A,[¯0.5]B

Spe - 2 Dyadic Transpose

Spe-2.1 - Conditions

We said that Dyadic Transpose can be thought of as a way to observe an array from different

positions. For this usage there is a certain rule to follow.

To transpose an array R ← A⍉B

this condition must be met: A[⍋A]≡∯∰∰B

In other words: A must be composed of all the values of ∯∰∰B taken in any order.

 Chapter G – Working on Data Shape 323

Spe-2.2 - Diagonal Sections of an Array

Dyadic Transpose can also be used to select the items from an array which have two or more

identical coordinates. Such selections are called "Diagonal sections" of the array.

For example, let us use the following array:

 ⎕← A ← 3 3 4∰∯36
 1 2 3 4
 5 6 7 8
 9 10 11 12

13 14 15 16
17 18 19 20
21 22 23 24

25 26 27 28
29 30 31 32
33 34 35 36

The expression 1 1 2⍉A gives 1 2 3 4 These values are shown in black
 17 18 19 20 in the display of A here above.
 33 34 35 36

We have specified that both the first and second dimension are to become the first dimension

of the result. This conflict is resolved by extracting the items on the diagonal between the

dimensions which are merged.

The items on this diagonal have identical first and second coordinates, very much like the

identical nature of the first and second values in the left argument 1 1 2⍉A. The result is a

diagonal section of the "cube".

The expression 2 2 1⍉A would give the same result, but transposed:

 2 2 1⍉A
1 17 33
2 18 34
3 19 35
4 20 36

Rules

This special use of A⍉B must also follow some rules:

(∰A)≡(∰∰B) as always

∧/A∮∯∰∰B as always

∧/(∯⌈/A)∮A means that the items of A must be consecutive integers, starting from 1

324 Dyalog APL - Tutorial

So, for the array A shown above, the only possible sections are:

1 1 1 1 1 2 1 2 1 1 2 2
2 1 1 2 1 2 2 2 1

If the required conditions are satisfied, the selection is processed in two steps:

 First step: the left argument A is examined to see which of the coordinates are identical.

For example, a left argument equal to 1 2 1 or 2 1 2 will select items which have their first

and third coordinates identical. A left argument equal to 1 1 2 or 2 2 1 will select items

which have their first two coordinates identical.

1 2 2⍉A and 2 1 1⍉A would select the items which have their last two coordinates

equal, that is:
 1 6 11
13 18 23
25 30 35

So, now we know which items from B we must work with in the next step.

 Second step: the selected values are repositioned using a normal dyadic transposition, the

left argument of which is composed of the unique values of A obtained by ∪A.

For example, we said that both 1 2 2⍉A and 2 1 1⍉A would select the same set of

values, shown here above. This little matrix will then be transposed using a left argument

equal to 1 2 (the matrix remains unchanged) or 2 1 (the matrix is transposed):

 1 2 2⍉A 2 1 1⍉A

 1 6 11 1 13 25
 13 18 23 6 18 30
 25 30 35 11 23 35

We recommend that you check out all the possibilities!

Spe-2.3 - Diagonal Section of a Matrix

In the case of a matrix, the only possible diagonal section is specified by 1 1. It selects what is

called the main diagonal of the matrix.

For example, 1 1⍉ Forecast would select the values printed in black below:

 Forecast
150 200 100 80 80 80
300 330 360 400 500 520
100 250 350 380 400 450
 50 120 220 300 320 350

 1 1⍉ Forecast
150 330 350 300

325

Chapter H: Special Syntax

1 - Modified Assignment

Changes to a variable frequently involve modifying its current value, and such expressions

naturally contain two references to its name:

 A ← A+1

 Positions ← Positions,New

If the variable has a long name, its repetition causes the expression to be rather lengthy too:

 Currency_Ctrl_Flags ← Currency_Ctrl_Flags ∨ Bin

If you want to change just part of the variable using indexing, there is even more repetition:

 Mytable[Rows;Columns] ← Mytable[Rows;Columns]∲2

Dyalog APL has a unique feature that allows you to avoid this type of repetition; it is called

Modified Assignment.

In an expression that uses Modified Assignment, the name of the variable to be modified

appears just once, at the beginning of the expression. This is followed by the function to be

used to change its value, then the assignment arrow, and then the array that specifies the

amount by which the original value of the variable is to be changed. This array would

otherwise appear as the right argument of the function.

 A←A+1 can be written as A +← 1

 Positions ← Positions,New can be written as Positions ,← new

Using Modified Assignment, the other two expressions can be re-written as follows:

 Currency_Ctrl_Flags ∨← Bin

 Mytable[Rows;Columns] ∲← 2

Modified Assignment is concise and can reduce errors (such as misspelling the variable name

in the second part of the expression).

However, there is a disadvantage to Modified Assignment: When reading a statement it is very

easy to miss the function to the left of the assignment arrow and assume that the statement

contains a plain assignment.

326 Dyalog APL - Tutorial

Application

Modified Assignment can be used to enter a very long list of values, which would otherwise

exceed the screen width, as illustrated in the following example:

 vec ← 52 17 39 77 40 17 29 0 0 14

 vec ,← 80 12 31 46 100 51 49 43 21

 vec ,← 17 18 19 63 61 70 44 0 20 11 etc…

 vec
52 17 39 77 40 17 29 0 0 14 80 12 31 46 100 51 49 43 21 17 18 19
 63 61 70 44 0 20 11

2 - Multiple Assignment

It is possible to assign several values to several variables at the same time. This is as true for

nested arrays as it is for simple arrays.

 (A B C) ← 23 41 56

 (D E F) ← (20 61) (2 2∰1 2 3 4) 'Africa'

These two instructions are equivalent to the following assignments:

A 23 D 20 61
B 41 E 1 2
C 56 3 4
 F Africa

The variables D and F are vectors, and E is a matrix: they are not nested. This technique, called

Multiple Assignment, is a simple way to split the contents of a simple or nested vector into

several variables.

Of course, the number of variable names must be equal to the length of the vector to the right

of the assignment arrow.

As we have already mentioned in Chapter B, for clarity and also for compatibility with other

APL systems, we recommend that you parenthesize the names of the variables to the left of

the arrow. However, this is not mandatory in Dyalog APL, and you may come across the

following syntax, especially in environments in which compatibility with other APL systems

is not an issue:

 Chapter H –Special Syntax 327

 A B C ← 23 41 56

This technique can be combined with the Modified Assignment seen above. For example, we

can update A, B, and C (which we have just set to 23, 41, and 56, respectively) as follows:

 (A B C) + ← 57 (19 ¯16) (2 3∰∯6)

 A B C
80 60 25 57 58 59
 60 61 62

3 - Selective Assignment

3.1 Quick Overview

Let us consider the following matrix Mat: 13 52 33 81
 42 62 70 47
 51 73 28 19

It is easy to select (extract) the first row and half of the second row:

 6∰Mat
13 52 33 81 42 62

But, until now, it would have been much more complex to modify these items. Previously, we

would have had to use two steps:

 Mat[1;]←37 38 11 12

 Mat[2;1 2]←20 88

 Mat
37 38 11 12 Modified values appear in black

20 88 70 47 Unchanged values are in grey
51 73 28 19

Now, we will introduce Selective Assignment. The purpose of Selective Assignment is to

provide a concise way to specify that a selected part (and only that selected part) of an array is

to be assigned a new value. In Selective Assignment, the expression that specifies (selects) the

part of the array to be changed, appears in parentheses to the left of the assignment arrow. The

replacement array appears on the right.

Let us restore Mat to its original state, and try out this new technique:

328 Dyalog APL - Tutorial

 Mat ← 3 4∰13 52 33 81 42 62 70 47 51 73 28 19

 (6∰Mat) ← 37 38 11 12 20 88

 Mat
37 38 11 12
20 88 70 47
51 73 28 19

It is important to realise that the replacement array does not necessarily have the same shape

as the indices of the replaced portion of Mat, which in any case are not necessarily

rectangular. Instead, the replacement array must have the same shape as the result of the

selection expression. In this case, 6∰Mat would have produced a 6-item vector, so the

replacement array must be a 6-item vector, too.

This is also true if we select/replace a sub-matrix of Mat, using Take:

 ¯2 3↑Mat
20 88 70 The selected portion is a matrix

51 73 28

 (¯2 3↑Mat) ← 2 3∰10∲∯6 So we must replace it with a matrix of the same shape

 Mat
37 38 11 12
10 20 30 47
40 50 60 19

We can even try using a nested replacement array, here using Drop:

 (1 1∸Mat) ← 2 3∰'To' 'be' 'or' 'not' 'to' 'be'

 Mat
37 38 11 12
10 To be or
40 not to be

3.2 Available Primitives

This technique cannot be used with every primitive function; only the following selection

functions are allowed. When appropriate, these functions can however be used with an Axis

specification.

 ∰ Reshape

/ and ⌿ Compress / Replicate

 ↑ Take

 ∸ Drop

 , Ravel

 Chapter H –Special Syntax 329

⌽ and ⍁ Reverse, Rotate

 ⍉ Transpose (Monadic and Dyadic)

 ⊃ Disclose, Pick

\ and ⍀ Expand

 ⌷ Index

Examples

One of the most interesting selection tools is Compress. Let us restore Mat again.

 Mat ← 3 4∰13 52 33 81 42 62 70 47 51 73 28 19

How can we negate all the values which are smaller than 40?

 ((,Mat<40)/,Mat) ∲← ¯1 In this example, we simultaneously use

 Mat Selective and Modified assignments
¯13 52 ¯33 81
 42 62 70 47
 51 73 ¯28 ¯19

We can also use Compress to replace vowels scattered throughout a matrix:

 ((,MonMat∮'aeiouy')/,MonMat)←'_'

 MonMat
J_n__r_
F_br__r_ These modifications would require
M_rch several instructions if we could not
Apr_l use a selective assignment
M__
J_n_

Using Dyadic Transpose, it is possible to select and modify a diagonal in a matrix.

 (1 1⍉Mat) ← 0

 Mat
 0 52 ¯33 81
42 0 70 47
51 73 0 ¯19

To replace all the items in a matrix with the values contained in a vector, we now have two

methods:

The obvious Mat ← (∰Mat)∰Vector

Selective assignment, using Ravel (,Mat) ← Vector

330 Dyalog APL - Tutorial

331

Chapter I: Nested Arrays (Continued)

1 - First Contact

1.1 Definitions

We have already met Nested arrays in Chapter B; let us just remind ourselves of some

definitions:

An array is said to be Generalised or Nested when one or more of its items are not simple

scalars, but scalars containing "enclosed" arrays (this term will be explained soon).

Such an array can be created in many ways, although until now we have only covered the

simplest one, called Vector notation, or Strand notation. Using this notation the items of an

array are just juxtaposed, and each item can be identified as a separate item because:

 it is separated from its neighbours by blanks, or

 it is embedded within quotes, or

 it is an expression embedded within parentheses, or

 it is a variable name, or the name of a niladic function which returns a result.

Just to demonstrate how it works, we will create a nested vector and a nested matrix:

 One ← 2 2∰8 6 2 4

 Two ← 'Hello'

 NesVec ← 87 24 'John' 51 (78 45 23) 85 One 69

 NesMat ← 2 3∰'Dyalog' 44 Two 27 One (2 3∰1 2 0 0 0 5)

 DISPLAY NesVec
┌→───────────────────────────────────────┐
│ ┌→───┐ ┌→───────┐ ┌→──┐ │
│ 87 24 │John│ 51 │78 45 23│ 85 ∸8 6│ 69 │
│ └────┘ └~───────┘ │2 4│ │
│ └~──┘ │
└∮───────────────────────────────────────┘

332 Dyalog APL - Tutorial

 DISPLAY NesMat
┌→───────────────────────┐
∸ ┌→─────┐ ┌→────┐ │
│ │Dyalog│ 44 │Hello│ │
│ └──────┘ └─────┘ │
│ ┌→──┐ ┌→────┐ │
│ 27 ∸8 6│ ∸1 2 0│ │
│ │2 4│ │0 0 5│ │
│ └~──┘ └~────┘ │
└∮───────────────────────┘

Later, we will provide a more formal description of this notation.

1.2 Enclose & Disclose

It seems so easy to create and work with nested arrays; couldn't we turn a simple array into a

nested array by for example replacing one item of a simple matrix with a vector, like this?

 Mat ← 2 3∰87 63 52 74 11 62 Create a simple matrix

 Mat[1;2] ← 10 20 30 Try to change it into a nested array
LENGTH ERROR
 Mat[1;2]←10 20 30
 ∧

It doesn’t work!

We cannot replace one item with an array of three items.

Mat[1;2] is a scalar. We can only replace it with a scalar.

1.2.1 - Enclose

Let us now use a little trick to make the assignment above work. We just have to zip up the 3

values into a single "bag", using a function called Enclose, represented by the symbol ⊂.

Then we will be able to replace one item by one bag!

 Mat[1;2] ← ⊂10 20 30

 Mat
87 10 20 30 52 Now it works!
74 11 62

We can of course do the same with character data, but we now know that an expression like

Mat[2;3] ← 2 4∰'JohnPete' is incorrect; we must enclose the array like this:

 Chapter I – Nested Arrays (continued) 333

 Mat[2;3] ← ⊂2 4∰'JohnPete'

 DISPLAY Mat
┌→─────────────────────┐
∸ ┌→───────┐ │ The result is what we expected
│ 87 │10 20 30│ 52 │
│ └~───────┘ │
│ ┌→───┐ │
│ 74 11 ∸John│ │
│ │Pete│ │
│ └────┘ │
└∮─────────────────────┘

The result of Enclose is always a scalar - cf. Section 1.2.4 below.

1.2.2 - Disclose

If we look at the contents of Mat[2;3], we see a little 2 by 4 matrix, but if we look at its

shape, we see that it surprisingly has no shape. Its rank is zero, so it must be a scalar!

 Mat[2;3]
John
Pete

 ∰Mat[2;3]
 Nothing! Its shape is empty

 ∰∰Mat[2;3]
0 And its rank is zero

The explanation is obvious: we have put this little matrix into a bag (a scalar), so we now see

the bag, and not its contents. If we want to see its contents, we must extract them from the

bag, using a function called Disclose, which is represented by the symbol ⊃.

 ∰⊃Mat[2;3]
2 4 Right, we now have access to the matrix

 ∰∰⊃Mat[2;3]
2 And its rank is two, as expected

We experience the same behaviour if we try to extract one item from a nested vector.

Let us recall the nested vector NesVec, which we built in Chapter B:

┌→───────────────────────────────────────┐
│ ┌→───┐ ┌→───────┐ ┌→──┐ │
│ 87 24 │John│ 51 │78 45 23│ 85 ∸8 6│ 69 │
│ └────┘ └~───────┘ │2 4│ │
│ └~──┘ │
└∮───────────────────────────────────────┘

334 Dyalog APL - Tutorial

We can use similar expressions to the ones we used on Mat:

 ∰NesVec[5]
 It looks like a scalar;

 it is a scalar, containing an enclosed vector.

 ∰⊃NesVec[5]
3 Once disclosed, we gain access to its contents

In fact, this should not have come as a complete surprise to us. Earlier we learned that the

shape of the result of an indexing operation is identical to the shape of the indices. In this case

(as well as in the matrix case above), the index specifies a scalar. Hence it would be incorrect

to expect anything other than a scalar as the result of the indexing operation!

1.2.3 - Mnemonics

It is easy to remember how to generate the two symbols for Enclose and Disclose on a US or

UK keyboard:

Disclose ⊃ is generated by Ctrl+X like eXtract

Enclose ⊂ is generated by Ctrl+Z like Zip-up

These symbols are often called Left Shoe and Right Shoe (⊂⊃), but you should preferably use

the terms Disclose and Enclose when you read code.

1.2.4 - Simple and Other Scalars

We know that the result of enclose is always a scalar, but there is a difference between

enclosing a scalar number or character, and enclosing any other array.

When appropriate, we shall now use four different terms:

Simple scalar A single number or letter (rank zero).

Enclosed array A scalar: the result of enclosing anything other than a simple scalar.

Item A scalar: an item of an array, whether it is a simple scalar or an enclosed

array.

Nested array An array in which at least one of the items is an enclosed array.

Always remember these important points:

 Enclose does nothing to a simple scalar - it returns the scalar unchanged. The same for

Disclose.

 All items of an array are effectively scalars, whether they are simple scalars or enclosed

arrays: their rank is 0, and their shape is empty.

 Chapter I – Nested Arrays (continued) 335

 A single item can be replaced only by another single item: a simple scalar, or an array of

values zipped up using Enclose (to form an enclosed array).

 Vector notation (Strand notation) avoids the use of Enclose, because of the conventions

used to separate individual items one from one another.

Let us create four vectors:

 A ← 'Coffee'

 B ← 'Tea'

 C ← 'Chocolate'

 V ← A B C

The last statement is just a simpler way to write: V ← (⊂A),(⊂B),(⊂C)

So we can see that each of the items of V is an enclosed character vector.

Thus, ∰V[1] is ⍬, not 6.

Here is another example:

 NesVec[1 5 6] ← 'Yes' 987 'Hello'

 DISPLAY NesVec
┌→──┐
│ ┌→──┐ ┌→───┐ ┌→────┐ ┌→──┐ │
│ │Yes│ 24 │John│ 51 987 │Hello│ ∸8 6│ 69 │
│ └───┘ └────┘ └─────┘ │2 4│ │
│ └~──┘ │
└∮──┘

If we type an additional Enclose, the result is very different: it effectively adds an extra "bag"

around "Hello", as shown below.

 NesVec[1 5 6]←'Yes' 987 (⊂'Hello')

 DISPLAY NesVec
┌→──┐
│ ┌→──┐ ┌→───┐ ┌─────────┐ ┌→──┐ │
│ │Yes│ 24 │John│ 51 987 │ ┌→────┐ │ ∸8 6│ 69 │
│ └───┘ └────┘ │ │Hello│ │ │2 4│ │
│ │ └─────┘ │ └~──┘ │
│ └∮────────┘ │
└∮──┘

Please undo this last modification to NesVec, as we will use its previous value below.

336 Dyalog APL - Tutorial

1.3 More About DISPLAY

We have already seen the function DISPLAY and its main characteristics in Section B-6.4. We

now need to explore some additional characteristics of it.

1.3.1 - Conventions

The following conventions are used in the character matrix that DISPLAY returns:

A simple scalar has no box around it.

All other arrays are shown with a surrounding box. The upper-left hand corner of the box

describes the shape of the array. It can be:

 a simple line for a scalar that is an enclosed array ─

 a single arrow, for a vector ... →

 one or more vertical arrows for matrices and higher rank arrays ∸ or ∸∸

 a horizontal circled minus for an array with empty last axis ⍁

 a vertical circled bar for an array with another empty axis ⌽

The bottom-left hand corner of the box describes the nature of the array:

 a simple line for character contents... ─

 a tilde for numeric contents... ~

 a Plus symbol for mixed contents ... +

 a Membership symbol for nested arrays ... ∮

 a Del symbol (or Carrot) for ⎕OR arrays... ∳

 a hash for Namespace references .. #

We have not yet studied the last two concepts (⎕OR and namespaces); you can ignore them for

now.

1.3.2 - Change the Default Presentation

By default, the boxes are drawn with special line-drawing characters, but you can provide a

zero left argument to force the function to use alternative (standard APL) characters:

 Chapter I – Nested Arrays (continued) 337

 Default With the left argument set to 0
 or the left argument set to 1

 DISPLAY 'New' 0 DISPLAY 'New'

 ┌→──┐ .→--.
 │New│ |New|
 └───┘ '---'

As mentioned previously, the default presentation looks a lot better on the screen, but line-

drawing symbols can be problematical under Windows, for example when trying to print

them. Nevertheless, we will use this form of output from now on.

1.3.3 - Distinguish Between Items

Now that we have discovered the existence of scalars which are enclosed arrays, we can use

DISPLAY to distinguish between the two kinds of scalars:

 DISPLAY 34
34 DISPLAY draws no box around a simple scalar.

 DISPLAY NesVec[6]
┌─────────┐ The 6th item of NesVec is an enclosed vector, so

│ ┌→────┐ │ its corners are marked with a simple line and an ∮.
│ │Hello│ │ It contains a second box whose corners tell us that

│ └─────┘ │ Hello is a character vector.
└∮────────┘

NesVec[6] is a scalar containing a vector.

 DISPLAY ⊃NesVec[6]
┌→────┐ If we Disclose the item, we obtain a simple vector

│Hello│
└─────┘

1.3.4 - Empty Arrays

Here is how DISPLAY identifies some empty arrays:

Empty numeric vector Empty text vector

 DISPLAY ⍬ DISPLAY ''

 ┌⍁┐ ┌⍁┐
 │0│ │ │
 └~┘ └─┘

338 Dyalog APL - Tutorial

These are vectors, because there is no vertical arrow, and the ⍁ sign indicates that they are

empty. At the bottom of the boxes the symbols ~ and ─ show that an empty numeric vector

and an empty character vector are different. One contains a zero, the other contains a blank.

This indicates the type of the array, which is a property of an array even when the array is

empty (see section I-7 for more about fill items).

We can see the same kind of output for empty matrices:

Empty numeric matrix Empty character matrix

 DISPLAY 0 5∰0 DISPLAY 0 10∰''

 ┌→────────┐ ┌→─────────┐
 ⌽0 0 0 0 0│ ⌽ │
 └~────────┘ └──────────┘

Empty numeric 3-D array Empty character matrix

 DISPLAY 2 3 0∰0 DISPLAY 5 0∰''

 ┌┌⍁┐ ┌⍁┐
 ∸∸0│ ∸ │
 ││0│ │ │
 ││0│ │ │
 ││ │ │ │
 ││0│ │ │
 ││0│ └─┘
 ││0│
 └└~┘

The output for the empty numeric 3-D array contains 2 sets of 3 zeroes, to show that its shape

is 2 3 0.

2 - Depth & Match

2.1 Enclosing Scalars

Applied to a simple scalar, Enclose does nothing: the enclose of a simple scalar is the same

simple scalar:

 DISPLAY 35 DISPLAY ⊂35

 35 35

 Chapter I – Nested Arrays (continued) 339

However, when applied to any other array, Enclose puts a "bag" around it:

DISPLAY 2 4 8 gives ┌→────┐ A simple vector.

 │2 4 8│
 └~────┘

DISPLAY ⊂2 4 8 gives ┌─────────┐ A scalar containing

 │ ┌→────┐ │ a numeric vector.
 │ │2 4 8│ │
 │ └~────┘ │
 └∮────────┘

DISPLAY ⊂⊂2 4 8 gives ┌─────────────┐ A scalar containing

 │ ┌─────────┐ │ another scalar, itself

 │ │ ┌→────┐ │ │ containing a numeric vector.
 │ │ │2 4 8│ │ │
 │ │ └~────┘ │ │
 │ └∮────────┘ │
 └∮────────────┘

2.2 Depth

Suppose that we write a function Process, which takes as its argument a vector consisting of:

the name of a town, the number of inhabitants, a country code, and the turnover of our

company in that town.

For example: Process 'Lyon' 466400 'FR' 894600

For the purpose of this example, the function will just display the items it receives in its

argument. We choose to write it with the following syntax:

 ∳ Process vec;town;pop;coun;tov
[1] (town pop coun tov)←vec
[2] (15↑'Town =')town
[3] (15↑'Population =')pop
[4] (15↑'Country=')coun
[5] (15↑'Turnover=')tov
 ∳

Perhaps this is not the smartest thing we could do, but we did it!

Now, let us execute the function and verify that it works properly:

 Process 'York' 186800 'GB' 540678
 Town = York
 Population = 186800
 Country= GB
 Turnover= 540678

This looks promising, but what will happen if the user forgets one of the items that the

function expects? Let's test it:

340 Dyalog APL - Tutorial

 Process 'York' 186800 'GB'

LENGTH ERROR As we might expect, an error message is issued:
Process[1] (town pop coun tov)←vec we cannot put 3 values into 4 variables!

 ∧

Let us add a little test to our function to check whether or not the right argument has 4 items.

Here is the new version; the parts which have not been modified are shown in grey:

 ∳ Process vec;town;pop;coun;tov
[1] :If 4=∰vec
[2] (town pop coun tov)←vec
...
[6] (15↑'Turnover=')tov
[7] :Else
[8] 'Hey, dude, weren''t you supposed to provide 4 values?'
[9] :End
 ∳

It seems to work well now:

 Process 'York' 186800 'GB'
Hey, dude, weren't you supposed to provide 4 values?

But one day the user forgets all but one of the items, and just types the name of the town:

 Process 'York'
 Town = Y Our test did work, but not as expected, because the
 Population = o shape of 'York' itself is 4...
 Country= r
 Turnover= k

This trivial example shows that when nested arrays are involved, it is not sufficient to rely on

the shape of an array; we need additional information: specifically, is it a simple or a nested

array? To help distinguish between simple and nested arrays, APL provides a function named

Depth. It is represented by the monadic use of the symbol ≡.

Depth

The Depth of a simple scalar is 0.

The Depth of any other array of any shape is 1, if all of its items are simple scalars.

We call such an array a simple array, so we can instead say:

The Depth of a non-scalar, simple array is 1.

The Depth of any other array is equal to the depth of its deepest item plus 1.

The Depth is positive if the array is uniform (all of its items have the same depth), and

negative if it is not.

 Chapter I – Nested Arrays (continued) 341

Another intuitive definition of Depth is this: DISPLAY the array and count the number of

boxes you must pass to reach its deepest item.

Here are some examples:

 ≡ 540678
0 A scalar has a depth of 0.

 ≡ 15 84 37 11 This vector contains only simple scalars

1 Its depth is 1.

 ≡ Towns
1 The same for matrices and higher rank arrays.

 ≡ Prod When they contain only simple scalars

1 their depth is 1.

Now, let us consider this nested vector:

 ≡ Vec1 ← (4 3) 'Yes' (8 7 5 6) (2 4)
2

It is composed of 4 enclosed vectors, each of depth 1 - so Vec1 has depth 2. Now let us

change the expression slightly:

 ≡ Vec2 ← (4 3) 'Yes' (8 7 5) 6 (2 4)
¯2

This vector is no longer uniform: it contains four enclosed vectors and one simple scalar, so

its depth is negative. The magnitude of the depth has not changed, since it reports the highest

level of nesting.

In this context the word "uniform" only means that the array contains items of the same

depth.

Vec2 is not uniform: because it contains vectors (depth=1) mixed with a scalar (depth=0).

Vec1 is uniform: because all its items are vectors (depth=1), even though they do not

have the same shape, the same type, and certainly not the same

content.

2.3 Match & Natch

As you might imagine, it would be rather complex to write a program to determine if two

arrays are strictly identical, especially when they are nested. For this reason, APL provides the

function Match, which is represented by the dyadic use of the traditional mathematical

symbol ≡. It returns 1 if its arguments are strictly identical, and 0 if they are not:

 14 25 36 ≡ 1 3∰14 25 36 A simple = would have caused a RANK ERROR
0

 (1 2) 'Yes' ≡ (1 2) 'Yes'
1

342 Dyalog APL - Tutorial

The "opposite" function of Match is Not-Match, or simply Natch, which is represented by the

symbol ≢. It returns 1 if its arguments are not strictly identical - otherwise 0.

 (1 2) 'Yes' ≢ '1 2' 'Yes'
1

 ⍬ ≢ ∯0 Though expressed differently, these two arrays

0 are identical.

 ⍬ ≢ '' However, numeric and character empty arrays

1 are different.

3 - Each

3.1 Definition and Examples

To avoid the necessity of processing the items of an array one after the other in an explicitly

programmed loop, one can use a monadic operator called Each, which is represented by a

dieresis (¨) symbol.

As its name implies, Each applies the function on its left (its operand) to each of the items of

the array on its right (if the function is monadic), or to each pair of corresponding items of the

arrays on its left and right (if the function is dyadic).

Let us try it with some small nested vectors and a monadic function:

 Vec3 ← (5 2) (7 10 23) (52 41) (38 5 17 22)

 Vec4 ← (15 12) 71023 (2 2∰∯4) (74 85 96)

 Vec5 ← (7 5 1) (19 14 13) (33 44 55)

 ∰Vec3
4 The shape of Vec3

 ∰¨Vec3
 2 3 2 4 The shape of each of the items in Vec3

We can do the same with the second vector:

 ∰¨Vec4 Beware! One item of Vec4 is a scalar, so
 2 2 2 3 its shape is empty, as shown here:

 DISPLAY ∰¨Vec4
┌→──────────────────┐
│ ┌→┐ ┌⍁┐ ┌→──┐ ┌→┐ │
│ │2│ │0│ │2 2│ │3│ │
│ └~┘ └~┘ └~──┘ └~┘ │
└∮──────────────────┘

 Chapter I – Nested Arrays (continued) 343

If the function specified as the operand to Each is dyadic the derived function is also dyadic.

As usual, if one of the arguments is a scalar, the scalar is automatically repeated to match the

shape of the other argument. For example, to take the first three letters of a character vector

called Text, we would write 3↑Text. So we can use Each to take the first three letters of each

vector in a set of character vectors:

 3↑¨MonVec
 Jan Feb Mar Apr May Jun

Naturally, the operand to Each can also be a User Defined Function, provided that it can be

applied to all of the items of the argument array(s):

 Average¨Vec3
 3.5 13.33333333 46.5 20.5

Remark In fact, Each is a bit more than a "hidden" loop.

 Please remember that all items of an array are scalars - either simple scalars or

enclosed arrays. So, in an expression like ∰¨Vec5, shouldn't we expect the

result to be just a list of 3 empty vectors, since the shape of a scalar is an empty

vector?

 No, the Each operator is smarter than that. For each item of the argument array,

the item is first Disclosed (the "bag" is opened), the function is applied to the

disclosed item, and the result is Enclosed to again form a scalar (i.e. put into a

new bag). Finally, all the new bags (scalars) are arranged in exactly the same

structure (rank and shape) as the original argument array to form the final result.

So:

 ∰¨Vec5
 3 3 3

Is in fact equivalent to:

 (⊂∰⊃Vec5[1]), (⊂∰⊃Vec5[2]), (⊂∰⊃Vec5[3])
 3 3 3

 (∰¨Vec5) ≡ (⊂∰⊃Vec5[1]),(⊂∰⊃Vec5[2]),(⊂∰⊃Vec5[3])

1

 If the operand to Each is a dyadic function, the corresponding items of the left

and right arguments are both disclosed before applying the function.

We have seen that the operand to Each may be a primitive function or a user-defined function.

It may also be a Derived function returned by another operator. For example, in the following

expressions the operand to Each is not /, but the derived function (+/):

 +/¨Vec3 Sums the numbers inside each item of the vector.
7 40 93 82

 +/¨Vec4 It still works, even though one item is a matrix.
27 71023 3 7 255

344 Dyalog APL - Tutorial

Beware: In some cases the same derived function can be applied with or without the help of

Each, but the result will not be the same at all:

 DISPLAY Vec5
┌→──────────────────────────────┐
│ ┌→────┐ ┌→───────┐ ┌→───────┐ │
│ │7 5 1│ │19 14 13│ │33 44 55│ │
│ └~────┘ └~───────┘ └~───────┘ │
└∮──────────────────────────────┘

 +/Vec5
 59 63 69 The result is the sum of the 3 sub-vectors.

 +/¨Vec5 The result is the sum of each of the 3 sub-vectors.
13 46 132

The Use of Each

Each is a "loop cruncher". Instead of programming loops, you can in APL apply any function

to each of the items of an array, each of which may contain a complex set of data.

This operator is also useful combined with Match when a simple equal sign would have

caused an error. For example, to compare two lists of names:

 'John' 'Julius' 'Jim' 'Jean' ≡¨ 'John' 'Oops' 'Jim' 'Jeff'
1 0 1 0

When used inappropriately the Each operator can sometimes use a large amount of memory

for its intermediate results, so you may need to use it with some care.

Suppose that we have a huge list ToverCust of turnover amounts, one item per customer (we

have more than 5,000 of them!). Each item contains a matrix having a varying number of rows

(products) and 52 columns (weeks). Our task is to calculate the total average turnover per

week per customer. No problem:

 ToverPerWeek←(+/¨+⌿¨ToverCust)÷52

However, if ToverCust is very large and we do not have much workspace left, the above

expression may easily cause a WS FULL error.

The reason is that the intermediate expression +⌿¨ToverCust produces a list of 52 amounts

per customer, and that may require more workspace than we have room for.

Instead we can put the entire expression into a function. As is often the case in APL, the hard

part of writing a function is finding a good name for it. Fortunately we can get by without a

name here:

 ToverPerWeek←{(+/+⌿∱)÷52}¨ToverCust

 Chapter I – Nested Arrays (continued) 345

Because we have "isolated" the entire logical process in the function and used Each to loop

through the items one by one, we will at most have only one customer's data "active" at any

time, and each intermediate result (a 52 item vector) will be thrown away before recalculating

that for the next customer. The result of each function call is just one number, so it is much

less likely that we will run into WS FULL problems.

3.2 Three Compressions!

In the following we will show three expressions which look similar, but their results are very

different. Let us first recall that Vec5 consists of 3 vectors, each containing 3 items:

 Vec5
 7 5 1 19 14 13 33 44 55

What is the result of a Compression?

 1 0 1/Vec5 The vector 1 0 1 applies to the three items of

 7 5 1 33 44 55 Vec5, eliminating the second one.

 DISPLAY 1 0 1/Vec5
┌→───────────────────┐ As said above, the compression applies to
│ ┌→────┐ ┌→───────┐ │ the items of Vec5, as it would to any vector.
│ │7 5 1│ │33 44 55│ │ So, the second item has been removed.
│ └~────┘ └~───────┘ │
└∮───────────────────┘

 1 0 1/¨Vec5 You think the result is the same? Are you sure?
 7 5 1 33 44 55 It is not displayed the same way.

 DISPLAY 1 0 1/¨Vec5 Things are different here: each item of 1 0 1

┌→───────────────────────┐ is applied to each sub-vector, like this:

│ ┌→────┐ ┌⍁┐ ┌→───────┐ │ 1 applied to 7 5 1 gives 7 5 1,

│ │7 5 1│ │0│ │33 44 55│ │ 0 applied to 19 14 13 gives an empty vector,

│ └~────┘ └~┘ └~───────┘ │ 1 applied to 33 44 55 gives 33 44 55,
└∮───────────────────────┘ Thanks to DISPLAY!

There is a third way of using Compress:

 DISPLAY (⊂1 0 1)/¨Vec5 Now the entire mask 1 0 1 is applied to
┌→──────────────────────┐ each sub-vector.
│ ┌→──┐ ┌→────┐ ┌→────┐ │ The 2nd item of each sub-vector has been removed.
│ │7 1│ │19 13│ │33 55│ │
│ └~──┘ └~────┘ └~────┘ │
└∮──────────────────────┘

346 Dyalog APL - Tutorial

4 - Processing Nested Arrays

We have already seen a number of operations involving nested arrays; we shall explore some

more in this section. Because nested arrays generally tend to have a rather simple, or at least

uniform, structure, we can illustrate the operations using our little vectors.

4.1 Scalar Dyadic Functions

You can refer to Section C-6.1 concerning the application of scalar dyadic functions to nested

arrays.

However, let us here explore again how Each applies to scalar dyadic functions:

 Vec5
 7 5 1 19 14 13 33 44 55

 Vec5 + 100 20 1 100, 20, and 1 are added to the three sub-vectors,
 107 105 101 39 34 33 34 45 56 respectively.

 Vec5 +¨ 100 20 1 100 is added to the first, 20 to the second, and
 107 105 101 39 34 33 34 45 56 1 to the last: the result is the same.

 Vec5 +¨ ⊂100 20 1 The entire vector 100 20 1 is added to each

 107 25 2 119 34 14 133 64 56 of the three sub-vectors.

 Vec5 + ⊂100 20 1 Same result: The scalar on the right is extended

 107 25 2 119 34 14 133 64 56 to match the shape of the left.

In fact, Each is superfluous when using it with scalar dyadic functions, because they are

Pervasive, cf. section C-6.1.

4.2 Juxtaposition vs. Catenation

When you catenate a number of arrays, for example V ← A,B,C, you create a new array with

the contents of A, B, and C catenated together to make a single new array, as we have seen

many times before.

Let us use a small vector and see how it works:

 Small ← 3 4 5

 ┌→────────────┐
1 2,Small,6 7 gives │1 2 3 4 5 6 7│ A simple vector
 └~────────────┘

 Chapter I – Nested Arrays (continued) 347

What happens here is of course that first the 3-item vector Small and the 2-item vector 6 7

are combined into one 5-item vector. Then this 5-item vector is combined with the 2-item

vector 1 2 to form the resulting 7-item vector. Both the final and the interim results are

simple.

We can now explain what happens when you juxtapose two or more arrays (Strand notation),

for example V ← A B C D E: each array is enclosed, and the resulting scalars are catenated

together.

Such an expression produces a vector made of as many items as we have arrays on the right.

 ┌→────────────────┐
1 2 Small 6 7 gives │ ┌→────┐ │ A nested vector
 │ 1 2 │3 4 5│ 6 7 │
 │ └~────┘ │
 └∮────────────────┘

This is what we call Vector notation or Strand notation. In this case, we juxtaposed 5 arrays,

so we created a nested array of length 5.

What happens here is that each of the 5 arrays is first enclosed, and then the resulting 5 scalars

are catenated together to produce the 5-item vector. Please remember that enclosing a simple

scalar does not change it, so you can only see the difference for the array Small.

 ┌→──────────────────┐
(1 2) Small 6 7 gives │ ┌→──┐ ┌→────┐ │
 │ │1 2│ │3 4 5│ 6 7 │
 │ └~──┘ └~────┘ │
 └∮──────────────────┘

Here, we juxtaposed 4 arrays, two of which are vectors. It is again an example of Strand

notation.

In other words, juxtaposition works on arrays seen as building blocks, while catenation works

on the contents of the arrays.

It may help you to know that there is a strict relationship between catenation and Strand

notation:

 A B C is strictly identical to (⊂A),(⊂B),(⊂C)

(1 2) Small,6 7 gives exactly the same result as (1 2) Small 6 7,

 but for a very different reason:

In fact, Small is not catenated to the vector 6 7 as in the first example above. To read this

expression correctly, we must refer to the comma as an APL function:

 Its right argument is the vector 6 7, of course.

 Its left argument is whatever is on its left, up to the next function symbol. As there is no

such function (parentheses are not functions), the left argument is the result of the entire

expression to the left of the comma, i.e. the 2-item vector (1 2) Small.

348 Dyalog APL - Tutorial

So, the result is that the 2-item vector (1 2) Small is combined with the 2-item vector 6 7

to form the resulting 4-item vector.

Remember this: When interpreting an expression you must never "break" a sequence of

juxtaposed arrays (a Strand), even if it is a nested vector.

So, the left argument to Catenate is in this example:

 ┌→──────────────┐
 │ ┌→──┐ ┌→────┐ │
 │ │1 2│ │3 4 5│ │
 │ └~──┘ └~────┘ │
 └∮──────────────┘

When Catenate is executed, the two items of this argument are catenated to the two items 6

and 7 of the right argument, making the same 4-item nested vector as in the previous example.

What is the result of the expression: (1 2),Small (6 7) ?

4.3 Characters and Numbers

We have a character matrix MT and a numeric matrix MN:

 MT MN

Francis 608.1 928.24 1293.14 849.95
Carmen 1127.84 970.27 1249 1168.29
Luciano 775.12 1065 670.69 1091.7

We would like to have them displayed side by side.

4.3.1 - Solution 1

The first idea is to just type MT MN

 MT MN
 Francis 608.1 928.24 1293.14 849.95
 Carmen 1127.84 970.27 1249 1168.29
 Luciano 775.12 1065 670.69 1091.7

The format of the result is not ideal; some values have 2 decimal digits, and some have only

one or none. But there is a much more important problem. Imagine that we would like to draw

a line on the top of the report. We can catenate a single dash along the first dimension:

 '-'ⓐMT MN We could have written: '-',[1]MT MN

- Francis 608.1 928.24 1293.14 849.95
 Carmen 1127.84 970.27 1249 1168.29
 Luciano 775.12 1065 670.69 1091.7

 Look here!

 Chapter I – Nested Arrays (continued) 349

This is not what we expected: the dash has been placed on the left, not on the top! The reason

is that the expression MT MN does not produce a matrix, but a 2-item nested vector. And when

one catenates a scalar to a vector, it is inserted before its first item or after the last one to

produce a longer vector. This cannot produce a matrix, unless Laminate is used, but we shall

not try that now.

4.3.2 - Solution 2

Well, if juxtaposition doesn’t achieve what we want, why shouldn't we catenate our two

matrices?

 MT,MN
Francis 608.1 928.24 1293.14 849.95 It is almost the same presentation,
Carmen 1127.84 970.27 1249 1168.29 but not exactly: this is a matrix!
Luciano 775.12 1065 670.69 1091.7

Now, let us try to draw the line.

 '-'ⓐMT,MN
------- - - - -
Francis 608.1 928.24 1293.14 849.95 Horrible!
Carmen 1127.84 970.27 1249 1168.29 What happened?
Luciano 775.12 1065 670.69 1091.7

When we catenated MT (shape 3 7) with MN (shape 3 4), we produced a 3 by 11 matrix.

So, when we further catenated a dash on top of it, the dash was repeated 11 times to fit the last

dimension of the matrix. This is why we obtained 7 dashes on top of the 7 text columns, and 4

dashes, each on top of each of the 4 numeric columns. This is still not what we want!

4.3.3 - Solution 3

The final solution will be the following: convert the numbers into text, using the Format

function, and then catenate one character matrix to another character matrix:

 '-'ⓐMT,9 2⍃MN
--- The line is where we want it
Francis 608.10 928.24 1293.14 849.95
Carmen 1127.84 970.27 1249.00 1168.29
Luciano 775.12 1065.00 670.69 1091.70 The numbers are nicely formatted

Exercise

Try to deduce the results of the following 3 expressions (depth, rank, shape), and then verify

your solutions on the computer:

(⊂MT) (⊂MN)
(⊂MT),(⊂MN)
MT,⊂MN

350 Dyalog APL - Tutorial

4.4 Some More Operations

Let us use Vec5 once more: Vec5 ← (7 5 1)(19 14 13)(33 44 55)

4.4.1 - Reduction

 +/Vec5
 59 63 69

 Notice the space here!

The three enclosed arrays (scalars) have been added together, and the result is therefore an

enclosed array (a scalar). You can tell this from the output, because the first value (59) is not

displayed at the left margin, but indented 1 character.

 DISPLAY +/Vec5
┌────────────┐ The result we obtained is an enclosed vector
│ ┌→───────┐ │ (a scalar)
│ │59 63 69│ │
│ └~───────┘ │
└∮───────────┘

We know that the reduction of a vector (rank 1) produces a scalar (rank 0), and this rule still

applies here.

To obtain the contents of the (enclosed) vector, we must disclose the result:

 DISPLAY ⊃+/Vec5
┌→───────┐
│59 63 69│
└~───────┘

The same thing can be observed if we try to collect all the values contained in Vec5 into a

single vector, by catenating them together:

 DISPLAY ,/Vec5
┌───────────────────────────┐ It worked, but here again we might

│ ┌→──────────────────────┐ │ want to disclose the result: ⊃,/Vec5
│ │7 5 1 19 14 13 33 44 55│ │
│ └~──────────────────────┘ │
└∮──────────────────────────┘

 Chapter I – Nested Arrays (continued) 351

4.4.2 - Index Of and Membership

The Index Of function (dyadic ∯) may be used to search for (find the position of) items in a

nested vector:

 Vec5 ∯ (19 14 13)(1 5 7) This is correct: the first vector appears in Vec5 as

2 4 Vec5[2], and the second vector is not present.

But beware, there is a booby trap:

 Vec5 ∯ (19 14 13) (19 14 13) is not a nested array. Vec5 is

4 4 4 searched for each of these 3 numbers

 individually, and they are not found.

 Vec5 ∯ ⊂19 14 13 This gives the expected answer
2

It is also important to be aware of this when using Membership:

 (3 4 5)(7 5 1) ∮ Vec5
0 1

 (7 5 1) ∮ Vec5
0 0 0

 (⊂7 5 1) ∮ Vec5
1

4.4.3 - Indexing

The rules we saw about indexing remain true: when one indexes a vector by an array, the

result has the same shape as the array. If the vector is nested, the result is generally nested too:

 DISPLAY Vec4
┌→───────────────────────────────┐
│ ┌→────┐ ┌→──┐ ┌→───────┐ │
│ │15 12│ 71023 ∸1 2│ │74 85 96│ │
│ └~────┘ │3 4│ └~───────┘ │
│ └~──┘ │
└∮───────────────────────────────┘

 DISPLAY Vec4[2 2∰ 4 2 1 3]
┌→─────────────────┐
∸ ┌→───────┐ │
│ │74 85 96│ 71023 │
│ └~───────┘ │
│ ┌→────┐ ┌→──┐ │
│ │15 12│ ∸1 2│ │
│ └~────┘ │3 4│ │
│ └~──┘ │
└∮─────────────────┘

352 Dyalog APL - Tutorial

We have also seen, in Section B-5.3, that a nested array can be used as an index. For example,

to index items scattered throughout a matrix, the array that specifies the indices is composed

of 2-item vectors (row & column indices):

 Tests
11 26 22
14 87 52
30 28 19
65 40 55
19 31 64
33 70 44

 Tests[(2 3)(5 1)(1 2)]
52 19 26

 Tests[2 2∰(2 3)(5 1)(1 2)]
52 19
26 52

Let us try to obtain the same result with the Index function, or Squad:

(2 3)(5 1)(1 2) ⌷ Tests This cannot work. Squad expects a 2-item vector:

a list of rows and a list of columns.

(2 3)(5 1)(1 2) ⌷¨ Tests This won't work: each item of the left argument cannot be

associated with a corresponding item of Tests, because

they do not have the same shape.

 (2 3)(5 1)(1 2)⌷¨⊂Tests
52 19 26

This last expression worked correctly. Each couple of indices is applied to Tests as a whole

because it has been enclosed, and therefore the scalar on the right is extended to match the 3-

item vector on the left.

4.4.4 - Always Keep In Mind the Following Rules

 The items of a nested array are scalars and are therefore always processed as scalars.

In the expression (5 6)(4 2)×10 5

(5 6) is multiplied by 10, and (4 2) is multiplied by 5

 A single list of values placed between parentheses is not a nested array:

(45 77 80) is not a nested array. The parentheses do nothing here.

 An expression is always evaluated from right to left, one function at a time. Note that

strands can be easy to miss when determining what the left argument of a function is:

In the expression 2×A 3+B

The left argument of the Plus function is not 3 alone, but the vector A 3

Before we go any further with nested arrays, we recommend that you try to solve some

exercises.

 Chapter I – Nested Arrays (continued) 353

Exercises

I-1 You are given 3 numeric vectors: A ← 1 2 3

 B ← 4 5 6

 C ← 7 8 9

Try to predict the results given by the following expressions in terms of depth, rank, and

shape. Then check your results using DISPLAY.

a) A B C × 1 2 3

b) (10 20),A

c) (10 20),A B

d) A B 2 × C[2]

e) 10×A 20×B

I-2 Same question for the following expressions:

a) +/A B C

b) +/¨A B C

c) 1 0 1/¨A B C

d) (A B C)∯(4 5 6)

e) 1 10 3 ∮ A

f) (⊂1 0 1)/¨A B C

g) 1 10 3 ∮ A B C

I-3 Create the following nested array: NA ← 1 2 (2 2∰3 4 5 6)7 8

What are the results of: +/NA

 ,/NA

354 Dyalog APL - Tutorial

5 - Split and Mix

We saw that in some cases we can choose to represent data either as a matrix or as a nested

vector; remember MonMat and MonVec.

Two primitive monadic functions are provided to switch from one form to the other:

Mix (↑) Returns an array of higher Rank and lower Depth than that of its argument.

Split (∸) Returns an array of lower Rank and higher Depth than that of its argument.

5.1 Basic Use

Let us apply Mix to two small vectors:

 VTex ← 'One' 'Two' 'Three'

 VNum ← (6 2) 14 (7 5 3)

 DISPLAY RTex← ↑ VT
┌→────┐
∸One │ We converted a nested vector: Depth = 2 / Rank = 1
│Two │ into a simple matrix: Depth = 1 / Rank = 2
│Three│
└─────┘

 DISPLAY RNum← ↑ VNum
┌→─────┐
∸ 6 2 0│ We converted a nested vector: Depth = ¯2 / Rank = 1
│14 0 0│ into a simple matrix: Depth = 1 / Rank = 2
│ 7 5 3│
└~─────┘

Of course the operation is possible only because the shorter items are padded with blanks (for

text) or zeroes (for numbers), or more generally by the appropriate Fill Item (this notion will

be explained soon).

The last example above shows that when we say that the depth is reduced, we actually mean

that the magnitude of the depth is reduced.

And now, let us apply Split to the matrices we have just produced:

 Chapter I – Nested Arrays (continued) 355

 DISPLAY NewTex←∸RTex
┌→────────────────────────┐ We converted a simple matrix: Depth = 1 / Rank = 2
│ ┌→────┐ ┌→────┐ ┌→────┐ │ into a nested vector Depth = 2 / Rank = 1
│ │One │ │Two │ │Three│ │
│ └─────┘ └─────┘ └─────┘ │
└∮────────────────────────┘

 DISPLAY NewNum←∸RNum
┌→─────────────────────────┐
│ ┌→────┐ ┌→─────┐ ┌→────┐ │
│ │6 2 0│ │14 0 0│ │7 5 3│ │
│ └~────┘ └~─────┘ └~────┘ │
└∮─────────────────────────┘

Note that the two new vectors (NewTex and NewNum) are not identical to the original ones

(VTex and VNum) because when they were converted into the matrices RTex and RNum, the

shorter items were padded. When one splits a matrix, the items of the result all have the same

size.

Mix applied to heterogeneous data

The examples shown above represent very common uses of Mix and Split. However, it is of

course also possible to apply the functions to heterogeneous data:

 DISPLAY ↑'Mixed' (11 43)
┌→──────────┐
∸ M i x e d│ We mixed text and numbers.
│11 43 0 0 0│
└+──────────┘

 DISPLAY ↑'Yes' ('Oui' 'Da' 'Si')
┌→────────────────┐
∸ │ We mixed a simple vector with a nested one.
│ Y e s │ As expected, the result is a 2 by 3 matrix.
│ - - - │
│ ┌→──┐ ┌→─┐ ┌→─┐ │
│ │Oui│ │Da│ │Si│ │
│ └───┘ └──┘ └──┘ │
└∮────────────────┘

5.2 Axis Specification

5.2.1 - Split

When we apply the function Split to an array its rank will decrease, so we must specify which

of its dimensions is to be suppressed. As usual, if we don't specify it explicitly, the default is

to suppress the last dimension.

356 Dyalog APL - Tutorial

 H2SO4
Let us work on Chemistry, a matrix we used earlier: CaCO3
 Fe2O3

In this case there are two possible uses of Split; we can apply it either to the 1
st
 dimension or

to the 2
nd

 dimension.

 ∸[1]Chemistry
 HCF 2ae SC2 OOO 433 The matrix is split column-wise.

 ∸[2]Chemistry The matrix is split row-wise.
 H2SO4 CaCO3 Fe2O3

 ∸Chemistry
 H2SO4 CaCO3 Fe2O3 As always, the default is along the last axis.

5.2.2 - Mix

The use of Mix is a bit more complex, because it adds a new dimension to an existing array.

So does the function Laminate, and the two functions use the same convention to specify

where to insert the new dimension.

If we apply the function Mix to a 3-item nested vector of vectors, in which the largest item is

an enclosed 5 item vector, the result must be either a 5 by 3 matrix, or a 3 by 5 matrix (the

default).

In the same way as for Laminate, a new dimension is created, which can be inserted before or

after the existing dimension. The programmer decides this by specifying an axis:

[0.5] inserts the new dimension before the existing one, and results in a 5 by 3 matrix,

[1.5] inserts the new dimension after the existing one, and results in a 3 by 5 matrix.

 ↑[0.5]'One' 'Two' 'Three'
OTT
nwh
eor
 e
 e

 ↑[1.5]'One' 'Two' 'Three' This is the default
One
Two Equivalent to ↑'One' 'Two' 'Three'
Three

Let us now work with a nested matrix,

 ⎕ ← Friends ← 2 3∰'John' 'Mike' 'Anna' 'Noah' 'Suzy' 'Paul'
 John Mike Anna
 Noah Suzy Paul

 Chapter I – Nested Arrays (continued) 357

The shape of this matrix is 2 3, and its items are all of length 4. So, Mix can produce three

different results, according to axis specifications as follows:

 With the new dimension and it returns

 this axis is inserted an array of shape

 [2.5] after 2 3 2 3 4 The default
 [1.5] between 2 and 3 2 4 3
 [0.5] before 2 3 4 2 3

Each of these 3 cases is illustrated below. To help you understand them, we have written the

same name (Suzy) in bold letters each time:

↑[2.5]Friends ↑[1.5]Friends ↑[0.5]Friends

 John JMA JMA
 Mike oin NSP
 Anna hkn
 nea oin
 Noah oua
 Suzy NSP
 Paul oua hkn
 azu azu
(This is the default) hyl
 nea
 hyl

In the first example, the names are placed "horizontally" as rows in 2 sub-matrices.

In the second case, they are placed "vertically" in columns.

The third case is more difficult to read; the names are positioned perpendicularly to the

matrices, with one letter in each. You might like to imagine that the letters are arranged in a

cube, and that you are viewing it from 3 different positions.

6 - First & Type

We have not mentioned this before (because up to now we have only used it on 1-item arrays),

but Disclose actually discloses just the first item of an array. All other items are ignored. For

this reason, the function is also called First.

 ⊃26 (10 20 30) 100
26

358 Dyalog APL - Tutorial

 ⊃'January' 'February' 'March' ...
January

 ⊃2 2∰'Dyalog' (2 2∰∯4) 'APL' 100
Dyalog

We shall also soon need to know whether an array is made of numbers, of characters, or both.

This information may be found using the function Type, which is the monadic use of the

symbol ∮.

The Type function returns an array having exactly the same structure as its argument: shape,

rank, depth, for all levels of nesting. The resulting array contains a zero for each numeric

scalar, and a blank for each character scalar in the argument array.

When applied to a nested array, the result may be rather difficult to interpret, because the

blanks are, by definition, invisible when displayed:

 DISPLAY NesVec
┌→──┐
│ ┌→──┐ ┌→───┐ ┌→────┐ ┌→──┐ │
│ │Yes│ 24 │John│ 51 987 │Hello│ ∸8 6│ 69 │
│ └───┘ └────┘ └─────┘ │2 4│ │
│ └~──┘ │
└∮──┘

 ∮NesVec
 0 0 0 0 0 0
 0 0

 DISPLAY ∮NesVec
┌→───────────────────────────────────┐
│ ┌→──┐ ┌→───┐ ┌→────┐ ┌→──┐ │
│ │ │ 0 │ │ 0 0 │ │ ∸0 0│ 0 │
│ └───┘ └────┘ └─────┘ │0 0│ │
│ └~──┘ │
└∮───────────────────────────────────┘

7 - Prototype, Fill Item

Some operations like Expand or Take may insert new additional items into an array. Up to

now, things were simple; numeric arrays were expanded with zeroes, and character arrays

were expanded with blanks. But what will happen if the array contains both numbers and

characters (a mixed array), or if it is a nested array?

We need a variable to experiment a little:

 Hogwash ← 19 (2 2∰∯4) (3 1∰'APL') (2 2∰5 8 'Nuts' 9)

What would be the result of expressions like 6↑Hogwash or 1 1 0 1 0 1\Hogwash?

 Chapter I – Nested Arrays (continued) 359

In general, when expanding an array, APL inserts Fill Items, and it does so using the

Prototype of the array.

Definitions

The Prototype of an array is defined as the Type of its First item: ∮⊃Array

In other words, the prototype of an array is its first item, in which all the numbers are

replaced by zeroes and all characters are replaced by blanks, through all levels of depth.

The Prototype of an array is used as a Fill Item whenever an operation needs to create

additional items.

The first item of Hoqwash is a number, so its Prototype is a single zero. If we lengthen the

vector using overtake, it will be padded with zeroes (fill items):

 DISPLAY 6↑Hogwash
┌→──────────────────────────────┐
│ ┌→──┐ ┌→┐ ┌→─────────┐ │
│ 19 ∸1 2│ ∸A│ ∸ │ 0 0 │ The original values are grey
│ │3 4│ │P│ │ 5 8 │ │ The new items are black
│ └~──┘ │L│ │ │ │
│ └─┘ │ ┌→───┐ │ │
│ │ │Nuts│ 9 │ │
│ │ └────┘ │ │
│ └∮─────────┘ │
└∮──────────────────────────────┘

 1 1 0 1 0 1\Hogwash
19 1 2 0 A 0 5 8
 3 4 P Nuts 9
 L

Let us rotate the vector by one position: Hogwash ← 1⌽Hogwash

Now, the first item is a numeric matrix, and the prototype of Hogwash is:

 ∮⊃Hogwash
0 0
0 0

If we take 6 items from Hogwash two such matrices will be added:

360 Dyalog APL - Tutorial

 DISPLAY 6↑Hogwash
┌→──────────────────────────────────────┐
│ ┌→──┐ ┌→┐ ┌→─────────┐ ┌→──┐ ┌→──┐ │
│ ∸1 2│ ∸A│ ∸ │ 19 ∸0 0│ ∸0 0│ │
│ │3 4│ │P│ │ 5 8 │ │0 0│ │0 0│ │
│ └~──┘ │L│ │ │ └~──┘ └~──┘ │
│ └─┘ │ ┌→───┐ │ │
│ │ │Nuts│ 9 │ │
│ │ └────┘ │ │
│ └∮─────────┘ │
└∮──────────────────────────────────────┘

Let us rotate the variable once more: Hogwash ← 1⌽Hogwash

Now the first item is a little 3 by 1 character matrix containing the letters "APL". So the

Prototype will be a 3 by 1 character matrix containing three blanks. This is the array that will

be used by Expand as the fill item. Let us verify it:

 DISPLAY 1 1 0 1 0 1\Hogwash
┌→──────────────────────────────────┐
│ ┌→┐ ┌→─────────┐ ┌→┐ ┌→┐ ┌→──┐ │
│ ∸A│ ∸ │ ∸ │ 19 ∸ │ ∸1 2│ │
│ │P│ │ 5 8 │ │ │ │ │ │3 4│ │
│ │L│ │ │ │ │ │ │ └~──┘ │
│ └─┘ │ ┌→───┐ │ └─┘ └─┘ │
│ │ │Nuts│ 9 │ │
│ │ └────┘ │ │
│ └∮─────────┘ │
└∮──────────────────────────────────┘

If we repeat the rotation, the first item will be a nested matrix. So, the prototype (and hence

also the fill item) will be a 2 by 2 nested matrix. Let us again try Take:

 Hogwash←1⌽Hogwash

 DISPLAY 6↑Hogwash
┌→──┐
│ ┌→─────────┐ ┌→──┐ ┌→┐ ┌→─────────┐ ┌→─────────┐ │
│ ∸ │ 19 ∸1 2│ ∸A│ ∸ │ ∸ │ │
│ │ 5 8 │ │3 4│ │P│ │ 0 0 │ │ 0 0 │ │
│ │ │ └~──┘ │L│ │ │ │ │ │
│ │ ┌→───┐ │ └─┘ │ ┌→───┐ │ │ ┌→───┐ │ │
│ │ │Nuts│ 9 │ │ │ │ 0 │ │ │ │ 0 │ │
│ │ └────┘ │ │ └────┘ │ │ └────┘ │ │
│ └∮─────────┘ └∮─────────┘ └∮─────────┘ │
└∮──┘

Obviously, fill items are generally only useful for arrays whose items have a uniform

structure.

 Chapter I – Nested Arrays (continued) 361

8 - Pick

8.1 - Definition

Whenever you need to select one (and only one) item from an array you can use the dyadic

function Pick, represented by the symbol (⊃). What makes Pick different from an ordinary

indexing is that it is possible to "dig into" a nested array and pick an item at any level of

nesting, and that it discloses the result. The latter is probably the reason why Pick and the

monadic function Disclose use the same symbol. The syntax of Pick is as follows:

R← Path ⊃ Data

The left argument is a scalar or a vector which specifies the Path that leads to the desired

item. Each item of Path is the index or set of indices needed to reach the item at the

corresponding level of depth of the array.

The operation starts at the outermost level and goes deeper and deeper into the levels of

nesting. At each level, the selected item is disclosed before applying the next level of

selection.

We shall work with the nested matrix Weird, which we created in Section B-6.5:

┌→───────────────────────────┐
∸ ┌→───────────────┐ │
│ 456 ∸ ┌→─────┐ │ │
│ │ │Dyalog│ 44 │ │
│ │ └──────┘ │ │
│ │ ┌→──┐ │ │
│ │ 27 ∸8 6│ │ │
│ │ │2 4│ │ │
│ │ └~──┘ │ │
│ └∮───────────────┘ │
│ ┌→────┐ ┌→──────┐ │
│ │17 51│ │Twisted│ │ Let us try to select the value 51
│ └~────┘ └───────┘ │
└∮───────────────────────────┘

362 Dyalog APL - Tutorial

To select the 51 we must first select the vector located in row 2, column 1 of the matrix, and

then select the second item of that vector. This is how we express this selection using Pick:

 (2 1) 2 ⊃ Weird
51

The left argument (2 1) 2 is a 2-item vector because we need to select at two levels of

nesting.

Using simple indexing and explicit disclosing we need a much more complicated expression

to obtain the same selection:

 ⊃(⊃Weird[2;1])[2] In this special case, the leftmost ⊃ is not required.
51

We can also select the letter "g" within the text "Dyalog". To do so we must first select the

matrix located in row 1, column 2. Within this matrix we must select the character vector

located in row 1, column 1, and finally we must select the sixth item of that character vector:

 (1 2) (1 1) 6 ⊃ Weird
g

This time the left argument is a 3-item vector because we need to select at three levels of

nesting:

 (1 2) is the set of indices for the selection at the outermost level of depth,

 (1 1) is the set of indices for the selection at the 2
nd

 level of depth, and

 6 is the index for the selection at the 3
rd

 level of depth.

Using simple indexing this selection is almost obscure:

 ⊃(⊃(⊃Weird[1;2])[1;1])[6]
g

8.2 - Beware!

The left argument to Pick is a vector with as many items as the depth at which we want to

select an item. Each item of the left argument has a number of items corresponding to the rank

of the sub-item at the corresponding depth at which it operates.

If we remove the last item of Path in the example above the selection will stop one level

above the level at which it stopped before. This means that we would select the entire

character vector "Dyalog" instead of just the letter "g":

 (1 2) (1 1) ⊃ Weird
Dyalog

Yes, we selected the entire character vector. Please note again that the result has been

disclosed, so that a simple array is returned in this case, instead of scalar which is an enclosed

vector.

 Chapter I – Nested Arrays (continued) 363

If we instead remove the last two items of Path we might expect to select the entire 2 by 2

nested matrix containing the character vector "Dyalog":

 (1 2) ⊃ Weird
RANK ERROR It does not work!
 (1 2)⊃Weird
 ∧

The reason for this is a problem that we have seen before:

In the expression (1 2) (1 1) ⊃ Weird the item (1 2) is a scalar (an enclosed vector)

because we use Strand notation. The left argument to Pick has two items, because we want to

select an item at the 2
nd

 level.

In the expression (1 2) ⊃ Weird we do not have a Strand, so the argument (1 2) is not

enclosed. It is a (simple) 2-item vector and therefore only suitable for selection at the 2
nd

 level.

The RANK ERROR is reported because we try to use a scalar 1 as an index at the outermost

level. However, at this level the array is a matrix, so 2 items are needed to form a proper index

at this level.

We want to select at the outermost level, so the left argument to Pick must have exactly one

item. Therefore we must explicitly enclose the vector, leading to the correct expression:

 (⊂1 2) ⊃ Weird
 Dyalog 44
 27 8 6
 2 4

We still need two indexes inside the enclosure because at the outermost level the array is a

matrix.

The expression we used before (without the explicit Enclose) is inappropriate for the array

Weird, but it would work fine with a different array; for example, to take the first item of a

nested vector, and then select the second item of it, as shown here:

 (1 2)⊃'Madrid' 'New York' 'London'
a We selected the "a" of "Madrid".

 The parentheses are superfluous here.

In this expression an Enclose would be wrong, as we need to select at two levels. However, at

each level we only need one index, as we select from vectors at both levels.

8.3 - Important

As mentioned previously, Pick returns the contents of the specified item, not the scalar which

contains it.

Let us refer to the original value of Hogwash (i.e. before we rotated it above). It looks as if

2⊃Hogwash and Hogwash[2] display the same value:

 1 2
 3 4

364 Dyalog APL - Tutorial

This is deceptive: the first expression (2⊃Hogwash) returns the 2 by 2 matrix contained in

Hogwash[2], while the other merely returns the 2
nd

 item of Hogwash, which is an enclosed

matrix:

 ∰2⊃Hogwash
2 2 We get a matrix - the item has been disclosed.

 DISPLAY 2⊃Hogwash
┌→──┐ This is the proof.
∸1 2│
│3 4│
└~──┘

 ∰Hogwash[2]
 An empty result: it is a scalar.

 DISPLAY Hogwash[2]
┌───────┐
│ ┌→──┐ │ We selected a scalar containing a matrix.
│ ∸1 2│ │
│ │3 4│ │
│ └~──┘ │
└∮──────┘

8.4 - Selective Assignment

When one wants to modify an item deep inside an array it is important to remember that Pick

returns a disclosed result.

For example, let us try to replace the number 5 with the character vector "Five" in the 4
th

 item

of Hogwash.

If we wanted to extract the value 5, we would just write: 4 (1 1)⊃Hogwash

To replace it, we use the same expression in a normal selective assignment:

 (4 (1 1)⊃Hogwash) ← 'Five'

 Hogwash
19 1 2 A Five 8 And it works, though we haven't enclosed
 3 4 P Nuts 9 the replacement value!
 L

 Chapter I – Nested Arrays (continued) 365

8.5 - An Idiom

Suppose you have a nested vector: nv ← (3 7 5)(9 7 2 8)(1 6)(2 0 8)

You can select one of its items with: 2⊃nv 9 7 2 8

But how can you select two (or more) items, for example the 2
nd

 and the 4
th

 item?

2 4⊃nv does not work; it selects only one item: the 4
th

 item of the 2
nd

 item, the

number 8 in this case.

2 4⊃¨nv would work if nv had exactly two items: each value of the left argument

could then be applied to each item of nv. However, this is not what we want

here, and since nv has more than 2 items we would see a LENGTH ERROR.

2 4⊃¨⊂nv will work because each item of the left argument will be applied to nv as a

whole, so we will select the 2
nd

 and the 4
th

 items:

 DISPLAY 2 4⊃¨⊂nv
┌→──────────────────┐
│ ┌→──────┐ ┌→────┐ │
│ │9 7 2 8│ │2 0 8│ │
│ └~──────┘ └~────┘ │
└∮──────────────────┘

This expression is known as the "Chipmunk idiom", probably because of the eyes and

moustaches of the combined symbol: ⊃¨⊂

9 – Partition & Partitioned Enclose

The primitive function Partitioned Enclose is the dyadic use of the Left Shoe (⊂). It is used

to group the items of an array into a vector of nested items, or enclosures, according to a

specified pattern. It is used as follows:

 R← Pattern ⊂ Array

or R← Pattern ⊂[Axis] Array

Like a few other operations related to nested arrays, Partitioned Enclose does not have the

same definition and the same usage in the different APL systems supplied by Dyalog Ltd and

IBM Corp.

366 Dyalog APL - Tutorial

For the reasons and consequences of those differences, please refer to the Specialist's Section

of this chapter. Both definitions have some advantages.

In Dyalog APL the programmer can switch from one definition to the other by setting a

System variable called ⎕ML (where ML stands for "Migration Level") to an appropriate value.

9.1 The Dyalog Definition

The default value of ⎕ML is zero, meaning that Partitioned Enclose follows Dyalog's

definition.

According to this definition the Pattern must be a Boolean vector with the same length as the

specified axis of the array to be partitioned. It breaks the array up into nested items as follows:

 Each enclosure starts with the item that corresponds to a 1 in the pattern, and finishes with

the item before the item corresponding to the next 1, or with the last item in the array.

 As a consequence of this, because the first enclosure begins with the item corresponding to

the first 1, any leading items of the array that correspond to leading 0’s in the pattern will

not appear in the result.

 OUT ← 'Once Upon a Time'

 ⎕ ← bin ← OUT=' '
0 0 0 0 1 0 0 0 0 1 0 1 0 0 0 0

 DISPLAY bin ⊂ OUT
┌→─────────────────────┐
│ ┌→────┐ ┌→─┐ ┌→────┐ │ Not only is the first word ignored, but each
│ │ Upon│ │ a│ │ Time│ │ word also starts with a preceding blank.

│ └─────┘ └──┘ └─────┘ │ This may not be exactly what you want.
└∮─────────────────────┘

With a matrix, things are very similar, except that one needs to specify along which axis the

enclosures will be applied:

 DISPLAY 1 0 1 0 0 ⊂[2] Chemistry
┌→───────────┐
│ ┌→─┐ ┌→──┐ │
│ ∸H2│ ∸SO4│ │ As usual, the last dimension is the default,
│ │Ca│ │CO3│ │ Therefore this is equivalent to:
│ │Fe│ │2O3│ │ 1 0 1 0 0 ⊂ Chemistry
│ └──┘ └───┘ │
└∮───────────┘

 DISPLAY 1 0 1 ⊂[1] Chemistry
┌→────────────────┐
│ ┌→────┐ ┌→────┐ │ The result is a vector of the enclosed items.

│ ∸H2SO4│ ∸Fe2O3│ │
│ │CaCO3│ └─────┘ │
│ └─────┘ │
└∮────────────────┘

 Chapter I – Nested Arrays (continued) 367

9.2 The IBM Definition

This version of the function, called "Partition" in IBM's definition, can be used in Dyalog

APL provided that ⎕ML is set to 3.

In this version, Pattern must be a vector of positive or zero integers, with the same length as

the specified axis of the array to be partitioned. It operates as follows:

 The first enclosure starts with the first item of the array.

 Each enclosure ends when the next value of Pattern is greater than the current one.

 The items which correspond to 0’s in Pattern are removed.

9.2.1 - Working on Vectors

We shall work with characters, but of course we could have worked with numbers just as well.

 ⎕ML←3 Switch to a more IBM-compatible environment

 Pattern ← 3 3 3 7 7 1 1 0 3 3 3 9 2 1 1 0

 DISPLAY Pattern ⊂ 'Once upon a time'
┌→──────────────────────────┐
│ ┌→──┐ ┌→───┐ ┌→──┐ ┌→───┐ │
│ │Onc│ │e up│ │n a│ │ tim│ │
│ └───┘ └────┘ └───┘ └────┘ │
└∮──────────────────────────┘

The 4 enclosures correspond to the 3 increments: 37, 03, 39, and the tail of the vector.

You will also notice that two characters have disappeared, because they corresponded to

zeroes in the pattern.

This definition can be used to group the items of a vector according to a given vector of keys,

provided that the keys are ordered in ascending order. For example:

 Area ← 22 22 41 41 41 41 57 63 63 63 85 85

 Cash ← 17 10 21 45 75 41 30 81 20 11 42 53

 DISPLAY Area ⊂ Cash
┌→──┐
│ ┌→────┐ ┌→──────────┐ ┌→─┐ ┌→───────┐ ┌→────┐ │
│ │17 10│ │21 45 75 41│ │30│ │81 20 11│ │42 53│ │
│ └~────┘ └~──────────┘ └~─┘ └~───────┘ └~────┘ │
└∮──┘

This definition is also extremely convenient to divide a character string into a vector of strings

on the basis of a separator. For example, let us partition a vector at each of its blank

characters:

368 Dyalog APL - Tutorial

 Phrase
Panama is a canal between Atlantic and Pacific

 Phrase≠' '
1 1 1 1 1 1 0 1 1 0 1 0 1 1 1 1 1 0 1 1 1 1 1 1 1 0 etc…

 DISPLAY (Phrase≠' ') ⊂ Phrase
┌→───┐
│ ┌→─────┐ ┌→─┐ ┌→┐ ┌→────┐ ┌→──────┐ ┌→───────┐ ┌→──┐ ┌→──────┐ │
│ │Panama│ │is│ │a│ │canal│ │between│ │Atlantic│ │and│ │Pacific│ │
│ └──────┘ └──┘ └─┘ └─────┘ └───────┘ └────────┘ └───┘ └───────┘ │
└∮───┘

The blanks have been removed, because they matched the zeroes, and a new enclosure starts

at the beginning of each word, corresponding to the increment 01. As you might imagine,

this is extremely useful in many circumstances. One can write a function to do it, with the

separator passed as a left argument:

 Cut←{⎕ML←3 ⋄ (~∱∮∭)⊂∱ }

 ⎕ML←0 As ⎕ML is local to Cut, the function can be

 ↑' 'Cut Phrase executed in a standard environment.
Panama
is
a
canal
between
Atlantic
and
Pacific

In fact, we wrote the function to accept not just a single separator, but a list of separators, by

replacing the perhaps more obvious (∱≠∭) by (~∱∮∭). Now we can use it like this:

 ↑'mw'Cut Phrase
Pana
a is a canal bet
een Atlantic and Pacific

9.2.2 - Working on Higher-Rank Arrays

Although the IBM version of Partition is very simple, and clearly useful when it is applied to

vectors, the situation is more complex when it is applied to matrices or higher-rank arrays.

This is in contrast to Dyalog's definition, which works on any rank arrays in a very

straightforward and obvious way. We shall not study the more complex application of IBM's

definition here; if you are interested, please refer to the Specialist's Section at the end of this

chapter.

 Chapter I – Nested Arrays (continued) 369

10 - Union & Intersection

In mathematics, one uses the two functions Union and Intersection to compare two sets of

values. Dyalog APL provides the same functions, with the same symbols as the ones used in

mathematics:

Union (A∪B) Returns a vector containing all the items of A, followed by the

items of B which do not appear in A. Both A and B must be scalars

or vectors. Equivalent to A,B~A.

Intersection (A∩B) Returns a vector containing the items of A that also appear in B.

Both A and B must be scalars or vectors. Equivalent to (A∮B)/A.

 15 76 43 80 ∪ 11 43 15 20 76 93
15 76 43 80 11 20 93

 'we' 'are' 'so' 'happy' ∩ 'are' 'you' 'so' 'tired?'
 are so

Note that these functions do not remove duplicates (because in mathematics, all the items of a

set are supposedly distinct):

 1 1 2 2 ∪ 1 1 3 3 5 5
1 1 2 2 3 3 5 5

 'if' 'we' 'had' 'had' 'a' 'car' ∩ 'have' 'you' 'had' 'lunch' '?'
 had had

11 - Enlist

Enlist is a monadic function that exists as a primitive only in the IBM and IBM-compatible

implementations of APL. It is represented by the Epsilon symbol (∮). In a standard Dyalog

APL environment (⎕ML←0), monadic ∮ returns the Type of an array (see Section 6 above), but

it is possible, by setting ⎕ML to 1 (or higher), to simulate a more IBM-compatible

environment. Then monadic ∮ will then act as the Enlist function, and the Type function will

no longer be available.

Enlist returns a vector of all the simple scalars contained in an array. This could at first sight

look very much like Ravel, but it is not the same for nested arrays. Ravel just rearranges the

top-level items of an array, while Enlist removes all levels of nesting and returns a simple

vector. Let us compare the two functions:.

370 Dyalog APL - Tutorial

 ⎕ML←1 Switch to a more IBM-compatible environment.

 Test ← 2 2∰'One' 'Two' 'Three' 'Four'

 DISPLAY ,Test
┌→───────────────────────────┐
│ ┌→──┐ ┌→──┐ ┌→────┐ ┌→───┐ │ Ravel returns a vector of the 4 scalars

│ │One│ │Two│ │Three│ │Four│ │ contained in the matrix.
│ └───┘ └───┘ └─────┘ └────┘ │
└∮───────────────────────────┘

 DISPLAY ∮Test
┌→──────────────┐
│OneTwoThreeFour│ Enlist returns a vector of
└───────────────┘ all the simple scalars contained in Test.

Enlist is very useful. To avoid the task of changing the value of ⎕ML again and again (and

remembering to change it back), one can package up the primitive as a small Dynamic

function with an appropriate (local) value of ⎕ML:

 ⎕ML←0

 Enlist←{⎕ML←1 ⋄ ∮∱}

 DISPLAY Enlist Weird
┌→─────────────────────────────────────┐
│456 Dyalog 44 27 8 6 2 4 17 51 Twisted│
└+─────────────────────────────────────┘

What kind of APLer are you now?

 Chapter I – Nested Arrays (continued) 371

Exercises

I-4 You are given two vectors. The first contains the reference codes for some items in a

warehouse. Identical codes are grouped, but not necessarily in ascending order. The second

vector contains the quantities of each item sold during the day or the week. For example:

I4Ref ← 47 47 83 83 83 83 83 29 36 36 36 50 50

I4Qty ← 5 8 3 18 11 1 6 10 61 52 39 8 11

Can you calculate how many items of each reference code have been sold?

Preferably, use Partition.

In this particular example, the result should be: 13 39 10 152 19

I-5 You are given two character matrices with the same number of columns. Let us call them

I5Big and I5Small.

You are asked to find where the rows of I5Small appear in I5Big, i.e. for each row in

I5Small find the index of the same row in I5Big. For those rows of I5Small which do not

appear in I5Big, you can return the value 0, or 1+1↑∰I5Big.

I-6 You are given a long character vector, called I6Text. We would like to extract a part of it as

a simple character vector. The extract is defined as a number of sub-vectors, each being 5

characters long, and starting at the positions given by the vector I6Start.

For example:

I6Text←'This boring text has been typed just for a little experiment'

I6Start←6 27 52

You should find: borintypedxperi

I-7 This exercise is the same as I-6, but instead of extracting 5 characters each time you are asked

to extract a variable number of characters, specified by the variable I6Long. Using the same

example as in I-6 and this additional variable:

I6Long ← 3 8 4

You should find: bortyped juxper

372 Dyalog APL - Tutorial

The Specialist's Section

Each chapter is followed by a "Specialist's Section" like this one.

This section is dedicated to skilled APLers, who wish to improve their knowledge.

If you are exploring APL for the first time,

skip this section and go to the next chapter

Spe-1 Compatibility and Migration Level

Spe-1.1 - Migration Level

In the early 1980s, a number of "second-generation" APL systems evolved to support nested

arrays. Dyalog APL entered the market just as these systems were starting to appear, and

decided to adopt the APL2 specification that IBM had been presenting to the world. In the

event, unfortunately, the APL2 specification changed very late in this process, after Dyalog

had more or less released Dyalog APL (or so the story goes). As a result, there are some minor

differences between the dialects.

Just to give you an idea of the sometimes subtle differences, let us take a look at the

expression A B C[2], where A, B, and C are three vectors, for example:

A ← 1 2 3

B ← 4 5 6

C ← 7 8 9

The expression A B C[2] is ambiguous; it may be interpreted in two different ways:

 Does it mean: create a 3-item vector made of A, B, and the second item of C?

 Or does it mean: create a 3-item vector made of A, B, and C, and then take the second item

of it (that is to say B enclosed)?

IBM chose the first interpretation, and in an IBM-compatible implementation of APL the

result would be (1 2 3) (4 5 6) 8.

In Dyalog APL, indexing is a function like any other function, and it takes as its argument the

entire vector on its left. The result is therefore ⊂4 5 6 (⊂ because strand notation nested the

items).

 Chapter I – Nested Arrays (continued) 373

As a minor player at the time, Dyalog wished to move the product in the direction of APL2,

and in order to help the people who needed to use both IBM's APL2 and Dyalog APL, and to

make it easier to migrate an application from APL2 to Dyalog, a compatibility feature was

introduced into Dyalog APL via a special System Variable named ⎕ML, where the letters ML

stand for "Migration Level".

The default value for ⎕ML is zero, meaning "the Dyalog way".

To use code written according to IBM's conventions, it is possible to set ⎕ML to higher values

(1, 2, or 3), and obtain an increasing (but not total) level of compatibility with IBM's APL2.

Today, Dyalog has become a major player in the APL market. Pressure on Dyalog users to

move in the direction of APL2 has faded and many users prefer the Dyalog definitions. The

unfortunate result of the story is that, depending on the roots of an application, code may be

written to use any one of the possible migration levels.

In this book we only use the standard conventions of Dyalog APL (the most widely used if

APL2 compatibility is not an important issue), but we shall mention how some operations

could be written with IBM's notation.

It should be emphasized that when you select a non-zero value for ⎕ML the "Dyalog way" of

operation will no longer be available for the primitive functions that are sensitive to the

selected value of ⎕ML.

Remember this: ⎕ML is a normal system variable. It can be localised in a function header

or in a dynamic function, so that its influence is restricted to that

function.

374 Dyalog APL - Tutorial

Spe-1.2 - A List of Differences

This list is not a complete list of language differences between IBM APL2 and Dyalog. It only

lists the features of Dyalog APL that can be made to function like those of APL2 by setting

⎕ML appropriately.

Operation

Dyalog's
implementation

IBM's
implementation

Comments

Mix R←↑[n]Var
with n decimal

R←⊃[n]Var
with n integer or

decimal

Same behaviour, different symbols.

IBM's definition requires ⎕ML≥2.

Split R←∸[n]Var R←⊂[n]Var Same behaviour, different symbols.

IBM's definition requires ⎕ML≥1

Partition R←Pat⊂[n]Var

with Pat Boolean
R←Pat⊂[n]Var
with Pat integer

Same syntax, but different

behaviour, cf. Section 9. IBM's

definition requires ⎕ML≥3.

First R←⊃Var R←↑B Same behaviour, different symbols.

IBM's definition requires ⎕ML≥2.

Type R←∮Var R←↑0∰⊂Var No special symbol in IBM's

definition. The IBM expression

requires ⎕ML≥2.

Enlist R←∮Var No Dyalog equivalent. Requires
⎕ML>0

Depth R←≡Var R←≡Var

If the items of Var have non-

uniform depths the IBM definition

returns the absolute value of the

depth rather than a negative value.

IBM's definition requires ⎕ML≥2.

⎕TC Backspace,

Linefeed, Newline

Backspace,

Newline, Linefeed
IBM's definition requires ⎕ML≥3.

 Chapter I – Nested Arrays (continued) 375

Spe-2 The IBM Partition on Matrices

We studied IBM's Partition function applied to vectors in Section 9.2.1; it appeared to be

extremely useful.

Its use is much more complex when applied to other arrays. Let us just try it on a matrix:

 1 1 2 2 2 ⊂[2]Chemistry
 H2 SO4
 Ca CO3
 Fe 2O3

Don't be mislead by this result, which looks very much like the result that we obtained using

Dyalog's definition. It is much more complex. IBM's Partition operates along the specified

axis, but it also separates all the items along the other axis, as if the matrix were seen through

a grid.

 DISPLAY 1 1 2 2 2 ⊂[2]Chemistry
┌→───────────┐
∸ ┌→─┐ ┌→──┐ │
│ │H2│ │SO4│ │ Not only do we observe a partition of the columns,
│ └──┘ └───┘ │ but the rows are also separated.
│ ┌→─┐ ┌→──┐ │
│ │Ca│ │CO3│ │
│ └──┘ └───┘ │
│ ┌→─┐ ┌→──┐ │
│ │Fe│ │2O3│ │
│ └──┘ └───┘ │
└∮───────────┘

 DISPLAY 1 2 2 ⊂[1]Chemistry
┌→─────────────────────────┐
∸ ┌→┐ ┌→┐ ┌→┐ ┌→┐ ┌→┐ │ The first row is separated from the next
│ │H│ │2│ │S│ │O│ │4│ │ two, but the columns have also been grouped.
│ └─┘ └─┘ └─┘ └─┘ └─┘ │
│ ┌→─┐ ┌→─┐ ┌→─┐ ┌→─┐ ┌→─┐ │
│ │CF│ │ae│ │C2│ │OO│ │33│ │
│ └──┘ └──┘ └──┘ └──┘ └──┘ │
└∮─────────────────────────┘

376 Dyalog APL - Tutorial

Spe-3 Ambiguous Representation

DISPLAY is an essential tool to understand the structure of a variable. But sometimes even

DISPLAY is insufficient:

 DISPLAY V ← 5 8 '7' 9
┌→──────┐
│5 8 7 9│
└+──────┘

In this form, the dash which should tell us that 7 is a character is indistinguishable from the

dashes used to draw the box. We just know that one (or more) of the four items is character,

because the Plus symbol tells us that this array is mixed.

A convenient way to distinguish between numbers and letters is to look at the Type of the

items and compare it with 0 (numbers) or ' ' (letters):

 ' '= ∮ V
0 0 1 0

Spe-4 Pick Inside a Scalar

Suppose that one item of a nested variable is a vector which has been enclosed twice, and we

would like to select one value out of its contents. For example, how can we select the letter

"P" in the following vector:

 DISPLAY nv←(3 5 2)(⊂'CARPACCIO')(6 8 1)

┌→────────────────────────────────┐
│ ┌→────┐ ┌─────────────┐ ┌→────┐ │
│ │3 5 2│ │ ┌→────────┐ │ │6 8 1│ │
│ └~────┘ │ │CARPACCIO│ │ └~────┘ │
│ │ └─────────┘ │ │
│ └∮────────────┘ │
└∮────────────────────────────────┘

2 1 4 ⊃nv is incorrect because the second item of nv is an enclosed scalar. The index 1

would have been appropriate for a one-item vector, but not for a scalar.

The correct answer is:

 2 ⍬ 4 ⊃ nv
P

377

Chapter J: Operators

1 - Definitions

1.1 Operators & Derived Functions

We have already seen some operators: Reduce (described in section C-7), Axis (C-8), and

Each (I-3). Let us define precisely what they are:

 There are built-in (primitive) operators and user defined operators.

 An Operator is similar to a function, but rather than working on arrays to produce a result

which is also an array, an operator works on functions (and sometimes an array) to

produce a new function.

 The new function generated by the operator and its argument(s) is called a Derived

Function. The Derived Function can be applied to arrays, in the same way as any other

function.

 The arguments passed to the operator are sometimes referred to as operands, to distinguish

them from the arguments to the derived function. However, in this tutorial we will use the

term argument for both, as there is little chance of confusing them.

 Monadic operators take a single argument on their left.

This is in contrast to monadic functions, which take their argument to the right.

 Dyadic operators have two arguments (operands), one on each side.

The arguments to an operator are usually functions, but it is not uncommon for user

defined operators to take one function and one array argument.

 The Derived Function, in turn, can be monadic, dyadic, or ambivalent.

 Neither of the functions supplied as arguments to an operator nor the resultant Derived

Function can be niladic.

For example, in the expression +/3 5 6 the Reduce operator (/) operates on the function

Plus to produce the derived function Plus Reduce.

This derived function is then applied to 3 5 6 to produce a result.

378 Dyalog APL - Tutorial

Beware!

You must not be confused by the fact that some symbols are used to represent both a function

and an operator. This is the case for / and \.

Let us compare these two expressions: (a) 1 1 0 1 0 / 6 2 9 4 5
 (b) + / 6 2 9 4 5

In (a), the Slash (/) represents the dyadic function Compress because both arguments to the

/ are arrays.

In (b), the same symbol represents Reduce, which is an operator, because the left argument to

the / is a function.

The association of + with / creates a Derived Function which could be parenthesised as (+/)

even though it is not necessary to do so.

For clarification, we can define a synonym for the derived function: Sum ← +/

 Until now, we have only considered it as a monadic derived function: +/ 6 2 9 4 5
This can be made more evident by using the synonym: Sum 6 2 9 4 5

 But, we shall soon see that it may also be used as a dyadic function 2 +/ 6 2 9 4 5

Or, using the synonym: 2 Sum 6 2 9 4 5

So, we can say that this derived function is ambivalent.

1.2 Sequences of Operators

Derived functions behave exactly like plain primitive functions. So, they can be the argument

of a second (and a third…) operator:

 +/¨ (3 4 6)(4 9 7 1)(3 1)
13 21 4

The left argument of Each is the derived function (+/), so we could have written:

 Sum¨ (3 4 6)(4 9 7 1)(3 1)

Now, suppose that we no longer want to add up vectors, but three small matrices instead:

 A B C

 1 2 3 1 0 8 3 4 2 0
 4 5 6 0 1 0 3 5 1 7
 0 1 3 6 2 1 7
 1 0

 Chapter J – Operators 379

Because they are matrices, we must specify the axis along which we add them up. Of course

we could use the two symbols / and ⌿, but if the arrays had been of a higher rank an explicit

axis specification might have been necessary. It could also be that we just prefer an explicit

axis specification. If so, a third level of operator
5
 can be added:

 +/[2]¨A B C Or (((+/)[2])¨)A B C
 6 15 1 1 1 1 17 16 19

 +/[1]¨A B C Or (((+/)[1])¨)A B C
 5 7 9 2 2 11 12 11 4 14

Operator 1 is /
"Operator" 2 is []
Operator 3 is ¨

1.3 List of Built-in Operators

Dyalog APL has a rich set of built-in operators. You will find a full list with detailed syntax

and examples in Appendix 4.

2 - More About Some Operators You Already Know

2.1 Reduce

Up to now, we have used Reduce with rather basic functions (+ × ⌈ ∧), but it can also be

used, less obviously, with functions, like Reshape, Compress, and Replicate. In these cases,

the derived function typically takes a 2-item nested vector as its argument, and the effect is to

insert the function (the argument to the operator) between the two items of this vector.

Just remember this:

Since +/ (2 4 3)(7 1 5) is equivalent to ⊂(2 4 3) + (7 1 5)
then ∰/ (2 4 3)(7 1 5) is equivalent to ⊂(2 4 3) ∰ (7 1 5)

Here is an example of Reduction by Reshape:

 ∰/ (2 5)(3 1 9 4 1 0 7)
 3 1 9 4 1
 0 7 3 1 9

5
 Although the Axis specification shares some properties with operators, it is a special syntactical element and not

really an operator, cf. Section 2.3. below.

380 Dyalog APL - Tutorial

This looks very much like (2 5) ∰ (3 1 9 4 1 0 7), but the result is not a matrix. It is a

scalar containing a nested matrix, for the reason already seen in I-4.4.1: The reduction of a

vector always gives a scalar.

Now, here is a Reduction by Compression, another by Replication, and one by Index Of:

 // (1 1 0 1 0 1 1) 'Strange'
 Stage

Here again this looks like (1 1 0 1 0 1 1) / 'Strange' but the result is a scalar.

 // (1 1 0 4 0 1 2) 'Strange'
 Staaaagee

 ∯/ (2 6 1 7) (2 4∰3 7 8 4 2 5 6 0)
 5 4 5 5
 1 5 2 5

2.2 n-Wise Reduce

2.2.1 - Elementary Definition

The derived functions of Reduce can be used with two arguments.

This form is called n-Wise Reduce.

When applied to vectors n-Wise Reduce has the following syntax:

R ← Scope / Vector

where denotes a dyadic function.

This special kind of Reduce splits the vector into slices of length equal to Scope, and reduces

each slice using the specified function, so, for example:

2 ×/ 8 10 7 2 6 11 means (×/8 10) (×/10 7) (×/7 2) (×/2 6) (×/6 11)

 i.e. (8×10) (10×7) (7×2) (2×6) (6×11)

 and gives 80 70 14 12 66

3 +/ 8 10 7 2 6 11 means (+/8 10 7) (+/10 7 2) (+/7 2 6) (+/2 6 11)

 i.e. (8+10+7) (10+7+2) (7+2+6) (2+6+11)
 and gives 25 19 15 19

The size of the result is, of course, (1+∰Vector)-Scope.

We can try this with other functions that give nested results:

2 ,/ 8 10 7 2 6 11 means (,/8 10) (,/10 7) (,/7 2) (,/2 6) (,/6 11)

 i.e. (8,10) (10,7) (7,2) (2,6) (6,11)

 and gives 8 10 10 7 7 2 2 6 6 11

 Chapter J – Operators 381

2 ∰/ 2 4 1 3 7 means (∰/2 4) (∰/4 1) (∰/1 3) (∰/3 7)

 i.e. (2∰4) (4∰1) (1∰3) (3∰7)
 and gives 4 4 1 1 1 1 3 7 7 7

The same result would have been obtained using Replicate: 2 // 2 4 1 3 7

2.2.2 - Full Definition

The general syntax is R ← Scope /[Axis] Array

where stands for any dyadic function.

 The Array is split into slices along the specified Axis.

 The left argument Scope can be positive (as in the examples above), zero, or negative.

 If Scope is positive, Reduce is applied to slices of length equal to Scope.

 If Scope is zero, the result is an array with the same shape as Array, except that its length

along the axis selected by Axis is incremented by 1, and it is filled with the Identity Item

for the function . This is explained in section Spe-1.4 (Specialist's Section).

 If Scope is negative, each slice is reversed before Reduce is applied.

Here are some examples which use this matrix Tam 2 3 5 8 8
 4 6 2 5 9
 1 4 9 7 8

 2 ⌈/ Tam Obtains the largest items of 2 adjacent columns

3 5 8 8
6 6 5 9
4 9 9 8

 2 +⌿ Tam Adds up pairs of adjacent rows
6 9 7 13 17
5 10 11 12 17

 0 +/ Tam
0 0 0 0 0 0 Returns a matrix with one more column,

0 0 0 0 0 0 filled with zeroes (identity item of addition)
0 0 0 0 0 0

 0 ×/[1] Tam
1 1 1 1 1 Returns a matrix with one more row, filled
1 1 1 1 1 with ones (identity item of multiplication)

1 1 1 1 1
1 1 1 1 1

 ¯2 -/ 11 14 15 21 23 30 28 34 Obtains the differences between adjacent values
3 1 6 2 7 ¯2 6 (14-11)(15-14)(21-15)(23-21) etc…

382 Dyalog APL - Tutorial

2.3 Axis

Strictly speaking, axis is not an operator. It has different syntax (consisting of two brackets

enclosing a numeric value to the right of a function) and applies in different ways depending

on the function that it modifies. However, applying a function “with axis” does apply a

transformation and produces a derived function, and it is common to think of axis as an

operator.

It is possible to use Axis with any of the Scalar Dyadic Functions. This can be useful for

example to add the items of a vector to each of the rows of a matrix, or multiply the columns

of a matrix by different values:

 Tam Tam +[1] 8 6 9 Tam ×[2] 2 5 0 2 1

 2 3 5 8 8 10 11 13 16 16 4 15 0 16 8
 4 6 2 5 9 10 12 8 11 15 8 30 0 10 9
 1 4 9 7 8 10 13 18 16 17 2 20 0 14 8

The list of all Scalar Dyadic Functions is given in Appendix 1.

The following functions can use the Axis operator:

Monadic Functions Description

 ↑ and ∸

 ⌽ or ⍁

 ,

 ⊂

 ⊂ and ⊃

Mix and Split

Reverse

Ravel with axis

Enclose with axis, Partitioned Enclose

APL2-like Split and Mix (⎕ML>1, cf.

Chapter I, Section Spe-1)

 Chapter J – Operators 383

Dyadic Functions Description

 + ∲ ⌈ ∧ ≤ etc…

 ↑ and ∸

 / or ⌿

 \ or ⍀

 ⌽ or ⍁

 , or ⓐ

 , or ⓐ

 ⊂

All scalar dyadic functions

Take and Drop

Compress & Replicate

Expand and Scan (see next section)

Rotate

Catenate

Laminate

Partitioned Enclose

3 - Scan

3.1 Definition

Scan is represented by the symbol \ or ⍀. Its most general syntax is: R ← \[Axis]Array

where stands for any appropriate dyadic function.

To understand how it works, let us apply it to a vector.

The Nth
 item of +\Vector is equal to the Reduction of the first N items of Vector.

More generally, the Nth
 item of \Vector is equal to /N↑Vector.

 +\ 3 6 1 8 5
3 9 10 18 23

As you can see:

the 1
st
 item is equal to +/3 giving 3

the 2
nd

 item is equal to +/3 6 giving 9
the 3

rd
 item is equal to +/3 6 1 giving 10

the 4
th

 item is equal to +/3 6 1 8 giving 18
the 5

th
 item is equal to +/3 6 1 8 5 giving 23

The method is of course the same for a multiplication:

 ×\ 3 6 1 8 5
3 18 18 144 720

384 Dyalog APL - Tutorial

Warning! It would be a mistake to always try to deduce the value of each item in the result

from its immediate left neighbour. While it is possible to do this for commutative functions

like addition and multiplication, it is not appropriate for non-commutative functions like

subtraction:

 -\ 3 6 1 8 5 The result is not 3 ¯3 ¯4 ¯12 ¯17
3 ¯3 ¯2 ¯10 ¯5 as one might first imagine

the 1
st
 item is equal to -/3 giving 3

the 2
nd

 item is equal to -/3 6 giving ¯3
the 3

rd
 item is equal to -/3 6 1 giving ¯2 (3-(6-1))

the 4
th

 item is equal to -/3 6 1 8 giving ¯10
the 5

th
 item is equal to -/3 6 1 8 5 giving ¯5

So, be careful when using Scan with non-commutative functions.

When applied to matrices or higher rank arrays, Scan works along the specified axis. If the

axis specification is omitted, \ works along the last axis and ⍀ works along the first axis.

 +\[2] Tam This can also be written as +\Tam
2 5 10 18 26
4 10 12 17 26
1 5 14 21 29

 +\[1] Tam This can also be written as +⍀Tam
2 3 5 8 8
6 9 7 13 17
7 13 16 20 25

3.2 Scan with Binary Values

Scan is very useful when applied to binary values.

 ∨\ 0 0 0 0 1 1 0 1 0 0 1 1
0 0 0 0 1 1 1 1 1 1 1 1

Because the function Or gives the result 1 as soon as one of its arguments is 1, Or-Scan

repeats the first 1 up to the end of the vector.

 ∧\ 1 1 1 1 0 1 1 0 0 1 1 0
1 1 1 1 0 0 0 0 0 0 0 0 The vector reverts to zero on the first zero

 <\ 0 0 0 0 1 1 0 1 0 0 1 1 Marks the position of the first 1
0 0 0 0 1 0 0 0 0 0 0 0

 ≤\ 1 1 1 1 0 1 1 0 0 1 1 0 Marks the position of the first zero
1 1 1 1 0 1 1 1 1 1 1 1

 Chapter J – Operators 385

3.3 Applications

Scan can be used to solve common problems in a very simple way:

3.3.1 - Inflate Values

Someone forecasts investments in a foreign country for the next 5 years:

 Inv ← 2000 5000 6000 4000 2000

But the country in question suffers from inflation, and the inflation rates are forecasted as

follows:

 Inf ← 2.6 2.9 3.4 3.1 2.7

The cumulative consequence of these inflation rates can be calculated by multiplying them all

with a "Multiply-Scan":

 7 3⍃ ×\ 1+Inf÷100
 1.026 1.056 1.092 1.125 1.156

Now, the investments expressed in "future values" would be:

 9 2⍃ Inv × ×\1+Inf÷100
 2052.00 5278.77 6549.90 4501.96 2311.76

Finally, the year after year cumulated investment may be obtained by an "Add-Scan":

 9 2⍃ +\ Inv × ×\1+Inf÷100
 2052.00 7330.77 13880.67 18382.63 20694.39

As you can see, we employed two Scans in the same expression.

3.3.2 - Remove Leading/Trailing Blanks

One often has to remove leading (or trailing) blanks from a character vector. We can use the

"Or-Scan" to do it. The details of the method are shown here:

 LB ← ' Remove my 4 leading blanks'

 LB≠' '
0 0 0 0 1 1 1 1 1 1 0 1 1 0 1 0 1 1 1 1 1 1 1 0 1 1 1 1 1 1

 ∨\ LB≠' '
0 0 0 0 1

 (∨\LB≠' ')/LB
Remove my 4 leading blanks

This can be coded in a small utility function: CutBlanks ← {(∨\' '≠∱)/∱}

This expression is recognised by Dyalog APL as an Idiom, and processed very quickly.

To remove trailing blanks, it would suffice to reverse the vector, remove leading blanks as

above, and then reverse it back again.

386 Dyalog APL - Tutorial

4 - Outer Product

4.1 Definition

Imagine that you have calculated the multiplication table for the integers 1 to 9; you could

present it like this:

× 1 2 3 4 5 6 7 8 9

1
2
3
4

etc…

9

 1 2 3 4 5 6 7 8 9
 2 4 6 8 10 12 14 16 18
 3 6 9 12 15 18 21 24 27
 4 8 12 16 20 24 28 32 36
 etc…

 9 18 27 36 45 54 63 72 81

The task of calculating this table consists of taking pairs of items of two vectors, (the column

and row headings) and combining them with the function at the top left. For example 3 times

7 gives 21 (shown here in red above). Once the operation has been repeated for all the

possible pairs, one obtains what is called, in APL, the Outer Product.

We can change the values and replace the multiplications by additions:

+ 8 5 15 9 11 40

5
4
10
3

 13 10 20 14 16 45
 12 9 19 13 15 44
 18 15 25 19 22 50
 11 8 18 12 14 43

Outer Product is a dyadic operator represented by a dot (.)

Its arguments are:

 On its right: The dyadic function involved (multiplication or addition in the examples

above)

 On its left: A small circle named Jot (∬). This character is obtained using Ctrl+J

In this specific case, it is a "non-operation" which just takes the place of the left argument.

 Chapter J – Operators 387

So, the two operations above can be written like this:

 (∯9) ∬.× (∯9)
1 2 3 4 5 6 7 8 9
2 4 6 8 10 12 14 16 18
3 6 9 12 15 18 21 24 27
etc …
8 16 24 32 40 48 56 64 72
9 18 27 36 45 54 63 72 81

 5 4 10 3 ∬.+ 8 5 15 9 11 40
13 10 20 14 16 45
12 9 19 13 15 44
18 15 25 19 21 50
11 8 18 12 14 43

4.2 Extensions

4.2.1 - Other Functions

The function used in an outer product can be any primitive or user-defined dyadic function, so

Outer Product is an operator of amazing power.

Imagine you have written a little function to calculate the length of the hypotenuse of a right-

angled triangle from the lengths of the other 2 sides given as the left and right argument:

 Hypo ← {((∭*2)+(∱*2))*0.5}

 3 Hypo 4
5

You can test it on a number of combinations of lengths in one expression like this:

 8 3⍃ 3 6 12 ∬.Hypo 4 1 8 7 5
 5.000 3.162 8.544 7.616 5.831
 7.211 6.083 10.000 9.220 7.810
 12.649 12.042 14.422 13.892 13.000

Now let’s have some fun with relational functions:

(∯5) ∬.= (∯5) (∯5) ∬.< (∯5) (∯5) ∬.≥ (∯5)

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

0 1 1 1 1
0 0 1 1 1
0 0 0 1 1
0 0 0 0 1
0 0 0 0 0

1 0 0 0 0
1 1 0 0 0
1 1 1 0 0
1 1 1 1 0
1 1 1 1 1

388 Dyalog APL - Tutorial

We shall study some applications of Outer Product like ∬.< or ∬.⌊ in section 3.3.

Some other Outer Products like ∬.∰, ∬., or ∬./ produce nested arrays; we have shown them

in grey frames in order to make it easier to see the structures:

 3 4 2 ∬.∰ 6 3 7 3 0 2 ∬./ 5 1 7

6 6 6 3 3 3 7 7 7 5 5 5 1 1 1 7 7 7

6 6 6 6 3 3 3 3 7 7 7 7

6 6 3 3 7 7 5 5 1 1 7 7

 3 1 2 ∬., 6 3 0 7 3 2 4 ∬.↑ 5 8 4

3 6 3 3 3 0 3 7 5 0 0 8 0 0 4 0 0

1 6 1 3 1 0 1 7 5 0 8 0 4 0

2 6 2 3 2 0 2 7 5 0 0 0 8 0 0 0 4 0 0 0

4.2.2 - Other shapes and types of data

We have so far applied Outer Product to numeric vectors; it can of course also be used with

character data, and higher rank arrays. When applied to higher rank arrays, the result becomes

quickly very big, because each item of the left array has to be combined with each item of the

right one.

In an operation like R ← A ∬. B, the shape of R is equal to (∰A),(∰B)

 ⎕← Left ← ↑'DIMITRI' 'GUNTHER'
DIMITRI
GUNTHER

 Right ← 'VERONICA'

 Left ∬.= Right

 V E R O N I C A To help you understand how this result has been
D 0 0 0 0 0 0 0 0 calculated, the arguments are shown too, in grey.
I 0 0 0 0 0 1 0 0
M 0 0 0 0 0 0 0 0
I 0 0 0 0 0 1 0 0
T 0 0 0 0 0 0 0 0
R 0 0 1 0 0 0 0 0
I 0 0 0 0 0 1 0 0

G 0 0 0 0 0 0 0 0 We have combined an array of shape 2 7
U 0 0 0 0 0 0 0 0 with an array of shape 8
N 0 0 0 0 1 0 0 0 So the shape of the result is 2 7 8
T 0 0 0 0 0 0 0 0
H 0 0 0 0 0 0 0 0 As an exercise, try to produce the same display,
E 0 1 0 0 0 0 0 0 with the arguments actually included in the result
R 0 0 1 0 0 0 0 0 as shown here...

 Chapter J – Operators 389

4.3 Applications

4.3.1 - Dispatching Items into Categories

Suppose the vector Ages contains the ages of 400 respondents to an opinion poll. We want to

find out how many people there are in each of the following age groups:

0 - 25 - 30 - 35 - 45 - 50 - 55 - 65 or above.

Here is an extract of the data:

Ages 32 19 50 33 23 65 46 26 31 58 51 23 51 36 28 42 ... etc

Limits 0 25 30 35 45 50 55 65

We will use the Outer Product Limits °.< Ages, and here are the first items calculated,

using the data shown above:

< 32 19 50 33 23 65 46 26 31 58 51 23 51 36 28 42 34 ... etc

0
25
30
35
45
50
etc

 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
 1 0 1 1 0 1 1 0 1 1 1 0 1 1 1 1 1
 1 0 1 1 0 1 1 0 1 1 1 0 1 1 0 1 1
 0 0 1 0 0 1 1 0 0 1 1 0 1 1 0 1 0
 0 0 1 0 0 1 1 0 0 1 1 0 1 0 0 0 0
 0 0 0 0 0 1 0 0 0 1 1 0 1 0 0 0 0 etc.

If we add up this binary matrix from left to right, we obtain for each row the number of people

who are older than 0 years, older than 25 years, 30 years, etc. This is the expression:

 Cum ← +/ Limits ∬.< Ages

With the cut-down example above, the value of Cum would be: 17 14 12 8 6 4

In other words there are 12 people older than 30. But among them, 8 are older than 35. In

order to know how many people are between 30 and 35, it is necessary to calculate 12-8, to

obtain 4.

To calculate this for all categories, it is necessary to make a series of subtractions as shown

here:

 17 14 12 8 6 4 This is Cum

- 14 12 8 6 4 0 This is Cum without its first item, and followed by zero

---------------- Let us subtract

= 3 2 4 2 2 4 The result is obtained by the expression Cum - 1∸ Cum,0

390 Dyalog APL - Tutorial

The two expressions that do it all are therefore:

 Cum ← +/ Limits ∬.< Ages

 Cum - 1∸ Cum,0
56 32 56 104 63 38 37 14

Without any programming, it works whatever the number of people or categories.

Isn't it like magic?

The second statement above (Cum - 1∸ Cum,0) calculates the differences between all pairs

of adjacent values. This is exactly what n-Wise Reduce does. So, we could instead write the

following even simpler expression:

 2 -/ Cum
56 32 56 104 63 38 37 14

It would even be tempting to put everything into one single expression:

 2 -/ +/ Limits ∬.< Ages
56 32 56 104 63 38 37 14

Once again, APL allows us to find original atypical solutions to some traditional problems.

4.3.2 - Draw a Bar Chart

Imagine that you have to represent a list of values with a bar chart. Perhaps you will use

dedicated graphical software, and you'd be right, but just have a look at this elegant solution,

which again uses an Outer Product.

Here is the list of values that we want to chart: Nums ← 1 3 0 7 9 8 5 4 2 3 1

Let us first calculate the vertical scale.

It is made of the integers from 9 to 1 in reverse order and can be obtained by:

 ⌽ ∯ ⌈/ Nums
9 8 7 6 5 4 3 2 1

Then, let us compare this scale to the values; an Outer Product will build columns of 1's up to

the correct height:

 (⌽∯⌈/Nums) ∬.≤ Nums
0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 1 0 0 0 0 0
0 0 0 1 1 1 0 0 0 0 0
0 0 0 1 1 1 0 0 0 0 0
0 0 0 1 1 1 1 0 0 0 0
0 0 0 1 1 1 1 1 0 0 0
0 1 0 1 1 1 1 1 0 1 0
0 1 0 1 1 1 1 1 1 1 0
1 1 0 1 1 1 1 1 1 1 1

 Chapter J – Operators 391

And to draw the graph, we can index a two-character vector, exactly as we did in section B-

5.2:

 ' ⎕'[1+(⌽∯⌈/Nums)∬.≤Nums]
 ⎕
 ⎕⎕
 ⎕⎕⎕
 ⎕⎕⎕
 ⎕⎕⎕⎕
 ⎕⎕⎕⎕⎕
 ⎕ ⎕⎕⎕⎕⎕ ⎕
 ⎕ ⎕⎕⎕⎕⎕⎕⎕
⎕⎕ ⎕⎕⎕⎕⎕⎕⎕⎕

4.3.3 - Decreasing Refunding

Some students have spent money to buy expensive books for their studies.

 Exp ← 740 310 1240 620 800 460 1060

Their university agrees to refund them, but places the following limits on the refunding rates:

For expenses from 0 to 500 the rate is 80%

For expenses from 500 to 900 the rate is 50%

For higher expenses, nothing is paid.

We could say exactly the same thing in a somewhat different way:

For expenses from 0 to 900 we get 50%

Starting again from 0 to 500 we get an additional .. 30%

Even if this rule may seem strange, both methods give the same result. For example, a student

who spent 740€ would get:

With the "traditional" rule (80% of 500) + (50% of 240) 400 + 120 = 520

With our "foolish" rule (50% of 740) + (30% of 500) 370 + 150 = 520

Now, let us limit the expenses to the given maxima:

 Exp ∬.⌊ 900 500
740 500
310 310 The first column contains the expenses

900 500 limited to 900, and the second contains

620 500 the expenses limited to 500
800 500
460 460
900 500

According to our modified rules, we must pay 50% of the first column plus 30% of the

second, we can multiply the columns by 0.5 0.3 (using an axis operator) and add them:

 +/ (Exp∬.⌊900 500) ×[2] 0.5 0.3
520 248 600 460 550 368 600

392 Dyalog APL - Tutorial

And the total refund is of course:

 +/ +/ (Exp∬.⌊900 500) ×[2] 0.5 0.3
3346

If we laminate the original vector, we can see the expenses and the refunding:

 Exp,[0.5] +/(Exp∬.⌊900 500)×[2]0.5 0.3
740 310 1240 620 800 460 1060
520 248 600 460 550 368 600 Check, it works!

Outer Product

 Chapter J – Operators 393

Exercise

J-1 Let us try to generalise the method used here above.

In our example, we had chosen a very simple case, because we had only two slices, and all the

students used the same scale. Let us now imagine a slightly more complex case:

 the students are classified in 3 categories, which have different refunding rates

 we now have 4 different expense ranges

The new conditions are expressed with the traditional notation, in a table:

Limits 0 to 600 600 to 1.100 1.100 to 1.500 1.500 to 2.000

Students classified 1 100% 100% 80% 50%

Students classified 2 100% 70% 30% 10%

Students classified 3 80% 60% 20% 5%

Try to write a function Refund to solve this problem.

Using loops is strictly prohibited, and could be punished with high severity!

You can test your solution with these variables, available in "DyalogTutor_EN.dws":

StudExp Vector of students expenses

StudCat Vector of the categories of each student

StudRates The table of rates, topped by the expense limits, as shown below:

 StudRates
600 1100 1500 2000 The first row contains the limits
100 100 80 50 The next 3 rows contain rates per category
100 70 30 10
 80 60 20 5

The syntax could be: StudRefund (StudRates StudCat StudExp)

If you want to check your solution, here are the first 10 answers you should obtain:

Expenses 2300 1030 460 380 1700 1900 440 1050 2380 1600
Categories 3 2 3 3 1 1 1 1 1 2
Refunding 885 901 368 304 1520 1620 440 1050 1670 1080

394 Dyalog APL - Tutorial

5 - Inner Product

Inner Product is a generalisation of what mathematicians call Matrix product, a tool

considered by most students as extremely abstract, full of bizarre notations, like Σaij.bjk, and

obviously far removed from everyday problems. You will discover that:

 the concept is really simple, nearly obvious

 it can be applied to many real life problems

A simple example will help us.

5.1 A Concrete Situation

A company intends to open a series of hotels and resorts in four countries. This requires

serious investments over a period of five years. The following table shows these investments

(in millions of dollars, of course!)

 Countries\Years Year 1 Year 2 Year 3 Year 4 Year 5

Greece
Brazil
Egypt
Argentina

120
200
50

0

100
150
120
80

40
100
220
100

20
120
350
110

0
200
600
120

These figures are contained in a matrix named Invest

These investments will be supported by the company itself plus 2 banks, each taking a certain

percentage of the total, depending on the evaluation of each project. The following table

shows how the risks are shared:

Percentages Greece Brazil Egypt Argentina

Bank 1
Bank 2
Company

50
20
30

10
60
30

20
40
40

30
30
40

Those percentages are contained in a matrix named Percent

 Chapter J – Operators 395

We would like to calculate, year by year, how much each of the 3 partners is engaged in this

project. For example, let us try to evaluate the contribution of Bank 2 during Year 3.

For Greece, the bank will bring 20% of 40 = 8

For Brazil, the bank will bring 60% of 100 = 60

For Egypt, the bank will bring 40% of 220 = 88

For Argentina, the bank will bring 30% of 100 = 30

 Total invested = .. 186

This result could have been obtained by the sum of four products:

 +/ Percent[2;] × Invest[;3]÷100
186

We should repeat that algorithm for all the rows of Percent, and all the columns of Invest:

this is precisely what an Inner Product does.

And because it adds series of products, it will be expressed by a dot (the operator) between a

plus and a multiply sign, like this:

 Percent +.× Invest÷100
 90 113 104 125 176
164 182 186 249 396
116 155 170 226 348

In the presentation below, we have detailed the elementary products which lead to the

calculation for bank 2 in year 3:

 Y 1 Y 2 Y 3 Y 4 Y 5

Greece 8 ← 120 100 40 20 0

Brazil 60 ← 200 150 100 120 200

Egypt 88 ← 50 120 220 350 600

Argentina 30 ← 0 80 100 110 120

 ↑ ↑ ↑ ↑

Bank 1 50 10 20 30 90 113 104 125 176

Bank2 20 60 40 30 164 182 186 249 396

Company 30 30 40 40 116 155 170 226 348

This presentation has a great advantage: It clearly shows the relations that exist between the 3

matrices:

 The left argument has as many columns as the right one has rows.

 The result has as many rows as the left argument, and as many columns as the right one.

As you can see row x, column y of the result is calculated from row x of the left argument and

column y of the right argument.

These rules will be generalised in the next section.

396 Dyalog APL - Tutorial

5.2 Definitions

The syntax of Inner Product is R ← X . Y

The Inner Product is represented by a dot (.)

 and represent two appropriate dyadic functions (either primitive or user-defined).

The arguments may be arrays of any rank: Scalars, vectors, matrices, or higher rank arrays.

The shape of the arguments and the shape of the result follow very simple rules.

 The length of the last dimension of the left argument must be equal to the length of the

first dimension of the right argument.

In other words: (¯1↑∰X) must be equal to (1↑∰Y)

 The shape of the result is the catenation of the arguments' shapes, in which the common

dimension has disappeared.

In other words: (∰R) is equal to (¯1∸∰X),(1∸∰Y)

Of course, as usual, scalars are repeated to fit the appropriate size.

Let us represent scalars by S, vectors by V, matrices by M, and higher rank arrays by A.

The table below shows the shape of the result of some Inner Products:

R←X . Y Shape of X Shape of Y Shape of R

A←A . A 2 3 8 8 5 4 2 3 5 4

M←M . M 3 5 5 8 3 8

V←M . V 4 7 7 4

V←V . M 4 4 7 7

S←V . V 10 10 ⍬

5.3 Typical Uses of Inner Products

5.3.1 - Two Simple Problems

Many students imagine that matrix products are complex things, reserved for mathematicians,

and far removed from everyday life. This opinion should be reconsidered: Very simple

problems can be solved using Inner Product.

HMS is a variable which contains duration in Hours, Minutes, and Seconds: HMS ← 3 44 29

 Chapter J – Operators 397

We would like to convert it into seconds. We shall see 3 methods just now, and a 4
th

 method

will be given in another chapter.

A horrible solution (3600×HMS[1]) + (60×HMS[2]) + HMS[3]

A good APL solution +/ 3600 60 1 × HMS

An excellent solution with Inner Product 3600 60 1 +.× HMS

The second and third solutions are equivalent in terms of number of characters typed and

performance. But we recommend that you use the third one: It will help you become familiar

with Inner Product so that after a certain period, it will become part of your toolkit as an APL

programmer.

Here is a very similar example. Two vectors represent the prices of a certain number of goods,

and the quantities we bought:

Price 6 4.2 1.5 8.9 31 18
Qty 2 6 3 5 1 0.5

To calculate how much we paid, we can use the beginner’s solution, or a solution with a

simple Inner Product; they give the same result, of course.

The beginner’s solution +/ Price × Qty

A solution with Inner Product Price +.× Qty

Just to show how it works, let us again use the presentation used for our Banks/Investments

example:

 Qty

 12 ← 2
 25.2 ← 6
 4.5 ← 3
 44.5 ← 5
 31 ← 1
 9 ← 0.5
 ↑ ↑ ↑ ↑ ↑ ↑

Price 6 4.2 1.5 8.9 31 18 126.2

5.3.2 - A Useful Family

Used with comparison functions, Inner Product offers 18 extremely useful derived functions.

Ages is a vector containing the ages of 400 persons. In the same way as we did in section C-

7.3 we can answer some elementary questions:

398 Dyalog APL - Tutorial

Question Solution Answer

Are all these people younger than 65? ∧/ Ages < 65 0 (No)

Is there at least one person younger than 20? ∨/ Ages < 20 1 (Yes)

How many people are younger than 20? +/ Ages < 20 24

We can now replace Reduce in these examples by Inner Product, like this:

Question Solution

Are all these people younger than 65? Ages ∧.< 65

Is there at least one person younger than 20? Ages ∨.< 20

How many people are younger than 20? Ages +.< 20 Clever, isn't it ?

These expressions can be read as:

Are the ages all smaller than 65? ∧.< means "all smaller"

Is there at least one age smaller than 20? ∨.< means "at least one is smaller"

How many ages are smaller than 20? +.< means "how many are smaller"

In those three expressions we have combined ∧, ∨, and + with <. We could just as well

combine them with all the comparison symbols, giving 18 different Inner Products, as shown

in this table:

.

Right argument

< ≤ = ≥ > ≠

L
e
f
t

a
r
g
u
m
e
n
t

∧ ∧.< ∧.≤ ∧.= ∧.≥ ∧.> ∧.≠

∨ ∨.< ∨.≤ ∨.= ∨.≥ ∨.> ∨.≠

+ +.< +.≤ +.= +.≥ +.> +.≠

5.3.3 - A Special Case

In this family of Inner Products, ∧.= is particularly interesting, because it answers the

question "Are all those values equal?". For example, applied to vectors of same length:

 'customer' ∧.= 'customer'
1 Of course!

 'customer' ∧.= 'cucumber'
0 Hope you had no doubt about it?

Let us use this property to search for a word in a matrix of words:

 Chapter J – Operators 399

 Words
CONTACT
COLUMNS
FORTUNE
PRODUCT
COLONEL
PROVIDE
MACHINE
TYPICAL

If we combine this 8 by 7 matrix with a 7-item vector, compatibility rules are obeyed, and the

result will be a 8-item vector:

 Words ∧.= 'PRODUCT'
0 0 0 1 0 0 0 0 We found the word in the 4th position

The shape of Words is ... 8 7

The shape of 'PRODUCT' is 7

The common dimension disappears,

and the result is of length 8

Now, let us search for 3 words:

 Three
MACHINE
COMFORT
PRODUCT

 Words ∧.= ⍉Three We must transpose the matrix to be compliant
0 0 0 with the compatibility rules
0 0 0
0 0 0
0 0 1 We found 2 words, and one is missing
0 0 0
0 0 0
1 0 0
0 0 0

That's not too bad, but it would perhaps be more useful to obtain the positions of these words.

If we multiply the first column by ∯8, we obtain 0 0 0 0 0 0 7 0

And if we sum the result, we get 7, the position of the word we are looking for!

We can repeat this for the three columns, once again using Inner Product:

 (∯1↑∰Words) +.× Words ∧.= ⍉Three
7 0 4

Please note, however, that this method will not work very well if the left argument contains

duplicates. For example:

400 Dyalog APL - Tutorial

 Words2
CONTACT
COLUMNS
MACHINE Also found in row 7
PRODUCT
COLONEL
PROVIDE
MACHINE Also found in row 3
TYPICAL

 Words2 ∧.= ⍉Three
0 0 0
0 0 0
1 0 0
0 0 1
0 0 0
0 0 0
1 0 0
0 0 0

 (∯1↑∰Words2) +.∲ Words2 ∧.= ⍉Three
10 0 4

The first item in the result is the sum of the positions in which the first word in Three was

found. Applying another very frequently used method we can obtain a result very similar to

that produced by Index Of. By this we mean that it returns the index to the first found

occurrence in Words2 of the words in Three, and that it returns 1 + the number of rows in

Words2 for words not found.

This method uses another operator Scan that we have seen earlier. Using Or Scan along the

first axis makes it possible to identify the first row in which a match is found:

 ∨⍀ Words2 ∧.= ⍉Three
0 0 0
0 0 0
1 0 0
1 0 1
1 0 1
1 0 1
1 0 1
1 0 1

When we subtract the number of 1's in each column from the number of rows we get one less

than the row number containing the first 1. So, the final expression becomes:

 (1+1↑∰Words2) - +⌿ ∨⍀ Words2 ∧.= ⍉Three

3 9 4

The first and last words are found in row 3 and 4, respectively. The second word is not found,

so the result is 1 + the number of rows we searched.

The converse to the expression ∧.= is ∨.≠. It looks for different values instead of for equal

values. Let us look at one simple example:

 Chapter J – Operators 401

 Words2 ∨.≠ ⍉Three
1 1 1
1 1 1
0 1 1
1 1 0
1 1 1
1 1 1
0 1 1
1 1 1

A 1 means that this word in Three does not match the word in this line of Words2. So, if a

row contains all 1's the word in that row does not match any of the words in Three. Using

And Reduce along the second axis pinpoints the rows of Words2 for which this is true:

 ∧/ Words2 ∨.≠ ⍉Three
1 1 0 0 1 1 0 1

 (∧/ Words2 ∨.≠ ⍉Three) ⌿ Words2
CONTACT
COLUMNS
COLONEL These words are not found in Three
PROVIDE
TYPICAL

5.3.4 - Similar Applications

Very often it is desirable to find out whether any rows (or columns) of a matrix contain all

blanks or all zeroes; or alternatively whether any rows or columns contain at least one non-

zero number or non-blank character.

To solve the first task we can use the same Inner Product as we used in most of the previous

section (∧.=), and to solve the second one we can use the converse, which we introduced at

the end of the previous section (∨.≠).

Suppose we have a matrix of characters MC, and a matrix of numbers MN.

MC ∧.= ' ' says which rows contain all blanks

MN ∧.= 0 says which rows contain all zeroes

' ' ∧.= MC says which columns contain all blanks

MC ∨.≠ ' ' says which rows contain at least one non-blank character

0 ∨.≠ MN says which columns contain at least one non-zero number

and so on…

5.3.5 - Shortest Routes in a Graph

Finding the shortest routes in a graph is a very classical problem to which Inner Product

offers an elegant solution. Imagine 6 points in a town. They can be joined via a certain

number of paths, according to the figure below.

402 Dyalog APL - Tutorial

Because of one-way streets, the length of the path from one point to another may be different

from the length of the return path, or one of the paths may be missing.

We can create a matrix with the distances between the points. The missing paths will be

represented by a very high value (1000 in this case) to dissuade anyone from using them:

Origin
Destination

 A B C D E F

A
B
C
D
E
F

 0 21 1000 35 1000 1000
 32 0 34 1000 1000 1000
1000 34 0 1000 1000 25
1000 44 1000 0 1000 1000
1000 1000 51 17 0 1000
1000 1000 31 1000 24 0

Values in this matrix represent paths of length 1 (in one step), so let us call it L1:

 L1
 0 21 1000 35 1000 1000
 32 0 34 1000 1000 1000
1000 34 0 1000 1000 25
1000 44 1000 0 1000 1000
1000 1000 51 17 0 1000
1000 1000 31 1000 24 0

Now, can we get from some point to another in two steps? For example, there is no direct

route in one single step from E to B; can we get there in two steps?

 Chapter J – Operators 403

Let us consider all the possible pairs of routes from E to B:

 Routes Total

 First step Second step Distances distance

 E A + A B 1000 + 21 1021

 E B + B B 1000 + 0 1000

 E C + C B 51 + 34 85

 E D + D B 17 + 44 61

 E E + E B 0 + 1000 1000

 E F + F B 1000 + 1000 2000

Finally, one can see that we have added the lengths of paths starting from E to the lengths of

paths arriving at B. But, as we have accepted "null" paths (E to E, or B to B), this matrix takes

into account both 1-step and 2-step routes. As you can see, this can be obtained by adding the

5
th

 row of L1 (from E to any point) to its 2
nd

 column (from any point to B), like this:

 L1[5;] + L1[;2]
1021 1000 85 61 1000 2000

Only two routes really exist, because they are smaller than 1000, they are of length 85 and 61.

Of course, we shall choose the shortest one: ⌊/ L1[5;]+L1[;2]

To obtain all the minimum routes in one or two steps, we have just to repeat this calculation

for all the rows and columns: An Inner Product by the Minimum of Sums will do that.

 ⎕ ← L2 ← L1 ⌊.+ L1
 0 21 55 35 1000 1000
 32 0 34 67 1000 59
 66 34 0 1000 49 25
 76 44 78 0 1000 1000
1000 61 51 17 0 76
1000 65 31 41 24 0

The result shows new routes, for example from A to C, or B to F, or D to A, etc…

We can now repeat the operation, and find the shortest routes in 1, 2, or 3 steps:

 ⎕ ← L3 ← L2 ⌊.+ L1 L2 ⌊.+ L2 would give the same result
 0 21 55 35 1000 80
32 0 34 67 83 59
66 34 0 66 49 25
76 44 78 0 1000 103 It is still impossible to go from A to E
93 61 51 17 0 76 and from D to E.
97 65 31 41 24 0 A fourth step is necessary.

 L4 ← L3 ⌊.+ L1

404 Dyalog APL - Tutorial

 ' ABCDEF' , 'ABCDEF' ⓐ L4
 A B C D E F
A 0 21 55 35 104 80
B 32 0 34 67 83 59
C 66 34 0 66 49 25
D 76 44 78 0 127 103 Now we can go from any point to any other
E 93 61 51 17 0 76 An additional inner product would show that
F 97 65 31 41 24 0 it is not possible to find shorter routes.

The solution is elegant, but has a shortcoming: We found, for example, that the shortest path

from D to E is of length 127, and that it requires 4 steps, but we do not know which ones those

four steps are.

5.3.6 - Is a Graph Contiguous?

In some development projects involving large graphs, it is sometimes necessary to check

whether all the points belong to a single graph; the danger being that, due to an error in data,

the graph can be divided into two or more sub-graphs that are not connected to each other.

To check for "continuity", the graph can be represented by a binary matrix in which the ones

represent the existing links and the zeroes the missing ones. The graph is contiguous if any

point can be linked to any other, through a finite number of steps.

The matrix G1 represents the graph shown above: 1 1 0 1 0 0
 1 1 1 0 0 0
The diagonal is now set to 1, because 0 1 1 0 0 1
any point is of course connected to itself 0 1 0 1 0 0
 0 0 1 1 1 0
 0 0 1 0 1 1

Let us see if a point can be linked to another in two steps, for example C to E.

This route exists if we can find a link from C to A and then from A to E, or from C to B and

then B to E, or … and so on.

Repeated for all points, the connectivity matrix in two steps can be obtained using an Inner

Product by Or and And:

 ⎕ ← G2 ← G1 ∨.∧ G1
1 1 1 1 0 0 In fact, G2 is equal to L2<1000
1 1 1 1 0 1
1 1 1 0 1 1
1 1 1 1 0 0 Some points still cannot be linked to
0 1 1 1 1 1 some other ones.

0 1 1 1 1 1 We must repeat the operation again.

 Chapter J – Operators 405

 ⎕ ← G3 ← G2 ∨.∧ G1
1 1 1 1 0 1 This is much better, however, A cannot be

1 1 1 1 1 1 linked to E in 3 steps, nor D to E.
1 1 1 1 1 1 An additional step is necessary.
1 1 1 1 0 1
1 1 1 1 1 1
1 1 1 1 1 1

A fourth step G4 ← G3 ∨.∧ G1 would lead to a matrix full of ones, meaning that the graph

cannot be split into separate sub-graphs.

5.4 Other Uses of Inner Product

We saw above some common uses of Inner Product, but there are many other useful Inner

Products, using primitives or even user defined functions.

Vec <.> 1⌽Vec Tests whether a numeric vector is in ascending order.

Num <.< Lims Tests whether the number Num is between two limits given in Lims

As for Outer Product, some applications of Inner Product produce nested arrays, as you can

see with these two small matrices:

 a b

 2 4 1 3 0 2 5
 1 3 5 1 7 7 2
 6 0 4 2

a ,.+ b gives: 5 5 7 2 11 1 4 11 5 7 6 3

 4 4 11 1 10 5 3 10 9 6 5 7

a +., b gives: 7 10 7 7 7 13 7 9

 9 10 9 7 9 13 9 9

406 Dyalog APL - Tutorial

5.5 Application

We have a certain number of points, the coordinates (x y) of which are given by a nested

vector:

 Coords ← (0 2) (¯1 2) (¯2 1) (¯1 0) (¯1 ¯1) (1 ¯3) (2 ¯2) (2 0)

 (X Y) ← ∸[1] ↑Coords Let us split these coordinates into vectors of

 X,[0.5]Y X and Y coordinates, respectively
0 ¯1 ¯2 ¯1 ¯1 1 2 2
2 2 1 0 ¯1 ¯3 ¯2 0

This figure shows where these points are placed in a coordinate system, and the polygon we

get when we connect the points:

The area of the polygon can be calculated by adding the areas of the trapeziums delimited by

the polygon and the horizontal axis, like the grey trapezium FGHK.

 Their base lengths are calculated by subtracting adjacent values in X X - 1⌽X

 They must be multiplied by half of the sums of adjacent values in Y (Y + 1⌽Y) ÷2

In other words, we must add the products of bases by heights: It is obviously an inner

product.

 (X-1⌽X) +.× (Y+1⌽Y)÷2
11.5

What about the perimeter now? We must add all the individual segments.

Each segment like BC or FG can be calculated using Pythagoras' theorem: a
2
+b

2
 = c

2

We shall calculate the length of horizontal and vertical sides by subtracting adjacent values in

X and Y, as we did for X in the previous example. Let us put these lengths in Segs:

 Chapter J – Operators 407

Segs ← (X-1⌽X),[1.5](Y-1⌽Y) gives 1 0
 1 1
¯1 1
 0 1
¯2 2
¯1 ¯1
 0 ¯2
 2 ¯2

Now, in each small right-angled triangle, we must add the squares of both sides, to obtain the

squares of hypotenuse: Add the squares will be our first Inner Product: Segs +.* 2

Then we have to add the square roots of these hypotenuses. Add the square roots will be our

second Inner Product.

 (Segs +.* 2) +.* 0.5 This solution uses the same product twice
13.89949494

Inner Product

408 Dyalog APL - Tutorial

Exercises

J-2 You are given the matrix M: 8 2 5 1 4
 3 7 1 5 0
 4 3 6 0 6

Calculate the following expressions, and check on the computer:

a) ⌈/ M

b) ⌊/ +/ M

c) ∲/ ⌊/[1] M

d) ∲/ ∰M

J-3 Calculate:

a) -\ 1 1 1 1 1 1

b) -\ 5 4 3 2 1

c) ×/ +\ 6∰1

J-4 Calculate:

a) ∧/ 1 1 1 0 1 1

b) ∧\ 1 1 1 0 1 1

c) =/ 0 1 1 1 0 1 1

d) =\ 0 1 1 1 0 1 1

J-5 When we execute ×\vec we obtain 7 14 70 210 840

What is the value of vec?

J-6 Broken keyboard! The Iota (∯) key of your keyboard does not work. How could you create

the list of the first N integers?

 Chapter J – Operators 409

J-7 Let us call a, b, and c the three sides of a triangle, and p its half-perimeter, equal of course to

0.5×(a+b+c). Believe it or not, the area of that triangle is equal to the square root of:

p × (p-a) × (p-b) × (p-c)

Can you write a function to calculate the area of a triangle, given the lengths of its sides?

J-8 We would like to know whether all the items of a vector are different. Among the many

possible solutions, could you find one using Outer Product, and another one using Inner

Product? The result must of course be a Boolean 0 or 1.

J-9 What would be the result of: 2 =/ 'MASSACHUSSETTS'

J-10 Try to find a word in a vector of characters. Your function should give the positions of the

first letter of the word in the vector. For example:

 'CAN' In 'CAN YOU CANCEL MY FLIGHT ON AIR CANADA?'
1 9 33

The word "CAN" starts in positions 1 9 and 33.

There are several solutions which do not need a loop; try to find one.

J-11 For a certain number of people, you are given two vectors:

 Status is their marital status (S=Single, M=Married, D=Divorced, W=Widow,

 U=Unknown)

 Gender is their gender (M=Male, F=Female)

Write a function to count how many people there are in each category, like in this example:

 Gender CrossCount Status
20 26 17 7 5
17 34 23 2 7

 D M S U W In a second step, you can add legends
F 20 26 17 7 5
M 17 34 23 2 7

 D M S U W Total Then, you can also add totals
F 20 26 17 7 5 75
M 17 34 23 2 7 83
Total 37 60 40 9 12 158

410 Dyalog APL - Tutorial

6 - Compose

Compose is a dyadic operator which combines its arguments (operands) to form one single,

composite operation. One can regard it as an easy way of specifying an inline "mini-function".

As such, it does not really add functionality to the language that could not be obtained by

other means; it is just a very convenient notation.

Compose is represented by a Jot (∬); the keystroke to obtain it is Ctrl-J.

This operator has 4 different forms:

Form 1 ∬ Y Both arguments are monadic functions.

 The derived function is monadic.

 Equivalent to Y

Form 2 n∬ Y The left argument is a value, the right one is a dyadic function.

 The derived function is monadic.

 Equivalent to n Y

Form 3 ∬n Y The left argument is a dyadic function, the right one is a value.

 The derived function is monadic.

 Equivalent to Y n,

Form 4 X ∬ Y The left argument is a dyadic function, the right one is a monadic

function.

The derived function is dyadic.

Equivalent to X Y

Because APL's syntax makes it very easy to "chain" function calls together, as the equivalent

expressions above demonstrate, the Compose operator is rarely used alone. Most often it is

used together with the Each operator, as this may give important advantages for execution

time and memory consumption. Using Compose also makes it easy and convenient to create a

derived function to be used together with the Reduction operator. We will explain these uses

in the examples below.

 Chapter J – Operators 411

6.1 Form 1

Form 1 ∬ Y Both arguments and must be monadic functions

 The function must return a result; the function needs not do

so

 The derived function is monadic

Quite often you would like to apply two monadic functions to each item of an array. This is

very easy to do, with the help of the powerful Each operator.

Let us look at the simple example in which we just want to find the rank of each item of the

variable Weird:

 ∰¨ ∰¨ Weird
 0 2
 1 1

In the expression above the first ∰¨ creates a (potentially) big array containing the shape of

each item of Weird. Then the second ∰¨ gets the shape of each of the items of the

intermediate result. Remember; the rank of an array is the shape of the shape of the array.

This is inefficient for two reasons: Firstly, APL must allocate memory to hold the

intermediate array, which will be discarded as soon as the entire expression has been

evaluated. Secondly APL must internally loop through a potentially large number of items

twice.

With the help of Compose we can eliminate both problems: APL only needs to traverse the

array once, applying both functions to each item in succession. During the processing of each

item only a very small intermediate array will be created holding the shape of each item, and it

will be discarded before processing the next item:

 ∰∬∰ ¨ Weird This expression applies the composite function
 0 2 ∰∰ to all the items of the variable, and returns
 1 1 their ranks

 +/∬∯ ¨ 2 4 7 Here, we add up the items of ∯2, those of ∯4
3 10 28 and finally those of ∯7

In the last example above, the left argument of Compose is itself a derived function of Reduce.

In the example below, both arguments are user defined functions:

 sqrt ← {∱*0.5}

 sqrt∬Average ¨ (11 7)(8 11)(21 51)(16 9)
 3 3.082207001 6 3.535533906

412 Dyalog APL - Tutorial

6.2 Form 2

Form 2 n∬ Y The left argument is a value, while must be a dyadic function

 The function does not need to return a result

 The derived function is monadic

This use of Compose allows the programmer to "bind" the function to a fixed left argument,

n , while its right argument will be provided by Y.

 3∬↑ ¨ (∯5) 'Houston' (21 53 78 55) (11 22)
 1 2 3 Hou 21 53 78 11 22 0

This expression applies 3↑ to each of the items of the right argument. So far this is not a very

good example, as the expression would work and give the same result even without using

Compose:

 3↑¨ (∯5) 'Houston' (21 53 78 55) (11 22)
 1 2 3 Hou 21 53 78 11 22 0

However, binding the value 3 to Take makes it possible to combine the function with yet

another function, so that we can again obtain the advantage of one loop and reduced memory

usage:

 ⌽∬(3∬↑) ¨ (∯5) 'Houston' (21 53 78 55) (11 22)
 3 2 1 uoH 78 53 21 0 22 11

6.3 Form 3

Form 3 ∬n Y The left argument is a dyadic function; the right one is a value

 The function does not need to return a result

 The derived function is monadic

This use of Compose is very similar to the previous one. It "binds" the function to a fixed

right argument, n , while the left argument of is provided by Y.

In other words (∬n) Y is equivalent to Yn. Though Y was passed on the right, it is processed

as if it were the (missing) left argument of the function .

For example

 (*∬0.5) 16 81 169 Once bound to 0.5, the Power function behaves like
4 9 13 a square root function which applies to its right argument.

 Chapter J – Operators 413

In this form, the derived function must be parenthesised so that the argument 0.5 is separated

from the right argument 16 81 169.

16 81 169*0.5 and {∱*0.5} 16 81 169 would give the same result.

6.4 Form 4

Form 4 X ∬ Y The left argument must be a dyadic function

 The right argument must be a monadic function

 The function must return a result; the function needs not do

so

 The derived function is dyadic

This use of Compose is very similar to Form 1.

Here is an example of composition of Multiplication and monadic Iota:

 DISPLAY 2 5 4 ×∬∯ ¨ 2 4 3
┌→────────────────────────────┐
│ ┌→──┐ ┌→─────────┐ ┌→─────┐ │
│ │2 4│ │5 10 15 20│ │4 8 12│ │
│ └~──┘ └~─────────┘ └~─────┘ │
└∮────────────────────────────┘

Another example: The "Golden mean" can be calculated by this infinite series:

 1 +÷ 1 +÷ 1 +÷ 1 +÷ 1 +÷ 1 +÷ 1 +÷ 1 +÷ 1 etc…

As you can see, we have inserted +÷ between the items of a series of ones. This operation is a

Reduction by +÷, but the Reduce operator only accepts a single function on its left. To

overcome this we can "glue" the two functions together using Compose, thereby creating a

single, derived function that may be used together with Reduce:

 +∬÷ / 1 1 1 1 1 1
1.625 Poor approximation, but it works!

 +∬÷ / 50∰1
1.618033989 A nearly perfect result

414 Dyalog APL - Tutorial

7 - Commute

As its name implies, Commute (⍨) is a monadic operator which commutes the arguments of

its derived function.

For example 4 ÷ 2 gives 2,

but 4 ÷⍨ 2 is equivalent to 2÷4 and gives 0.5

 X ⍨ Y is equivalent to Y X

 When used monadically, ⍨Y is equivalent to Y Y

For example ∰⍨ 3 is equivalent to 3∰3 and gives 3 3 3

Based only on these simple examples one might think that Commute is useless (typing ∰⍨3 is

no easier than typing 3∰3). However, Commute may be used to reduce the number of

parentheses needed in an expression.

For example, we want to create a vector like 3∰3 or 5∰5, using the last item of StudRates.

A direct approach would be:
 ((∰StudRates)⌷StudRates)∰(∰StudRates)⌷StudRates

Commute allows a simpler expression: ∰⍨(∰StudRates)⌷StudRates

It is not only for "cosmetic" reasons that it is desirable to avoid repeating an expression. It also

means that the interpreter only has to evaluate the expression once, possibly saving some

execution time. Furthermore, avoiding a verbatim repetition of a piece of code improves

maintainability considerably. If the expression needs to be modified it is simply too easy to

forget to modify all instances of it, or to make mistakes in some of the modifications.

Some APL programmers still prefer to use an intermediate variable or an inline direct function

to obtain the same benefits in terms of efficiency and maintainability:

 A ← (∰StudRates)⌷StudRates

 A∰A

 {∱∰∱} (∰StudRates)⌷StudRates

It is mostly a matter of taste which of the possible solutions different programmers prefer. The

case illustrates that the APL language typically allows the same task to be solved in many

different ways.

 Chapter J – Operators 415

8 - Power Operator

Power is a dyadic operator represented by ⍣ (Ctrl-Shift P), which produces a derived function

that is either monadic, dyadic, or ambivalent, depending on the function used as the left

argument. Again depending on the left argument, the derived function may return a result or

not.

The general syntax is: {R} ← {X} (⍣n) Y (Form 1)

or: {R} ← {X} (⍣) Y (Form 2)

Power operates as follows:

8.1 - Elementary Use (Form 1)

If the right argument n is a numeric integer scalar, the left argument function is applied n

times to argument Y (monadic use) or to X and Y (dyadic use).

n must be separated from the right argument. For example, the derived function could be

surrounded by parentheses.

Imagine we have a little matrix mat: 1 2 3
 8 0 4
 7 6 5

And we write a function to spin it a quarter of a turn: Spin ← {⍁⍉ ∱}

 Spin mat
3 4 5
2 0 6
1 8 7

 Spin Spin mat
5 6 7
4 0 8
3 2 1

Of course, after 4 executions, the matrix would return to its original position.

We can spin the matrix any number of times using the Power operator:

 (Spin⍣14) mat 14 spins are equivalent to a double-spin
5 6 7
4 0 8
3 2 1

416 Dyalog APL - Tutorial

Power can give us a way of calculating a Fibonacci series:

 fibo ← {∱,+/¯2↑∱}

 (fibo⍣10) 1
1 1 2 3 5 8 13 21 34 55 89

8.2 - Conditional Execution (Form 1)

As a special case, when n is Boolean, the function is applied (1) or not applied (0). It causes a

conditional execution of the function.

 (⌊⍣1) 23.73 42.25
23 42 The truncation was executed

 (⌊⍣0) 23.73 42.25
23.73 42.25 Nothing was done

For example, a function has been written in such a way that it works only on nested vectors,

but sometimes its right argument Rop is a simple vector (not nested) or even a scalar. So one

must: Ravel Rop (if it is a scalar), Enclose it, then Ravel it again to produce a vector, or do

nothing if Rop is already a nested vector. The following expression will perform the

necessary transformations:

(,∬⊂∬, ⍣ (1=≡,Rop)) Rop Here (1=≡,Rop) gives a binary result so that

 (,⊂,) will be executed only if that result is 1

Note that in the example above we make good use of the newly introduced Compose operator.

The left argument to the Power operator is a derived function that combines three functions

into one, making it suitable as the left argument to the Power operator.

 v←'Nested ' 'vector'

 DISPLAY (,∬⊂∬,⍣(1=≡,v)) v
┌→───────────────────┐
│ ┌→──────┐ ┌→─────┐ │ Nothing has been done
│ │Nested │ │vector│ │
│ └───────┘ └──────┘ │
└∮───────────────────┘

 v←'Simple vector'

 DISPLAY (,∬⊂∬,⍣(1=≡,v)) v
┌→────────────────┐
│ ┌→────────────┐ │ The necessary transformation has been applied
│ │Simple vector│ │
│ └─────────────┘ │
└∮────────────────┘

Whether one prefers to use Power to write such a compact conditional expression, or to use a

traditional control structure (:If ... :EndIf) is mostly a matter of taste. Some may find the

former easier to write and read than the other, while others may prefer the latter.

 Chapter J – Operators 417

8.3 - Left Argument (All Forms)

If a left argument X is provided (dyadic usage) it is bound as the left argument to (the

function to the left).

In other words: X(⍣)Y is equivalent to (X∬ ⍣)Y

Be careful: This may lead to some errors of interpretation:

 3(× ⍣ 4)2
162

 3×3×3×3×2 and not 3×2×2×2×2 as one might imagine!
162

8.4 - Inverse Function

If the right argument n is negative the function executed by the Power operator is not , but

its inverse function - if such an inverse function exists and APL knows about it. If the inverse

function to is not known to APL, a DOMAIN ERROR will be reported. In particular, APL is

not able to find the inverse function to user defined functions, and some primitive functions

have no inverse function.

The inverse function is applied (|n) times.

The function may be an appropriate primitive function or an expression consisting of such

primitive functions combined with primitive operators among:

Compose ∬ Axis [n]

Each ¨ Scan \

Outer Product ∬. Power ⍣

Commute ⍨

 (+\ ⍣ ¯1) 3 4 9 15 19 We obtain the inverse of "Plus-Scan"
3 1 5 6 4

 +\ 3 1 5 6 4 Just to confirm
3 4 9 15 19

If Rop is the following matrix 10 4 14 8
 25 10 35 20
 15 6 21 12

 2 5 3 (∬.× ⍣ ¯1)Rop
5 2 7 4 This is the vector which, combined with 2 5 3

 by an Outer Product, would give back Rop

418 Dyalog APL - Tutorial

8.5 - Fixpoint, and Use with Defined Operators

Here are two additional features of the Power operator:

 In its Form 2, Power has two argument functions: {X}(⍣)Y

 Power can also be associated with defined operators

These two types of use require an advanced knowledge of APL and of User-defined

Operators. They will not be presented now, but in the Specialist's Section. Have a look at it

when you feel ready.

9 - Spawn

9.1 Main Features

The monadic operator Spawn is represented by an Ampersand (&). It executes a function

asynchronously from the main flow of execution in a separate sequence of instructions known

as a Thread.

If the main flow of execution and the function executing in the separate thread are both using

the CPU heavily, nothing is gained by starting a separate thread. On the contrary, the two

threads will be competing for the same resource - the CPU, which requires some overhead.

But if one of the threads involves waiting time in which it cannot make use of the CPU, the

other thread may use the CPU, which otherwise would have been idle. In such cases a

considerable improvement of the application's perceived performance may be observed.

There are many situations in which a thread may be waiting and not able to make good use of

the CPU: It may be waiting for user input, a file operation, a response from a web client or

server, or a response from a database manager, to give just a few examples.

Spawn is itself monadic, but its derived function is monadic, dyadic, or ambivalent, according

to the definition of the left function argument. This function (and hence the derived function)

may not be niladic.

Spawn returns as a Shy result the number of the thread in which the task is executed.

The main execution flow is executing in thread number 0, so the first time one launches a new

thread, it is executed in thread number 1. Let us execute ∯5 in a separate thread:

 Chapter J – Operators 419

 ⎕← ∯& 5 The Quad forces the shy result to be displayed
1 As expected it was executed in thread 1
1 2 3 4 5 Then the function result is displayed

Once a thread number has been used it will not be used again in this session: The thread

number will be incremented every time Spawn is used:

 ⎕← ÷& 2 5 10 Parallel execution of ÷2 5 10
2 The thread number was incremented
0.5 0.2 0.1

In these examples, the derived function was monadic; let us now use a dyadic function

argument, and try to execute 2 3 7 × 4 6 5 in a separate thread:

 R ← 2 3 7 ∲& 4 6 5
8 18 35

Warning!

Looking at the previous example you could think that R contains the result of the function call,

but it does not:

 R The result is the thread number!
3

If you think about it, it should not come as a surprise that the result of starting a new thread is

not the result of the function call. If that had been the case the main execution thread would

have had to stop and wait until the execution of the function had completed - and we would

not have had any parallel execution at all!

So, if we cannot get hold of the result of the function call when starting it using the Spawn

operator, how can we get hold of it later, when we assume that the function has completed

execution?

The answer is the monadic System function ⎕TSYNC (Thread Synchronization). It takes an

array of thread numbers as its argument. It then causes the thread in which it is executing to

stop and wait until all the threads listed in the argument have completed execution. Then it

returns an array of the same shape as the right argument, each item containing the result of the

function call executed in the corresponding thread.

Let us build a simple example using the system function ⎕DL (Delay), which simply stops

execution for approximately a specified number of seconds. ⎕DL returns a result - the exact

length of the delay.

 ⎕ ← Thread ← ⎕DL& 10 A new thread #4 will just waste 10 seconds

4 This is displayed immediately

 ⎕ ← ⎕TSYNC Thread Will wait until the 10 seconds have passed
10.045 The result returned by ⎕DL

420 Dyalog APL - Tutorial

It will never really make sense to use primitive functions with Spawn, as this will only slow

the system down. In practice, Spawn is always used to start user-defined functions in

situations where you don’t mind that your main thread slows down a little while a job is done

in the background. For example, you might start a function which prepares a print job and let

it run in the background. Your application will possibly run more slowly until the print job is

completed, but you can avoid having to make your user wait until the print job is finished. If

the user is typing in data for the next job, the slowdown may not even be noticeable.

Programming using multiple threads is complex and requires great care. In particular, you

have to be careful about what happens to global or semi-global variables that can be seen by

more than one thread. Dyalog contains several mechanisms for controlling and synchronizing

the execution in threads. The Spawn operator and ⎕TSYNC are just the two most basic ones.

We will not go into further detail about the others here; please refer to the Dyalog help file if

you are interested in learning more about using multiple threads in Dyalog.

9.2 Special Syntax

Suppose we have three functions: DyaFun is dyadic

 MonaFun is monadic

 NilFun is niladic

47 DyaFun& 60 will execute Dyafun in a separate thread.

 The derived function is dyadic: 47 (DyaFun&) 60

MonaFun& 33 will execute Monafun in a separate thread.

 The derived function is monadic: (MonaFun&) 33

NilaFun& will not work; it will cause a VALUE ERROR! Why?

The reason is that the APL syntax does not allow operators to be used with niladic functions.

If you think about the other operators we have seen so far, you will see that using them with

niladic functions does not make sense. Although there is really no specific reason why it

should not be possible to run a niladic function in a separate thread, you cannot do so, because

to specify a niladic function as the argument to the Spawn operator would violate the

consistency of the APL syntax.

Don't worry, we have solutions!

Two possible ways to execute a niladic function in a separate thread are:

 Chapter J – Operators 421

⍎& 'NilaFunc' The argument of Spawn is the Execute function (⍎) and the

argument of the derived function is the name of the function we

would like to execute: 'NilaFunc'.

Finally, this will launch ⍎'NilaFunc' in a new thread, and it works

as expected!

{NilaFunc}& 0 Here NilaFunc is embedded in a direct function, which is always

ambivalent. A dummy right argument is provided, but ignored (any

value will do).

Spawn can be used in conjunction with Each (¨) to launch several parallel threads in one

expression.

10 - User-Defined Operators

As we have seen APL offers a set of primitive functions, and you can write your own user

defined functions. Likewise for operators: Dyalog APL has a set of primitive operators, and

you can write your own user defined operators.

10.1 Definition Modes

As we saw for functions, operators can be defined directly (Direct Operators) or by using the

function editor.

10.1.1 - Direct Operators

A direct operator is defined like a direct function, with a few extra conventions:

∭∭ represents the left argument (the left operand) of the operator

∱∱ represents the right argument (the right operand) of the operator

∭ is the left argument of the derived function

∱ is the right argument of the derived function

Using these conventions, suppose that we want to simulate Inner Product; we could write:

 INPRO ← {∭ ∭∭.∱∱ ∱}

To see if it works, we can just check that we obtain the same results as with the primitive

Inner Product:

422 Dyalog APL - Tutorial

 Percent +INPRO× Invest ∭∭ is set to +, and ∱∱ is set to ×
 9000 11300 10400 12500 17600 and as usual: ∭ is set to Percent

16400 18200 18600 24900 39600 ∱ is set to Invest
11600 15500 17000 22600 34800

 Words ∧INPRO= 'COLONEL'
0 0 0 0 1 0 0 0

10.1.2 - Using the Function Editor

If the operator is to be defined with a function editor, the names of the arguments for the

operator (its operands), which may be functions or arrays, must be attached to the name of the

operator by a pair of parentheses. The name(s) of the argument(s) to the derived function are

specified on either side of the parentheses. Here are the possible header structures for a

defined operator:

Dyadic operator Dyadic derived function X (f OPER g) Y

 Monadic derived function (f OPER g) Y

 Ambivalent derived function {X} (f OPER g) Y

Monadic operator Dyadic derived function X (f OPER) Y

 Monadic derived function (f OPER) Y
 Ambivalent derived function {X} (f OPER) Y

Neither a defined operator nor its derived function can be niladic.

10.2 Some Basic Examples

Just to experiment a little, let us define a dyadic operator with a dyadic derived function.

 ∳ R ← X (f OPER g) Y
[1] R ← (X f X)g(Y f Y)
 ∳

 5 ×OPER+ 8 Equivalent to (5×5) + (8×8)
89

 5 +OPER× 8 Equivalent to (5+5) × (8+8)
160

You probably remember that we used a Multiply-Scan to calculate a vector of inflation rates,

which we then used to calculate the future values of investments given as current values (see

section 3.3.1). We could just as well have used the rates to calculate the current values if we

knew the future values. So why not create an operator that can be used to transform future

values into current values, or the inverse; let us name it INDEF (for INflate/DEFlate).

The derived function arguments will be the inflation rates (left) and the investment values

(right).

 Chapter J – Operators 423

 ∳ R ← Rates (action INDEF) Values
[1] R ← Values action ∲\1+Rates÷100 ∳

Example values: Inv 2000 5000 6000 4000 2000

 Inf 2.6 2.9 3.4 3.1 2.7

We can use it to calculate the future values using multiplication:

 2⍃ Inf ∲INDEF Inv
 2052.00 5278.77 6549.90 4501.96 2311.76

Using divide we can do the inverse:

 2⍃ Inf ÷INDEF 3200 4300 3800 2500 2500
 3118.91 4072.92 3480.97 2221.25 2162.86

 Inf ÷INDEF Inf ×INDEF Inv
2000 5000 6000 4000 2000 Forward & back...

Section Spe-3.2 describes an interesting user-defined operator.

424 Dyalog APL - Tutorial

The Specialist's Section

Each chapter is followed by a "Specialist's Section" like this one.

This section is dedicated to skilled APLers, who wish to improve their knowledge.

If you are exploring APL for the first time,

skip this section and go to the next chapter

Spe-1 Reduction Applied to Empty Vectors

Spe-1.1 - Identities

Suppose we have two numeric vectors a and b.

For example: a ← 2 4 1

 b ← 7 3 6

You can see that +/ a,b is equal to (+/a) + (+/b)

 +/ 2 4 1
7

 +/ 7 3 6
16

 +/ 2 4 1, 7 3 6
23 Yes, 7+16 = 23

Similarly ×/ a,b is equal to (×/a) × (×/b)

 ×/ 2 4 1
8

 ×/ 7 3 6
126

 ×/ 2 4 1, 7 3 6
1008 Yes, 8×126 = 1008

When b is empty, a,b is equal to a, and the last equivalence leads to:

 ×/a is equal to ×/ a,⍬ which is equal to (×/a) × (×/⍬)

From the last expression we can deduce that the multiplication by (×/⍬) does not change

anything. In other words, ×/⍬ must be the identity item of multiplication (1).

 Chapter J – Operators 425

Using the same chain of reasoning it follows that (+/⍬) must return 0, the identity item of

addition.

More generally, if represents any dyadic, commutative function, we can say that:

 / a,b is equal to (/a) (/b)

So: / a,⍬ is equal to (/a) (/⍬) and also equal to /a

It follows that /⍬ must return the identity item of the function .

Spe-1.2 - Rule

The reduction of an empty vector by any dyadic and commutative primitive function

 returns the identity item of that function (0 for Addition, 1 for Multiplication,

etc…).

If has no identity item, a DOMAIN ERROR is issued.

Spe-1.3 - Examples

Some identity items are obvious:

+/⍬ is 0

∲/⍬ is 1

Some others may need a little explanation:

⌊/⍬ is the largest possible value, because any other number compared to it is smaller.

 On a 32-bit Intel-based PC this value is 1.797693135E308.

⌈/⍬ is the smallest possible value, because any other number compared to it is larger.

 On a 32-bit Intel-based PC this value is ¯1.797693135E308.

Spe-1.4 - Non-commutative Functions

For non-commutative functions things are not that simple. Because you will in general get

different results if you swap the arguments to a non-commutative function, a value that works

as an identity item if used as left argument cannot be expected to be an identity item when

used as right argument.

So, a non-commutative function may have

1) an identity item that works only as left argument (a left identity item)

2) an identity item that works only as right argument (a right identity item)

3) no identity item at all

426 Dyalog APL - Tutorial

Examples:

*/⍬ has the right identity item 1, as any number raised to the power of 1 gives the number

itself, but it has no left identity item

⌽/⍬ has the left identity item 0, as a zero-rotation leaves any array unchanged, but it has no

right identity item

//⍬ has the left identity item 1, as any array compressed by 1 is preserved, but it has no

right identity item

The full list of identity items is given in Appendix 5.

Spe-1.5 - Application to n-Wise Reduction

The properties described above explain the results returned by n-Wise Reduction when its left

argument is 0.

Let us just explore how it processes vectors:

We saw earlier that the result size is: (1+∰Vector) - Scope.

If Scope is 0, the result size is: (1+∰Vector)

And if Scope is 0, the slices are all empty. Hence the result is composed of identity items of

the function in question (if it exists, of course).

With vec ← 3 2 6 1 8

0 +/ vec returns 0 0 0 0 0 0

0 ×/ vec returns 1 1 1 1 1 1

Spe-2 Index Origin and Axis operator

Changing Index Origin has an impact on the use of Axis. For example:

With the default value ⎕IO←1 one writes: +/[1]M ⌽[3]A A,[1]B +\[2]M

With ⎕IO←0 one must write: +/[0]M ⌽[2]A A,[0]B +\[1]M

For this reason, when an operation applies to the first or the last dimension of an array, we

recommend using the special symbols rather than specifying an axis, as they work

independently of ⎕IO:

To apply the function along the last dimension (the default), use: / , ⌽ \

To apply the function along the first dimension, use: ⌿ ⓐ ⍁ ⍀

 Chapter J – Operators 427

We already mentioned (section G-Spe-1) that a fractional Axis used with Laminate, Ravel with

axis, and Mix sometimes has to be negative when ⎕IO is set to zero. For example:

 With ⎕IO←1 With ⎕IO←0

Laminate two vectors to produce a matrix: A,[0.5]B A,[¯0.5]B
Ravel with axis a matrix to produce a 3-D array ,[0.5]M ,[¯0.5]M

Mix a nested vector to create a matrix: ↑[0.5]A B ↑[¯0.5]A B

Spe-3 The Power Operator

Spe-3.1 - Form 2 of Power, and Fixpoint

In its form 2, Power has two functions as arguments: {X} (⍣) Y

The right argument must be a dyadic function that returns a Boolean scalar. The left

argument is applied repeatedly like this;

 Yn+1 ← {X} Yn

until the condition Yn+1 Yn returns True (1).

If the condition never returns True, the derived function will continue to execute ad-infinitum.

The only way that it can be stopped is by a Strong Interrupt.

When is = or ≡, the result is called the Fixpoint of the function .

It is important to understand that, during the process, the result produced by one execution

becomes the Y argument for the next iteration, so the value of Y changes, while the value of X

(if any) doesn't.

To demonstrate this, let us use this extremely stupid function: Stupid ← {? (⎕←∱) + ⎕←∭}

The function returns a random integer between 1 and the sum of its two arguments. This

random number may be smaller than the right argument, or not. Let us use this limit condition

as a Fixpoint:
 10 (Stupid ⍣ <) 20

Execution might proceed as follows:

 X Yn Result (Yn+1)

Step 1 10 20 28

Step 2 10 28 33 The new value of Y is the previous result

Step 3 10 33 34

Step 4 10 34 14 Yn+1 is smaller than Yn; the process stops here

If we had used = instead of < as the right argument, many more iterations might have been

necessary, because the probability of a match is much smaller.

428 Dyalog APL - Tutorial

For all the many mathematic iterative calculations that "converge" towards a final limit, this

use of the Power operator is certainly something you should consider.

Here is the example of the "Golden mean" (already seen in section 6.4). The process is

supposed to converge until Yn+1 is exactly equal to Yn. This is of course impossible in theory,

but remember that the comparison precision is limited by the Comparison Tolerance ⎕CT, so

in practice we will reach a point at which Yn+1 is indistinguishable from Yn:

 1 +∬÷ ⍣ = 1
1.618033989

Spe-3.2 - Using User-Defined Operators

Power can be used with user-defined operators, to produce interesting processing tools.

In mathematics and physics, there are many cases in which one must apply a first operation,

then a second one, and then the inverse of the first one.

For example, in electricity, the effective resistance of N resistors connected in parallel is the

inverse of the sum of the inverses of the individual resistors' resistances. By chance, the

operation ÷ is its own inverse.

If the resistances of 5 resistors connected in parallel are 2 50 7 4 10 Ohms, respectively,

the effective resistance can be calculated easily as:

 ÷ +/ ÷r
0.9873060649

Instead of this simple solution, we will create a defined operator to link the three operations:

 DUAL ← {∱∱⍣¯1 ∭∭ ∱∱ ∱}

As you can see, the operator first applies the right function ∱∱ to ∱, then the left one ∭∭, and

finally the inverse of the right function (∱∱⍣¯1).

Now, this DUAL operator can be applied to many problems, for example:

 Calculate the effective resistance of a set of resistors connected in parallel, of course.

We just have to use ÷ for the right argument and +/ for the left one:

 +/ DUAL ÷ 2 50 7 4 10
0.9873060649

 Calculate the geometric mean of a list of values:

 Average DUAL ⍟ 13 29 17 33 18 24 11
19.3208312

 Calculate the standard deviation of a series of values, for example Ages:

 (Average DUAL (∲⍨))(Ages-Average Ages)
12.83040822

 Chapter J – Operators 429

Spe-4 Defined Operators

The arguments of a defined operator are typically functions, but they may also be arrays. If so,

it is important to use parentheses to distinguish the arguments of the operator from those of

the derived function:

 5 (3 OPER +) 7 Equivalent to (5 3 5) + (7 3 7)
12 6 12

 5 (× OPER 2) 7 Equivalent to (5×5) 2 (7×7)
25 2 49

 DISPLAY 5 (1 OPER 2) 7 Equivalent to (5 1 5) 2 (7 1 7)
┌→──────────────────┐
│ ┌→────┐ ┌→────┐ │
│ │5 1 5│ 2 │7 1 7│ │
│ └~────┘ └~────┘ │
└∮──────────────────┘

None of the primitive operators take arrays as both arguments; at least one must be a function.

Spe-5 The Result of an Inverse Function

As shown in Section 8.4 above, the derived function returned by the Power operator is the

inverse of its left operand when the right operand is negative.

Therefore, the following identity is usually true for a function for which an inverse function

exists:

Y ≡ {X}(⍣ ¯1) {X} Y

For example:

 2 ≡ (÷⍣ ¯1) ÷2
1

However, where several possible inverses exist, the "simplest" is chosen. For example:

 2∫1 1
3

 2∫0 1 1 The 0 does not change the result.
3

 2 (∫⍣¯1) 3 The inverse function does not return the 0.
1 1

 1 1 ≡ 2 (∫⍣¯1) 2∫1 1 Here the identity holds true.

1

430 Dyalog APL - Tutorial

 0 1 1 ≡ 2 (∫⍣¯1) 2∫0 1 1 Not here; the result has been "simplified".

0

 2∴3
1 Notice that this is different from 2(∫⍣¯1)3

The last example shows that the use of inverse decode rather than encode allows you to let the

system decide how many digits are needed.

431

Chapter K: Mathematical Functions

1 - Sorting and Searching Data

1.1 Sorting Numeric Data

1.1.1 - Sorting Numeric Vectors

Two primitive functions are provided to sort data:

Grade Up ⍋ returns the set of indexes required to sort the array in ascending order

Grade Down ⍒ returns the set of indexes required to sort the array in descending order

Here is an example:

 Vec ← 4 6 2 11 7 6 5 9 6 8

 ⍋Vec
3 1 7 2 6 9 5 10 8 4

Notice that ⍋ does not actually return a sorted (i.e. re-ordered) array. Instead, we obtain

a set of indexes which tells us that:

the smallest item is the 3
rd

 item

then comes the 1
st
 item

then ... the 7
th

 item

then ... the 2
nd

, 6
th

, and 9
th

, which are all equal

etc…

and the largest item is the 4
th

 item

To obtain Vec sorted in ascending order, we must index it by these values, as shown here:

 Vec[⍋Vec]
2 4 5 6 6 6 7 8 9 11

As you might imagine, Grade Down sorts the vector in descending order:

 Vec[⍒Vec]
11 9 8 7 6 6 6 5 4 2

When several items of the argument are equal, they are ordered from left to right.

432 Dyalog APL - Tutorial

For this reason, ⍒Vec is equal to ⌽⍋Vec only if the values in Vec are all different. This is not

the case for our vector:

 ⍋Vec
3 1 7 2 6 9 5 10 8 4

 ⌽⍋Vec
4 8 10 5 9 6 2 7 1 3

 ⍒Vec
4 8 10 5 2 6 9 7 1 3 In black: The indexes of the three 6's

Special Use

You may rightfully wonder why Grade Up and Grade Down return indexes instead of sorted

data. There are of course good reasons for it, as we will show here.

Firstly, the availability of the intermediate result of the sorting process opens up possibilities

for interesting and useful manipulations. Here is one example:

Given a vector of discrete values (no duplicates), the expression ⍋⍋V (or ⍋⍒V) indicates which

position the items of V would occupy if they were sorted in increasing (or decreasing) order.

 Class ← 153 432 317 609 411 227 186 350

 ⍋⍒ Class
8 2 5 1 3 6 7 4

This means that 153 is the last value in the hierarchy (the smallest), 432 is the 2
nd

 (nearly the

greatest value), … 609 is the first (the highest), … and so on.

Secondly, it makes it much easier to sort complementary arrays (e.g. arrays that represent

columns in a database table) in the same order. Suppose, for example, that we would like to

sort our familiar lists of prices and quantities in ascending order of quantity:

 Price ← 5.2 11.5 3.6 4 8.45

 Qty ← 2 1 3 6 2

 Ix ← ⍋ Qty

 Price ← Price[Ix]

 Qty ← Qty[Ix]

1.1.2 - Sorting Numeric Matrices

Grade Up and Grade Down can be used to sort the rows of a matrix.

In this case, they sort the rows by giving the highest "weight" to the leftmost columns, and the

lightest "weight" to the rightmost one. Both functions return a vector of row indexes, which

can be used to sort the matrix (do not forget the semicolon when indexing).

 Chapter K – Mathematical Functions 433

Original matrix Sorted matrix

 Bof Bof[⍋Bof;] Comments

 2 40 8 2 33 9 You can see that the first column is sorted
 8 31 7 2 40 8 in ascending order.

 5 55 2 2 40 9
 2 33 9 5 52 9 Then, if the first value is the same, the items

 7 20 2 5 55 1 of the second column are in ascending order.
 8 12 6 5 55 2
 7 20 1 7 18 8
 5 55 1 7 20 1 Finally, when the first two columns contain the same

 5 52 9 7 20 2 values, rows are sorted according to the last column.
 2 40 9 7 21 1
 7 18 8 8 12 6
 7 21 1 8 31 7

1.2 Sorting Characters

1.2.1 - Using the Default Alphabet

When applied to characters, the monadic forms of Grade Up and Grade Down refer to an

"implicit" alphabetic order. This collating sequence of characters depends on the version of

Dyalog that you use:

 In Classic Editions of Dyalog it is given by a specific System variable known as the

"Atomic Vector", or ⎕AV (described in chapter L).

 In Unicode Editions (Version 12 and later) it is the numerical order of the corresponding

Unicode code points.

 Text ← 'Grade Up also works on Characters'

 Text[⍋Text]
 aaaacdeehklnoooprrrrssstwCGU The result obtained in the Classic Edition

 CGUaaaacdeehklnoooprrrrssstw The result obtained in the Unicode Edition

In the Classic Edition, the Dyalog ⎕AV has the lower case characters (a-z) located in positions

18-43 (⎕IO=1) and the upper case ones (A-Z) at positions 66-91; so all the lower case letters

sort before all the upper case letters. In the Unicode Edition, the code points are respectively

A-Z (65-90) and a-z (97-122), so all the upper case letters sort before all the lower case ones.

This is why we obtained 2 different results.

For this reason, sorting characters using the default alphabet should be reserved for text that

contains only lower case or only upper case letters, or matrices where upper and lower case

letters appear in the same columns, as in the following example:

434 Dyalog APL - Tutorial

Towns Towns[⍋Towns;]

Canberra Canberra
Paris Martigues The names are sorted correctly because all letters
Washington Mexico in each column are of the same case (all are upper
Moscow Moscow case, or all are lower case)
Martigues Paris
Mexico Washington

The default sorting doesn't work on the following matrix of Trade Marks (real or invented).

This example has been produced using the Unicode edition; the Classic edition would have

given a different result:

TM TM[⍋TM;]

IVECO IVECO This name comes first, because the upper case

"V"
Toyota Imperio comes before the lower case "m".
absolitude TRUELIFE Toyota should appear before TRUELIFE, but "R"
TRUELIFE Toyota comes before "o" in the default alphabet.
Imperio absolitude This word should be the first, but lower-case

 letters come after upper-case ones.

1.2.2 - Using an Explicit Alphabet

To avoid this kind of problem, it is advisable to use the dyadic versions of the sorting

primitives, which take an explicit alphabet as their left argument. Let us try this:

 Xal ← 'aAbBcCdDeEfFgGhHiIjJkKlLmMnNoOpPqQrRsStTuUvVwWxXyYzZ '

 TM[Xal⍋TM;]
absolitude
Imperio
IVECO That's great: The names are now correctly sorted
Toyota
TRUELIFE

Alas, our satisfaction will be short lived! Imagine that "IVECO" becomes "iveco".

In our alphabet, a lower-case "i" comes before the upper-case "I", and we would obtain:

absolitude
iveco That's wrong again!
Imperio
truelife Oops - this is also wrong!
Toyota

As you can see we have the same problem with "TRUELIFE", now that it has been changed

into "truelife". It should still be placed after "Toyota", but the lower case "t" causes it to be

placed before the upper case "T" in "Toyota".

There is fortunately a solution to this annoying problem. Instead of a vector, let us organise

our alphabet into a matrix, as shown here:

 Chapter K – Mathematical Functions 435

 Mal
abcdefghijklmnopqrstuvwxyz Although you cannot see it, note that the last
ABCDEFGHIJKLMNOPQRSTUVWXYZ column contains a blank in both rows.

Now, "i" and "I" have the same "weight" because they are placed in the same columns of the

alphabet. The same is true for "t" and 'T". When sorting a matrix, the lower case letters and

the upper case letters will now be sorted identically.

 TM[Mal⍋TM;]
absolitude
Imperio Phew, now it works!
iveco
Toyota
truelife

Note that if we had both "Imperio" and "imperio" in the matrix, "imperio" would come first,

because "i" is in the first row of the alphabet matrix, while "I" is in the second row of our

alphabet.

1.3 Finding Values

Find (also named Search) is a primitive function represented by an underscored Epsilon: ⍷.

It allows you to search for an array X in an array Y: R ← X ⍷ Y

The result R is a Boolean array with the same shape as Y, with a 1 at the starting point of each

occurrence of X in Y. For example:

 ⎕← where← 'at' ⍷ 'Congratulations' Search for a text in a vector.
0 0 0 0 0 1 0 0 0 1 0 0 0 0 0

 'Congratulations',[0.5]where Show the correspondences.
C o n g r a t u l a t i o n s
0 0 0 0 0 1 0 0 0 1 0 0 0 0 0

Find can of course also be applied to numeric arrays. Here, we search for a vector of 3

numbers in a longer vector:

 2 5 1 ⍷ 4 8 2 5 1 6 4 2 5 3 5 1 2 2 5 1 7
0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0

The rank of Y can be higher than the rank of X. For example, we can search for a vector in a

matrix:

436 Dyalog APL - Tutorial

 Car 'tan' ⍷ Car
It is important 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
for John to get 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
an Italian car, 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
with a big fuel 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
tank, leathered 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
seats, HiFi set 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
for his journey 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
in Brittany. 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

The opposite is also permitted (i.e. the left argument having a higher rank than the right

argument), but would not be very useful. The result would be only zeroes.

2 - Encode and Decode

APL offers two primitives, Encode (∴) and Decode (∫), to convert numeric values from their

decimal (normal) form to a representation in any other number system, and back again.

Because we may not be very familiar with this kind of calculation, it may seem that only mad

mathematicians should invest their time studying such conversions. In fact, these functions are

used rather frequently to solve common problems.

But before studying them, we need to present some basic notions.

2.1 Some Words of Theory

2.1.1 - Familiar, But Not Decimal

8839 is a simple number, represented in our good old decimal system. But if 8839

represents a number of seconds, it could just as well be expressed as:

2 hours, 27 minutes, and 19 seconds.

2 27 19 is the representation of 8839 in a non uniform number system based on 24 hour

days, each divided into 60 minutes, each divided into 60 seconds.

The second representation is more familiar to us, but is not a decimal representation: The

value has been expressed in a complex base or radix; we shall say that it is coded (even

though it is familiar).

 Chapter K – Mathematical Functions 437

Converting 8839 into 2 27 19 is called Encode because the result is not

decimal.

Converting 2 27 19 into 8839 is called Decode because the result is decimal.

We shall say that 24 60 60 is the Base of the number system of 2 27 19.

2.1.2 - Three Important Remarks

 In this case encoding a scalar (8839) produces a vector (2 27 19). In general, the

representation of a decimal scalar in a non-decimal base cannot be expected to be a single

number. It will always be an array of the same shape as the left argument to the Encode

function, and in all but very special cases this left argument will be a vector or a higher

rank array.

For example, a binary value cannot be written 101011 (this is a decimal number); it must

be written as a vector of binary digits: 1 0 1 0 1 1.

 The items of an encoded value can be greater than 9. In our examples, we had items equal

to 27 and 19. But they are always smaller than the corresponding item of the Base. Would

you say that that you spent 2 hours and 87 minutes to do something? Certainly not,

because 87 is greater than 60; you would say 3 hours and 27 minutes.

 No matter whether days were made of only 18 hours, or they were made of 36 hours, 8839

seconds would still be represented as 2 hours, 27 minutes, 19 seconds.

This leads to the following rule: The first item of the base vector is never taken into

account when decoding, but it is always used for encoding.

2.1.3 - Base and Weights

Given the Base vector 24 60 60 and a value 2 27 19, one can Decode it (obtain its decimal

representation) by any of the following three formulas:

 (3600×2) + (60×27) + 19

 +/ 3600 60 1 × 2 27 19

 3600 60 1 +.× 2 27 19

438 Dyalog APL - Tutorial

The last formula clearly shows that decoding a set of values is nothing else than an Inner

Product. This is important, because it means that the same shape compatibility rules will

apply.

The values 3600 60 1 are the Weights representing how many seconds are in an hour, in a

minute, and in a second. They can be obtained from the Base vector as follows:

Weights ← ⌽ 1,∲\ ⌽ 1∸Base

This formula confirms the remark we made earlier: The first item of the Base vector is not

used when decoding a value. However, it is needed in order to do the reverse operation

(encoding) using the same Base vector.

Once the weights are calculated, we can define the relationship between Decode and Inner

product:

Base ∫ Values is equivalent to Weights +.× Values

2.2 Using Decode & Encode

2.2.1 - Decode

Decode is represented by ∫. It accepts the Base vector directly as its left argument so that you

do not have to calculate the weights:

 Base ← 24 60 60

 Base ∫ 2 27 19
8839

Because the first item of the base vector is not used when decoding we could have obtained

the same result in this way:

 Base0 ← 0 60 60

 Base0 ∫ 2 27 19
8839

Example

Eggs are packaged in boxes, each containing 6 packs of 6 eggs.

If we have 2 full boxes, plus 5 packs, plus 3 eggs, we can calculate the total number of eggs

using any of the following expressions, each giving the same result (105):

 Chapter K – Mathematical Functions 439

 (36×2) + (6×5) + 3

 +/ 36 6 1 × 2 5 3

 36 6 1 +.× 2 5 3

 6 6 6 ∫ 2 5 3

In this very special case, our Base is uniform (6 6 6), and we can write the last expression in

a simpler way. As usual, the scalar value is reused as appropriate:

 6 ∫ 2 5 3 We decode 2 5 3
105 2 5 3 is the base 6 representation of 105

2.2.2 - Shape Compatibility

We said that Decode is nothing but a plain Inner Product, so the same shape compatibility

rules must be satisfied.

Imagine that we have to convert two durations given in hours, minutes, and seconds, into just

seconds. The first duration is 2 hours, 27 minutes, and 19 seconds, and the second one is 5

hours, 3 minutes, and 48 seconds. When we put those durations into a single variable, it is

natural to express the data as a matrix, as shown here:

 ⎕← HMS ← 2 3 ∰ 2 27 19 5 3 48
2 27 19
5 3 48

But we cannot combine a 3 item vector (Base ← 24 60 60) with a 2-row matrix (HMS).

Base ∫ HMS would cause a LENGTH ERROR. We must transpose HMS in order to make the

lengths of the arguments compatible:

 Base ∫ ⍉HMS The length of Base is equal to the length of the first
8839 18228 dimension of ⍉HMS. The same rule applies to Inner product.

2.2.3 - Encode

As an example of encoding a decimal number, we can encode 105 into base 6:

 6 6 6 ∴ 105
2 5 3

Please note that specifying a scalar 6 as the left argument in the expression above does not

give the same result:

 6 ∴ 105

3

440 Dyalog APL - Tutorial

The reason is that it is not really possible for APL to "reuse the scalar as appropriate" here,

because what does appropriate mean in this case? The left argument to Encode defines the

number of digits in the new number system, so if we want or need three digits we must

specify three 6's.
6

We can as well convert a number of seconds into hours, minutes, and seconds, like this:

 24 60 60 ∴ 23456
6 30 56

However, when converting 3 values the results must be read carefully:

 Base ∴ 8839 18228 7205
 2 5 2
27 3 0
19 48 5

Do not read these results horizontally: 8839 seconds are not equal to 2 hours, 5 minutes, and 2

seconds! You must read the result vertically, and you will recognise the results we got earlier:

2 27 19, 5 3 48, and 2 0 5.

2.2.4 - Limited Encoding

The shape of the result of Bases ∴ Values is equal to (∰Bases),(∰Values).

No specific rule is imposed on the arguments' shapes, but if the last dimension of the base is

too small, APL proceeds to a limited encoding, as shown below:

24 60 60 ∴ 8839 is 2 27 19 Full conversion

 60 60 ∴ 8839 is 27 19 Truncated result

 60 ∴ 8839 is 19 Ditto

The last two results are truncated to the length of the specified base vector, but nothing

indicates that they have been truncated. To avoid potential misinterpretation, it is common to

use a leading zero as the first item of the base:

0 24 60 60 ∴ 123456 is 1 10 17 36
 0 60 60 ∴ 123456 is 34 17 36
 0 60 ∴ 123456 is 2057 36
 0 ∴ 123456 is 123456

The first conversion states that 123456 seconds represent 1 day, 10 hours, 17 minutes, and 36

seconds; this conversion is normal.

In the second conversion (limited to hours), 1 day + 10 hours gave 34 hours.

The third conversion was limited to minutes, and the given duration is equal to 2057 minutes

and 36 seconds. It should be obvious that this conversion was limited.

6
 In Chapter J, Section Spe-5, you will find an example showing a clever way to have APL itself figure out the

number of digits needed to properly encode a number.

 Chapter K – Mathematical Functions 441

2.2.5 - Using Several Simultaneous Bases

If one needs to encode or decode several values in several different bases, Base will no longer

be a vector, but a matrix. However, this is a bit more complex and will be studied in the

Specialist's Section.

2.3 Applications

2.3.1 - Condense or Expand Values

It is sometimes convenient to condense several values into a single one. In general this does

not save much memory space, but it may be more convenient to manipulate a single value

rather than several. This can be achieved by decoding the values into a decimal number.

Say, for example, that you have a list of 5 rarely used settings that you need to save in a

relational database. Instead of creating 5 columns in the database table to hold the settings you

could decode the 5 values into a decimal integer and save it in a single database column.

Often it is convenient to select a base made of powers of 10, corresponding to the maximum

number of digits of the given values, for example:

 100 1000 10 100 ∫ 35 681 7 24
35681724

That single value 35681724 contains the same information as the original vector, and

because all base values used are powers of 10 it is fairly easy to recognize the original

numbers.

The conversion base was built like this: 100 for 35 which has 2 digits

 1000 for 681 which has 3 digits

 10 for 7 which has only one digit

 100 for 24 which has 2 digits

The base vector must of course be built according to the largest values that can appear in each

of the items - not just from an arbitrary number as in our small example.

The reverse transformation may be done by coding the value using the same base:

 100 1000 10 100 ∴ 35681724
35 681 7 24

A similar technique may be used to separate the integer and decimal parts of positive

numbers:

 0 1 ∴ 127.83 619.26 423.44 19.962
127 619 423 19 Integer part
 0.83 0.26 0.44 0.962 Decimal part

442 Dyalog APL - Tutorial

2.3.2 - Calculating Polynomials

Let us recall the example about packing eggs:

6 ∫ 2 5 3 We can say that we used Decode to calculate (2×62)+(5×6)+3

In other words, using traditional math notation, we calculated 2x2+5x+3 for x=6

This example shows that Decode can be used to calculate a polynomial represented by the

coefficients of the unknown variable, sorted according to the decreasing powers of the

variable.

For example, to calculate 3x4+2x2-7x+2 for x=1.2 we can write:

 1.2 ∫ 3 0 2 ¯7 2
2.7008

Don't forget zero coefficients for the missing powers of x (here, we have no term in x3).

This is equivalent to: (1.2 * 4 3 2 1 0) +.× 3 0 2 ¯7 2

To calculate the value of a polynomial for several values of x, the values must be placed in a

vertical 1-column matrix, to be compliant with the shape compatibility rules. For example, to

calculate the same polynomial for x varying from 0 to 2 by steps of 0.2, we could write:

 X ← 0.2 ∲ ¯1+ ∯11

 X
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

 2⍃ (11 1∰X) ∫ 3 0 2 ¯7 2
 2.00 0.68 ¯0.40 ¯1.09 ¯1.09 0.00 2.70 7.64 15.58 27.37 44.00

The results have been displayed with only 2 decimal digits, using an appropriate Format.

What a Surprising Base!

Let us calculate 4x4+2x3+3x2-x-6 for x=¯1.5

 ¯1.5 ∫ 4 2 3 ¯1 ¯6 We used a negative decimal base. That may

15.75 seem strange, but it is mathematically correct.

2.3.3 - Calculating Positions in a Matrix

Suppose that we want to locate the items of a vector (for example: 18 63 57 80 51) in a

matrix:

 Mat
86 63 73 72 99 88 24
31 35 51 59 84 41 27
42 54 47 29 18 16 57
80 4 53 50 95 75 55

 Chapter K – Mathematical Functions 443

 Vals ← 18 63 57 80 51 The values to search for.

 ⎕ ← Pos ← (,Mat)∯Vals We use dyadic Iota, but note that Mat has been
19 2 21 22 10 converted to a vector first.

To transform this result into 5 row-column indices, we can employ Decode, using the shape of

our matrix as the decoding base. But we must first subtract 1 because a number system starts

from zero, while the dyadic Iota starts from 1, and then add the 1 again afterwards
7
.

 1 + (∰Mat) ∴ Pos-1
3 1 3 4 2 Rows
5 2 7 1 3 Columns

However, we have a problem when searching for a value that does not appear in Mat, like 77.

First (,Mat) ∯ 77 would give 29

then (∰Mat) ∴ 29-1 would give 0 0

and 1+(∰Mat)∴29-1 would give 1 1 This is wrong, of course.

This can be easily corrected by a minor adaptation:

 Vals ← 86 63 77 80 51

 Pos ← (,Mat) ∯ Vals

 (Pos≤∰,Mat) +[2] (∰Mat) ∴ Pos-1
 1 1 0 4 2 Missing values are now reported as being in
 1 2 0 1 3 row zero and column zero.

2.3.4 - Right-aligning Text

We mentioned that Decode could be replaced by an Inner product, using the following

equivalence:

 Base ∫ Values is equivalent to Weights +.× Values

with: Weights ← ⌽1,∲\⌽1∸ Base

What happens if the base vector contains one zero (or more)?

 ⌽1,×\⌽1∸ 10 8 5 3 10 2
2400 300 60 20 2 1 This is the calculation with a non-zero base.

 ⌽1,×\⌽1∸ 10 8 0 3 10 2
0 0 60 20 2 1 This is what happens if we insert a zero.

We can see that the weights to the left of a zero are all forced to become zero.

In other words: 10 8 0 3 10 2 ∫ Values

is strictly identical to: 0 0 0 3 10 2 ∫ Values

7
 If the system variable Index Origin (⎕IO) is set to zero, dyadic Iota will also count from zero, cf. chapter L.

However, the default value of Index Origin is 1, hence dyadic Iota counts from 1 in the default configuration.

444 Dyalog APL - Tutorial

Let us use this discovery to right-align some text containing blanks.

 Text Text=' '

This little 0 0 0 0 1 0 0 0 0 0 0 1 1 1 1 1 1 1
text contains both 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0
embedded and 0 0 0 0 0 0 0 0 1 0 0 0 1 1 1 1 1 1
trailing blanks 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 1

If we use the rows of this Boolean matrix as decoding bases, the result above states that the

ones placed to the left of a zero will not have any effect, and our bases will therefore be

equivalent to:

0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1

With that matrix of bases the expression (Text=' ')∫1 gives the result 8 1 7 4, which is

one more than the necessary rotation. Furthermore, we must rotate right, i.e. a negative

number of positions. So, the final solution is:

 (1-(Text=' ')∫1)⌽Text
 This little
text contains both The result is perfect.

 embedded and This is a really original usage of Decode.
 trailing blanks

Another example uses the same property of Decode: Given a Boolean vector bin, one can

find how many 1s there are to the right of the last zero using this expression: bin∫bin.

3 - Randomised Values

Random numbers are often used for demonstration purposes, or to test an algorithm. Strictly

speaking, "Random" would mean that a set of values is completely unpredictable. This is of

course not the case for numbers generated by a computer: They are by definition perfectly

deterministic!

However, the values produced by an algorithm may appear to a human being as if they were

random values when, given a subset of those numbers, the human is unable to predict the next

values in the sequence.

If this first condition is satisfied, and if all of the unique values in a long series appear

approximately the same number of times, these values can be qualified as pseudo-random

values or Randomised values.

In APL, the question mark (?) is used to produce pseudo-random numbers.

 Chapter K – Mathematical Functions 445

3.1 Deal: Dyadic Usage

The dyadic usage of the question mark is named Deal.

The expression

 Number ? Limit

produces as many pseudo-random integer values as specified by Number, all among ∯Limit,

and all different.

For this reason, Number cannot be greater than Limit.

The name of the function Deal relates to dealing cards. When you are dealt a hand of cards,

the cards that you get are (hopefully!) arbitrary, but you cannot be given the same card twice.

Here are some examples:

 7 ? 52 Dealing a hand of 7 cards.
30 16 10 11 9 14 26

 7 ? 52 Executing the same expression again gives a
29 31 26 4 28 1 36 different set of values.

 12 ? 12 It is possible to find 12 different values all

smaller

3 10 4 11 1 5 2 7 12 9 8 6 than or equal to 12.

 13 ? 12 But 13 different integers smaller than or

DOMAIN ERROR equal to 12 is impossible, and causes an error.

3.2 Roll: Monadic Use

The monadic use of the question mark is named Roll. The name relates to rolling a dice.

In the expression

 ? Array

where Array represents any array of positive integer values, each item A of Array produces a

pseudo-random value within the list ∯A, so that the result is an array of the same shape as

Array. Each item of the result is calculated independently of the other items.

 Mat ?Mat

75 14 86 20 49 14 75 12
31 16 40 51 11 1 19 13
22 64 31 28 12 47 23 27

446 Dyalog APL - Tutorial

For example, 75 has produced a value between 1 and 75 (49), 14 has produced a value

between 1 and 14 (14 itself). Because each of the resulting values has been calculated

separately, some of them may be repeated several times (this is the case for 12 here).

If the argument is made of a repeated single value V, the result is an array made of values all

taken from ∯V. This makes it possible to produce any number of values within the same limits.

For example:

 ? 10∰6 Simulates rolling a dice 10 times.
4 5 1 1 4 5 1 3 1 3

 ? 4 8∰20 In this example, a 4 by 8 matrix is filled with 20s.
18 20 18 13 15 18 4 15
 2 16 17 19 9 9 13 2 Then for each 20 a pseudo-random value is

found.
 2 2 16 16 9 2 5 8 You can see that many values are repeated.
18 14 19 12 3 2 13 19

3.3 Derived Uses

3.3.1 - Decimal Random Values

We have seen that the values produced by Deal and Roll are always integer values extracted

from ∯V, where V is a given limit.

However, it is possible to obtain a set of integer or decimal values between any limits, just by

adding a constant, and dividing by some appropriate value.

Imagine that we would like to obtain 50 decimal values, with 2 decimal digits, all between

743 and 761, inclusive. We could follow these steps:

 Let us first calculate integer values starting from 1: set ← ? 50∰ 1+100∲761-743

 Those values are between 1 and 1801

 If we add (100×743)-1 (74299) we obtain values between 74300 and 76100.

 Once divided by 100, they give decimal values between 743 and 761 inclusive.

 Lims ← 743 761

 set ← ? 50∰ 1+100× --/Lims

 set +← (100∲⌊/Lims)-1

 set ÷← 100

 set
749.68 755.12 751.05 747.54 758.35 757.17 ... etc 758.6 753.22 760.92

 (⌊/set) , ⌈/set
743.27 760.98 The limits are well respected

 Chapter K – Mathematical Functions 447

3.3.2 - Sets of Random Characters

Random characters can be obtained by indexing a set of characters by a random set of integer

values smaller than or equal to the size of the character string, as shown here:

 alpha←'abcdefghijklmnopqrstuvwxyz'

 alpha[?3 15∰26]
uweqyxbroyzmnuq
jupsibbfkkbitog
pdguzfpnvouigyz

4 - Some More Maths

4.1 Logarithms

The base B logarithm of a number N is calculated like this: L ← B⍟N.

The value of L is such that B*L gives back the original number N. Here are some examples:

 10⍟1000 The base 10 logarithm, also called the decimal logarithm.

3

 10*3 The inverse operation.
1000

 3⍟81 The base 3 logarithm of 81.
4

 3*4 The inverse operation.
81

 10⍟2
0.3010299957

The monadic form of the logarithm function (⍟) gives the Natural (or Napierian) logarithm of

a number:

 ⍟10
2.302585093

 *1
2.718281828 The base of the natural logarithm.

 ⍟*1
1

 (*1)⍟10 This left argument is superfluous.
2.302585093

448 Dyalog APL - Tutorial

The relationship between the natural and the base B logarithms of a number is described by

the following formulas:

Given: N ← ⍟A

 L ← B⍟A

 e ← *1 The base of the natural logarithm =

2.71828182845….

Then: N = L ∲ ⍟B

and: L = N ∲ B⍟e

4.2 Factorial & Binomial

The product of the first N integers, or the Factorial of N, is written as N! in traditional

mathematics. APL uses the same symbol for the function, but in APL a monadic function is

always placed to the left of its argument.

So Factorial looks like this in APL: !N.

As in mathematics, !0 is equal to 1.

 !0 1 2 3 4 5 6 7
1 1 2 6 24 120 720 5040

If N is a decimal number, !N gives the Gamma function of N+1. This is explained in the

Specialist's Section.

The monadic function !N represents the number of possibilities when sorting N objects. But if

one picks only P objects among N objects, the number of possible Combinations is given by:

 (!N) ÷ (!P) × (!N-P)

This can be obtained directly using the dyadic form of !: P!N

For example, taking 13 playing cards out of 52 can be done in 13!52 ways, that is to say

635,013,559,600 (that's a lot!).

If P is greater that N, P!N gives a 0 result.

The formula (0,∯N)!N gives the coefficients of (x+1)
n
, this is the reason why P!N is

called Binomial. One can obtain a set of coefficients with the following expression:

 X ← ∯5

 ⍉(0,X)∬.!X
1 1 0 0 0 0
1 2 1 0 0 0
1 3 3 1 0 0 For example: (x+1)

3
 1x3+3x2+3x+1

1 4 6 4 1 0
1 5 10 10 5 1

 Chapter K – Mathematical Functions 449

4.3 Trigonometry

4.3.1 - Multiples of π

The common constant Pi (or π) is very useful in many mathematical and technical

calculations. It can be obtained via the primitive function Circle (the symbol ⓑ), which gives

multiples of Pi.

The symbol ⓑ is sometimes called Orange because it is all round, and placed on the O key of

the keyboard (Ctrl-O). Do not confuse it with the little circle ∬ (Jot) used in Outer product.

π×N can be obtained by: ⓑN

 ⓑ 1 2 0.5
3.141592654 6.283185307 1.570796327

 ⓑ ÷3
1.047197551 This last expression gives, in traditional mathematical notation: π /3

Beware! Do not be mislead. This does not mean that the symbol ⓑ alone represents π

and that we divided it by 3. This just means that the function ⓑ is applied to

÷3, that is, the reciprocal of 3.

4.3.2 - Circular and Hyperbolic Trigonometry

Using the dyadic form of Circle, one can obtain all the possible direct and inverse functions of

circular and hyperbolic trigonometry.

The trigonometric function is designated by the left argument to ⓑ according to the table

below. You can see that positive left arguments refer to direct trigonometric functions, while

negative arguments refer to their inverse functions. Values from 1 to 3 calculate circular

functions, and values from 5 to 7 calculate hyperbolic functions.

Direct Trigonometric Functions Inverse Trigonometric Functions

Fun Fun ⓑ X Fun Fun ⓑ X

0 (1-X*2)*0.5
1 sin X ¯1 arcsin X
2 cos X ¯2 arccos X
3 tg X ¯3 arctg X
4 (1+X*2)*0.5 ¯4 (¯1+X*2)*0.5
5 sh X ¯5 argsh X
6 ch X ¯6 argch X
7 th X ¯7 arth X

450 Dyalog APL - Tutorial

For example: 2ⓑX means cos X

 5ⓑX means sh X

 ¯2ⓑX means arccos X

 0ⓑVal calculates |cos X| if Val = sin X, or |sin X| if Val = cos X

 4ⓑVal calculates |ch X| if Val = sh X

 ¯4ⓑVal calculates |sh X| if Val = ch X

For direct circular trigonometry (Fun = 1, 2, or 3), the value of X must be in Radians, and for

inverse circular trigonometry (Fun = ¯1, ¯2, or ¯3) the returned result is in Radians.

4.3.3 - Some Examples

 2ⓑ 0,ⓑ÷6 3 cosine of: 0, π /6, and π /3, respectively.
1 0.8660254038 0.5

 1 2 3 ⓑ ⓑ÷3 Here, we calculate 3 different functions for π /3.
0.8660254038 0.5 1.732050808

 sin π /3 cos π /3 tg π /3

 (¯3ⓑ1) = ⓑ÷4
1 This confirms that arctg 1 is equal to π /4.

 1 2 ⓑ ⓑ÷2
1 6.123031769E¯17 This calculates sin π /2 and cos π /2.

The very last result shows that the algorithms used to calculate the circular or hyperbolic

values sometimes lead to very minor rounding approximations. The second value is in fact

very close to zero.

4.4 GCD and LCM

4.4.1 - Greatest Common Divisor (GCD)

When applied to binary values the symbol ∨ represents the Or Boolean function.

The same symbol can be applied to numbers other than 0 and 1. Then it calculates their

Greatest Common Divisor (or GCD). It is a Dyadic Scalar Function: Applied to arrays of the

same shape it gives a result of the same shape; applied between a scalar and any array it gives

a result of the same shape as the array, and the scalar value is reused as needed.

 15180 ∨ 285285 ¯285285 47

165 165 1 The result is always positive. There is no common

 divisor for 15180 and 47 other than 1.

 Chapter K – Mathematical Functions 451

 5180 0 28 ∨ 6142 41 19 As always, if one of the items of the argument to ∨ is 0,

74 41 1 the corresponding item from the other argument is

returned (41 in this case).

 5178 417 28 ∨ 7.4 0.9 1.4
0.2 0.3 1.4

4.4.2 - Lowest Common Multiple (LCM)

When applied to binary values the symbol ∧ represents the And Boolean function.

The same symbol can be applied to numbers other than 0 and 1. Then it calculates their

Lowest Common Multiple (or LCM). It is also a Dyadic Scalar Function.

 152 1 6183 ¯519 0 ∧ 316 8 411 24 16
12008 8 847071 ¯4152 0

4.5 Set Union and Intersection

Mathematical Set Theory describes the following two functions:

Intersection A∩B gives the items common to two sets of values A and B.

Union A∪B gives the items that are either in set A or in set B.

The same functions are found in Dyalog, using the same symbols. They only work on scalar

and vector arguments:

 'Hey' 'give' 'me' 53 'Dollars' ∩ 53 'Euros' 'not' 'Dollars'
53 Dollars

 'Hey' 'give' 'me' 53 'Dollars' ∪ 53 'Euros' 'not' 'Dollars'
 Hey give me 53 Dollars Euros not

In contrast to mathematical sets APL vectors are ordered and may contain duplicates, which

makes a couple of conventions necessary:

For Intersection the result is in the order that the items appear in the left argument, including

duplicates. In fact, the result is equal to the left argument, but with all items that are not found

in the right argument removed:

 1 1 2 2 3 3 ∩ 2 3
2 2 3 3

For Union the result is always the left argument, followed by all items of the right argument

that are not already found in the left argument - including duplicates:

 1 1 2 2 3 3 ∪ 2 2 2 4 4 4 6 6 6
1 1 2 2 3 3 4 4 4 6 6 6

452 Dyalog APL - Tutorial

5 - Domino

5.1 Some Definitions

5.1.1 - Identity Matrix

Any number multiplied by 1 is the same number. Similarly, a matrix multiplied by a Boolean

matrix of the same shape, containing only 1s along its main diagonal, remains unchanged.

If M is and if I is then M+.×I is

12 50 7 1 0 0 12 50 7 This result is equal to M

44 3 25 0 1 0 44 3 25
30 71 80 0 0 1 30 71 80

We say that I is the Identity item for the multiplication of 3 by 3 matrices. One can define a

similar Identity item for a square matrix of any size.

5.1.2 - Inverse Matrices

If we multiply 4 by 0.25 or 0.25 by 4, we obtain 1, which is the Identity item for

multiplication. Alternatively, we can say that 0.25 is the reciprocal, or inverse, of 4, and vice

versa.

Given that I is the Identity item for matrix multiplication, if we can find two matrices MAT and

TAM whose product is I, we can say that these two matrices are each the inverse of the other:

If MAT is and if TAM is then MAT+.×TAM is

1 0 2 0 ¯3 2 1 0 0
0 2 1 ¯0.25 ¯0.25 0.5 0 1 0
0.5 3 1.5 0.5 1.5 ¯1 0 0 1

Both MAT+.×TAM and TAM+.×MAT would give the same result; MAT and TAM are really each

the inverse of the other.

Here is a second example with 2 by 2 matrices:

M1 M2 M1+.×M2

2 1 ¯0.5 0.5 1 0
4 1 2 ¯1 0 1

For the moment, we defined inverses only for square matrices. We shall see later (Specialist's

Section, § 4) that it is also possible to define inverses for non-square matrices.

 Chapter K – Mathematical Functions 453

5.2 Matrix Inverse

5.2.1 - Monadic Domino

APL provides a Matrix Inverse primitive function, represented by the symbol ⍂. Because of

its appearance, this symbol is named Domino.

Monadic Domino returns the inverse of a matrix:

 ⍂ MAT
¯8.558701407E¯16 ¯3 2
¯2.500000000E¯1 ¯0.25 0.5
 5.000000000E¯1 1.5 ¯1

Calculating the inverse of a matrix is a complex operation, and the precision may decrease as

the number of operations grows, resulting in some degree of approximation. This is the case

above. The top left value should have been zero, but is only very close to it. Being so close to

0, it is displayed using scientific notation, which is then applied to all other values in that

column.

To make results like the one above easier to read, we will hereafter present the results in a

rounded form, as shown below:

 ⍂ MAT
 0 ¯3 2 As expected, this is the value of TAM
¯0.25 ¯0.25 0.5
 0.5 1.5 ¯1

Remember, you can always use Format to display rounded values, for example:

 2⍃ ⍂MAT
 0.00 ¯3.00 2.00
 ¯0.25 ¯0.25 0.50
 0.50 1.50 ¯1.00

5.2.2 - Singular Matrices

In normal arithmetic, zero has no inverse, and ÷0 in APL causes a DOMAIN ERROR.

In the same way, some matrices cannot be inverted; they are said to be Singular.

 ⍂ ⎕ ← 3 3∰1 3 5 3 4 15 2 7 10
1 3 5
3 4 15
2 7 10
DOMAIN ERROR This error message means that our matrix cannot

 ⍂ ⎕←3 3∰1 3 5 3 4 15 2 7 10 be inverted: It is singular.
 ∧

454 Dyalog APL - Tutorial

5.2.3 - Solving a Set of Equations

Here is a set of three linear equations with three unknowns x y, and z, written using traditional

mathematical notation:

¯8 = 3x + 2y - z

19 = x - y + 3z

 0 = 5x + 2y

This set of equations can be represented using a vector for the constants and a matrix for the

coefficients of the three unknowns, as shown below:

 Cons ← ¯8 19 0

 ⎕← Coefs ← 3 3∰3 2 ¯1 1 ¯1 3 5 2 0
3 2 ¯1
1 ¯1 3
5 2 0

To solve the above set of equations, we must find a vector of three values XYZ such that:

 Cons is equal to Coefs +.× XYZ

We can find such a solution provided that the matrix Coefs has an inverse, i.e. that it is non-

singular.

Let us multiply both sides of the equation by the inverse of Coefs:

If Coefs +.× XYZ is equal to Cons

then (⍂Coefs) +.∲ Coefs +.∲ XYZ is equal to (⍂Coefs) +.∲ Cons

Knowing that (⍂Coefs)+.∲Coefs gives the identity matrix (let's call it I), the expression

can be reduced further:

Since (⍂Coefs) +.∲ Coefs +.∲ XYZ is equal to (⍂Coefs) +.∲ Cons

then I +.× XYZ is equal to (⍂Coefs) +.∲ Cons

and consequently XYZ is equal to (⍂Coefs) +.∲ Cons

Eureka! We found a way of calculating the values we had to find:

 ⎕← XYZ ← (⍂Coefs) +.∲ Cons
2 ¯5 4 You can check. This is correct!

More generally: Solutions ← (⍂ Coefficients) +.× Constants

Note that in the formula above we multiply Constants by the inverse (or reciprocal) of a

matrix. Multiplying by the reciprocal of something is usually known as division, so perhaps

this is true here as well? Yes it is, and we'll show that in the next section.

 Chapter K – Mathematical Functions 455

5.3 Matrix Division

The dyadic form of Domino implements matrix division, so it can do exactly what we have

just done: It can easily solve sets of linear equations like the one shown above:

 Cons⍂Coefs Equivalent to (⍂Coefs) +.∲ Cons
2 ¯5 4 We found the same solution as before.

Naturally, this method works only if the coefficient matrix has an inverse. In other words, the

set of equations must have a single solution. If there is no solution, a DOMAIN ERROR will be

reported.

We can summarise this as follows:

Given a system of N linear equations with N unknowns, let the matrix of the coefficients of the

unknowns be named Coefficients, and the vector of constants be named Constants, the system

can be solved using matrix division like this:

Solutions ← Constants ⍂ Coefficients

5.4 Two or Three Steps in Geometry

5.4.1 - A Complex Solution to a Simple Problem

To begin with, we invite you to study a complicated method to solve a simple problem. Our

intention is then to generalise this method to develop a solution for an everyday problem in

statistical studies.

The goal is to find the coefficients of a straight line passing through two points P and Q, of

which the coordinates are given below:

X ← 2 4 vector of P and Q X-coordinates See figure K-1 below

Y ← 2 3 vector of P and Q Y-coordinates

456 Dyalog APL - Tutorial

Figure K-1

The general equation describing a straight line is y = ax + b. With our two points given, the

following is obtained:

2 = 2a + b This is a set of two linear equations

3 = 4a + b in which the unknowns are a and b

Let us solve this set of equations by the method demonstrated in the previous section.

The vector of constants (formerly named Cons) is now given by Y 2 3

The matrix M of the coefficients of the unknowns (formerly Coefs) is: 2 1
 4 1

This matrix M can be obtained from the vector X like this M← X,[1.5]1

Now a and b can be calculated using the method we saw above C← Y⍂M

If we replace M by the expression used to calculate it from X, we can write C←
Y⍂X,[1.5]1

 X ← 2 4

 Y ← 2 3

 ⎕← C← Y⍂X,[1.5]1
0.5 1

You can easily check on the figure that these are the values we looked for. The equation for

this line is (in traditional notation): y = 0.5x + 1

Do you find this method tedious? You are right, but now let us discover its scope.

 Chapter K – Mathematical Functions 457

5.4.2 - Calculating Additional Y-coordinates

Having found the coefficients of the line shown in the previous section, let us try to calculate

the Y-coordinates of several points for which the X-coordinates are known:

The coefficients of our line were obtained by this calculation: C← Y⍂M

We saw earlier that it is strictly equivalent to .. C← (⍂M) +.× Y

Let us left-multiply both terms of this expression by M:

If C is equal to (⍂M)+.×Y

then M+.×C is equal to M +.× (⍂M)+.×Y where again M+.×(⍂M) is equal to I

so M+.×C is equal to I+.×Y

or M+.×C is equal to Y

This exposition shows that the Y-coordinates Y of some points placed on a line defined by

coefficients C can be calculated from their X-coordinates X by the formula M+.×C or, in a

more explicit form:

Y ← (X,[1.5]1) +.× C

Y-coordinates ← (X-coordinates,[1.5]1) +.× Coefficients

Let us apply this technique to a set of points:

 (0 ¯2 3 6,[1.5]1) +.× C
1 0 2.5 4 You can check it in the diagram.

5.5 Least Squares Fitting

5.5.1 - Linear Regression

Our line was defined by two points. What happens if we no longer have 2 points, but many?

Of course there is a high probability that these points are not aligned.

As an example, suppose that we have twelve employees; we know their ages and salaries:

 AGE,[0.5]SAL
 20 21 28 31 33 34 36 37 40 44 45 51
3071 2997 2442 3589 3774 3071 3108 5291 5180 7548 5772 5883

(Salaries are given in Peanuts, a currency used more and more in many companies).

We shall place the ages on the X axis, and salaries on the Y axis (see figure K-2)

458 Dyalog APL - Tutorial

This time, matrix AGE,[1.5]1 will have more rows (12) than columns (2), and the set of

equations has no solution, which confirms that no single straight line can join all those points.

In this type of situation, it may be desirable to define a straight line which best represents the

spread of points. Generally a straight line is sought such that the sum of the squares of the

deviations of Y-coordinates between the given points and the line is minimised. This

particular line is called the Least Squares line or a Linear regression.

To find this line, we shall use Domino once more. The expression used to calculate the coeffi-

cients of a line passing through two points can be applied to a rectangular matrix, and Domino

gives the coefficients of the Least Squares line passing through the set of points. Isn't it

magic?

For the given points, here is the calculation:

 ⎕← C← SAL ⍂ AGE,[1.5]1
134.9457203 ¯412.600208 Equation: y = 134.9x - 412.6

Let us calculate the rounded salaries located on the line, at the same X-coordinates as the

given points:

 0⍃ (AGE,[1.5]1) +.× C
2286 2421 3366 3771 4041 4176 4445 4580 4985 5525 5660 6470

Figure K-2

 Chapter K – Mathematical Functions 459

5.5.2 - Extension

In the previous example, we measured the effect of a single factor (age) on a single

observation (salary) using a linear model.

What if we want to use the same model to explore the relationship between several factors and

a single observation?. The following example is inspired by a controller in IBM France who

tried to see if the heads of his commercial agencies had "reasonable" expense claim forms.

 The amounts were stored in.. Amounts

He tried to measure the effect of 4 factors on these expenses amounts:

 The number of salesmen in each agency .. NbMen

 The size of the area covered by each agency.. Radius

 The number of customers in each agency ... NbCus

 The annual income produced by each agency .. Income

In other words, he tried to find the vector TC of 5 theoretical coefficients C1 to C5, which

most closely satisfies the following equation:

Amounts = (C1×NbMen) + (C2×Radius) + (C3×NbCus) + (C4×Income) + C5

Here is the data:

Amounts NbMen Radius NbCus Income

40420
23000
28110
32460
25800
33610
61520
44970

 25 90 430 2400
 20 50 87 9000
 24 12 72 9500
 28 12 210 4100
 14 30 144 6500
 8 30 91 3300
 31 120 207 9800
 17 75 161 4900

Let us apply exactly what we did on ages and salaries, and calculate the following variables:

 Matrix of factors Fact ← NbMen,Radius,NbCus,Income,[1.5]1

 Coefficients of the least squares line .. 2⍃TC ← Amounts⍂Fact

 1154.23 362.14 ¯99.39 ¯3.33 31193.65
 C1 C2 C3 C4 C5

 Y-coordinates of points on that least squares line YLS ← Fact+.∲TC

 Differences .. Diff ← Amounts-YLS

 The same in percentages... Pcent ← 100∲Diff÷YLS

460 Dyalog APL - Tutorial

And finally, display all the data, with a "-" sign for those who are much higher that the least

squares line (supposed to be bad managers), and a "+" sign for those who are significantly

below that line (supposed to be excellent managers):

 Flag ← '+ -'[1++/Pcent∬.>¯10 10]

 Title ← 29↑' Real Normal Diff %'

 Titleⓐ(7 0⍃Amounts,YLS,Diff,[1.5]Pcent),Flag
 Real Normal Diff %
 40420 41914 ¯1494 ¯4
 23000 33773 ¯10773 ¯32+ This one is really thrifty!
 28110 24455 3655 15-
 32460 33335 ¯875 ¯3
 25800 22264 3536 16- This one wastes money!
 33610 31260 2350 8
 61520 57229 4291 7
 44970 45660 ¯690 ¯2

5.5.3 - Non-linear Adjustment

In this last example we used independent factors and tried to combine them with a linear

expression. We could as well have used vectors linked one to the other by any mathematical

expression, like Results←(C1∲Var)+(C2∲Var*2)+(C3∲⍟Var)+C4 (if this makes sense):

A typical case is trying to fit a set of points with a polynomial curve. Here are 8 points:

 X← ¯1 ¯1 0.5 1.5 2 2 3 4

 Y← ¯3 ¯1 0 ¯1 ¯1 1 3 5

A linear regression would give a line with the following coefficients:

 2⍃ Y ⍂ X,[1.5]1
1.22 ¯1.31

The right argument was obtained by laminating 1 to X; we could just as well have obtained it

with the following Outer Product: X∬.*1 0 because X*0 gives 1, and X*1 gives X:

Now, instead of taking only powers 1 and 0 of X, we could extend the scope of the powers up

to the third degree (for example): X∬.*3 2 1 0

We would then obtain not the coefficients of a straight line but those of a third degree polyno-

mial curve (shown in figure K-3 below):

 2⍃ C←Y⍂X∬.*3 2 1 0
0.10 ¯0.16 0.58 ¯1.07

In other words, this set of points can be approximated by: 0.1x3 - 0.16x2 + 0.58x - 1.07

 Chapter K – Mathematical Functions 461

Figure K-3

Exercises

K-1 Can you predict (and explain) the results of these two expressions:

a) 0 ∫ 12 34 60 77 19

b) 1 ∫ 12 34 60 77 19

K-2 In a binary number system, a group of 4 bits represents values from 0 to 15. Those 4 bits

represent the 16 states of a base 16 number system, known as the hexadecimal number

system. This system is very often used in computer science, with the numbers 0-9 represented

by the characters "0" – "9", and the numbers 10-15, represented by the characters "A" to "F".

Write a function to convert hexadecimal values into decimal, and the reverse. Let us decide

that hexadecimal values are represented as 4 character vectors:

 H2D '1A5C' 'C20F' 'EB79'
6748 49679 60281

 D2H 6748 49679 60281
 1A5C C20F EB79

462 Dyalog APL - Tutorial

K-3 Create three variables, filled with random integers, according to the following specifications:

a) A vector of 12 values between 8 and 30, without duplicates.

b) A 4 by 6 matrix filled with values between 37 and 47, with possible duplicates.

c) A 5 by 2 matrix filled with values between ¯5 and 5, without duplicates.

K-4 Create a vector of 15 random numbers between 0.01 and 0.09 inclusive, with 3 significant

digits each, with possible duplicates.

K-5 What will we obtain by executing this expression: 10+?(10+?10)∰10

K-6 We would like to obtain a vector of 5 items, chosen randomly without duplicates among the

following values:

 List ← 12 29 5 44 31 60 8 86

K-7 Create a vector with a length randomly chosen between 6 and 16, and filled with random

integers between 3 and 40 inclusive, with possible duplicates.

K-8 The value of cos x can be calculated by the following formula, written with traditional mathe-

matical notations:

cos x = x
0
/0! - x

2
/2! + x

4
/4! - x

6
/6! + x

8
/8! - x

10
/10! etc…

Can you write an APL expression which executes this calculation, up to the power 2×N ?

K-9 Try to evaluate the following expressions, and then check your result on the computer:

a) (1ⓑ ⓑ÷4)*2
b) 2∲0.5+¯2 ⓑ 1 ⓑ 0.5

K-10 Find the solution to this set of equations: x - y = 5

 y - 2z = ¯7

 z - x = 2

K-11 Three variables a, b, and c meet the following conditions: a-b+3c = 13
 4b-2a = ¯6
 a-2b+2c = 10

Can you calculate the value of 3a + 5b - c

 Chapter K – Mathematical Functions 463

The Specialist's Section

Each chapter is followed by a "Specialist's Section" like this one.

This section is dedicated to skilled APLers, who wish to improve their knowledge.

If you are exploring APL for the first time,

skip this section and go to the next chapter

Spe - 1 Encode and Decode

Spe 1.1 - Special decoding

If you replace Decode by the equivalent Inner product, you can easily check these surprising

properties:

 0∫v is equivalent to ⍬∰¯1↑v

 1∫v is equivalent to +/v

When dealing with integers the values are normally smaller than the corresponding items of

the Base. For example, it would be unusual to say that a time is equal to 7 hours 83 minutes

and 127 seconds. However, Decode works perfectly on such values:

 24 60 60 ∫ 7 83 127
30307

And, though we did not mention it, Encode (like Decode) accepts decimal and/or negative

bases:

 (3∰5.2) ∴ 160.23
5 4 4.23

Spe 1.2 - Processing Negative Values

Imagine that we want to encode some numbers in any base, with 6 digits. We will choose base

10, so that the result is readily understandable:

 (6∰10) ∴ 17 gives 0 0 0 0 1 7

464 Dyalog APL - Tutorial

Now let us try to predict the result of (6∰10)∴¯17. Knowing that 17+¯17 is 0, it would be

reasonable to expect that ((6∰10)∴17) + ((6∰10)∴¯17) also returns a result that is "zero"

in some way - for example 6∰0?

In other words, we are looking for a 6-item vector that, when added to 0 0 0 0 1 7, gives

6∰0. The real challenge is that the items of the vector must only contain the digits 0-9!

Let's see what happens:

 (6∰10) ∴ ¯17 gives 9 9 9 9 8 3

These results may seem a bit surprising. In base 10, when the sum of two digits exceeds 9, a

carry is produced, which is used when adding the next digits to the left, and so on. When

adding the encoded values of 17 and ¯17, here is how the values are processed:

 1 1 1 1 1 1 The numbers carried to the left

 0 0 0 0 1 7
+ 9 9 9 9 8 3

= 1 0 0 0 0 0 0

If only 6 digits are kept, as agreed, you can see that the result is composed only of zeroes.

That would be the same for 431:

 (6∰10) ∴ 431 gives 0 0 0 4 3 1
 (6∰10) ∴ ¯431 gives 9 9 9 5 6 9
and the sum is 1 0 0 0 0 0 0

We can observe the same behaviour in any other base. For example, in base 5:

 (6∰5) ∴ 68 gives 0 0 0 2 3 3
 (6∰5) ∴ ¯68 gives 4 4 4 2 1 2 Remember that, in base 5,
and the sum is 1 0 0 0 0 0 0 3+2 gives 0, with 1 carried!

The rule remains true for decimal values:

 (5∰10) ∴ 15.8 gives 0 0 0 1 5.8
 (5∰10) ∴ ¯15.8 gives 9 9 9 8 4.2
and the sum is 1 0 0 0 0 0

This may lead to a few frustrations during decoding if precautions are not taken:

 10∫(6∰10)∴ 143 gives 143 This is what we expected
 10∫(6∰10)∴¯143 gives 999857 This may seem wrong
and the sum is 1000000

The result obtained is such that the sum of 143 and 999857 gives 10
6
.

 Chapter K – Mathematical Functions 465

If one needs to encode and later decode values among which some may be negative, it is

advisable to provide one more digit than is necessary, and to test its value. In many computers

the internal representation of positive numbers begins with a 0-bit, and negative values start

with a 1-bit. The same principle applies to the decoded values. In base 10, positive values

begin with the digit 0, and negative ones with a 9. We can deduce from this a general function

to decode values encoded in a uniform base:

 ∳ Z←Base Decode Values;P
[1] Z←Base∫Values
[2] P←1↑∰Values
[3] Z←Z-(Base*P)×(Z>¯1+Base*P-1)
 ∳

 test ← (6∰10) ∴ ¯417.42 26 32 ¯1654 0 3.7 ¯55

 10∫test
999582.58 26 32 998346 0 3.7 999945 Negative values are wrongly decoded.

 10 Decode test
¯417.42 26 32 ¯1654 0 3.7 ¯55 Negative values are correctly decoded.

Spe 1.3 - Multiple Encoding/Decoding

It is possible to decode a value using several bases simultaneously:

 ⎕← BB← ⍉4 3∰5 10 6
 5 5 5 5 The different bases are placed one under the

10 10 10 10 other in a matrix.
 6 6 6 6

 BB ∫ 4 1 3 2
542 4132 920 Interpreting 4 1 3 2 in 3 different bases

In this very specific case, the 3 bases were all uniform; a simple vertical matrix with one digit

per row would have given the same conversion:

 (3 1∰5 10 6)∫4 1 3 2
542 4132 920

Similarly, it is possible to see how a single number could be represented in several bases:

 (5 3∰5 10 2) ∴ 27
0 0 1
0 0 1 These three columns represent 27 in bases 5, 10,
1 0 0 and 2, respectively.
0 2 1
2 7 1

Rules: The arguments of Encode and Decode must obey the following rules:

In R ← Bases ∫ Mat (∰R) is equal to (¯1∸∰,Bases),1∸∰Mat

In R ← Bases ∴ Mat (∰R) is equal to (∰Bases),∰Mat

466 Dyalog APL - Tutorial

Let us convert (encode) the following matrix Seconds into hours, minutes and seconds:

 Seconds
1341 5000 345
3600 781 90

 24 60 60 ∴ Seconds
 0 1 0 Hours
 1 0 0

22 23 5 Minutes
 0 13 1

21 20 45 Seconds
 0 1 30

Spe - 2 Random Link

Spe 2.1 - Making Random Numbers Predictable or Unpredictable

The algorithm used to create randomised numbers is described in detail in the next section. It

uses an initial seed value, contained in the system variable ⎕RL (where RL stands for Random

Link). Each time a new value is generated this seed value is changed so that the next value

will be different. When you)SAVE a workspace, the random link is also saved. However, each

time Dyalog APL is started, or each time the active workspace is cleared by)CLEAR, the

Random Link is reset to a predefined value, equal (by default) to 7*5 (16807).

For this reason, if an expression using pseudo-random values is executed immediately after

APL has been started, the expression will give the same result on each such occasion. This can

be useful if for example we want to reproduce the same experimental conditions, but it can

also be a disadvantage if we really would like random values.

To reproduce a given set of random values, one can dynamically set ⎕RL to any desired value

(perhaps ⎕RL←7*5, or any other value in the range 1 to 2147483646):

 OLDRL ← ⎕RL Store the current value of ⎕RL

 ? 5∰40 Get five random values.
37 9 18 26 3

 ? 5∰40 The same expression produces a different set

27 6 7 27 17 of values each time it is executed.

 ⎕RL ← OLDRL But if we restore the original value, we obtain the

 ? 10∰40 same set of 10 randomised values.
37 9 18 26 3 27 6 7 27 17

Since the randomised values are so predictable, how do we ensure that we get different values

each time the same APL job is started?

 Chapter K – Mathematical Functions 467

A common approach is to set the Random Link to a value derived from the current timestamp,

⎕TS, for example:

 ⎕RL ← 24 60 60 1000 ∫ ¯4↑⎕TS

Another simple algorithm is not to touch the Random Link directly, but instead ask for as

many random values as the "seconds" item of the current timestamp (⎕TS[6]) reports. These

numbers will not be used, but ⎕RL will be changed an unpredictable number of times and will

therefore be set to an unpredictable value (at least unpredictable among the 60 possible

values):

 ⎕RL
16807 The standard initial value.

 Sink ← ⎕TS[6]?100 Generate an arbitrary number of random values.

 ⎕RL
282475249 ⎕RL has been changed to an "arbitrary" value.

Spe 2.2 - Algorithm

Here is the algorithm used by APL to create a randomised scalar (an array would need loops).

We have written the algorithm for Roll; the algorithm for Deal is just an extension.

 ∳ Z←Roll N
[1] ⎕RL←(¯1+2*31)|⎕RL×7*5
[2] Z←⎕IO+⌊N×⎕RL÷2*31
 ∳

The first instruction prepares the seed used for the next number. Residue is used to ensure that

the result will always be smaller than (¯1+2*31). Consequently, ⎕RL÷2*31 always returns a

value in the range 0-1. Multiplied by the argument, it produces a result strictly smaller than N,

and by adding ⎕IO we get the desired result.

You can compare our function to the primitive function; they work identically:

 ⎕RL←7*5
 ?10
2
 ⎕RL
282475249
 ?10
8

 ⎕RL←7*5
 Roll 10
2
 ⎕RL
282475249
 Roll 10
8

468 Dyalog APL - Tutorial

Spe - 3 Gamma and Beta Functions

In mathematics, the Gamma function of a variable x is defined by the following formula:

 (x) = t

 x-1
 e

-t
 dt

 0

This function satisfies the recurrence relationship: Γ(x) = x × Γ(x-1)

If x is integer, Γ(x) is equivalent to (x-1)!

In APL, monadic !N gives the Gamma function of N+1.

 ! 2.4 3 3.2 3.4
2.981206427 6 7.756689536 10.13610185

The dyadic form of ! gives the Binomial function, which satisfies the following identity with

the mathematical Beta function:

β(A,B) is identical to: ÷B×(A-1)!A+B-1

Spe - 4 Domino and Rectangular Matrices

In section 5.1.2 we used square matrices to define what a matrix inverse is. But in section

5.5.1 we used Domino on a rectangular matrix; this requires some explanation. In the

following sections we shall define what we mean by a "left inverse" and a "right inverse" to a

given matrix.

Note: Domino uses Housholder transformations, a technique based on Lawson & Hanson

algorithm, an extension of Golub & Businger algorithm.

Spe 4.1 - Left Inverse of a Matrix

Let us recall the context: We intended to investigate a vector of values.

Y was a vector of values to investigate (for example a vector of expenses amounts).

M was a rectangular matrix containing a set of columns containing observations.

(For example: Number of salesmen, size of the area, number of customers, and so on…).

C was the coefficients of a "Least Squares line". They should be such as the sum of the

squares of differences between points on this line and the given points Y is minimal.

In mathematics three major properties can be demonstrated:

 Chapter K – Mathematical Functions 469

 The coefficients C can be obtained from Y by means of a linear regression or, in other

words, an Inner product involving a matrix Inv: C←Inv+.∲Y

 This matrix Inv is unique

 It can be obtained by the following formula: Inv←(⍂ (⍉M)+.∲M)+.∲(⍉M)

In this formula, the product (⍉M)+.∲M gives a square matrix, even if M is rectangular. This is

why we can calculate its inverse matrix using Domino.

If we refer to the definition of dyadic Domino, (⍂A)+.∲B can be written: B⍂A

So, the formula giving Inv can also be written: Inv←(⍉M)⍂ (⍉M)+.∲M

Let us see what happens if we multiply that formula by M on its right:

Given that Inv is equal to (⍂ (⍉M)+.∲M)+.∲(⍉M)

then Inv+.×M is equal to (⍂ (⍉M)+.∲M)+.∲(⍉M) +.∲M

Let us replace (⍉M)+.∲M by U

then Inv+.×M is equal to (⍂U)+.∲U which is the identity matrix I

Since Inv+.×M gives an identity matrix, we know that Inv is a true left inverse for M.

Rule: The left inverse Inv of a matrix M can be obtained by:

Inv ← (⍂ (⍉M)+.∲M) +.∲ ⍉M

This can be easily verified with the data we used in section 5.5.2, where our matrix of

explanatory factors (M here above) was calculated as follows:

 ∰Fact ← NbMen,Radius,NbCus,Income,[1.5]1 Our matrix of factors.

8 5

 ∰Inv ← (⍂ (⍉Fact)+.×Fact) +.× ⍉Fact Its left inverse.
5 8

The shape compatibility is satisfied, and we can multiply these matrices:

 ⌊0.5+ Inv +.× Fact
1 0 0 0 0 Once rounded, one can see it is an identity
0 1 0 0 0 matrix: Inv is really a left inverse for Fact
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

470 Dyalog APL - Tutorial

Spe 4.2 - Pseudo Right Inverse

We just saw that Inv is a left inverse for M; is it also a right inverse?

We calculated the coefficients C of the least squares line using this formula: C←Inv+.∲Y

Then we calculated the coordinates of points located on that line by: YLS←M+.∲C

Let us replace C by its definition from the first formula: YLS←M+.∲Inv+.∲Y

If Inv was a true right-inverse of M the product M+.×Inv would give an identity matrix I, and

YLS would be equal to Y. This is not the case: The difference is not zero, but is such that the

sum +/(Y-YSL)*2 is minimised.

In the expression Y-YLS, let us replace: YLS by M+.×Inv+.×Y

Then replace Y by I+.×Y (this does not change anything)

We reach the conclusion that Y-YSL is equal to (I+.×Y)-(M+.×Inv+.×Y)

Using Y as a common factor, this can be written like this: (I-M+.×Inv)+.×Y

If +/(Y-YSL)*2 is minimised, +/((I-M+.×Inv)+.×Y)*2 should be minimised too.

This property must remain true whatever the value of Y, including the case where Y equals 1.

This means that the value of Inv (calculated independently of Y) is such that it minimises the

expression:
+/(I-M+.×Inv)*2

We can say that Inv is a pseudo right-inverse matrix for M minimising +/(I-M+.×Inv)*2.

In APL, Domino has been extended to calculate such an inverse: Inv ← ⍂M

Spe 4.3 - Summary

In APL, a matrix M having more rows than columns has an inverse, which can be obtained by
⍂M. This value is strictly equal, within rounding errors, to any of the following formulas:

 Inv ← (⍂ (⍉M)+.∲M) +.∲ ⍉M

and Inv ← (⍉M) ⍂ (⍉M)+.×M

This matrix is a true left inverse of M, which means that the product (⍂M) +.∲ M gives an

identity matrix.

This matrix is also a pseudo right inverse of M. That is to say that the product does not give an

identity matrix, but a matrix J such that the sum +/(I-J)*2 is minimised.

The result of this is to minimise any expression of the form: +/((I-M+.×Inv)+.×Y)*2
whatever the value of Y.

This last property explains why Domino may be used to calculate linear, multi-linear, or

polynomial regressions.

 Chapter K – Mathematical Functions 471

Spe 4.4 - Scalars and Vectors

A scalar S is treated in such a way that ⍂S is equal to ÷S with the exception that 0÷0 equals 1,

while 0⍂0 signals a DOMAIN ERROR.

Vectors are treated like single column matrices:

 ⎕← CEV← ⍂ VEC←2 ¯1 0.5
0.380952381 ¯0.1904761905 0.09523809524

 CEV +.× VEC
1

 VEC +.× CEV
1

Mathematics applied to Finance

472 Dyalog APL - Tutorial

473

Chapter L: System Interfaces

1 - Overview

1.1 Commands, System Variables, and System Functions

Functions and operators, both primitive and defined, give us ways of processing data. We also

need tools to control the environment in which these functions execute, or to get information

about this environment. For example, we may need to know the list of existing variables or

functions, delete some of them, or get today’s date just to print it on a report.

 Some of the actions can be performed using System Commands, like)VARS or)SAVE.

 Some can be performed using System Variables or System Functions, like ⎕IO or ⎕FMT.

 Some can be performed in both ways, sometimes with small differences.

 Some can be performed using Windows facilities, like clicking a button on the toolbar.

This topic was discussed in section B-8, and we shall not mention it again.

System Commands, System Variables, and System Functions will together be called System

Interfaces.

There are more than 100 of such system interfaces, and we shall study some of them here:

 Some System Interfaces have been or will be studied in chapters dedicated to particular

topics. For example ⎕Fxxx and ⎕Nxxx functions will be studied in the chapter dedicated

to file processing; ⎕Wxxx functions will be studied with the GUI interface.

 Some System Interfaces are described in specialised brochures concerning, for example,

Object Oriented Programming, and will not be described in this tutorial.

 Some rarely used System Interfaces will not be presented at all. If necessary, you can refer

to the User Guide or to the on-line help.

Terminology In this chapter we will use the general term object to refer to a variable,

function, or operator. This should not be confused with the more formal

definition of an Object which is used in object oriented programming.

474 Dyalog APL - Tutorial

1.2 Common Properties

System Interfaces share some unusual properties:

 Like primitive functions and operators they are built into the system and therefore

available in any workspace.

 Their names begin with a special character, followed by a name or an acronym. For System

Commands the special character is a right (closing) parenthesis, for System Functions and

System Variables the special character is Quad (⎕). Examples:

)LOAD System Command for LOADing a workspace

⎕LOAD System Function for LOADing a workspace

⎕TS for Time Stamp

⎕IO for Index Origin

⎕AV for Atomic Vector

At first this may look a little strange, but it is also very practical. It is one of the

fundamental design principles of APL that there should not be any reserved names, so it is

important that these system names do not conflict with any user-defined names.

 Their names are not case sensitive (but their arguments may very well be, if they, for

example, refer to function or variable names).

System Commands are very special in two ways:

 They can only be executed by typing an expression into the Session, not from within a

function or operator - not even using the Execute function. This is why there is some

overlap between System Commands and System Functions; the latter may be executed in

functions and operators. Note however that in some cases a system command and its

corresponding system function may work slightly differently, as described later in this

Chapter.

 When they require a folder path and/or a workspace name as an argument, and the path or

the workspace name contain blanks, the entire file specification must be enclosed between

a pair of double quotes ("like this"). Otherwise the commands would not be analysed

properly by the system (blanks separate arguments to system commands) and would

therefore fail. For example:

)LOAD "d:\my data\results\year 2008" is correct

)LOAD d:\my data\results\year 2008 would fail

System Variables also have some special properties:

 They are always present and cannot be erased.

 They have a default value which can be modified by the user.

 Like ordinary variables they can be localised in a function header and within the function

may take a local value that is different from the global value.

 Chapter L –System Interfaces 475

 However, an ordinary variable that is localised in the function header has no default value,

and an attempt to use it before it has been assigned a value will result in a VALUE ERROR.

In contrast to this a localised system variable inherits its global value as its default value.

This means that it is safe to reference a localised system variable even if it has not been

assigned a value in the function. However in general it is best practice to assign it

explicitly in the function in which it is localised, before you use it.

1.3 Organisation

In Appendix 7 & 8 you can find an overall list of all System Interfaces.

Because of the large number of system interfaces we have decided to combine the descriptions

of System Commands with those of System Variables and Functions when they refer to similar

operations, and we have grouped them in the following overall sections:

 2 - Workspace Management

 3 - Object Management

 4 - Environment Control & Information

 5 - Function Definition and Processing

 6 - Debugging and Exception Trapping

 7 - Calculation Control

 8 - Character Processing, Input/Output

 9 - Miscellaneous

2 - Workspace Management

 2.1 Workspace Identification)WSID ⎕WSID

 2.2 Startup Expression ⎕LX

 2.3 Load a Workspace)LOAD ⎕LOAD)XLOAD

 2.4 Import Objects)COPY ⎕CY)PCOPY

 2.5 Explore a Workspace Library)LIB

 2.6 Clear the Active Workspace)CLEAR ⎕CLEAR

 2.7 Save a Workspace)SAVE ⎕SAVE

 2.8 Memory Space Available ⎕WA

476 Dyalog APL - Tutorial

2.1)WSID & ⎕WSID Workspace Identification

2.1.1 - Conventions

The full identification of a workspace, which is used when the workspace is saved or loaded,

is composed of a folder path, the workspace name, and a file extension. This can be

represented like this:

 wsid = {path} + wsname + {extension}

Under Windows, it is not necessary to specify the extension because if you omit it the default

extension DWS (DyalogWorkSpace) is added automatically. Any other extension is allowed. If

you want to name the workspace without an extension, you must include the dot (and nothing

else) after the name. Under UNIX and LINUX, there is no default extension, and nothing is

added to the name you specify.

In many cases the folder path is optional, too; this will be discussed in the following pages.

2.1.2 - Get Identification

The identity of the active workspace can be obtained using either a system variable or a

system command:

 ⎕WSID Query the current name
D:\Rumweiss\c7_APL\WS\Book_12

 ∰⎕WSID
35 The result is a vector

We could have obtained the same information by executing:)WSID

What we get identifies the file from which the active workspace was loaded, or in which it has

been saved most recently.

If the active workspace has not yet been given a name, its identity is reported as CLEAR WS.

This does not necessarily mean that the workspace is empty. It may well contain variables,

functions, etc., but it has not yet been saved or given a name.

2.1.3 - Change Identity

The identity of a workspace is often referred to verbally as its wsid – pronounced “wussid”.

One can change the wsid, including a new folder path, and a new extension, if needed. This

new wsid will be used the next time this workspace is saved.

 ⎕WSID ← 'G:\Secure\WS\Budget.old' Change path, name, and extension

 Chapter L –System Interfaces 477

The same could have been obtained by:)WSID G:\Secure\WS\Budget.old

With the system command)WSID do not forget to enclose the new wsid between a pair of

double quotes if it contains any blanks.

2.2 ⎕LX Startup Expression

Each workspace has a system variable named ⎕LX, containing a character vector which by

default is empty. You can assign it a character vector containing an APL expression. This

expression is automatically executed when the workspace is loaded, and before the control is

given to the user.

This is the reason why the variable is called Latent Expression.

A common approach is to set ⎕LX to the name of a function, which then will be started

automatically as soon as the workspace is loaded from a file. This may be used, for example

to start an application without any action from the user, or to prepare some variables, or to

display a welcome message.

To see how it works, let us write a function which displays a message and initialises a

variable.

 ∳ Starter
[1] ''
[2] 'Welcome aboard this WS'
[3] Date←100∫3↑⎕TS
 ∳

Then, let us assign the name of this function to ⎕LX, and save the workspace:

 ⎕LX ← 'Starter'

)save
d:\bernard\action\temp\Joke saved Sun Mar 16 11:01:50 2008

For the moment, nothing happens.

Now, some days later we load that workspace, and here is what will happen then:

)load Joke
d:\bernard\action\temp\Joke saved Sun Mar 16 11:01:50 2008

Welcome aboard this WS The message is immediately displayed

 Date And if we ask for the variable Date, it has
20080320 been updated

It may happen that a developer changes a few details in a workspace and saves it under

another name, again and again … so that after some weeks or months, he has a lot of similar

workspaces. In these circumstances ⎕LX may be helpful: It can be used to display a message

and remind the reader about the actual contents of this WS:

 ⎕LX ← '''Temporary version with new depreciation rules'''

)SAVE

478 Dyalog APL - Tutorial

But why three levels of quotes? The outermost level of quotes delimits the string to be

executed. Inside, a second set of quotes is used to delimit the message, but because those

quotes are themselves embedded within the outer quotes, they must be doubled.

In other words: ⎕LX ← 'Text' would execute a function (or variable) named Text
whereas: ⎕LX ← ''Text'' would cause a VALUE ERROR or a DOMAIN ERROR

but: ⎕LX ← '''Text''' will display the string 'Text'

The execution of a Latent Expression may sometimes be undesirable. For example, if the

programmer needs to maintain an application workspace it may not be appropriate to run the

initialisation program when the workspace is loaded for maintenance. The programmer might

also wish to trace through the initialisation function itself in order to locate a problem with it.

To avoid the execution of ⎕LX at load time, use)XLOAD rather than)LOAD, as shown in the

next section. If you are investigating an unknown workspace for the first time, it is wise to use

)XLOAD and inspect the Latent Expression rather than “risking it”.

2.3)LOAD,)XLOAD & ⎕LOAD Load a Workspace

2.3.1 - Normal Loading

This command replaces the contents of the active workspace by the specified workspace,

which had previously been saved to a file.

Beware: Everything in the active workspace will effectively be destroyed, and no warning

message will be issued.

The syntax is:)LOAD {wsid}

 ⎕LOAD 'wsid '

 If the extension is missing, "dws" is assumed under Windows.

 If the folder path is missing, Dyalog APL will search through the directories specified by

the "Workspace Search Path" which is set in the configuration dialog box:

Options Configure Workspace Workspace search path

 If the system command is issued without any wsid, the file search dialog box will be

activated, so that the user can browse for the appropriate file.

Once the workspace is loaded into memory, its Latent expression is executed.

Please refer to section Spe-2 to see how ⎕LOAD may work together with ⎕SAVE.

2.3.2 - Loading Without the Execution of ⎕LX

To avoid the execution of the Latent Expression, one can use)XLOAD instead of)LOAD. There

is no equivalent system function. This is sometimes called "Quiet Load".

 Chapter L –System Interfaces 479

2.4)COPY,)PCOPY & ⎕CY Import Objects

2.4.1 - Normal Copy

The syntax is:)COPY {wsid {objects}}

 {objects} ⎕CY 'wsid'

This command allows you to import (copy) all or selected objects from a stored workspace

into the active workspace. If no objects are specified in the command, all objects from the

stored workspace will be copied, otherwise only the specified objects (variables, functions,

operators, or namespaces) will be copied.

The list of objects to copy is specified:

 As a list of names, separated by blanks, for the system command

 As a matrix of names, or a list of names separated by blanks, for the system function. A

single name can be specified as a vector.

)COPY "H:\Common Data\JP Morgan" Rates Depreciate Compare

The objects Rates, Depreciate, Compare will be copied from the workspace JP
Morgan.dws. Because the wsid includes blanks, it has been enclosed within double quotes.

 Companies ← ↑'Areva' 'Exxon' 'Mittal' 'Boeing' 'SAAB'

 Companies ⎕CY 'G:\Secure\WS\Budget'

The objects mentioned in the left argument will be copied from Budget.dws.

2.4.2 - Exceptions

System variables are not copied, unless they are explicitly specified; for example:

)COPY G:\Secure\WS\Budget Boeing Nokia ⎕LX Compute ⎕CT

Objects contained in a Namespace can be copied, provided one gives the correct path:

)COPY Test Utilities.Prt.Print Utilities.Smooth

If one or more of the specified objects do not exist in the saved workspace:

 The system command reports their names in a warning message beginning by "Not
found"

 The system function reports a DOMAIN ERROR

If the system command)COPY is issued with no wsid, the file search dialog box will be

opened. However in this case, there is no provision to select specific objects to be copied; the

contents of the entire workspace will be copied.

480 Dyalog APL - Tutorial

Beware: Any existing, global objects in the active workspace with the same names as

copied objects will be replaced, with no warning.

To avoid this, one can use)PCOPY.

2.4.3 - Protected Copy

The command)PCOPY behaves much like)COPY, but if there is a name conflict, the objects

of the active workspace will not be destroyed, and an information message will tell you which

objects haven't been copied. There is no equivalent system function.

2.5)LIB Explore a Workspace Library

The syntax is)LIB {path}

This command lists the names of Dyalog APL workspaces contained in the given folder.

If no folder is specified, the workspaces in the user's workspace search path are listed. In this

case, the listing is divided into sections identifying the individual folders. The current folder is

identified by a simple dot (".").

Note: It is impossible to rely on the extension of a file to decide whether it is a workspace

or not: Some workspaces may have an extension different from "dws", and not all

files having a "dws" extension can be trusted to be APL workspace files.

For that reason, when the command)LIB is issued, Dyalog APL opens all the files

located in the specified folder(s) and examines their internal structure. If the

folder(s) contain hundreds of files this may take a significant amount of time.

2.6)CLEAR & ⎕CLEAR Clear the Active Workspace

The syntax is:)CLEAR

 ⎕CLEAR

This system command and this system function destroy the active workspace, and replace it

by a "clear" (i.e. empty) workspace containing no defined objects (variables, functions,

operators, namespaces, etc.). However, the empty workspace will contain all the built-in

system variables, whose values will be reset to their defaults.

Beware: If you have changed some variables or functions in the active workspace, they will be

discarded by the command (whether ⎕CLEAR or)CLEAR) without any warning message. For

this reason, we recommend that you use the "Clear" button in the session toolbar, which

requires confirmation.

 Chapter L –System Interfaces 481

2.7)SAVE & ⎕SAVE Save a Workspace

The syntax is:)SAVE {wsid}

 ⎕SAVE 'wsid'

The active workspace can be saved as a file by the system command)SAVE as well as by the

system function ⎕SAVE.

If the active workspace already has a name (because it has already been saved to a file, or

loaded from a file, or assigned a name by)WSID or ⎕WSID) you can use the command

)SAVE without specifying the name. This will save the current state of the workspace to the

same file (overwriting the previous content of the file). If this is your intention, it is wiser not

to specify the (same) path and name, to avoid the possibility of misspelling it:

)save
d:\bernard\action\temp\example saved Wed Mar 19 11:53:56 2008

The system function ⎕SAVE does not offer this possibility; it requires the wsid.

If the workspace has never been saved (a "clear" workspace), or if it should be saved under a

different wsid, the new identity must be specified. By "different wsid" we mean that either the

path, or the name, or the extension is different.

)save g:\shared\april\Poker.old
g:\shared\april\Poker.old saved Wed Mar 19 13:27:06 2008

The system function can do the same. It returns a shy result:

 ⎕save 'g:\shared\april\Poker.old'

The shy result returned from ⎕SAVE is a Boolean scalar 1 in the workspace in which the save

operation takes place. Please refer to section Spe-2 for more information about ⎕SAVE and

what happens when the saved workspace is subsequently loaded.

If the file identified by the new wsid already exists, the system command)SAVE will refuse to

overwrite the file (to avoid the accidental destruction of an existing workspace that you had

forgotten about) with one of the following warning messages:

Not saved, this WS is CLEAR WS When the active WS has never been saved

Not saved, this WS is BUDGET When the active WS already has another name

If you get one of the above error messages, either)SAVE the workspace using a different

name or use the system command)WSID to give the active workspace the correct name before

using)SAVE. The system function ⎕SAVE is different; it will overwrite the file without

complaining.

482 Dyalog APL - Tutorial

2.8 ⎕WA Memory Space Available

⎕WA is a niladic system function that returns the total free space in the working area, in bytes.

For example: 65149212

When Dyalog is started a certain amount of memory is allocated. As workspaces are loaded

and objects are created and destroyed, the amount of memory consumed grows (and

occasionally shrinks) subject to a pre-defined maximum value. This is a parameter that can be

viewed and changed in:

Options Configure Workspace Maximum workspace size (kB)

So, what ⎕WA reports is this maximum value, less the space occupied by functions, variables,

operators, etc. in the active workspace.

As a side effect, each time ⎕WA is invoked Dyalog APL carries out an internal reorganisation

of the workspace in order to maximise and determine the free space, as follows:

 Any un-referenced memory is discarded. This process is known as garbage collection.

 Numeric arrays are converted to their most compact form. For example, a numeric array

containing only the values 0 and 1 will be converted to Boolean representation, in which

each value only occupies one bit.

 All remaining used memory blocks are copied to the low address end of the working area,

leaving a single free block at the high address end. This process is known as compaction.

3 - Object Management

 3.1 Object Lists)VARS)FNS)OPS)OBS ⎕NL

 3.2 Name Category ⎕NC

 3.3 Delete Objects)ERASE ⎕EX

 3.4 Object Size ⎕SIZE

3.1)VARS,)FNS,)OPS,)OBS & ⎕NL Object Lists

3.1.1 - System Commands

The programmer can define different types of objects. For each type, a specific system

command gives the list of those objects in the active workspace:

 Chapter L –System Interfaces 483

 Variables)VARS

 Defined functions)FNS

 Defined operators)OPS

 Namespaces)OBS may also be spelled)OBJECTS

The concept of Namespaces will be studied later (Chapter O).

By default, these commands list all objects of their respective type:

)VARS
Charlebois Contents Damned1 Discount Emptiness
Goof Hundred M MixMat MixVec MonMat MonVec Money
MyIndex NesMat NesVec One Planning Presence Prod
Purchased Sales Tests Text Trailer Two V
Weird Years experiment what

The object names are listed in alphabetic order, but this order is different in the Unicode and

the Classic editions of Dyalog. In the Unicode Edition, all uppercase letters are ordered before

any lowercase ones. This is the reason why all the variables from Goof to Years are listed

before experiment in the example above. In the Classic edition all lowercase letters are

ordered before any uppercase ones, so experiment would have been ordered before

Charlebois, for example.

It is also possible to specify a letter after the command, to list only the names starting with

that letter or a later one. For example:

)FNS S
Search Show ShyFun Sorry Spin Split StudRepay SubSum
Switch Syra Syracuse Time Top Totalise Tox
Typeof Underline Upper VerMat Whiten Willitwork

3.1.2 - Name List

The system function ⎕NL (for Name List) returns the names of specific categories of objects in

the active workspace.

It accepts, as a right argument, one or more numbers. Each number refers to a particular

category of objects:

1 Labels (see Remark 1 below)

2 Variables

3 Functions

4 Operators

8 Events (see Remark 2 below)

9 Namespaces (see Remark 2 below)

Categories 8 and 9 refer to concepts that we have not seen yet.

484 Dyalog APL - Tutorial

The category numbers are the same as the ones reported by the system function ⎕NC.

So ⎕NL 2 returns the list of all our variables in the active workspace

 ⎕NL 3 returns the list of all our functions

 ⎕NL 2 3 4 returns the list of variables, functions, and operators

The result is a matrix of names, with one name per row, sorted in the order of ⎕AV.

If the argument (or one of its items) is negative, ⎕NL returns a nested vector instead:

 ⎕NL 4
DUAL
INDEF A matrix of operator names
INPRO
OPER

 ⎕NL ¯4
 DUAL INDEF INPRO OPER The same names, in nested form

By specifying a list of letters as a left argument, one can obtain only the names beginning with

one of those letters, sorted in the order of ⎕AV:

 'BU' ⎕NL 2 ¯3
BankNames BankVals Between Bignum Bot Boys
 BuildVars USA Underline Upper UpperCase

Note that this is quite different behaviour from that of the related system commands, shown in

the previous section, when a starting letter is given.

Remark 1 ⎕NL 1 returns a list of Labels. Labels are not defined until the functions

containing them are executing, so in a session with no suspended functions

⎕NL 1 will return an empty result. But if some functions are suspended,

their labels are defined (they are like read-only variables), and ⎕NL 1 will

return the list of all labels present in all suspended functions.

Remark 2 We shall see later that variables, functions, and operators, are not the only

possible categories of objects. Dyalog APL can also process Namespaces,

COM, GUI or .Net objects, and also Events, Methods, Properties associated

with them (see the section on ⎕NC).

To support these many kinds of objects, each category has been subdivided

into sub-categories. For example, Category 2 (variables) is divided into:

2.1 Normal variable

2.2 Field

2.3 Property

2.6 External or Shared variable

⎕NL has been extended to obtain all or part of a category:

⎕NL 2 returns objects of all the sub-categories (2.1 to 2.6)

⎕NL 2.3 returns only objects of the specified sub-category (Properties)

 Chapter L –System Interfaces 485

Warning! ⎕NL 2 and)VARS are not absolutely equivalent.

See section Spe-1 in the Specialist's Section for more information.

3.2 ⎕NC Name Category

Names are classified in a number of main categories, some of which are divided into sub-

categories. Traditionally these categories have been called Name Classes (this is what NC

stands for in ⎕NC), but here we will use the term categories, in order to avoid confusion with

the term class as used in object oriented programming.

The possible categories are shown in the table below:

Category Category Name Sub-category Description

¯1 none Invalid name

0 none Unused (free) name

1 Labels none

 2.1 Variable

2 Variables 2.2 Field

 2.3 Property

 2.6 External or Shared variable

 3.1 Procedural function

3 Functions 3.2 Direct function

 3.3 Derived or Primitive function

 3.6 External function

4 Operators 4.1 Procedural operator

 4.2 Direct operator

8 Events 8.6 External event

 9.1 Created using ⎕NS or)NS

9 Namespaces 9.2 Instance

 9.4 Class

 9.5 Interface

 9.6 External Class

 9.7 External Interface

The System function ⎕NC accepts a matrix of names with one name per row (or a single name

as a vector) and returns the category number for each name. For example:

486 Dyalog APL - Tutorial

 ⎕NC ↑ 'Salaries' 'Palindrome'
2 3 Salaries is a variable,

 while Palindrome is a function

We can now understand why in section D-7.3.3 we used ⎕NC to see whether the left argument

of an ambivalent function had been provided (answer 2) or not (answer 0).

When used with a simple (not nested) right argument, like the matrix produced by Mix for the

example below, ⎕NC gives only the main categories of those names, as shown here:

 ⎕nc ↑ 'Palindrome' 'Average' 'Forecast' 'OPER' 'DUAL'
3 3 2 4 4

This means that we have two functions, one variable, and two operators.

When used with a nested right argument, ⎕NC gives the sub-categories of the names, as shown

here:

 ⎕nc 'Palindrome' 'Average' 'Forecast' 'OPER' 'DUAL'
3.1 3.2 2.1 4.1 4.2

This answer gives much more detailed information:

Palindrome is a procedural function
Average is a direct function
Forecast is a variable
OPER is a procedural operator
DUAL is a direct operator

This also works for a single name, provided that it is enclosed:

 ⎕nc ⊂'Palindrome'
3.1

Note In addition, negative values in the result returned by ⎕NC identify names of

methods, properties and events that are inherited through the class hierarchy

of the current class or instance. These concepts belong to the object oriented

extensions to the APL language that have been implemented in Dyalog, but

which are not covered in this tutorial.

3.3)ERASE & ⎕EX Delete Objects

To remove objects (variables, functions, operators, namespaces, etc.) from the active

workspace, one can use:

The command)ERASE followed by a list of names, in any order

The function ⎕EX followed by a matrix of names with one name per row

 (or a simple vector or scalar for a single name)

 Chapter L –System Interfaces 487

The command elicits no positive confirmation message, but will report if a name is missing

(perhaps misspelled):

)Erase Plus Data Globish
not found Data

⎕EX produces a shy Boolean result:

1 For a well-formed name that is now available (if there was previously an object

with this name, it has been erased).

0 For a name that is not available (because the name is ill-formed, or an existing

object with this name could not be erased).

 ⎕ ← ⎕EX ¨ 'SubSum' 'Spin' '⎕IO' 'Absent' '6teen'
 1 1 0 1 0

The first, second and fourth names are valid. The third and fifth are not; "⎕IO" is the name of

a system variable, and system variables and system functions cannot be erased, and "6teen"

is an invalid name.

Note that even if a name does not represent an existing object, like "Absent", the answer is

still 1 because the name is now (as before) available.

Note 1 If a function is executing while being erased, it continues to run until its exe-

cution has been completed. However, the name becomes immediately

available for re-use.

Note 2 ⎕EX and)ERASE are not absolutely equivalent.

See Section Spe-1 in the Specialist's Section for more information.

3.4 ⎕SIZE Object Size

⎕SIZE returns the amount of memory space that one or more objects (e.g. variables or

functions) occupies. The answer is given in bytes; zero indicates that no object of this name

exists in this workspace:

 ⎕SIZE 'ReverBug' Applied to a function name
644

 ⎕SIZE ↑'Prod' 'Grumpf' 'Girls'
144 0 32 'Grumpf' does not represent an existing object

488 Dyalog APL - Tutorial

4 - Environment Control & Information

 4.1 Current Date & Time ⎕TS

 4.2 Print Precision ⎕PP

 4.3 Index Origin ⎕IO

 4.4 Account Information ⎕AI

 4.5 Programmable Function Keys ⎕PFKEY

4.1 ⎕TS Current Date & Time

⎕TS (acronym for Time Stamp) is a niladic system function that returns a seven item numeric

vector containing the current date and time, according to the computer's clock, in the

following order:

Year - Month - Day - Hours - Minutes - Seconds - Milliseconds

 ⎕TS
2008 3 15 14 20 7 296 If the host system does not allow such a high

 precision, milliseconds are reported as zero.

4.2 ⎕PP Print Precision

⎕PP is a system variable holding the maximum number of significant digits used to display

numeric values when no particular format is specified.

⎕PP may be assigned any integer in the range 1 to 17. Its default value in a clear workspace is

10

 ⎕PP
10 Default value

 1952÷117 ¯19 10 digits are shown, plus the decimal point

16.68376068 ¯102.7368421 and the negative sign.

 ⎕PP ← 17

 1952÷117 ¯19
16.683760683760685 ¯102.73684210526316

 ⎕PP ← 6

 1952÷117 ¯19
16.6838 ¯102.737

 Chapter L –System Interfaces 489

⎕PP is used as an implicit argument by monadic Format (⍃) and monadic ⎕FMT.

When numbers are formatted using the dyadic versions of ⍃ and ⎕FMT, ⎕PP is ignored:

 ⎕PP ← 6

 14 11⍃31÷253 37
 0.12252964427 0.83783783784 ⎕PP has been ignored.

⎕PP is also ignored when displaying integers:

 ⎕PP ← 6

 3184×1175 25319
3741200 80615696 We obtained more than 6 digits.

4.3 ⎕IO Index Origin

By default the origin of any set of indexes is 1, but this can be changed by means of the

system variable ⎕IO. For example:

 ⎕IO
1 Default value of ⎕IO

 vector ← 32 15 77 98 40

 vector[1 5] This works as usual.
32 40

 ∯7
1 2 3 4 5 6 7

 ⎕IO ← 0 If we set ⎕IO to zero, everything changes;

 vector ∯ 32 40 32 is no longer in position 1, but in position 0.
0 4

 vector[0 4]
32 40

 ∯7
0 1 2 3 4 5 6 And now ∯7 starts from 0, and stops at 6.

Beware!

Using ⎕IO←0 may sometimes be convenient, but it may also cause surprises because all the

functions that work on indexes or that use an Axis specification are affected:

⍋vector would give 2 1 5 3 4 with ⎕IO set to 1 (the default)

 but would give 1 0 4 2 3 with ⎕IO set to 0

Now, when you concatenate two matrices, the expression Boys,[1]Girls would not place

them one under the other, but side by side, giving:
MarkSuzy
PaulAnna
BillJane

490 Dyalog APL - Tutorial

To obtain them one under the other, one should write: Boys,[0]Girls

The same for Reduction: +/[1]2 3∰∯6 gives 3 12

 +/[0]2 3∰∯6 gives 3 5 7

Coding may be affected. For example, when searching for a value N in a vector V using Index

Of (dyadic Iota), we would like to check that the value was found.

In origin 1, the check is (V∯N)≤∰V

In origin 0, we must change this to: (V∯N)<∰V We must modify our code

Laminate is also affected.

Normally, to laminate two vectors one under the other, we should write: A,[0.5]B
With ⎕IO set to zero, that would place the vectors side by side in a matrix of 2 columns.

To obtain the desired result we must subtract 1 from the axis: A,[¯0.5]B

 'Hello',[¯0.5]'World'
Hello
World

The same consideration also applies to Mix (↑).

These are the only cases where an Axis can be negative.

Recommendation: In most cases it is possible to write expressions that work no matter

what is the value of ⎕IO. However, this will unavoidably clutter up

the code and make it less readable and maintainable. We therefore

recommend that you decide on either 1 or 0 as your global index

origin, and then stick to it throughout your application. If you need to

deviate from the global setting in a part of the application, do not

forget to localise ⎕IO in the appropriate functions.

4.4 ⎕AI Account Information

⎕AI is a niladic system function that returns a vector of 4 integer items:

⎕AI[1] is the user identification (usually 0 under Windows)

⎕AI[2] is the total computing time spent during the session, in milliseconds

⎕AI[3] is the total elapsed time for the session

⎕AI[4] is the keying time, the time during which the keyboard was available for input

 ⎕AI
0 359 215984 215796

 Chapter L –System Interfaces 491

The first item may be useful when sharing files, to identify who is accessing a given file. It is

also known as the Network ID. It is a parameter that may be viewed and set in:

Options Configure Network Network ID

The second and third items may be useful to compare the performance of two similar

programs.

4.5 ⎕PFKEY Programmable Function Keys

⎕PFKEY associates a sequence of keystrokes with a function key. When the user subsequently

presses that key, it is as if he had typed the associated keystrokes one by one.

This function has a monadic and a dyadic use:

 R ← ⎕PFKEY KeyNumber Returns the current setting of the specified key

R ← 'Characters' ⎕PFKEY KeyNumber Defines a new setting for the specified key

In the second use (dyadic) the result R is identical to the left argument. Because this is

generally useless, the result is often assigned to a dummy variable.

The key number is an integer scalar in the range 0-255. On a Windows-based computer 1 to

12 correspond to the top row F1-F12 keys, 13-24 to Shift-F1-F12, 25-36 to Ctrl-F1-F12, and

37-48 to Shift-Ctrl-F1-F12.

If the key has not been defined previously, the monadic use (query) returns an empty character

vector.

In the dyadic use, the left argument is a simple or nested character vector defining the new

setting of the key. This new value is returned in the result R.

The items of that argument are either character scalars or enclosed 2-item character vectors

which specify special input codes.

In the Unicode Edition, these codes can be found in the dialog box Options Configure

Keyboard Shortcuts.

In the Classic Edition, the codes can be found in the Input Translate Table. The Input

Translate Table is a text file with the file extension ".DIN" that resides in the aplkeys sub-

folder within the Dyalog installation folder. You can examine the files uk.din or us.din to find

codes for special keys, and you can read more about Input Translate Tables elsewhere.

Example 1

Imagine we enter the following statement: Garbage ← '2+2'⎕PFKEY 3

492 Dyalog APL - Tutorial

The key F3 is now defined, and if we press it, we will see the characters "2+2" appear on the

screen as if we had typed them, with the cursor positioned immediately to the right of the last

2:

 2+2|
 Cursor

To have this statement executed, we need to press the Enter key.

To have the Enter actioned automatically we can program F3 to virtually "type" not only 2+2

but also the Enter key. To achieve this, we use the appropriate Input code. In the section

"Special functions" of the Input Translate Table, we can see that the action "Enter" is

represented by the code "ER". To make this 2-item code represent a single keystroke, we must

enclose it. So:

 '2+2',⊂'ER' represents 4 keystrokes: "2+2" followed by the Enter key

We can redefine our function key like this:

 Garbage ← ('2+2',⊂'ER')⎕PFKEY 3

And now, if we press F3 again, it automatically displays and executes our statement:

 2+2
4

Example 2

In order to restart an interrupted function at the very point where it was interrupted, one

possibility is to type →⎕LC and press the Enter key.

If we want to program key F9 to do this for us we just have to enter:

 Garbage ← ('→⎕LC',⊂'ER') ⎕PFKEY 9

With this technique, one can easily program some function keys to execute frequently-used

system commands like:)VARS,)FNS,)OPS,)OBS,)RESET, etc.

Programmable function keys are recognised in any of the three types of windows (Session,

Edit and Trace windows) provided by the Dyalog APL development environment.

Example 3

In this section we have repeatedly assigned a result that we are not at all interested in to a

dummy variable named Garbage. There is another technique to avoid seeing unwanted

results without creating an unwanted name. It makes use of the simplest possible direct

function: It does not do anything; it just absorbs the value as its right argument, but it does not

return a result. Using this technique we can write the expression shown in Example 2 above

like this:

 {} ('→⎕LC',⊂'ER') ⎕PFKEY 9

 Chapter L –System Interfaces 493

5 - Function Definition and Processing

 5.1 Edit Objects)ED ⎕ED

 5.2 Function Representations ⎕CR ⎕NR ⎕VR ⎕OR

 5.3 Function Creation ⎕FX

 5.4 Name Shadowing ⎕SHADOW

 5.5 Locking a Function ⎕LOCK

 5.6 Internal References ⎕REFS

 5.7 Function attributes ⎕AT

In this section we will describe how these system commands and system functions may be

used to work with user defined functions. However, everything we say also applies to user

defined operators, even if we do not say so explicitly in the following paragraphs.

5.1)ED & ⎕ED Edit Objects

To create a new function or variable, we earlier used the system command)ED. One can also

use the system function ⎕ED.

There is a difference, however. When using)ED to create a new object, one can specify the

type of object to create by prefixing the name with a special symbol (cf. section D-3.3.4). This

is also possible with ⎕ED, but the symbol is specified in the left argument.

5.2 ⎕CR, ⎕NR, ⎕VR & ⎕OR Function Representations

A function (or operator) can be displayed in 4 ways. Three of them are character

representations, while the last one is a special internal representation. Each serves a different

purpose.

The way that a function is entered in the editor and the way that APL displays it may be

different. When you open a function for editing, Dyalog will have "cleaned it up", so that the

body of the function is presented in a standard form:

 Unnecessary blanks are removed, except for leading indentation of control structures and

the blanks in comments.

 Control structure keywords like ":ElseIf" are "normalised", with each word beginning

with an uppercase letter, as in: ":For", ":Select", ":While", ":EndFor", etc,

494 Dyalog APL - Tutorial

 System variables and system functions are in upper case letters: ⎕TS, ⎕CR, ⎕PFKEY, etc

 If the function contains Labels, they are aligned at the left margin, and the statements not

containing labels are indented one character (or more if they are embedded in control

structures).

Hint: During an edit session you may have made so many and such complicated changes

that the text has become severely muddled, and you wish you could have the nice

and clean formatting that APL will provide when the function is saved and re-

opened. Your wish can easily be fulfilled - just select the menu item Edit

Reformat or press the / key on your numeric pad.

5.2.1 - Canonical Representation

The Canonical Representation of a function or an operator (⎕CR) is a text matrix containing

the source code text of the function/operator (i.e. a "normalised" presentation of the characters

you typed to define it):

 Mat ← ⎕CR 'DemoCR'

 ∰Mat
12 53

 DISPLAY Mat
┌→──┐
∸ Y←DemoCR Y;Last;Next │
│ ⍝ Just to demonstrate what ⎕CR means │
│ →(Y=0)/Process │
│ 'Zero is not a valid argument' ⋄ →0 │
│Process:Y←,Y ⍝ Label at the left margin │
│ :While 1<Last←Y[∰Y] ⍝ Indented statement │
│ :If 0=2|Last ⍝ Preserved indentation blanks│
│ Y←Y,Last÷2 │
│ :Else ⍝ Normalised Keywords │
│ Y←Y,1+3∲Last │
│ :End │
│ :End │
└───┘

If the argument to ⎕CR is the name of a variable, or a Locked function or operator, or an

external function, or is undefined, the result is an empty matrix whose shape is 0 0.

This matrix representation is useful when one function needs to process the text of one or

more other functions, for example in order to search for a given word, or to dynamically

modify some statements, and then transform it back into a function using ⎕FX (cf. section 5.3).

5.2.2 - Nested Representation

The Nested Representation of a function (⎕NR) is a nested text vector containing the same

characters as ⎕CR, with the same normalisation, except that the trailing blanks are removed:

 Chapter L –System Interfaces 495

 u ← ⎕NR 'Palindrome'

 ∰u
4

 DISPLAY u
┌→── ... etc …
│ ┌→──────────────────────────┐ ┌→───────────────────┐ ┌→─── ...
│ │ Z←Palindrome vector;torvec│ │ vector←Upper vector│ │ tor ...
│ └───────────────────────────┘ └────────────────────┘ └──── ...
└∮── ...

5.2.3 - Vector Representation

The Vector Representation of a function (⎕VR) gives the same visual representation as the

ones used in this book, with beginning and ending Del characters (∳, "carrots") and statement

numbers to the left. ⎕VR is a simple text vector containing "NewLine" characters (⎕UCS 13) at

the end of each statement, so that the display continues at the left margin.

 ∰Visu ← ⎕VR 'Palindrome'
122 It is a simple vector.

 +/Visu = ⎕UCS 13
4 It contains 5 lines of text separated by 4

NewLines.

 Visu
 ∳ Z←Palindrome vector;torvec
[1] vector←Upper vector
[2] torvec←ReverBug vector
[3] Z←∧/torvec=vector
 ∳

This representation is very convenient to display a function and copy it into documentation or

into a book.

5.2.4 - Object Representation

The Object Representation of a function (⎕OR) is used to convert a function, operator or

namespace to a special form that may be assigned to a variable and/or stored on a file.

 Orep ← ⎕OR'Palindrome'

 Orep is a scalar of depth 1.

 The type of that object (∮Orep) is itself.

 ∰∰ Orep ← ⎕OR'Palindrome' It is a scalar
0

 ≡ Orep Its depth is 1
1

496 Dyalog APL - Tutorial

These unique characteristics distinguish the result of ⎕OR from any other object.

If displayed, the Object Representation of a function has the same visual appearance as its

⎕VR.

 Orep
 ∳ Z←Palindrome vector;torvec
[1] vector←Upper vector
[2] torvec←ReverBug vector
[3] Z←∧/torvec=vector
 ∳

Applied to a variable, the result of ⎕OR 'variable' is its value unchanged.

 ⎕OR 'Boys'
Mark
Paul
Bill

⎕OR can be used to store functions and operators in Component files in order to quickly load

them into the workspace when required, cf. chapter N. It is significantly faster than using ⎕CR,

⎕NR, or ⎕VR.

5.3 ⎕FX Function Creation

Given any of the possible representations of a function or operator (⎕CR, ⎕NR, ⎕VR, or ⎕OR),

⎕FX can be used it to Fix (create) the corresponding function, whatever the technique used to

produce that representation.

⎕FX returns a shy result which is the name of the function just created.

If the function cannot be created because there is an error in the representation, the result is

the row number in the canonical representation in which the first error was detected.

 ⎕NC 'Divide' There is no function with this name
0

 ∰ matrix←↑'z←a Divide b' 'z←a÷b'
2 12

 Chapter L –System Interfaces 497

 matrix We just created a text matrix very similar to
z←a Divide b a canonical representation.
z←a÷b

 ⎕ ← ⎕FX matrix Let us "Fix" it, and explicitly ask for the result.
Divide The result is the name of the function just created.

 ⎕NC 'Divide'
3 This is the proof that we created a function.

 36 Divide 12 Now we can use it.
3

If a function already exists with the chosen name, it is replaced by the newly fixed function

without any warning.

⎕FX can be used to restore and use functions stored on a Component file (generally using their

Object Representations), or for example to generate sets of functions whose code can be

dynamically built from a character array by a master function.

5.4 ⎕SHADOW Name Shadowing

A name can be localised in a function header by the programmer. But a function can also

dynamically define new variables or new functions, by the means of Execute (⍎) and ⎕FX.

In some cases such variables or function names cannot be localised statically, because their

names are not known to the programmer. Instead they can be localised dynamically; we use

the term Shadowed.

For an example, see Chapter D, section Spe-1.

5.5 ⎕LOCK Locking a Function

It is possible to hide the source code of one of more functions or operators from another APL

developer. This may be used to prevent piracy, or just to prevent the code from being

(accidentally) changed by unauthorized people.

The monadic syntax is: ⎕LOCK 'name' where "name" is the name of a function.

Once locked, the function can be used, but it cannot be edited. Stop or trace vectors, formerly

set by the ⎕STOP and ⎕TRACE functions, or set manually, are cancelled.

Warning! A locked function cannot be unlocked: Remember to store an unlocked copy

somewhere before you lock it!

⎕LOCK also has a dyadic use: protection ⎕LOCK 'name'
 where "protection" specifies to what extent the function code is hidden.

498 Dyalog APL - Tutorial

This left argument may be 1, 2, or 3 (the default) with the following meaning:

1 The object may not be displayed and you may not obtain its character form using any of

the functions ⎕CR, ⎕VR or ⎕NR. The object, and any objects it calls, may be suspended as

usual, but the content of the function or operator lines will not be displayed in the trace

windows.

2 Execution cannot be suspended with the locked function or operator in the state indicator.

On suspension of execution the state indicator is cut back to the statement containing the

call to the locked function or operator. It is still possible to obtain the function or operator's

character representation.

3 You can neither display the locked object nor suspend execution within it.

Locks are additive, so that 1 ⎕LOCK'FOO'

 2 ⎕LOCK'FOO'

is the same as: 3 ⎕LOCK'FOO'

5.6 ⎕REFS Internal References

This system function gives a list of all the names referenced inside a function, including the

function name itself, its arguments, result, labels, variables, and called functions and

operators, but excluding distinguished names of system variables and functions (even if they

are localised).

The syntax is: R← ⎕REFS Y

Y must be a simple character scalar or vector, identifying the name of a function or operator,

or the object representation form of a function or operator.

R is a simple character matrix, with one name per row, sorted in alphabetic order.

For example, applied to the function DemoCR used in this chapter, we would obtain:

 ⎕REFS 'DemoCR'
DemoCR Function name

Last Local variable

Next Local variable (unused)
Process Label
Y Argument & result

5.7 ⎕AT Function Attributes

The attributes of a function or operator refer to its syntax and other useful information.

The syntax is: R ← {X} ⎕AT Y

 Chapter L –System Interfaces 499

Y is a simple character scalar, vector or matrix, or a vector of character vectors representing

the names one or more defined functions or operators.

 Used dyadically with X equal to 1, 2, 3, or 4, this function closely emulates IBM's APL2

implementation. This will not be studied here; please refer to Dyalog's on-line help.

 Used monadically, ⎕AT returns information that is more appropriate for Dyalog APL.

The result is a 4 column matrix with the same number of rows as names in Y, containing the

following attribute information:

In the first column R[;1], each item is a 3-item integer vector representing the function

header syntax, with the following conventions:

1 Function result
 0 The object has no result

 1 The object has an explicit result

 ¯1 The object has a shy result

2 Function valence
 0 The function has no arguments (Niladic)

 Or this is not a function

 1 The function is Monadic

 2 The function is Dyadic

 ¯2 The function is Ambivalent or is a D-Fun

3 Operator valence
 0 This is not an operator

 1 The operator is Monadic

 2 The operator is Dyadic or is a D-Op

For example:

∳ FOO would be described by: 0 0 0

∳ Z←FOO would be described by: 1 0 0

∳ {Z}←A FOO B would be described by: ¯1 2 0

∳ {A} FOO B would be described by: 0 ¯2 0

∳ {Z}←(F OP G)B would be described by: ¯1 1 2

Note that for operators the first two items (function result and valence) describe the operator's

derived function.

In the second column R[;2], each item is the timestamp (in ⎕TS form) of the time the

function was most recently fixed. For Direct functions and operators defined by an assignment

(without using the editor), this information is set to 7∰0, as shown in the third row of the

example below. If they later are modified using the editor, the timestamp will be updated.

In the third column R[;3], each item is the current ⎕LOCK state of the function:

0 Not locked

1 Cannot display function

2 Cannot suspend function

3 Cannot display or suspend

500 Dyalog APL - Tutorial

In the last column R[;4], each item is a character vector giving the network ID of the user

who last fixed (edited) the function. For Direct functions and operators defined by an

assignment (without using the editor), this information is empty.

In the example below, to facilitate the interpretation, we have presented the results in

columns, though this is not how they will appear on your screen:

 ⎕AT 'Interlace' 'ReverLoop' 'Average' 'DUAL'

 1 2 0 2007 12 18 15 8 39 0 0 InterFluences
 1 1 0 2008 1 15 18 4 25 0 0 User
 1 ¯2 0 0 0 0 0 0 0 0 0
 1 ¯2 2 2007 11 23 17 24 27 0 0 InterFluences

6 - Debugging and Event Trapping

Most System Interfaces related to debugging facilities have already been studied in the

preceding chapters, or will be studied soon in a dedicated chapter:

Interface Symbol Refer to

 Diagnostic Message ⎕DM E-1.1.2

 Line Counter ⎕LC E-1.1.3

 State indicator ⎕SI &)SI E-1.1.3

 State indicator with Name List)SINL E-Spe-2

 Clear stack)RESET E-1.3.1

 Event Number ⎕EN E-1.3.1

 Set/Query Breakpoints ⎕STOP E-3.4

 Set/Query Trace points ⎕TRACE E-3.4

 Extended State Indicator ⎕XSI E-Spe-3.1

 NameSpace State Indicator ⎕NSI E-Spe-3.2

 Exception trapping ⎕TRAP M-2.3

 Exception signal ⎕SIGNAL M-3

 Exception Message ⎕EM M-2.1

 Chapter L –System Interfaces 501

7 - Calculation Control

7.1 Already Studied

We have already studied some System Interfaces relating to calculation control in the

preceding chapters:

Interface Symbol Refer to

 Division control ⎕DIV C-Spe-1

 Migration level ⎕ML I-9

 Random link ⎕RL K-Spe-2

7.2 ⎕CT Comparison Tolerance

Imagine you have a desktop calculator with a calculation precision limited to 5 digits.

If so 1÷3 would give 0.33333

and then 3×1÷3 would give 0.99999

It appears that 3×1÷3 is not equal to 1, and the expression 1=3×1÷3 would return 0!

Something mathematically true may no longer be true if limited by the computer's precision.

Of course the precision of modern computers is much higher than this, but please be aware of

the following:

 The internal representation of many values would require an infinite number of bits, very

much like 1÷3 would require an infinite sequence of decimal digits in our decimal system.

When limited by their internal representations, such values are rounded, and give rise to

very small inaccuracies. For example, a not very exotic value like 0.1 cannot be

represented exactly in the binary representation used by most computers' processors.

 Some mathematical calculations may require a large number of operations; then the

unavoidable inaccuracies may add up, or even be multiplied by large numbers, and hence

become visible. For examples of this, please recall the calculations of a matrix inversion

(section K-5.2.1) and a trigonometric function (section K-4.3.3).

In order to compensate for inaccuracies due to the limited precision of numbers APL

considers two numbers to be equal if the difference between them is within a (small) range (or

tolerance level).

502 Dyalog APL - Tutorial

This tolerance level is defined by the system variable ⎕CT (for Comparison Tolerance). It is

possible to adjust the size of the tolerance level by assigning a value to ⎕CT.

Two numbers A and B will be considered equal if: (|A-B)≤⎕CT∲(|A)⌈(|B). In other words,

they are declared equal if the relative difference between them is smaller than or equal to ⎕CT.

 ⎕CT may be assigned any value in the range from 0 to 16*¯8.

 A value of 0 ensures exact comparison.

 The value in a clear workspace is 1E¯14.

 ⎕CT Default configuration
1E¯14

 1 = 1.00000000000001 1.0000000000001
1 0

 ⎕CT←1E¯15 ⋄ 1 = 1.00000000000001 1.0000000000001
0 0

 ⎕CT←1E¯13 ⋄ 1 = 1.00000000000001 1.0000000000001
1 1

The choice of 1E¯14 for the default value is a compromise: With too low a value two

numbers which differ only because of the limited precision of the computer would be

considered different, and with a too large value too many numbers that are "really different"

would be considered equal.

The computer's precision is approximately 2E¯16, so the default value 1E¯14 is sufficiently

larger than that to compensate for many inaccuracies, while still small enough to allow

numbers with up to approximately 14 significant digits to be considered different.

An area in which the limited precision of the computer may really become a problem is in

applications dealing with large monetary amounts in low valued currencies. For example, the

two values hereafter are considered equal, even though their last three digits differ:

 5678901234567893 = 5678901234567949
1

Comparison Tolerance does not apply to comparisons between integers, but the two numbers

above are too large to be stored as 32-bit integers, and are thus represented as floating-point

values in Dyalog APL.

The following functions use Comparison Tolerance as an implicit parameter:

All the comparison functions < ≤ = ≥ > ≠

Match and Natch ≡ ≢

Floor and Ceiling ⌊ ⌈

Index Of and Membership ∯ ∮

Unique ∪

Without ~

Union and Intersection ∪ ∩

 Chapter L –System Interfaces 503

7.3 ⎕DL Delay

⎕DL is used to make a function pause for a certain number of seconds before continuing. The

function takes the desired number of seconds as its right argument, and returns as a shy result

the exact length of the pause, in seconds (which may deviate slightly from the requested time,

but will always be greater than or equal to the requested delay).

 ⎕DL 2

If necessary, the pause can be interrupted by a strong interrupt.

⎕DL can for example be used to slow down a loop to have it wait for external conditions

without using computer resources. Another use is in a test environment to simulate that two

programs (on the same or on different computers) run at different speeds.

8 - Character Processing, Input/Output

 8.1 Atomic Vectors ⎕AV ⎕AVU

 8.2 Unicode Conversions ⎕UCS

 8.3 Terminal Control ⎕TC

 8.4 Alphabet & Digits ⎕A ⎕D

 8.5 Null Item ⎕NULL

8.1 ⎕AV & ⎕AVU Atomic Vectors

In earlier versions of Dyalog APL (prior to Version 12) and in Version 12 Classic Edition,

characters were always stored in one byte each, as an index into the vector of all 256 possible

characters, called the Atomic Vector, or ⎕AV.

⎕AV was useful to get some special characters which cannot be entered via the keyboard. For

example, line-drawing characters are normally typed by pressing the Ctrl key in conjunction

with one of the numeric pad keys. But if the keyboard has no numeric pad, they can be

obtained from ⎕AV[220+∯11]. The horizontal and vertical bars are in ⎕AV[226 231], and

the 9 other ones are in the following order:
 ┌┬┐
3 3∰⎕AV[220+3 10 2 7 5 8 4 9 1] ├┼┤
 └┴┘

504 Dyalog APL - Tutorial

In the Unicode Edition (Version 12 and after), ⎕AV is now obsolete, and it is recommended

that you do not use it any more. In Unicode, characters are internally represented by numbers

or code points, which allow representing about 100.000 characters, including characters used

in all of the world's languages, and some special character sets like the APL one. Each code

point occupies 1, 2, or 4 bytes.

⎕AV still exists, but only to allow old code which references it to continue to run. The Unicode

Atomic Vector ⎕AVU defines ⎕AV as a list of 256 code points. If you are migrating from

Classic to Unicode, you can redefine ⎕AVU so that it corresponds to the font that you were

using in Classic, so that data that you read from files or workspaces created by Classic are

correctly translated to Unicode.

8.2 ⎕UCS Unicode Conversions

The function ⎕UCS (Universal Character Set) converts characters into code points and vice

versa:

 ⎕UCS 'Dyalog APL'
68 121 97 108 111 103 32 65 80 76

 ⎕UCS ⎕UCS 'Dyalog APL'
Dyalog APL

 ⎕UCS 123 40 43 47 9077 41 247 9076 9077 125
{(+/∱)÷∰∱}

 ⎕UCS 3 3∰⎕AV[220+3 10 2 7 5 8 4 9 1]
9484 9516 9488
9500 9532 9508 The code points for the line-drawing characters
9492 9524 9496 shown above.

We can observe that ⎕AV is identical to ⎕UCS ⎕AVU.

⎕UCS has also a dyadic use, to translate Unicode characters into one of three standard

variable-length Unicode encoding schemes, UTF-8, UTF-16 and UTF-32. For example:

 'UTF-8' ⎕UCS '∭'
226 141 186

This means that the alpha character (∭), which has code point number 9082, is represented as

the above three bytes when encoded using UTF-8. Please refer to the on-line help for more

information on these conversions.

8.3 ⎕TC Terminal Control

Some characters cannot be entered between quotes from the keyboard; this is the case for

control characters like Enter, Backspace, Escape, etc.

Three of these special characters are returned by a niladic system function named ⎕TC:

 Chapter L –System Interfaces 505

In the default configuration, ⎕TC returns Backspace, Linefeed, Newline.

In an IBM-like configuration (with ⎕ML←3), the order is: Backspace, Newline, Linefeed.

With the introduction of Unicode support and ⎕UCS, ⎕TC has become obsolete. We strongly

recommend using ⎕UCS, with the following equivalences:

Backspace ⎕UCS 8

Linefeed ⎕UCS 10 These equivalences are independent of ⎕ML

Newline ⎕UCS 13

8.4 ⎕A & ⎕D Alphabet & Digits

It is sometimes necessary to use the vector of upper case letters; it is given by ⎕A.

Similarly, the vector of numeric digits 0 to 9 is given by ⎕D.

Because the names of system functions are not case-sensitive, both ⎕A and ⎕a return the

uppercase alphabet; there is no system function that returns the lower case alphabet. You can

obtain it using ⎕UCS:

 ⎕A,'/',⎕D,'/',⎕UCS 96+∯26
ABCDEFGHIJKLMNOPQRSTUVWXYZ/0123456789/abcdefghijklmnopqrstuvwxyz

8.5 ⎕NULL Null Item

⎕NULL is a reference to a null item, which may be returned across the COM interface.

For example, ⎕NULL is what you get when you import (read) all or part of an Excel worksheet

when some cells are empty. The following statements will be studied later in this book, but

you can test them. Just replace "MyBook" by the path and name of one of your Excel

workbooks:

 xl←⎕NEW'OleClient'(⊂'ClassName' 'Excel.Application')

 xl.Workbooks.Open⊂'MyBook.xls'

 Contents←xl.ActiveWorkbook.ActiveSheet.UsedRange.Value2

The result in Contents is a nested matrix in which each item corresponds to one cell in the

worksheet. All items corresponding to empty cells contain the scalar ⎕NULL. ⎕NULL is

displayed as [Null]; in the example below the empty cells have been printed in black to

make them more visible. Similarly, you must use ⎕NULL when you want to update a

worksheet cell to become empty.

506 Dyalog APL - Tutorial

 Contents
 2011 [Null] [Null] Sales [Null] [Null] [Null]
Updated [Null] November 10 2007 [Null] [Null]
 Year Coffee Tea Chocolate Soda Sugar Totals
 Germany 8607 562 3200 3210 816 16395
 Italy 9200 [Null] 2800 3300 850 16150
 Canada 9500 600 [Null] 3600 860 14560
 France 10000 600 [Null] 4000 870 15470
 Others 340 120 1050 830 410 2750
 Totals 37647 1882 7050 14940 3806 65325

To produce a "map" of filled and empty cells, you can use: ~Contents∮⎕NULL

For the example above the result would be:

1 0 0 1 0 0 0
1 0 1 1 1 0 0
1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 0 1 1 1 1
1 1 1 0 1 1 1
1 1 1 0 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1

⎕NULL is a Namespace Reference (or Ref in short); this concept will be explained in chapter

O, section 2.1. It is seen like a scalar containing a reference to a Namespace:

 ∰⎕null Its shape is empty

 ≡⎕null Its depth is zero
0

 DISPLAY ⎕null
[Null]

⎕NULL may be used in any context that accepts a Namespace Reference, in particular:

 As the argument to a defined function.

 As an item of an array.

 As the argument to all primitive functions that do not require numeric arguments like, for

example: ≡, ≢, =, ≠, ∰, ⊂, ⊃, etc...

 However: It is not recommended that you use ⎕NULL as a general null value marker in

arrays other than those used to communicate with COM components. Introducing a ⎕NULL

into a numeric array will turn it into an array of references, and make it very inefficient to

handle.

 Chapter L –System Interfaces 507

9 - Miscellaneous

9.1 ⎕OFF &)OFF Quit APL

This system function or command terminates an APL session. Note that you are not prompted

by a dialog box to save your work or be given the opportunity to re-consider.

⎕OFF is used to have a function close the application and return to the calling environment

(Windows or Unix).

9.2 ⎕SH, ⎕CMD,)SH &)CMD Host System Commands

⎕SH and ⎕CMD are synonyms and stand for "Shell" and "Command", respectively. Those two

commands are used to ask the host system (DOS or UNIX) to execute a command and return

the result to the APL session.

If the command produces output, the output is returned as a nested vector, with one vector per

line of text. When displaying the result, you can make it more readable if you first transform it

into a matrix, as shown:

 u←⎕SH 'set'

 ↑u
ALLUSERSPROFILE=C:\Documents and Settings\All Users
APPDATA=C:\Documents and Settings\Utilisateur\Application Data
CLASSPATH=.;C:\Program Files\Java\jre1.5.0_10\lib\ext\QTJava.zip
CLIENTNAME=Console
CommonProgramFiles=C:\Program Files\Fichiers communs
COMPUTERNAME=INTERFLUENCES
ComSpec=C:\WINDOWS\system32\cmd.exe

... and so on.

This technique is not recommended under Windows, at least in a production environment,

because it needs to first initialise a DOS command environment: It is slow, and it may be

somehow fragile, as it is sensitive to the exact configuration of the environment. Please refer

to the on-line help description of ⎕CMD for the Windows environment or ⎕SH for the Unix

environment. If you need to use Windows functionality it is better to use ⎕NA to access it

directly from one of the many DLLs that are provided with Windows.

One can also use the equivalent system commands:)SH and)CMD.

508 Dyalog APL - Tutorial

9.3 ⎕PW Page Width

This command is used to define the number of characters which can be displayed on the

screen on a single line of text before it is folded onto a new line. For example:

 ⎕pw
35

 50∰'123456789 '
123456789 123456789 123456789 12345
 6789 123456789

By default, when APL is started it is set the same as your last session configuration but it can

be modified:

 ⎕PW←120

Then it can be saved in the Session Namespace ⎕SE using the menu Session Save.

If you close your Dyalog session using the Windows shortcut key Alt-F4, or by clicking on

the close button in the upper right hand corner of the window, you will see a pop-up window

in which you are asked whether you wish to save the session configuration:

Figure L-1

The current value of ⎕PW (and other session settings) will only be remembered until next time

you start Dyalog if the Save Session Configuration option is checked.

If an attempt is made to display a line wider than ⎕PW, then the display will be folded at or

before the ⎕PW width, and the folded parts will be indented 6 spaces. The display of a simple

numeric array may be folded at a width less than ⎕PW so that individual numbers are not split.

⎕PW only affects output to the APL session made by using ⎕, or by letting APL display a result

instead of assigning it to a variable or re-using it in a further expression. It does not affect the

output made by using ⍞.

If APL is started with the auto_pw parameter set to 1, ⎕PW is reset dynamically whenever the

session window is resized. Under these circumstances, a value assigned to ⎕PW will only be

effective until the session window is next resized. The auto_pw parameter can also be set via

Options Configure Session Auto PW.

 Chapter L –System Interfaces 509

The Specialist's Section

Each chapter is followed by a "Specialist's Section" like this one.

This section is dedicated to skilled APLers, who wish to improve their knowledge.

If you are exploring APL for the first time,

skip this section and go to the next chapter

Spe-1 Commands vs. System Functions

There is an important difference between)ERASE and ⎕EX, and)VARS does not work exactly

like ⎕NL 2: System commands like)ERASE and)VARS refer to global names, while system

functions like ⎕EX and ⎕NL 2 refer to local names.

This may become important when a local variable has the same name as a global one, and if

an operation is done while the function is active or suspended.

Let us create a variable and an erroneous function:

 ∳ R←Crash Y;Var
[1] Var←Y+1
[2] R←10∲Var)
 ∳

 Var←'For sure, I am a GLOBAL variable'

 Crash 5 As expected, the function crashes
SYNTAX ERROR but we don't care!
Crash[2] R←10∲Var)
 ∧

)erase Var Surprisingly, though we deleted Var it is still

 Var present: We destroyed the global variable, and
6 what we see now is the local one.

 → Exit the stack.

 Var Confirmation: When we get out of the suspended
VALUE ERROR function, we can see that the global variable has
 Var been killed.
 ∧

Let us retry, but instead of)ERASE, we shall use ⎕EX:

510 Dyalog APL - Tutorial

 Var←'I am a GLOBAL variable, you know!'

 Crash 9
SYNTAX ERROR Once again, the function crashes.
Crash[2] R←10∲Var)
 ∧

 ⎕EX 'Var' We delete the local variable Var

 ⎕NC 'Var' and we can check that it no longer exists.
0

 → When we get out of the suspended function

 Var we immediately retrieve the global variable.
I am a GLOBAL variable, you know!

⎕EX refers to local objects, while)ERASE refers to global objects

⎕NL 2 includes the names of local variables, while)Vars lists only global variables

⎕NL 3 includes the names of local functions, while)Fns lists only global functions

⎕NC always gives the type of local objects

Spe-2 ⎕SAVE

⎕SAVE can be used with a left argument equal to 0 or 1: {R} ← {X} ⎕SAVE Y

Case 1: X is 0

In this case the workspace is saved without any State Indicator, i.e. without any pending or

suspended functions. The effect is the same as if you first executed)RESET and then)SAVE.

In this case, when the workspace is subsequently loaded, the latent expression ⎕LX will be

executed, no matter whether you used ⎕LOAD or)LOAD.

Case 2: X is 1 or absent

In this case the workspace is saved in a suspended state at the exact point of exit from the

⎕SAVE function.

The shy result returned from ⎕SAVE is a Boolean scalar 1 in the workspace in which the save

operation takes place:

 ⎕← ⎕save 'c:\temp\tempws'
1

If the saved workspace is subsequently loaded by ⎕LOAD, the latent expression ⎕LX will be

ignored, and execution will be automatically resumed from the point just before the ⎕SAVE

returned its result; this time it will be 0:

 ⎕load 'c:\temp\tempws'
0

 Chapter L –System Interfaces 511

The reason for this unusual behaviour is to make the programmer able to distinguish between

the two situations and thereby support applications that save their data in workspaces. Many

years ago, this was a convenient way of building APL applications, but now APL is fully

equipped with plenty of interfaces to files and databases, so this technique is considered

obsolete for this purpose. However, the technique may still be useful for building workspaces

by loading the relevant source code into a workspace and saving it, ready for use.

If, on the other hand, the workspace is loaded using)LOAD the execution will not

automatically be resumed, but the latent expression will be executed.

The function in which the ⎕SAVE was executed will be suspended at the line containing

⎕SAVE. You should therefore be aware that if you resume execution by executing →⎕LC, right

after having)LOADed the workspace, the line will be executed again, and the workspace will

therefore be saved again!

Spe-3)CONTINUE Save & Continue

This command saves the active workspace under the name CONTINUE and ends the Dyalog

APL session.

When you subsequently start another Dyalog APL session, the CONTINUE workspace will be

loaded automatically. Unless you have started APL using the "-x" flag, the latent expression

⎕LX (if any) in the saved CONTINUE workspace will be executed.

This command is sometimes used to close a session in an unfinished (debugging) state, so as

to be sure to retrieve it exactly in the same state later.

Spe-4 ⎕OR

Taking the ⎕OR of a function or operator is an extremely fast operation as it simply changes

the type information in the object’s header, leaving its internal structure unaltered. Converting

the object representation back to an executable function or operator using ⎕FX is also very

fast. It is significantly faster than using ⎕CR, ⎕NR or ⎕VR because the latter must first build the

textual representation of the function or operator, and ⎕FX must similarly rebuild the internal

representation from the text. ⎕OR may be used to store functions and operators in Component

files, but it should only be used for this purpose if ultra-fast performance is really necessary.

The reason is that the internal structure of objects may change from one version of Dyalog

APL to the next. This means that the files may be unusable in a new version unless they are

converted to the new format. A program to convert a file must first run in the old version of

Dyalog APL and write all the objects to an intermediate file, using one of the textual

representations. Then another conversion program must run in the new version, reading the

intermediate file and creating a new file using ⎕OR, which will save the objects in the new

format. The use of ⎕OR to build code-paging files was a common technique in the past, when

less memory was available. Today, it is rarely necessary to go to such lengths.

512 Dyalog APL - Tutorial

⎕OR may be used to convert a namespace (either a plain namespace or a named GUI object

created by ⎕WC) into a form that can be stored in a variable or in a component file. The

namespace may be reconstructed using ⎕NS or ⎕WC with its original name or with a new name.

⎕OR may therefore be used to clone a namespace or GUI object. Object-oriented techniques

have also rendered this use of ⎕OR obsolete. The function is still useful in some situations but

it is no longer recommended as a general tool for building applications.

Warning: Although ⎕OR 'name' is a scalar, it may not be used to replace an item of

an array unless it is first enclosed.

Spe-5 ⎕VFI Verify and Fix Input

This system function is used to check whether a string of characters contains a valid

succession of numbers, separated by one or more blanks (the default) or by an explicit

separator character, and then convert the text into a numeric vector.

The syntax is: R←{X} ⎕VFI Y

 Y is a string of characters

 If present, X is a simple character scalar or vector of separators. By default, blank is

assumed.

 R is a two-item nested vector whose first item is a simple binary vector specifying which

substrings in Y are valid numbers, and whose second item is a simple numeric vector of the

same length as the first item of R.

Spe-5.1 - Monadic Usage

 u←⎕VFI ' 14.6 ¯23 142.11 3,7 2.3E3 '

 DISPLAY u
┌→─────────────────────────────────────┐
│ ┌→────────┐ ┌→─────────────────────┐ │
│ │1 1 1 0 1│ │14.6 ¯23 142.11 0 2300│ │
│ └~────────┘ └~─────────────────────┘ │
└∮─────────────────────────────────────┘

The first item of this result is a Boolean vector. In this case it shows that among the 5 sub-

strings contained in the right argument, only four of them could be transformed into numbers.

You can see that leading, trailing, and multiple blanks are ignored.

The fourth sub-string could not be converted, because it contains a comma.

In the second item of the result, the valid strings have already been converted into numbers,

the invalid one has been forced to zero.

 Chapter L –System Interfaces 513

We can then make a Reduction by Compress (refer to section J-2.1), and disclose the result to

obtain the converted (numeric) vector of valid values:

 ⊃(//)u
14.6 ¯23 142.11 2300

Beware: ⊃//u would not work, because ⊃/ would be interpreted as a Reduction by

Disclose, which is not valid here.

Spe-5.2 - Dyadic Usage

The same technique can be employed with separators which are not blanks, but one or more

characters explicitly mentioned in a left argument (here slash & comma):

 DISPLAY u←'/,'⎕VFI '14.6/¯23/142.11/3,7//23,,'
┌→───┐
│ ┌→────────────────┐ ┌→───────────────────────────┐ │
│ │1 1 1 1 1 1 1 1 1│ │14.6 ¯23 142.11 3 7 0 23 0 0│ │
│ └~────────────────┘ └~───────────────────────────┘ │
└∮───┘

In this example, two possible separators are given. The string "3,7" that was considered as

invalid in the monadic case is now interpreted as two separate numbers, because the comma is

now a delimiter.

Another difference is that now duplicate separators which delimit substrings are evaluated as

zeroes. This is not the case for the monadic use, in which repeated blanks are ignored.

Spe-6 ⎕RTL Response Time Limit

⎕RTL is a means of limiting the amount of time given to a user to answer a question.

⎕RTL may be assigned any integer in the range 0 to 32767 (0 means there is no limit).

A non-zero value places a time limit, in seconds, for input requested via ⍞.

In the example below, the user is asked a question, and he has 10 seconds to answer.

We display the question and get the answer on the same line of the screen, using the technique

named "Bare output" (refer to section D-Spe-6).

To distinguish between the question and the answer, we have printed the (easy) question in

black and the answer in red:

 ⎕RTL←10 ⋄ ⍞←30↑'Do you want some coffee?' ⋄ Easy←⍞
Do you want some coffee? Sure, Honey!

 30∸Easy
Sure, Honey! We get the answer

The question was answered in less than 10 seconds, and we got in Easy both the question and

the answer; we dropped the 30 first characters to get only the answer.

514 Dyalog APL - Tutorial

But now comes a more complex question, and the user does not reply in the requested 10

seconds (what a boor!): He failed to meet the timeout limit, and there is nothing in the result:

 ⎕RTL←10 ⋄ ⍞←20↑'Do you love me?' ⋄ Complex←⍞
Do you love me? No answer!
TIMEOUT
 ⎕RTL←10 ⋄ ⍞←20↑'Do you love me?' ⋄ Complex←⍞
 ∧
The exception could be trapped, so that a program containing this question could continue.

Spe-7 ⎕MONITOR Execution Monitoring

It is sometimes difficult to know how to “tune” an application, to make it run faster.

In order to help solve this problem Dyalog APL provides a monitoring system which informs

the developer on how many times a statement was executed, and how much computing time

and elapsed time it needed.

The statements to monitor can be set with the same technique as we used to place Break or

Trace points in the Editor left margin (see section E-3.3):

When the editor is active, activate its menu ViewMonitor and, click in the left margin; small

clocks are displayed which identify the statements to be monitored, as shown below:

Figure L-2

Break point

 Trace point

Monitoring point

There is a second technique, using the system function ⎕MONITOR.

Its syntax is: {R}← Statements ⎕MONITOR 'Function'

where:

 'Function' is a function or operator name

 Statements is a vector of statement numbers.

 0 places a monitor on the function as a whole

This statement prepares (or resets) monitoring points in the specified function; the shy result is

the list of monitored statements.

 Chapter L –System Interfaces 515

Then one can execute the application, one or more times.

Finally, one can obtain the computing times for a specified function, using ⎕MONITOR

monadically: R← ⎕MONITOR 'Function'

The result R is a simple, 5-column integer matrix with one row for each line in the monitored

function or operator, giving:

Column 1 : Line number (0 for the function as a whole)

Column 2 : Number of times the line was executed

Column 3 : CPU time in milliseconds

Column 4 : Elapsed time in milliseconds

Column 5 : Reserved

Here, we have written a function, just to perform a lot of calculations, and then monitored it:

 ∳ Greedy;a;b;c;r;i
[1] i←0
[2] :Repeat
[3] a←?250 250∰100
[4] b←⍂a
[5] c←⍂b
[6] r←⌊0.5+b+.×c
[7] i←i+1
[8] :Until i=10
 ∳

 ⎕←(0,∯20) ⎕MONITOR 'Greedy' Set monitoring points
0 1 2 3 4 5 6 7 8 Only the valid line numbers are kept

 Greedy We execute the function

 ⎕MONITOR 'Greedy' Then query the results
0 1 9000 9094 0
1 1 0 0 0
2 1 0 0 0
3 10 92 93 0
4 10 2392 2407 0
5 10 2516 2515 0
6 10 4000 4001 0
7 10 0 0 0
8 10 0 0 0

All monitors may be cancelled for a given function by specifying an empty vector:

 ⍬ ⎕MONITOR 'Function'

516 Dyalog APL - Tutorial

Spe-8 System Variables vs. System Functions

Some System Functions look very much like System Variables, because they do not take any

arguments, but only return a result. For example, ⎕SI, and ⎕D.

However, we do not consider them System Variables, because it is not possible to assign a

new value to those names. They are niladic functions.

Some niladic system functions always return the same value, and they may therefore be

regarded as constants, for example: ⎕AV, ⎕A, ⎕D, ⎕TC, and ⎕NULL.

Other system functions look more like real functions; they return a value depending on the

actual state of the workspace. For example, ⎕SI, ⎕AI, and ⎕WA.

Examples of system variables that the user may assign new values to are: ⎕IO, ⎕LX, ⎕PP, ⎕PW,

⎕RTL, and ⎕RL.

⎕PW and ⎕RL are examples of system variables that may also be changed by the APL system:

⎕PW may change when the APL session screen is resized, and ⎕RL is set to a new value each

time a pseudo-random number is generated.

517

Chapter M: Event Handling

In this Chapter, we will use the term event to describe something that happens, perhaps

unexpectedly, that intervenes with or interrupts the normal flow of program execution. In

other programming environments, these occurrences may be called exceptions or errors, but

in this Chapter we will use the term event.

Note that, not all events are accidental. For example, a perfectly well functioning program

may generate events in a deliberate way (cf. Section 3 below), and even an apparent error such

as trying to open a non-existing file, may be perfectly ok; perhaps we were just checking to

see whether or not we have to delete the file, so if we don't find it, we are as happy as we can

be!

Please do not confuse the use of the term event in this context, with the use of the same word

to describe Graphical User Interface (GUI) actions, which occur when the user interacts with

GUI components such as Buttons, Menus and so forth.

This chapter will give you the necessary tools to intercept events, diagnose them, and take

appropriate actions so that they do not lead to a program crash.

You will in the following, and probably also elsewhere, see the terms "exception handling"

and "error handling" being used more or less at random. This is because the mechanisms to

identify and react to exceptions that we describe in this chapter are most often used to handle

error conditions.

However, not all exceptions are real errors. For example, a perfectly well functioning program

may generate exceptions in a controlled way (cf. section 3 below), and even an error such as a

not found file may be perfectly ok: Perhaps we were just checking whether we have to delete

the file, so if we don't find it, we are as happy as we can be!

518 Dyalog APL - Tutorial

1 - Diagnostic Tools

Just recall the various diagnostic tools studied in Chapter E.

Commands like)SI or)RESET must be typed manually, so they would not be pertinent for

building an automated event processing or recovery procedure; for that we can only use

System Functions.

⎕SI State Indicator Nested vector of the names of suspended functions

⎕XSI Extended SI Indicates in which Namespaces the suspended

 functions are located

⎕NSI Namespace SI Indicates in which Namespaces the suspended

 functions were called from

⎕DM Diagnostic Message 3-item nested vector which reports the message

 associated with the most recent error

⎕LC Line Counter Numeric vector containing the line numbers waiting for

 execution; the most recent one is first

⎕EN Event Number Each event is identified by a number.

 The number of the most recent event is put in ⎕EN

If you have not already read it, we suggest that you have a look at the Specialist's Section in

Chapter E.

2 - Event Trapping

In many circumstances it would be very complex and time consuming to test all the possible

events that may occur during an operation. This is for example often the case when processing

external devices, like disk files.

Imagine you want to open a file: 'g:\common\areyousure\myfile.txt'

 Chapter M –Event Handling 519

Many problems may occur: Maybe disk G does not exist or is not attached

The path might be ill-shaped (contain invalid characters)

The same for the file name

The file may be already exclusively opened by someone else

When you try to open the file, any one of these problems will cause an event. Knowing that in

most cases the operation will succeed, it would be very unwise to expend a lot of

programming statements testing for the multitude of possible exceptional conditions. It is

much simpler to just execute the application code and then, if an event occurs, handle it as an

exception, separate from the main body of program statements. In this way you can both keep

your code "clean" and avoid dealing with a problem unless it actually occurs.

This is why, in the development of the APL language, so-called event trapping systems were

invented. When an event occurs, it is reported to the APL system, which in turn informs the

running APL program, which then can diagnose it and execute appropriate recovery

procedures.

2.1 Event Numbers / Event Messages

We have mentioned earlier that events are identified by an Event Number, and that the niladic

system function ⎕EN returns the number associated with the most recent event (or 0 if no

events have occurred so far in the active workspace). We will here list some very common

ones; there is a full list in Appendix 6 and in the on-line help delivered with Dyalog APL:

 2 SYNTAX ERROR
 3 INDEX ERROR
 4 RANK ERROR
 5 LENGTH ERROR
 6 VALUE ERROR
 11 DOMAIN ERROR

For each of these events the system provides a message; the correspondence between the event

number and the message is provided by the system function ⎕EM (for Event Message).

For example: ⎕EM 5 returns the character vector: LENGTH ERROR

You can retrieve the message corresponding to the most recent event by: ⎕EM ⎕EN

In a clear workspace, and in a freshly loaded workspace, ⎕EN returns 0 to indicate that no

event has occurred so far.

When specifying event numbers to trap under program control the following two special

numbers may be used:

 0 means "All events in the range 1-999"

 1000 means "All events in the range 1001-1006"

520 Dyalog APL - Tutorial

2.2 :Trap / :Else / :EndTrap

This control structure is used to protect all or part of a program’s statements against crashing

as the result of an event; it is most often used as follows:

:Trap 0
 Set of critical statements
 ...
:Else
 Alternative set of statements
:EndTrap
Continuation of the program

The first statement specifies, by means of a list of Event Numbers, which events will be

trapped. 0 means "catch all events", and this may be the most common use of :Trap, but it is

possible to limit the trap to very specific events:

 :Trap 4 5 Sensitive only to RANK ERROR and LENGTH ERROR

The trap is followed by any set of statements that we will here describe as the "critical"

statements.

 If no event occurs during their execution, control passes to the code following :EndTrap,

and the alternative set of statements is not executed at all.

 If an event occurs during the execution of the critical statements the Event Number is

stored in ⎕EN, and then the system immediately skips to the :Else clause and tries to

execute the alternative set of statements placed after it.

 If there is no :Else clause, control passes to the code following :EndTrap, and no special

event processing takes place (although we have prevented a program crash). We could, for

example, trap a "file not found" error during the execution of a file delete operation: If

there is no file to delete we do not want to crash; instead we will just continue normal

execution.

 If the error occurred within a sub-function, the system cuts back the execution stack to the

function containing the :Trap clause before executing the alternative set of statements, or

before continuing normal execution of the code following the :Trap clause.

It is also possible to process specific pieces of code depending on the event that occurred,

using :Case or :CaseList clauses specifying the Event Numbers they cover:

 Chapter M –Event Handling 521

:Trap 0 Sensitive to all possible events
 Critical set of statements
:Case 3
 Alternative processing for INDEX ERROR only
:CaseList 4 5
 Alternative processing for RANK ERROR and LENGTH ERROR only
:Else
 Alternative processing for any other event
:EndTrap
Continuation of the program

Remark 1

The event trapping is active only during the initial execution of the critical set of statements. It

is disabled immediately after a trap is activated because an event occurred.

In particular, the event trap is no longer active during the processing of the code in the :Else,

:Case, and :CaseList clauses. If a second error occurs while processing those segments of

code, it is not trapped. This avoids endless trap loops.

Remark 2

Traps can be nested. This allows a second level of trapping in the code segments following

:Else, :Case, or :CaseList clauses, as shown in the example below:

:Trap 0
 Critical set of statements

:Else Beginning of alternative processing
 :Trap 3
 Alternative processing, protected against crashes due to INDEX ERROR

 :Else
 Alternative processing if an INDEX ERROR occurred

 :EndTrap
:EndTrap
Continuation of the program

Remark 3

During the development of an application it is often important that programming errors (i.e.

mistakes) are not trapped. Instead of :Trap 0, you can use for example :Trap
(~Debug)/0, where Debug is a global parameter, available throughout the application:

 In the production environment Debug is set to zero, and all the traps are active.

 In a development or debugging environment Debug can be set to 1, and no error is trapped

(the list of errors to trap becomes empty).

522 Dyalog APL - Tutorial

2.3 ⎕TRAP

Suppose that you placed a :Trap clause in a segment of code. If an error occurs very deeply

into a sub function, all the sub function calls on the stack are ignored, and control is cut back

up to the :Else clause associated with the trap in the function with the :Trap clause. Alas, it

is then too late to obtain information on the conditions which caused the error, because we

have exited the sub function in error.

For this reason, a different trapping system may be more appropriate, one that is based upon

the ⎕TRAP system variable.

2.3.1 - Definition

⎕TRAP is a nested vector made of 2 or 3 items:

1 - A list of the event numbers to be trapped

2 - One of the scalar characters C, E, N, S, known as the Action Code, where:

C means Cutback (return to the function where ⎕TRAP is localized)

E means Execute (execute in the called function)

N means Next (pass on this event to the next ⎕TRAP)

S means Stop (do not trap this event; take the standard system action)

3 - When the Action code is C or E, a third item must be provided. This item is a character

vector containing a valid APL expression or series of expressions separated by ⋄.

For the N and S action codes this item must not be specified.

Here are some examples:

⎕TRAP ← (3 4 5) 'E' 'GetInfo ⋄ →Z←0'

⎕TRAP ← 0 'C' '→Recovery'

⎕TRAP ← ((4 5)'E' 'CheckShape') (11 'C' '→Warning') (0 'E' 'GetInfo')

There may be many traps placed in as many functions as needed.

Normally ⎕TRAP must be localised in the function in which it is set. If you forget to localise

it, a trap activated by a function will remain active after that function has finished, and can

cause unexpected side effects, including effects afterwards in the Session environment.

It is, however, possible to have a global ⎕TRAP setting that catches all errors not caught

elsewhere, and which cleans up the stack and the environment and restarts the application in a

controlled way.

 Chapter M –Event Handling 523

2.3.2 - Event Processing

When an event occurs in a function, the system searches in its calling sequence for the nearest

trap defined for that particular event, starting from the function in error, and going upwards to

the global value of ⎕TRAP if necessary.

As soon as a trap definition for the event is found, the defined action is taken. If no applicable

trap is found the normal system action is taken (i.e. the program will crash if the event is an

APL error), and the error is reported in the APL session as usual.

Depending on the Action Code, the event is processed as follows:

E The action defined in the third item of ⎕TRAP is executed in the function where the

event occurred, even if the trap has been defined much higher in its calling sequence.

C The system exits from all the called functions (Cutback), up to the level where the trap

is localized. Then the action defined in the third item of ⎕TRAP is executed in this

calling context.

S Stops the search for a trap; the normal system action is executed in the context where

the event occurred. This can be used during application development to neutralise all

trap definitions, and let possible errors appear in the APL session.

N The specified events are excluded from the current ⎕TRAP definition. The search for an

applicable trap will continue further up in the calling hierarchy.

The action itself can be, for example (but not limited to), one of the following:

 Execute a function that can collect information about the context in which the event

occurred, or carry out investigations to diagnose the reason for the problem.

 Branch to a given label, where appropriate recovery actions will be processed.

 Display a message and offer solutions to the user.

 Display a message and quit the application by executing ⎕OFF.

2.3.3 - Syntax Considerations

When several traps are defined in a single ⎕TRAP, they will be processed from left to right, as

in the following example:

⎕TRAP←((4 5)'E' 'CheckShape')(11 'C' '→Warning')(0 'E' 'GetInfos')

This example also shows that a trap definition may be a nested vector in which each item is a

trap definition as described above. If the statement contains only one trap definition, it can be

entered as a vector (it needs not be enclosed). In other words:

⎕TRAP←0 'C' '→Recovery' is equivalent to: ⎕TRAP←⊂(0 'C' '→Recovery')

524 Dyalog APL - Tutorial

In either case, ∰∰⎕TRAP will return 1 because, even if it is assigned a vector or a scalar

(containing an enclosed vector), ⎕TRAP is internally converted into a 1-item vector:

 DISPLAY ⎕TRAP
┌→───────────────────────┐
│ ┌→───────────────────┐ │
│ │ ┌→┐ ┌→─────────┐ │ │
│ │ │0│ C │→Recovery │ │ │
│ │ └~┘ - └──────────┘ │ │
│ └∮───────────────────┘ │
└∮───────────────────────┘

You can see that the scalar event number 0 has also been converted to a 1-item vector.

2.3.4 - More about Action Code "N"

We would like to set a definition to trap all possible events, except LENGTH and RANK errors.

We can use N Action code like this:

⎕TRAP←((4 5) 'N')(0 'E' 'Recovery')

All possible events will be trapped, and will activate a program named Recovery, except

events 4 and 5 (LENGTH and RANK). They will not be trapped, but will be processed normally

by the system. The "N" code must precede all the "E" or "C" codes if these include the same

Event Numbers.

Let us demonstrate it with a small function:

 ∳ z←a Paf b;⎕TRAP
[1] ⎕TRAP←((4 5)'N')(0 'E' '→err')
[2] z←a÷b
[3] →0
[4] err:
[5] 'I think there is a bug!'
[6] z←0
 ∳

 42 27 Paf 7 9 Normal execution (no event)
6 3

 42 27 Paf 7 0 A division by zero (causing a DOMAIN ERROR,

I think there is a bug! event no. 11) has been trapped, and the action
0 code "E" has been activated.

 42 27 Paf 7 9 2 A LENGTH ERROR has been detected, but it
LENGTH ERROR is explicitly excluded from the trap list, so the
Paf[2] z←a÷b event is signalled normally, and the function
∧ is interrupted

 Chapter M –Event Handling 525

2.3.5 - Get Context

We would like to place event traps in some functions, and we defined a utility function named

GetContext, which is supposed to give the developer some information about what

happened.

 ∳ Z←GetContext;title
[1] (13↑'Event',4 0⍃⎕EN),' = ',⎕EM ⎕EN
[2] title←13↑[2]↑'Functions' 'Lines'
[3] Z←0 1∸⎕SI,[0.5]⎕LC
[4] Z←title,(2 3∰' = '),⍃Z
 ∳

We dropped the first item of ⎕SI and ⎕LC, because they would refer to GetContext itself.

For example, if we run Palindrome with the erroneous ReverBug sub function, an event

occurs. We can have information on the circumstances like this:

 GetContext
Event 6 = VALUE ERROR Type of event
Functions = ReverBug Palindrome Functions stack

Lines = 4 2 Lines

2.3.6 - First Example

We shall apply this to the following three functions, which execute plain arithmetic

operations.

When they are mis-used, they can cause some events: RANK, LENGTH, DOMAIN. For that reason,

we placed traps in two of them:

 ∳ r←a Top b;⎕TRAP
[1] ⎕TRAP←0 'E' 'GetContext ⋄ →0'
[2] 'execution of Top'
[3] r←a Mid b
 ∳

 ∳ r←a Mid b
[1] 'execution of Mid'
[2] r←a÷a Bot b
 ∳

 ∳ r←a Bot b;⎕TRAP
[1] ⎕TRAP←(4 5) 'E' '→Rats'
[2] 'execution of Bot'
[3] r←a-b ⋄ →0
[4] Rats:'Ooops! Your arguments are ill-shaped'
[5] r←a
 ∳

526 Dyalog APL - Tutorial

Now, let us execute Top on some inappropriate data; a vector and a matrix.

In statement Bot[3], a RANK ERROR is detected because a is a vector and b a matrix.

Happily, the trap placed in the first statement of that function traps both RANK ERROR and

LENGTH ERROR. Its Action code was set to E, so it executes the expression →Rats.

A message is issued, and the function terminates normally. Its result is passed to Mid, and

then to Top, where the final result (1 1 1) appears.

 2 5 6 Top 1 3∰6
execution of Top Confirmation messages
execution of Mid
execution of Bot
Ooops! Your arguments are ill-shaped On error, skip to statement [4]
1 1 1 Final result displayed by Top

At the end, the State Indicator is empty: We successfully trapped the event.

2.3.7 - Example of a Derived Error

We execute Top again, with two numeric vectors: It should work.

 2 5 6 Top 6 5 3
execution of Top
execution of Mid
execution of Bot
Event 11 = DOMAIN ERROR
Functions = Mid Top
Lines = 2 3
Event 6 = VALUE ERROR
Functions = Top
Lines = 3

Unfortunately, the result of Bot, r←a-b is equal to ¯4 0 3, and when this result is passed to

Mid, the division by zero causes a DOMAIN ERROR.

There is no trap in Mid, so the systems searches in the calling function where a general trap is

activated. This trap has its Action code set to E, so it first executes GetContext in the func-

tion where the problem occurred (Mid), not in its own context. This is the reason why our

little utility function reports a DOMAIN ERROR in Mid[2] called by Top[3].

But the second part of the trap is →0. This branch statement is also executed within Mid, so it

means "leave Mid immediately". But the result r has not been calculated, so the function

returns nothing to its calling environment and a VALUE ERROR is detected in Top[3]. A

poorly trapped first event has lead to a second event!

 Chapter M –Event Handling 527

2.3.8 - Third Example

To avoid this kind of problem, it is sometimes better to cut back to a safer environment, where

you can be sure that your trap will not cause additional events.

Let us modify Top and replace the Action code E by a C, then let us execute again the same

expression:

 2 5 6 Top 6 5 3
execution of Top
execution of Mid
execution of Bot
Event 11 = DOMAIN ERROR
Functions = Top
Lines = 3

Now, when the event is detected, the execution stack is cleaned up to the level of Top, and

GetContext is executed in this context where it apparently does not cause consequent errors.

The downside of this example is that we are not told that the event actually occurred in

Mid[2]. We only know that the event occurred in Top[3] or somewhere in a function called

in that line.

Is it safe now? Not completely. Top was supposed to return a result too, but if an event occurs

the result variable is never assigned, so an expression like 10×2 5 6 Top 6 5 3 would

cause a VALUE ERROR again. Life is too hard!

In this particular case we can easily avoid this last problem by assigning the default value 0 to

the result variable inside the trap statement:

 ⎕TRAP←0 'C' 'GetContext ⋄ →r←0'

Be extremely careful when you set a ⎕TRAP: It should not itself generate subsequent errors!

2.4 Beware of These Errors

2.4.1 - Endless Trap Loops

Imagine that, in Bot, you would like to show the values of the ill-shaped arguments. You

could think of something like this:

[4] Rats:'Ooops! Your arguments are ill-shaped'
[5] 'a=',a
[6] 'b=',b
[7] r←a

528 Dyalog APL - Tutorial

As you can see, it works perfectly on a LENGTH ERROR:

 2 5 6 Top 1 3 6 5 3
execution of Top
execution of Mid
execution of Bot
Ooops! Your arguments are ill-shaped
a= 2 5 6
b= 1 3 6 5 3
1 1 1

But if the second argument is a matrix, statement [6] cannot execute the concatenation and

causes a RANK ERROR. But because we have not left Bot, our trap is still active, so this error

is trapped too.

Execution restarts at statement [4], and so on, indefinitely: We have entered an endless trap

loop:

Ooops! Your arguments are ill-shaped
a= 2 5 6
Ooops! Your arguments are ill-shaped
a= 2 5 6
Ooops! Your arguments are ill-shaped
...

Just go to the session menu bar and activate ActionInterrupt, or use the technique described

in section D-4.7.3, and then go and have a good cup of coffee!

2.4.2 - Incorrect Branching

A trap can be defined to jump to a given label whenever an event is detected, but this can lead

to unpredictable (and sometimes dangerous) errors.

Consider these two functions:

 ∳ R←A MainFunc B;⎕TRAP;I
[1] ⎕TRAP←0 'E' '→Error'
[2] I←(A+1)÷(B-1)
[3] R←(A B)SubFunc I*2 ⋄ →0
[4] Error:'Something is going wrong!'
[5] R←⍬
 ∳

 ∳ R←X SubFunc Y;prod;val
[1] val←0 Do not pay any attention to these statements:
[2] prod←⊃∲/X Their only aim is to cause an event if ever we
[3] val←(prod-Y)*0.5 try to calculate the square root of a negative

value.
[4] R←⌊0.5+100×val
 ∳

 Chapter M –Event Handling 529

We first execute the main function on valid data, and nothing special happens:

 8 9 6 MainFunc 3 4 3
194 499 240

In the next example we have a 1 in the right argument. This will cause a division by zero in

statement [2].

The trap is activated, and the expression →Error causes a jump to statement [4]: A message

is issued, and an empty result is output. All goes as expected:

 8 9 6 MainFunc 3 1 3
Something is going wrong!

But in the next example an event will occur in SubFunc, because the program will try to

calculate the square root of a negative value.

The trap is activated, and it re-executes the statement →Error. This is still equivalent to →4,

because a label is like a read-only variable whose value is the line number of the line

containing the label. But because we used Action code "E", the jump is executed in the

current function, so the jump will go to SubFunc[4].

Fortunately (or maybe not!), because val was initialised in the first statement, SubFunc[4]

can be re-executed, and we return from the program without any further errors, though with a

very misleading result:

 8 9 6 MainFunc 3 2 3
0

If val had not been assigned a value at the time that the first error occurred, statement [4]

would have failed with a VALUE ERROR. That would have caused the trap to be activated

again, and the statement would have been executed again and again: We would have started

an endless loop!

Maybe it will surprise you, but seen from a quality assurance and debugging point of view the

endless loop is actually more helpful than the zero result we saw above! An event that causes

a function to seemingly behave correctly, but sometimes return a strange and incorrect result,

can cause subsequent calculations to fail sporadically, or maybe just produce incorrect results

that may go undetected for a long time. Such an error may be very difficult and time

consuming to debug, because it is difficult to figure out what is wrong, and the symptom is

seen in a completely different part of the system. The endless loop (or even better, an

immediate crash) is much more helpful; it is immediately obvious what is wrong, and more

importantly, where the code fails.

530 Dyalog APL - Tutorial

Recommendation: Whenever a trap action is a jump to a label, always use the code

action "C" (instead of "E"), so that the jump is guaranteed to be

executed in the calling function containing the label. Or even better,

use the control structures instead. ⎕TRAP (which is an older

mechanism), should only be used in the rare cases where an error

needs to be handled at the level where it occurs, or to collect

information for an error logging system.

2.5 Neutralise the Traps

In a clear workspace the value of ⎕TRAP is an empty enclosed vector like this:

0∰(⍬ ' ' '') Empty numeric vector, blank, empty string

This is the value you must assign to ⎕TRAP if you want to neutralise it. It is a bit complicated,

so in order to reduce the risk of an error (itself activating the trap), the most convenient and

recommended way of cancelling a ⎕TRAP definition is:

⎕TRAP ← 0∰⎕TRAP

3 - Event Simulation

One can generate an event using ⎕SIGNAL. That artificial event will then be processed

according to the current event handling context. It will be signalled just like any other event,

or trapped if an appropriate trap definition has been set.

The syntax is: {X} ⎕SIGNAL Y

 X is an optional message

 Y is the Event number that will be simulated and reported

Here is how ⎕SIGNAL is processed:

 First, the Event number Y is placed in ⎕EN.

 Then an event message is built:

o If a message is specified in the left argument, this message will always be used

o If no message is provided, and the specified event number is one of the pre-defined

ones (listed in Appendix 6), the corresponding Event message will be used

o For other event numbers, for example 654, ⎕SIGNAL will just report "ERROR 654"

if no message is provided

 Chapter M –Event Handling 531

Let us test that in a small function

 ∳ Demo Y
[1] 'The first statement is executed'
[2] :If Y>1000
[3] ⎕SIGNAL 10
[4] :EndIf
[5] 'This is the last statement'
 ∳

If we execute it with a small value, nothing special happens:

 Demo 15
The first statement is executed
This is the last statement

If we execute it with a large value, an event is signalled:

 Demo 15000
The first statement is executed
LIMIT ERROR Event number 10 corresponds to this message
Demo 15000
∧ The last statement has not been executed

Now, instead of ⎕SIGNAL 10, we decide to create our own event number. Events 500 to 999

are reserved for user simulated events; let us choose ⎕SIGNAL 666:

 Demo 15000
The first statement is executed
ERROR 666 Default message
Demo 15000
∧

And now, we keep the same code, but we provide a left argument to ⎕SIGNAL, so that the

statement is now the following:
 [3] 'Right argument greater than 1000'⎕SIGNAL 666

Here is how the error is processed now:

 Demo 15000
The first statement is executed
Right argument greater than 1000 Our message has been used
Demo 15000
∧

 ⎕EN We can check that our code is in ⎕EN
666

 ⎕EM ⎕EN But the message associated with it is the default

one
ERROR 666

One can associate a standard message with a user-defined event number:

(⎕EM 109)⎕SIGNAL 666 would display: FILE ERROR 9 Bad file descriptor

532 Dyalog APL - Tutorial

3.1 ⎕SIGNAL Example

This example shows how ⎕SIGNAL can be used to pass an event on to a level at which we

finally decide to take some action, while still doing some event handling at the place in which

the event actually occurred.

Let us assume that our application has a global ⎕TRAP setting that catches all otherwise

unhandled events, cleans up the environment, and restarts the application.

This is fine for the user, but when an event occurs we immediately lose valuable debugging

information about where exactly the event occurred, the values of local variables, etc.

Here we will demonstrate how we can improve this error handling.

We will set a very primitive global ⎕TRAP. Its only purpose is to show that it has been

activated:

 ⎕trap ← 0 'C' '''Global error: '',(⍃⎕en),'' '',⎕em ⎕en'

To test it, let us provoke an event:

 a←
Global error: 2 SYNTAX ERROR

Our example "application" is ridiculously simple. We have a Main function that starts the

application, and some sub function Sub in which an event might occur. A third function

SaveContext will be called whenever the trap is activated; its purpose is to register where

the event occurred, and save that information together with other environment information to a

log file. Here it just displays the function name and line number:

 ∳ Main;a;⎕TRAP
[1] ⎕TRAP←0 'E' 'SaveContext ⋄ ⎕signal ⎕en'
[2] a←3 Sub 0
 ∳

 ∳ r←y Sub x
[1] r←y÷x
 ∳

 ∳ SaveContext
[1] 'Context saved: ',(2⊃⎕SI),'[',(⍃2⊃⎕LC),']'
 ∳

Now let us see what will happen when we start our stupid application:

 Main
Context saved: Sub[1]
Context saved: Main[2]
Global error: 11 DOMAIN ERROR

)si

An event occurs (of course!) in Sub. This is registered by SaveContext. Now the last part of

the trap definition uses ⎕signal to signal the same event again.

 Chapter M –Event Handling 533

You might think that signalling an event again in the same function would lead to an endless

loop, but it does not. This is because ⎕signal does not signal an event in the function in

which it is called, but in the calling environment. So, in this case, when ⎕signal is used

within Sub, an event is signalled in Main!

This second event is again caught by our trap, and the new context registered. Finally the

event is signalled again from within Main, leading to an error in the APL session. This last

event is finally handled by our global trap definition. We can see that the state indicator is

empty.

If we put in some additional logic we could avoid that the SaveContext function is called

repeatedly at each level in the execution stack.

534 Dyalog APL - Tutorial

535

Chapter N: File Processing

Files stored on external devices (disks) may be organised in many different ways, according to

the type of data to be stored; as text, images, numbers, etc... But actually files just store long

series of bits (1s and 0s) which, by themselves, have no special meaning; they can represent

anything.

For example, suppose that a byte contains the following bits: 0 1 0 1 1 0 0 1. This byte can be

interpreted as either:

 A Boolean vector 0 1 0 1 1 0 0 1

 An integer number 89 (this is 2∫0 1 0 1 1 0 0 1)

 A character Y (this is ⎕UCS 89)

This clearly shows that in order to use the information contained in a block of memory or a

file, we must decide how we want to interpret these bits. The transformation of the bits into a

character string, an image, or a list of numbers is only the result of the kind of interface we

use to read the data from the file.

In this chapter we shall study only two types of files:

 Special files containing APL arrays, which are called "Component files". These files are

accessed through a set of specialised system functions ⎕Fxxx (see Section 1).

 Traditional "flat" files containing text or numbers (for example those with extension

".txt"), which we refer to as "Native files". These files are accessed through another set of

specialised system functions ⎕Nxxx (see Section 3).

Dyalog APL supports COM (Component Object Model) through which it can access (read

and write) data managed by any other application that supports COM, for example data held

in Microsoft Excel worksheets, Microsoft Word documents, Microsoft Access and Microsoft

SQL databases, Oracle databases, and so forth. The interface with Excel is described in

Chapter Q.

SQL databases can also be accessed through an interface called SQAPL. This will not be

described in this tutorial; please refer to the SQAPL documentation.

536 Dyalog APL - Tutorial

1 - Component Files

1.1 First Steps

1.1.1 - General Ideas

A component file can be considered as a collection of numbered drawers (the components) in

each of which one can store a single APL array. Components are referenced by their index in

the file.

The file is identified by its complete fileid (path + filename + extension). Under Windows, if

no extension is provided, "dcf" (for Dyalog Component File) is assumed.

For convenience, when a file is processed, instead of using its external name (fileid), one uses

a "handle", which is an arbitrary positive number. In APL we call this handle a Tie number,

and it is associated with the fileid when the file is opened.

This Tie number is not a permanent characteristic of the file, and it can be changed each time

the file is opened again.

When a file is created, it must be filled sequentially, component by component.

Once a component has been written onto the file, it can be replaced by any other array,

whatever its nature, shape, and size. In a sense a component file behaves like a vector of

enclosed items.

1.1.2 - Create, Fill, Read, and Close

One creates a file using the function ⎕FCREATE. The left argument is the full fileid, the right

argument is an arbitrary positive integer, the Tie number.

The function returns the tie number as a Shy result.

To avoid giving a file a Tie number that is already used by another file, we recommend that

you specify zero. Dyalog APL will then use the first unused tie number and return the chosen

value as the result.

This is what is done in the following expression (we recommend that you try it!):

 ⎕←one← 'cellar' ⎕FCREATE 0 ".dcf" will be added as the default extension
1

The file has now been created, though it contains nothing. By default, it has been placed in the folder

from which Dyalog APL was started, but we could have specified any other applicable path.

 Chapter N –File Processing 537

 ⎕←two← 'd:\bernard\action\demofile.new' ⎕FCREATE 0
2

For this second file, we specified a special extension ("new"). Because it is not the standard

Dyalog APL extension, it will be mandatory to specify this extension each time the file is

opened.

A file that has just been created using ⎕FCREATE is exclusively tied, i.e. it cannot be accessed

by others. For more information on file sharing please see Section 1.3.

Two system functions, ⎕FNUMS and ⎕FNAMES, return the Tie numbers and names of the

currently opened (tied) files, respectively:

 ⎕FNUMS
1 2

 ⎕FNAMES
cellar
d:\bernard\action\demofile.new

Note that ⎕FNAMES lists the full path which was specified when the file was tied.

The results returned by the two functions are in the same order, so that they can be displayed

side by side:

 ⎕FNUMS,'=',⎕FNAMES
1 =cellar
2 =d:\bernard\action\demofile.new

To fill our files, we must use ⎕FAPPEND.

 The left argument to ⎕FAPPEND is the array to append to the file, and the right argument is

the tie number of the file.

 It returns as a Shy result the number of the component just created.

Let us write some values and some variables we used in the preceding chapters.

 ⎕←'Little experiment' ⎕FAPPEND one
1 Component index

 ⎕←(2 4∰∯8) ⎕FAPPEND one
2

 Girls ⎕FAPPEND one We no longer show the shy result
 Boys ⎕FAPPEND two We write to the second file
 Chemistry ⎕FAPPEND two
 Forecast ⎕FAPPEND one
 Phrase ⎕FAPPEND one
 Hogwash ⎕FAPPEND one
 ⍬ ⎕FAPPEND one
 ⎕←'That''s enough' ⎕FAPPEND one
8

538 Dyalog APL - Tutorial

You can see that we have written very different data: character vectors, numeric matrices,

character matrices (Girls, Chemistry), a nested array (Hogwash), and even an empty

vector.

Let us ask for the sizes of these files:

 ⎕FSIZE one
1 9 616 1.844674407E19

 ⎕FSIZE two
1 3 224 1.844674407E19

The result contains 4 items:

 The number of the first component in the file. This value is usually 1, but we shall see later

that it may have a different value.

 The number of the next component to be written if we append to the file (the last

component index plus 1). By an incredibly complex calculation, we can deduce that file

"one" currently contains 8 components.

 The size, in bytes, that the file currently occupies on the disk.

 The largest file size allowed by our operating system addressing capabilities (about 1.8E19

bytes
8
). The number of components is limited by the largest integer that can be represented

accurately. This is currently about 9E15, but may change in future versions of Dyalog

APL.

To retrieve the arrays we placed in the file, we use ⎕FREAD.

This function accepts two numbers for its right argument: the Tie number of the file, and the

number of the component to read. For example, to read the contents of our 2
nd

 component:

 ⎕FREAD one 2

1 2 3 4 That's right: we had written that matrix
5 6 7 8

 ⎕FREAD one 5
Panama is a canal between Atlantic and Pacific

 ⎕FREAD 2 2 Read from the other file
H2SO4
CaCO3
Fe2O3

 nv←⎕FREAD 1 6 Of course, the values read from the file can be
 nv assigned to a variable. Here a nested array.
19 1 2 A 5 8
 3 4 P Nuts 9
 L

8
 Earlier versions of Dyalog APL used a 32-bit component file system having a file size limit of approximately 4Gb.

Although version 12 of Dyalog APL still supports 32-bit component files, the default is now 64-bit component files.

 Chapter N –File Processing 539

 ⎕FREAD 1 8
That's enough

Suppose that we have nothing more to do with "cellar.dcf" today; we must free the

computer resources it uses. In most languages one would use the terms "Close and Free" the

file; in APL we say "Untie" the file, but this is the same concept.

The function ⎕FUNTIE takes a single argument: the list of tie numbers of the files we want to

untie.

To untie all the files currently in use, we can write:

 ⎕FUNTIE ⎕FNUMS

 ⎕FNUMS
 Empty answer: all files have been untied

1.1.3 - Tie, Fill, Replace, and Close

Some days, or months later, suppose that we want to use the files again. To do so, we must

"tie" them again. Since the files already exist, we no longer use ⎕FCREATE, but ⎕FTIE.

The arguments are the same as those used with ⎕FCREATE, and we can again use 0 to obtain

the next free tie number.

The Tie numbers we get may differ from the tie numbers we used initially, because they may

be in use for other files.

 ⎕←'cellar' ⎕FTIE 0
1 We got the same Tie number

 ⎕FREAD 1 2
1 2 3 4 We retrieve our data
5 6 7 8

 ⎕←Actual ⎕FAPPEND 1 We can append additional components
9

 Prod ⎕FREPLACE 1 7 Here, we replace two components by very

 'Hello' ⎕FREPLACE 1 5 different contents

 ∰⎕FREAD 1 7
5 2 12 It worked, of course

 ⎕FUNTIE 1 Here again, remember to untie the file at the end

Component files may be shared between several users, each of them having specific access

rights. This important feature will be studied in detail in Section 1.3, but before that, let us

have a quick look at some utility functions.

540 Dyalog APL - Tutorial

1.2 Utility Functions

1.2.1 - Component Information

One can use ⎕FRDCI (for ReaD Component Information) to obtain information about a

component of a given file. One must provide the file tie number followed by the component

number. The result contains 3 items:

 The size of the component in bytes on file

 The user number (aplnid) of the user who last updated the component

 The time of the last update in 60ths of a second since 1st January 1970. This origin has

never been changed so that, years later, it is still possible to trace the history of a file.

 ⎕PP←17

 ⎕FRDCI 1 7
144 0 72444345360

The last value can be converted into a format similar to ⎕TS as follows:

The workspace DFNS supplied with Dyalog APL contains many useful direct functions,

among them several date handling functions. We can use two of them to write a third one to

convert the file timestamp:

)copy dfns date days
C:\...\dfns saved Fri Aug 01 14:34:26 2008

 FrdciToTs←{date(days 1970 1 1)+∱÷∲/1 3/24 60}

 FrdciToTs 3⊃⎕FRDCI 1 7
2008 4 5 14 29 16 0

The function works as follows:

days 1970 1 1 Returns the number of days between 1899-12-31 and 1970-01-01.

∱÷×/1 3/24 60 Converts the file timestamp into days since 1970-01-01. When added

to the previous result the timestamp is converted into days since

1899-12-31.

date Converts the days since 1899-12-31 into ⎕TS format.

It is possible to write the function as a Direct operator. The syntax is slightly more

complicated, but it has the advantage that the two constants (days 1970 1 1) and (×/1
3/24 60) are only evaluated once and bound to the derived function. This may save some

computing time if the function is used repeatedly:

 FrdciToTs2←(days 1970 1 1){date ∭∭+∱÷∱∱}(×/1 3/24 60)

 FrdciToTs2 3⊃⎕FRDCI 1 7
2008 4 5 14 29 16 0

 Chapter N –File Processing 541

Note that the operator is slightly unusual in the sense that it takes two arrays and no functions

as operands.

1.2.2 - Drop Components

It is possible to remove the first N or the last N components of a file. One must provide the file

tie number followed by the number N of components to drop. If N is positive, the first N

components are dropped, if N is negative, the last N components are dropped, exactly like the

primitive function Drop (∸).

The function returns, as a Shy result, the list of the components that were removed. This may

be useful for updating a dictionary of the file contents.

Remark 1: Even if one drops the first N components of the file, the remaining

components retain their component numbers (N+1, N+2 etc.) unchanged.

Let us check the size of our file "cellar.dcf" before the operation:

 ⎕FSIZE 1
1 10 736 4294967295

 ⎕FREAD 1 5
Panama is a canal between Atlantic and Pacific

Now, we drop the first 3 components, and ask for confirmation:

 ⎕←⎕FDROP 1 3
1 2 3 List of dropped components

Here is the situation after this operation:

 ⎕FSIZE 1
4 10 736 4294967295

Remark 2: It is important to notice that the first component’s number is no longer 1, but

4. So, if we used to read component number 5 to get information about

Panama, nothing has changed: we can still ask for the same component, as

shown here:

 ⎕FREAD 1 5 The same index still gives the same contents
Panama is a canal between Atlantic and Pacific

1.2.3 - File Compaction

Even though we removed some components, the file size in bytes remained the same. You can

reclaim the space occupied by the removed components by forcing a file compaction, using

the function ⎕FRESIZE.

542 Dyalog APL - Tutorial

This function is ambivalent:

 Its right argument is the tie number of the file to compact

 The left argument is only for compatibility with other APL systems; it is ignored in

Dyalog APL

The function returns, as a Shy result, the file tie number.

 ⎕fsize 1
4 10 736 4294967295

 ⎕fresize 1

 ⎕fsize 1
4 10 580 4294967295 Our file has been compacted

The set of ⎕Fxxx functions includes some utility functions to manage component files on disk.

These tasks can also be performed through Operating System functions, using ⎕NA (see

Chapter Q).

1.2.4 - Component Files Library

One can use ⎕FLIB to obtain the list of component files present in a given folder.

Its syntax is: R←⎕FLIB Dir

Dir is a simple character scalar or vector which specifies the name of the folder whose

component files are to be listed. If Dir is empty, the current working folder is assumed.

The result is a character matrix containing the names of the component files in the folder with

one row per file. The number of columns is given by the longest file name.

Each file name is prefixed by Dir followed by a folder delimiter character (\ in Windows; / in

Unix). The ordering of the rows is not defined.

If there are no component files accessible to the user in the specified folder, the result is an

empty character matrix with 0 rows and 0 columns. Files that are exclusively tied are not

listed by ⎕FLIB.

 ⎕FLIB '' Search in Dyalog's default folder

common_data "dcf" is never reported
marketing
marketing.old Extensions different from ".dcf" are shown

 ⎕FLIB '.' Search in the current folder
D:\Bernard\action\apl\WS\cellar
D:\Bernard\action\apl\WS\burgondy_wines

 ⎕FLIB 'g:\shared\' Search in a specified folder
g:\shared\customers
g:\shared\customers.old

Warning! Since the standard ".dcf" extension is not reported it is impossible to distinguish

between a file named "hello.dcf" and a file named "hello" without extension.

 Chapter N –File Processing 543

1.2.5 - Rename a Component File

One can use ⎕FRENAME to rename a component file provided it is currently exclusively tied

(cf. Section 1.3.2).

Its syntax is: {R}← NewID ⎕FRENAME TieNum

 The right argument is the tie number of the file to rename

 The left argument is its new file identity (Path + Name + Extension)

 The function returns, as a Shy result, the file tie number

Example:

 'c:\temp\test'⎕FTIE 1

 'c:\temp\newname'⎕FRENAME 1

 ⎕FNUMS,⎕FNAMES
1 c:\temp\newname

 ⎕FUNTIE 1

In the following example, a file is renamed and moved to a different disk and a different

folder. After the operation, the file remains tied, and one could continue to work with it. Here

we have immediately untied it:

 'c:\mydir\budget.old' ⎕FTIE 1

 'g:\shared\tests\budold.demo' ⎕FRENAME 1

 ⎕FUNTIE 1

It is handy to do the three operations we just performed: Tie Rename Untie in one go.

It so happens that the three system functions used in these operations all return the tie number,

so it is possible to package them into a single function as shown:

 ∳ RCF(OldID NewID)
[1] ⎕FUNTIE NewID ⎕FRENAME OldID ⎕FTIE 0
 ∳

This function needs a nested right argument, like this:

 RCF 'myfile.dcf' 'g:\shared\tests\ourfile.dcf'

In practice, so many problems might occur during this type of operation that a suitable Event

Trap would be a welcome addition to the function.

544 Dyalog APL - Tutorial

1.2.6 - Delete a Component File

One can use ⎕FERASE to delete a component file provided that it is currently exclusively tied

(cf. Section 1.3.2).

Its syntax is: {R}← Filename ⎕FERASE TieNum

 The right argument is the tie number of the file to delete.

 The left argument is the name that was used to tie the file, and the file must be exclusively

tied.

 The function returns, as a Shy result, the tie number of the file, before it was deleted.

 Of course, after the deletion the file is no longer tied, and the tie number is unused.

1.2.7 - File System Status

The niladic function ⎕FAVAIL reports whether or not the component file sub-system is

available. This system function is provided only for compatibility with other implementations

of APL.

Its syntax is: R← ⎕FAVAIL

In Dyalog APL, the Boolean result is always 1.

1.3 Shared Files

It is very often useful to share a file between several users, who will simultaneously read from

and update the file. This has several implications.

The file must be on a shared disk, and that disk should be secured so that unauthorised people

cannot access it, and also so that authorised people may not erroneously destroy it. These are

operating system considerations, and they are out of the scope of this tutorial; you should be

able to get information about it from your network administrator.

The file must also be processed in such a way that authorised users have specific rights to the

file (different rights for different users), and that simultaneous access to the file does not lead

to improper actions, such as User B overriding what User A had just written on the file.

This can be controlled very easily in Dyalog APL, we must just learn:

 How to share a file

 How to give rights to different users

 How to control simultaneous operations

 Chapter N –File Processing 545

1.3.1 - The User Identity

When several users access the same file, how can we distinguish between them? The answer

is that they are identified by an Account Number; remember: it is the first item of ⎕AI (see

Section L-4.4).

You could change that parameter (don't do it for the moment) using the following menu:

Options Configuration Network Network ID

The default value is zero, but you can change it to any other integer value between 0 and

65535; the change becomes effective after Dyalog APL is restarted. In fact, this parameter is

stored in the Windows Registry under the name aplnid (for APL Network ID).

You could just as well use the registry editor to change the parameter manually, but it is easier

(and probably safer) to do it from within APL.

In our exploration of shared files we shall use a different technique.

Normally, to see how shared files work, you would need two users running two computers

identified with distinct aplnid's and sharing a common disk. You can also, on a single

computer, start two separate APL sessions. However, because aplnid is stored in the Registry,

those two sessions would have the same identifier, and would not be considered as distinct

users. We suggest that you use the following trick:

 On your desktop, duplicate the icon you normally use to start Dyalog APL.

Rename the original one to APLMain (for example)

Rename the other one to APLUser

 Leave the properties of APLMain unchanged.

 Open the Properties of APLUser, and change the command line:

That command line is probably something like :

"C:\Program Files\Dyalog\Dyalog APL 12.0\Dyalog.exe"

On the right, append the parameter: aplnid=3 so as to obtain:

"C:\Program Files\Dyalog\Dyalog APL 12.0\Dyalog.exe" aplnid=3

Then click "OK"

Using this method:

 When you start an APL session using the APLMain icon, the session is started using the

value of aplnid stored in the Registry, and ⎕AI[1] will be equal to 0 (default value).

 But when you start a second session using APLUser, the parameter you set in the command

line overrides the Registry definition, and ⎕AI[1] will be equal to 3.

You will then be able to work on a single computer as if you were two different users. In the

following pages, we shall use APLMain and APLUser to refer to those two virtual users.

546 Dyalog APL - Tutorial

1.3.2 - Shared Tie

When one ties a file using ⎕FTIE, that file is tied exclusively: nobody else can tie it as long as

it is exclusively tied. It is not possible to exclusively tie a file that is already tied by somebody

else, no matter whether it is exclusively tied or share tied by the other user.

To share access to a file with somebody else, you must use ⎕FSTIE (with "S" for Share)

instead of ⎕FTIE, but this is not sufficient.

Let us do a little experiment:

 Start an APL session using the APLMain icon, and share-tie the file created in the previous

section, with any Tie number:

 'cellar' ⎕FSTIE 1 Do not forget the "S"

 ⎕FREAD 1 2
1 2 3 4 We retrieve our data: the file is accessed
5 6 7 8

 Now, start a second APL session using the APLUser icon, and try to share-tie the same

file, with any Tie number too:

 'cellar' ⎕FSTIE 1
FILE ACCESS ERROR It does not work!
 'cellar' ⎕FSTIE 1
 ∧

The operation failed because APLUser (#3) is not the owner of this file. The file was created

by someone who was identified by aplnid=0, and that person (APLMain in fact) is the only

authorised user!

The owner must explicitly specify who else is authorised to use his file, and what kind of

operations that person (or those people) will be allowed to do. This will be specified by the

means of an Access Control Matrix. The owner himself can do anything with his own files.

1.3.3 - Access Control Definition

To enable a file for shared use, its owner must attach to that file an Access Control Matrix

made of 3 numeric columns where each row represents a combination of:

Column 1 Specifies who will be authorised to use this file.

Each authorised user is represented by his aplnid.

0 means any user not already mentioned in the matrix.

Column 2 Specifies which operations are allowed for the user in column 1.

This is described below.

¯1 means there are no restrictions.

 Chapter N –File Processing 547

Column 3 Optional Pass Number

If present, the user will be forced to specify this Pass Number each time he

executes any of the operations specified in column 2.

0 means there is no Pass Number for this user/operation combination.

In this part of the book, we shall not use Pass Numbers. This technique will be discussed in

the Specialist's Section.

In the second column, the authorisations given to a particular user are represented by a sum of

"Weights", as shown in the table below.

In this list of all possible functions related to component files, the first column contains the

"weights" assigned to each operation (note that weights 64 and 256 do not exist).

Weight Function Usage

1

1

2

4

8

16

32

128

512

1024

2048

4096

8192

8192

⎕FAVAIL

⎕FLIB

⎕FCREATE

⎕FUNTIE

⎕FNUMS

⎕FNAMES

⎕FSTIE

⎕FSIZE

⎕FREAD

⎕FPROPS

⎕FTIE

⎕FERASE

⎕FAPPEND

⎕FREPLACE

⎕FDROP

⎕FRENAME

⎕FRDCI

⎕FRESIZE

⎕FHOLD

⎕FRDAC

⎕FSTAC

⎕FPROPS

Is the file system available?

List of component files

Create a new component file

Untie a tied file

List of tie numbers

List of tied files names

Tie and share a file

Get size information about the file

Read a component from a given file

Query file properties (requires 8192 to set)

Exclusively tie an existing file

Erase a tied file from disk

Append a new component at the end

Replace a component by another value

Drop N first or last components

Rename a tied file

Read component information

Resize a file

Place statements in the file queue

Read access control matrix

Store access control matrix

Set file properties (1 required to query)

548 Dyalog APL - Tutorial

Some operations have no weight and are permitted for any user. ⎕FCOPY has no distinct

weight itself, but requires an access code of 4609 (4096 for ⎕FRDAC + 512 for ⎕FRDCI + 1 for

⎕FREAD).

For example, if a user is authorised only to read, append or replace components, he will be

given an authorisation code equal to: 1+8+16 = 25.

An authorisation code equal to ¯1 means that all operations are allowed.

Here is an example of an Access Control Matrix:

 ⎕←simplemat←4 3∰3 17 0 7 2073 0 43 ¯1 0 22 2065 1943
 3 17 0
 7 2073 0
43 ¯1 0
22 2065 1943

At this stage, simplemat is just a plain matrix like any other matrix, but used as the Access

Control Matrix of a given file, it specifies that only four users (plus the owner, of course) will

be authorised to use this file, with the following restrictions:

 User Authorisation Comment

 3 Read, Replace

 7 Read, Append, Replace, Hold

 43 All possible operations

 22 Read, Replace, Hold Must provide a Pass Number equal to 1943

Of course, all of them are authorised to use the first 6 functions, which do not require specific

authorisation and therefore have no weight.

Note that a user can appear several times in the matrix with different pass numbers. The user

will be granted access according to the pass number used when he ties the file.

1.3.4 - Access Control Activation

To make this matrix active, the owner of the file must tie it, and then associate the matrix to

that file using ⎕FSTAC (for STore Access Control), like this:

 'cellar' ⎕FTIE 1 Tie the file (exclusively or not)

 simplemat ⎕FSTAC 1 Associate the matrix with the file

 ⎕FUNTIE 1 Untie the file if it was tied exclusively

Now, our access definitions are stored in the file; we could even destroy simplemat.

One can read that matrix back from the file, using ⎕FRDAC (for ReaD Access Control)

In this particular case, the owner must untie the file before the access control matrix will

apply, because as long as he keeps it exclusively tied, nobody else can access it.

After that, he could tie it again, preferably in shared mode.

 Chapter N –File Processing 549

Note that it need not be the owner of the file who sets the access control matrix; any user that

has the proper authorisation (weight 8192) can do it.

1.3.5 - Example of Simultaneous Access

The file can now been used simultaneously by all the authorised users.

You can find on the next page an example of simultaneous use with, on the left, what

APLMain does and, on the right, what APLUser does.

The expressions are listed in the order in which they were executed.

The numbers in the middle column are references to the comments given below.

Comments

1 User #3 ties the file in shared mode (the owner has not tied it yet).

2 He reads the first component, and gets whatever was there.

3 The owner also ties the file (note that they have chosen different tie numbers).

4 He reads the same component, and also gets "Little experiment".

5 User #3 modifies the first component.

6 When the owner reads the first component again he now gets "Hello". If you just look

at the owner's own session, he reads the same component twice and gets two different

answers. This is the proof that the file has been modified elsewhere.

7 The owner appends a new component.

8 It becomes component #9.

9 When the second user asks for the file size, he can see that it now has 9 components.

10 He reads the new component.

11 The owner asks for the current Access Control Matrix. He gets the matrix he had

specified for the file (of course).

12 The owner would like to tie the file exclusively, so he first unties it.

13 But his attempt to tie the file exclusively is rejected because the file is still in use by

another user (he cannot know which user).

14 User #3 tries to append a new component. His statement is rejected, because he is not

allowed to do it (he may only Read or Replace).

15 Finally, he unties the file.

550 Dyalog APL - Tutorial

Simultaneous use of a common shared component file

APLMain (owner, user 0) Refs APLUser (user 3)

 'cellar' ⎕FSTIE 1

 ⎕FREAD 1 1
Little experiment

 ⎕FREAD 1 1
Hello

 ⎕←14 10 1952 ⎕FAPPEND 1
9

 ⎕←Defs← ⎕FRDAC 1
 3 17 0
 7 2073 0
43 ¯1 0
22 2065 1952

 ⎕FUNTIE 1

 'cellar' ⎕FTIE 1
FILE TIED
 'cellar'⎕FTIE 1
 ∧

1

2

3

4

5

6

7
8

9

10

11

12

13

14

15

 'cellar' ⎕FSTIE 7

 ⎕FREAD 7 1
Little experiment

 'Hello' ⎕FREPLACE 7 1

 ⎕FSIZE 7
1 10 736 4294967295

 ⎕FREAD 7 9
14 10 1952

 'Attempt' ⎕FAPPEND 7
FILE ACCESS ERROR
 'Attempt'⎕FAPPEND 7
 ∧

 ⎕FUNTIE 7

1.3.6 - Access Conflict

In this second example we will show that it is important to ensure that two simultaneous users

do not destroy each other's operations.

Imagine that a company has bought a pool of 6 cars for its salesmen. Any salesman can use

any car, provided he places a reservation in the first component of a shared file. These

reservations are stored in a 2 by 6 nested array, and for the moment 3 cars are already

reserved:

 Chapter N –File Processing 551

Cadillac Bentley Citroen Ferrari Lexus Porsche
 Bernard Colette Esperanza

Yes, it's a rather wealthy company!

It happens that Miguel and Ingrid would also like to reserve a car, and both would like to

drive a Bentley (I would like it too!).

Ingrid reads: Cars←⎕FREAD 1 1

Miguel reads the same matrix: Pool←⎕FREAD 1 1

Miguel immediately places his name in the matrix, and checks the result:

 Pool[2;2]←⊂'Miguel' ⋄ Pool
Cadillac Bentley Citroen Ferrari Lexus Porsche
 Miguel Bernard Colette Esperanza

All is correct, and he writes the matrix back to the file: Pool ⎕FREPLACE 1 1

But Ingrid still has in her workspace the value of the matrix that she loaded some minutes

before, in which the Bentley is still free. Consequently, she places her own name in the matrix

and writes it back to the file:

 Cars[2;2]←⊂'Ingrid' ⋄ Cars ⎕FREPLACE 1 1

The resulting content of the file component will be the following:

Cadillac Bentley Citroen Ferrari Lexus Porsche
 Ingrid Bernard Colette Esperanza

Miguel will not get the Bentley!

Programs should be written to avoid this kind of conflict; this is the reason why Dyalog APL

offers tools to synchronise simultaneous access to component files.

1.4 How to Queue File Operations

1.4.1 - Use the Hold Queue

To avoid access conflicts the developer of an application must determine precisely what are

the critical parts of his code. Some operations can probably be executed at any time even if

someone else is using the same file, but between the moment one reads a component and

writes it back onto the file, it is generally important that nobody else writes to the same file.

This is called a critical section of code.

To achieve this, each user can notify which files he needs exclusively by means of ⎕FHOLD.

Its syntax is: {R}← ⎕FHOLD TieList where this argument is a list of tie numbers

 (scalar, vector, or one-row matrix).

552 Dyalog APL - Tutorial

This list specifies the files to which the user needs (temporarily) exclusive access, without

interference from any other user. The shy result of ⎕FHOLD is the vector of tie numbers of the

files held.

The function works like this:

 As soon as a user tries to place a ⎕FHOLD on one or more files, all preceding holds that the

user may have, are released.

 Then the execution of the program is delayed until none of the specified files are held by

any other user.

 When all the specified files are freed, execution continues, and the user can access the

file(s). Provided that the application has been written correctly (i.e. all the users register in

the Hold Queue), he should be the only one working on them (cf. Section 1.4.3 below).

 From now on all other users who also try to ⎕FHOLD any of the specified files will be

placed in a wait state, and this will last until the user releases the holds.

 When the hold is released, those other tasks (users) can resume. Initially only one of the

waiting tasks will be allowed to place a hold and thereby gain exclusive access to the

file(s). Any other tasks will continue to wait until it becomes their turn.

 When a user specifies an empty TieList or a new one, its preceding holds (if any) are

released. The normal method to release all held files is to execute the expression

⎕FHOLD ⍬.

1.4.2 - Hold Termination

A hold placed by a user is released in any of the following circumstances:

 When a new ⎕FHOLD is issued by the same user (whatever the TieList he specifies).

 When the designated files are all untied. If some but not all are untied, they become free

for another task, but the hold persists for the files that remain tied.

 When the APL session is terminated.

 The user's APL session returns to immediate execution mode. This may occur as a result

of the normal termination of a function, or because of an untrapped error, or because of a

breakpoint.

For this reason ⎕FHOLD can only be used meaningfully when called from a defined

function. This means that you cannot experiment with ⎕FHOLD in immediate execution

mode (from the APL session), as holds are released each time an expression has been

processed and the system prompts you for input.

A hold is not released by a request for input through ⍞ or ⎕.

 Chapter N –File Processing 553

1.4.3 - A Hold is Not a Lock

It is important to understand that even when a hold has been placed on a file, that file is not

"locked". Any user who decides not to use ⎕FHOLD can still execute any other file operation at

any time.

This may be helpful for maintenance operations, or to read or update some non-critical

components of a file currently under the control of a hold. However, in general, applications

must cooperate closely and be written very carefully in order to secure an orderly access

control; all file operations should be explicitly queued.

1.4.4 - Recommendations

Until a user has released a file, all the other users are held in a wait state. This may lead to the

complete freeze of an application.

 Prepare all that can be prepared before entering the set of statements that are under the

control of the queue.

 Avoid including user input interfaces (like ⍞, ⎕, or GUI dialog boxes) in this set of

statements. You cannot know how long time the user will take to answer a question.

 Hold only the files you really need to control.

 Free them as soon as possible, using ⎕FHOLD ⍬.

 If you intend to use shared files, you must read Section Spe-1.6 on buffering conside-

rations.

 If you trap errors, remember to release any relevant holds!

554 Dyalog APL - Tutorial

2 - Data Representation

Before studying Native files, we must first understand how data is represented in Dyalog APL

and in files in general.

2.1 Representation of Values

2.1.1 - Representation of Numbers

We must take into consideration how numbers are stored.

For integers which are represented by a single byte (8 bits), the leftmost bit is used for the

sign. So the limits are as follows:

 The largest positive number is 0 1 1 1 1 1 1 1 representing 127

 The largest negative number is 1 0 0 0 0 0 0 0 representing ¯128

To represent numerically greater values, we need more bytes:

 In 2 bytes we can represent values from ¯32768 to 32767

 In 4 bytes we can represent values from ¯2147483648 to 2147483647

Larger integers and all fractional values are represented as floating point numbers in 8 bytes

each, and then the limits are given by ⌈/⍬ and ⌊/⍬.

On a standard PC these limits are: ¯1.797693135E308 to 1.797693135E308

You may obtain different limits on other types of computers.

Dyalog APL always stores numeric values internally using the most compact representation

possible, with the restriction that in a simple array the same representation is used for all the

items. For example, if we create the vector: 34 ¯29 673 48, then 34 ¯29 and 48 could be

represented in 1 byte, but 673 requires two bytes, so each of the four values will be

represented by 2 bytes.

2.1.2 - Query Data Representation

The monadic System function ⎕DR (Data Representation) tells you how a variable is

represented internally:

 Chapter N –File Processing 555

Value Bits Data type

11 1 Boolean

80 8 Unicode Character

82 8 ANSI Character (Classic Edition)

83 8 Integer

160 16 Unicode Character

163 16 Integer

320 32 Unicode Character

323 32 Integer

326 32 Pointer

645 64 Floating point

The table above shows how many bits are used to represent each single value. Of course, if we

had to represent a vector of 141 Boolean values, the 141 bits would be padded to give 18 full

bytes (144 bits).

 ⎕DR 32 ¯67 19
83 These are 1-byte integers

 ⎕DR 32 ¯67 500 19
163 These are 2-byte integers

 Darjeeling←32 3.7 500 19

 ⎕DR Darjeeling
645 These are 8-byte floating point values

 ⎕DR 'Darjeeling' These are Unicode characters
80 The Classic Edition would return 82

 ⎕DR (34 15) 'Hello' (56.12 89.11)
326 Nested arrays and Object Representations given

 by ⎕OR are described as pointers

2.1.3 - Change Data Representation

The dyadic use of ⎕DR converts an array into a different representation.

The general syntax is: R←X ⎕DR Y where X can contain 1, 2 or 3 values

 Case 1: X is a single integer

The bits in the right argument are interpreted as items of an array of type X.

556 Dyalog APL - Tutorial

The shape of the resulting new array may be changed along the last axis. For example, a

character array seen as Boolean will have 8 times as many items along the last axis, as shown

below:

 Girls
Suzy Each of these names is represented in memory by
Anna 32 bits, interpreted here as 4 letters
Jane

 ⎕DR Girls
80

 u←11 ⎕DR Girls Let us interpret each series of 32 bits as Booleans

 u
0 1 0 1 0 0 1 1 0 1 1 1 0 1 0 1 0 1 1 1 1 0 1 0 0 1 1 1 1 0 0 1
0 1 0 0 0 0 0 1 0 1 1 0 1 1 1 0 0 1 1 0 1 1 1 0 0 1 1 0 0 0 0 1
0 1 0 0 1 0 1 0 0 1 1 0 0 0 0 1 0 1 1 0 1 1 1 0 0 1 1 0 0 1 0 1

The bits contained in the variable are the same, but we have just interpreted them differently.

The operation can be reversed:

 80 ⎕DR u
Suzy
Anna
Jane

Case 2: X is a 2-item integer vector

The bits in the right argument are interpreted as type X[1]. The system then attempts to

convert each of the items of the resulting array to type X[2] without loss of precision. The

result R is a two item nested array consisting of:

 The converted items or a fill item (0 or blank) where the conversion failed

 A Boolean array of the same shape indicating which items were successfully converted.

 new1←83 645 ⎕DR 'abcd'

 DISPLAY new1
┌→─────────────────────────┐
│ ┌→───────────┐ ┌→──────┐ │ We had a vector of 1-byte characters. They have
│ │97 98 99 100│ │1 1 1 1│ │ been interpreted as 1-byte integers and then
│ └~───────────┘ └~──────┘ │ converted into 8-byte floating point values.
└∮─────────────────────────┘

 new2←645 163 ⎕DR 80 45.3 117.9 62

 DISPLAY new2
┌→──────────────────────┐
│ ┌→────────┐ ┌→──────┐ │ We had a vector of 8-byte floating point values.
│ │80 0 0 62│ │1 0 0 1│ │ The two integers have been converted

│ └~────────┘ └~──────┘ │ into 2-byte integers, but the two decimal numbers
└∮──────────────────────┘ could not be converted without loss of precision.

 Chapter N –File Processing 557

Note: The internal representation of data may be modified during a workspace

compaction, initiated, for example by ⎕WA. Numeric arrays will be squeezed to

occupy the least possible amount of memory. However, the internal representation

of the result of a dyadic ⎕DR is guaranteed to remain as specified until it is re-

assigned (or partially re-assigned) by the result of any function.

 For example, in the first example above we can use ⎕DR to verify that the result,

which looks like 4 integers, is really stored internally as a floating point array:

 ⎕DR ⊃new1
645 These are really stored as floating point numbers.

 ⎕DR 97 98 99 100
83 Although they could be represented as integers.

 ⎕DR 10,⊃new1
83 Now we "lost" the floating point representation.

Case 3: X is a 3-item integer vector in which X[2 3] is 163 82

This case is provided primarily for compatibility with APL*PLUS (another APL system). It

exists only in the Classic Edition; you can forget about it.

2.2 Representation of Variables

2.2.1 - Internal Structure

In a workspace, each array has a certain number of characteristics. For example, whether it

contains numbers or characters, its rank, shape, and so on. These characteristics are stored as

part of the array.

So, we can say that the internal representation of an array is made of two parts:

 A Header which describes the characteristics of the array,

 The Contents whose data type is identified by its Data Representation

Suppose that we need to store the following matrix: 43 12
 1 52
 10 14

It is completely defined by the following information:

 The data is made of integers of data type 83

 The array is a matrix, so its rank is ... 2

 Its shape is ... 3 2

We can completely describe that array by the following vector: 83 2 3 2

558 Dyalog APL - Tutorial

This is a convenient header, and the array could be represented as follows:

 83 2 3 2 43 12 1 52 10 14

 Header Contents

This is not the true internal representation of the array, but it may give you some idea of what

it really is. This applies quite well to simple (not nested) variables. Nested objects have a

slightly more complex internal structure.

Here is another data representation: 80 1 11 Hello World

It represents the following text vector: Hello World

Now, if we had to store these arrays on a file, we could use any of the two following

techniques:

2.2.2 - Component Files

If we decide to store on disk an exact copy of our arrays' internal representation, we only need

a light interface because it does not require any transformation. And when we read the data

back from our file, the interface has nothing to do; the data read from the file can be

immediately assigned to a variable.

Such files are the Component files described in Section 1 above.

The advantage is that we can store any kind of APL array; scalars, vectors, arrays of any

shape, with any contents, including nested values, or Object Representations produced by

⎕OR.

The drawback is that the data in such files cannot be recognised by traditional languages or

text editors, because the internal structure (Header + Contents) is very specific to APL.

2.2.3 - Native Files

We may decide to store just the contents of a simple array: 43 12 1 52 10 14
or: Hello World

A file containing no APL headers can be read by any other language because it needs no

special interpretation - provided that we specify whether the values represent numbers or

characters. We can then exchange information with other languages or applications.

To read the information back from the file, we need an interface which just reads characters

(or numbers). In order to create an APL variable in the workspace, our interface will need to

create a header. However, because we have lost the rank and shape information, the interface

can only count how many items were read and return a vector of an appropriate length, either

numeric or character, as shown:

83 1 6 43 12 1 52 10 14
80 1 11 Hello World

 Chapter N –File Processing 559

This is typically what we get when we read text files created with a text editor like Microsoft

Notepad, for example.

Such files are called Native files; they are accessed through ⎕Nxxx functions and will be

described in Section 3 below.

3 - Native Files

3.1 Similarities and Differences

Native files are processed by functions whose names are prefixed by ⎕N.

Most of them correspond to those that we studied for component files, but two new functions

appear, as shown in the table below:

Component files Native files Usage

⎕FCREATE

⎕FUNTIE

⎕FNUMS

⎕FNAMES

⎕FSIZE

⎕FREAD

⎕FTIE

⎕FERASE

⎕FAPPEND

⎕FREPLACE

⎕FRENAME

⎕FDROP

⎕NCREATE

⎕NUNTIE

⎕NNUMS

⎕NNAMES

⎕NSIZE

⎕NREAD

⎕NTIE

⎕NERASE

⎕NAPPEND

⎕NREPLACE

⎕NRENAME

⎕NRESIZE

Create a new file

Untie a tied file

List of tie numbers

List of tied file names

Get size information about the file

Read a segment from a given file

Tie (open) an existing file

Erase a tied file from disk

Append data at the end of the file

Replace a segment by other values

Rename a tied file

Resize a file

 ⎕NLOCK

⎕NXLATE

Lock access to part of a file

Translation table between files and APL

560 Dyalog APL - Tutorial

The following component file functions have no equivalent for native file processing:

⎕FAVAIL ⎕FRESIZE ⎕FRDAC ⎕FSTAC ⎕FRDCI
⎕FSTIE ⎕FLIB ⎕FHOLD (the closest equivalent is ⎕NLOCK)
⎕FPROPS ⎕FCOPY

In order to distinguish them from component file tie numbers, native files tie numbers are

always negative.

A native file contains just a long list of bits, which can be viewed as numbers or as characters,

as described in detail in Section 2.1 of this chapter. For this reason, when you read a file, you

must specify what kind of conversion you want to apply.

For example:

 80 would read bytes and convert them into Unicode characters

 83 would read bytes and convert them into integers

 323 would read successive blocks of 4 bytes, and convert them into integers

Some text files, for example those created using Microsoft Notepad, appear to be made up of

similar "records", each containing the same kind of information. For example, a company has

stored the list of its subsidiaries, with their year of creation, number of employees, revenue of

last year, and expected revenue for next year:

Berlin 1999 9 2607 2900
Dakar 2006 6 931 1000
Frankfurt 1982 48 1816 1950
London 1979 106 4086 4000
Milano 1982 81 1640 1800
Paris 1985 63 1789 2000
Seattle 1993 14 941 1000
Tokyo 2002 29 652 740

From the layout, a human can discern the individual pieces of information, but the computer

cannot do so without specific instructions. Each line is separated from the next one by two

special characters, NewLine and LineFeed, known in APL as ⎕TC[3 2], or better still, ⎕UCS
13 10.

If we could represent them by two printable characters and , the file would look like this

Berlin 1999 9 2607 2900Dakar 2006 6 931 1000Frank...etc

Using this type of representation, it is clear that if we read any arbitrary sequence of bytes, we

may obtain data which might not be easy to interpret. For example, if we read characters 21 to

43:

We would obtain the following characters: 607 2900Dakar 200

And they would be shown like this: 607 2900
 Dakar 200

 Chapter N –File Processing 561

So, unlike component files there is generally no structure imposed on the data in native files.

It is solely the programs that create, write to, and read from the files that define that structure.

3.2 Basic Operations

3.2.1 - Tie an Existing File

For this demonstration, we shall work on an existing file containing the data shown above.

Suppose that this file can be found with the following path and fileid. You will probably use

different path and file names.

 path←'g:\shared\tests\' ⋄ fileid←'report.txt'

The file is opened using the same technique that we used for component files, except that the

tie number is now negative. However, instead of ⎕Fxxx functions we use ⎕Nxxx functions,

like ⎕NNUMS, ⎕NNAMES, and ⎕NSIZE:

 tie←(path,fileid) ⎕NTIE 0

 tie
¯1

 ⎕NSIZE tie The size of the file in bytes
238

 ⎕NNUMS The tie number is negative
¯1

 ⎕NNAMES
g:\shared\tests\report.txt

3.2.2 - Read Characters

To read a file, we use ⎕NREAD, which accepts a right argument made of 3 or 4 items:

1 - Tie number

2 - Data representation (type of conversion to be applied to the bits read)

3 - Number of items to read (not bytes)

4 - Optional starting point, in bytes (0 by default)

Some important points must be noted:

 The third value is not a number of bytes but the number of items, whose size depends

upon the specified data representation.

If the value is set to 100, ⎕NREAD will read:

562 Dyalog APL - Tutorial

- 100 bytes if the conversion code is 80 (characters) or 83 (one-byte integers)

- 200 bytes if the conversion code is 160 or 163 (2-byte characters or integers)

- 400 bytes if the conversion code is 320 (4-byte characters) or 323 (4-byte integers)

- 800 bytes if the conversion code is 645 (8-byte floating-point values)

In any case, it will retrieve a vector of 100 values into the APL workspace.

 There is, however, an exception. When a file is read with conversion code 11 (bits), the

number of items read is specified in bytes, and not bits. This is because the smallest item

that can be read is a byte.

 The starting point, or offset, is always specified in bytes. By default, each read operation

starts from the point where the previous read or write operation finished. So for a

sequential read, this parameter is not required. The offset specifies the number of bytes to

skip, so if it is 50, the first byte read will be the 51st byte in the file.

 Once some items have been read, the default starting point is set to the last byte read, so

that the next read operation will start exactly where the previous one ended.

Our small demonstration file contains characters, so we shall use conversion code 80 (or 82

for Classic Edition, or older versions).

 ∰u←⎕NREAD tie 80 100 Read 100 characters

100 The result is a vector of 100 characters

 u
Berlin 1999 9 2607 2900 The characters (⎕UCS 13 10) cause line skips

Dakar 2006 6 931 1000

Frankfurt 1982 48 1816 1950

London

The characters we read may look slightly unusual: in APL under Microsoft Windows, both

NewLine and LineFeed, which are present at the end of each line, cause the display to skip one

line to the next.

We shall remove these characters later.

If you try to edit the vector using the APL text editor, NewLine characters "wrap" on several

lines, but LineFeed characters appear as blanks, producing the following appearance:

Berlin 1999 9 2607 2900
 Dakar 2006 6 931 1000
 Frankfurt 1982 48 1816 1950
 London

 Chapter N –File Processing 563

We can now verify that if we read some more characters, the read operation will start exactly

where the previous one ended:

 v←⎕NREAD tie 80 50

 v
1979 106 4086 4000

Milano 1982 81 1640 1800

If we try to read too many characters; the operation will naturally stop at the end of the file.

So, it would not have been a problem if we had read the entire contents of a file like this:

 ∰u←⎕NREAD tie 80 1000 0 To restart from the beginning, we specified a
238 starting point of zero

But why specify an arbitrary number like 1000? If the workspace size can accommodate it,

one can read a whole file like this:

 ∰u←⎕NREAD tie 80 (⎕NSIZE tie) 0
238

3.2.3 - Append and Replace

We would like to add a new town to our set of data. Like the previous ones, it contains 28

characters:

 ∰more←'Bamako 2007 6 19 60'
28

But this "record" must be separated from the previous ones, so the update operation needs to

be written like this:

 ⎕←((⎕UCS 13 10),more) ⎕NAPPEND tie
268

The right argument to ⎕NAPPEND is a 1 or 2-item vector; the second optional item being a

conversion code like the one we used when we tied the file. In the Unicode edition the default

conversion is 80 (1-byte characters) if the data to append is a character array, so in our

example we did not need to specify it.

The Shy result of ⎕NAPPEND is the position of the very last byte written. So it would also be

the starting point of a future append operation.

Now, it happens that we made a mistake; the Japanese town should have been Kyoto, not

Tokyo.

It is possible to replace this name, provided that we specify the starting point, that is to say the

position of the last character preceding the characters to replace.

564 Dyalog APL - Tutorial

In this case, it is very easy: "Tokyo" is preceded by 7 rows of 30 characters (28 + 2

separators).

 'Kyoto' ⎕NREPLACE tie 210

Here we could have written 'Kyoto' ⎕NREPLACE tie 210 80, but because we are writing

a character array to the file, there is no need to specify the default conversion code 80.

3.2.4 - Remove Separators

The separators are often unnecessary. Can we get rid of them? When all the rows have a

known identical length, it is rather easy:

 vec←⎕NREAD tie 80 (⎕NSIZE tie) 0
 vec←vec~⎕UCS 13 10 Remove all separators

 nr←(∰vec)÷28 Calculate the number of rows

 ⎕←mat←(nr,28)∰vec Reshape to a text matrix
Berlin 1999 9 2607 2900
Dakar 2006 6 931 1000
… etc

Seattle 1993 14 941 1000
Kyoto 2002 29 652 740 Tokyo has been replaced by Kyoto
Bamako 2007 6 19 60

It is more complex to get rid of the separators when the "records" may have different lengths.

Let us try with a second file. We will use two different methods:

 mlk←(path,'MLK.txt') ⎕ntie 0 Open a new file
 vec←⎕NREAD mlk 80 500 400 Read any arbitrary set of characters

Method 1 (using IBM-like Partitioned Enclose):

 bin←~vec∮⎕UCS 13 10 Find the non-separator characters
 ⎕ML←3 ⋄ nv←bin⊂vec ⋄ ⎕ML←0 Use IBM-like partition (see § I-9.2)
 ⎕←mat←↑nv Produce the final matrix

Method 2 (using ⎕FMT):

 ⎕←mat←⎕FMT vec~⎕UCS 10 Remove only LineFeeds

ormer slaves, and sons of former slave-owners will be able
to sit down together at the table of brotherhood.
I have a dream that one day, even the state of Mississippi, a
state sweltering with the heat of injustice, sweltering with the
heat of oppression, will be transformed into an oasis of freedom
and justice.
I have a dream that my four children will one day live in a
nation where they will not be juged by the color of their skin
but by content of their character.
I have a dream tod

 Chapter N –File Processing 565

Of course, the head and tail of the text are truncated in the middle of a word, because we read

an arbitrary set of characters.

3.2.5 - Create a File, Fill It with Numbers, and Close It

A native file can be created with the same technique we used for component files. Here we

create a file and assign it an arbitrary tie number:

 (path,'nums.fun') ⎕NCREATE ¯7
 ⎕NSIZE ¯7
0 The file is empty, of course

Let us append the contents of Actual, a numeric matrix that we used earlier in this book.

We do not need to specify which data representation is to be used:, because APL knows the

internal representation of the array and will store it with two bytes per number, as we shall

see.

 ⎕←Actual ⎕NAPPEND ¯7
48 The position of the last byte written

We had a 4 by 6 matrix; each value has been stored in 2 bytes, giving 48 bytes. Note that only

the content of the array was written to the file, not any information about its structure, so it

looks as if the array was ravelled before if was written to the file.

 ⎕NREAD ¯7 163 48
 Oops! We got no answer! Why?

Warning! After any write operation (Append or Replace), the read/write pointer is

positioned after the last byte written. A subsequent read operation will start

from that point. So, it is recommended that you specify an explicit starting

point, as shown below:

 ⎕NREAD ¯7 163 48 0
141 188 111 87 82 74 321 306 352 403 497 etc …

 4 6∰⎕NREAD ¯7 163 48 0
141 188 111 87 82 74
321 306 352 403 497 507 This is the matrix we wrote.
118 283 397 424 411 409
 43 91 187 306 318 363

If we use the wrong conversion code when we read from the file, the result will be wrong.

For example, instead of using 16 bits (2 bytes) per number, we could use 32:

 ⎕NREAD ¯7 323 6 0
12320909 5701743 4849746 20054337 26411360 33227249

This shows again that the programs that write to and read from a native file must agree on

how the data is stored in the file.

566 Dyalog APL - Tutorial

We can now untie the native files we created:

 ⎕NNUMS,⎕NNAMES
¯1 g:\shared\tests\report.txt
¯2 g:\shared\tests\MLK.txt
¯7 g:\shared\tests\nums.fun

 ⎕NUNTIE ⎕NNUMS

3.2.6 - Miscellaneous

Several of the operations that we apply to component files are also available for native files.

⎕NERASE Delete a native file, with the same syntax as ⎕FERASE.

⎕NRENAME Rename a native file, with the same syntax as ⎕FRENAME.

⎕NRESIZE Works slightly different from how ⎕FRESIZE works.

A component file can be resized because some "holes" might have been left in

the structure as a result of successive component replacements. This is not the

case with a native file, and the behaviour of ⎕NRESIZE is the following:

The right argument of ⎕NRESIZE is the file tie number.

The left argument is a single integer value that specifies the new size of the file in bytes. If the

new size is smaller than the current file size, the file is truncated. If it is larger than the current

file size, the file is extended, and the content of the additional bytes is undefined.

The function returns, as a shy result, the tie number of the resized file.

3.2.7 - Reading From or Writing To Text Files

We would like to draw your attention to Chapter D, Section 6.6, in which you can find

references to workspaces containing useful functions to read from or write to text files in

various formats.

4 - External Variables

Imagine that you need to update the 5
th

 item of a vector.

If that vector is in memory, you just type: Vec[5]←13500

 Chapter N –File Processing 567

But if it has been stored on a file you need 3 steps: Vec←⎕FRead tie 17
 Vec[5]←13500
 Vec ⎕FReplace tie 17

External variables were invented to work on a file with the same syntax you would use to

work on a variable. External Variables are specific to Dyalog APL.

One creates such a variable using system function ⎕XT:

fileid ⎕XT VarName

 The left argument is any valid unused fileid.

The default extension is DXV (for Dyalog eXternal Variable).

 The right argument is any valid name.

This name will be used as an interface between the file and the workspace

Let us try out this interesting feature:

 'Cuba' ⎕XT 'Var'

 Var ← (43 52) 'Colette' (1 12 14 10) Girls 93600

With those two statements, we have created an External Variable (in fact a file) containing 5

items, and now, we can use that file as if it were a simple variable:

Modify the 5
th

 item ... Var[5]←13500

Append one item ... Var←Var,⊂'Venus'

Ask for its size .. Shape←∰Var

Read the 2
nd

 item ... Name←2⊃Var

Delete the 3
rd

 item ... Var←1 1 0 1 1 1/Var

Insert two empty items Var←1 1 1 1 0 0 1\Var

You can check:

 Shape
6

 Name
Colette

You see that it is possible to compress or expand an External Variable in the same way as any

variable. That would be impossible with any other type of file, even a component file. In fact,

there are no specific restrictions put on the use of external variables. They must just conform

to the normal requirements when used as arguments of functions or as arguments of operators.

For example, although a file is normally considered as a linear arrangement of records, an

external variable need not be a vector:

568 Dyalog APL - Tutorial

 'Matrix' ⎕XT 'Mat'
 ⎕← Mat← 2 3∰ 1 2 3 'One' 'two' 'Three'
 1 2 3
 One two Three

 Mat[2;2]←⊂'Two'
 Mat
 1 2 3
 One Two Three

An external variable occupies very little memory; indeed only the header is stored in memory;

the data part is held on external storage. We can demonstrate this by checking the available

memory space before and after a modification:

 ⎕WA
61986300

 Var←Var,Towns Prod Actual Add three more items
 ⎕WA
61986300 The amount of available memory has not changed

 ∰Var
9 But the variable is longer than before

The full Name Class of an External Variable is 2.6:

 ⎕NC ⊂'Var'
2.6

To close the file, one has only to delete the associated variable: ⎕EX 'Var'

The next time you need to access the data, just associate a name with it again. It can be a

different name; the name is like a tie number: an interface between the workspace and the file:

 'Cuba' ⎕XT 'New'
 4⊃New
Suzy
Anna
Jane

The file associated with an External Variable is normally reserved for exclusive use by its

owner. It can be shared by issuing appropriate commands in the Operating System

environment, or by using the APL function XVAR supplied in the workspace: ws\util.dws.

Although this is an extremely elegant one it is generally not considered practical for more

demanding applications, and especially not in multi-user environments. One reason is that it

lacks some of the access control mechanisms that the component file system provides, and

another is that the file operations may be very slow. The amazing things you can do with an

external variable file may cause a lot of reshuffling of the data in the file.

 Chapter N –File Processing 569

The Specialist's Section

Each chapter is followed by a "Specialist's Section" like this one.

This section is dedicated to skilled APLers, who wish to improve their knowledge.

If you are exploring APL for the first time,

skip this section and go to the next chapter

Spe-1 Component Files

Spe-1.1 - Loading a Workspace with Files Tied

When a component file is tied, it remains tied even if the user loads another WS, or clears the

active WS by issuing a)CLEAR command.

This may be used to dynamically ⎕LOAD successive workspaces, all working on a common set

of tied files without untying and then re-tying them.

But if you have made some experiments on a test file and not untied it before you load an

application workspace, a conflict might occur between the tie number allocated to your test

file and a tie number used in the application. For this reason, we give you two

recommendations:

 When an application starts, the first thing it should do is to clean up:

⎕FUNTIE ⎕FNUMS ⋄ ⎕NUNTIE ⎕NNUMS

 When you need to tie a file, instead of specifying an explicit tie number (for example 51),

it is better to ask for a free number using a zero tie number:

Freenum← fileid ⎕FTIE 0

Spe-1.2 - Universal Rights

When a component file is enabled for shared use:

 The owner need not be specified in the Access Control Matrix. He has universal rights on

the file he has created. However, if the owner is specified, his rights will be limited to

those defined by the matrix.

 A user with an aplnid equal to zero (the default value when APL is installed) is not

subject to the restrictions declared in the Access Control Matrix; this user can do anything.

570 Dyalog APL - Tutorial

Spe-1.3 - Dangerous Rights

When granting rights to a component file to other users via its Access Control Matrix, the

owner of a file must be very cautious. If he grants to another user the rights 4096 and 8192,

that user may modify the access matrix in such a way that the original owner can no longer

use it. If he grants rights 4 or 128, the user can destroy the file or change its name.

These rights should only be granted if necessary (for maintenance purpose for example).

Spe-1.4 - Rights By Default

The value ¯1 permits all operations. Thus, by subtracting the access codes of operations to be

forbidden, it is possible to permit all but certain operations.

For example, to grant all possible rights except 4096 and 8192, one can assign the access

code:

- 1+4096+8192 ¯12289

Spe-1.5 - Pass Numbers

The third column of an Access Control Matrix may contain Pass Numbers. They are used to

control the access to that particular file.

Let us suppose that we have specified that in order to read from a given file the pass number

14101952 must be supplied.

We can tell this number to a user, who then can read all components of the file, provided that

he specifies the pass number:

Instead of ⎕FREAD 1 25 he must now write ⎕FREAD 1 25 14101952
Now, let us further suppose that we really would like to restrict the user to only read all the

even components of the file, but not any of the odd ones.

There is no direct support for such fine-grained control in the APL file system. However, it is

not very difficult to implement it. Firstly, we will not reveal the pass number to the user - we

will keep it secret. Secondly, we will write the following function:

 ∳ Z←Read(tienum compnum)
[1] :If 2|compnum
[2] Z←⎕FREAD tienum,compnum,14101952
[3] :Else
[4] Z←'You are not allowed to read odd-numbered components'
[5] :EndIf
 ∳

Thirdly, we will lock the function by ⎕LOCK 'Read', so that the user cannot open the

function, and therefore he cannot see the pass number either.

 Chapter N –File Processing 571

With this function, the user can read all even components (for example: Read 1 26), but if

he tries to read any odd (forbidden) components, he will receive an error message.

With this approach the user cannot use ⎕Fxxx functions to access the file, because he does not

know the Pass Number. However, he can use the restricted function we provide.

Spe-1.6 - Buffering Considerations

Operating Systems generally improve the performance of file reads and writes by interposing

an in-memory buffer or cache between your program and the disk. Data transferred between

your program and the disk typically involves fast in-memory transfer to and from the cache in

the first place. The Operating System then manages the synchronisation of data between the

cache and the disk independently.

In addition APL has its own internal buffers, so there are two layers of buffers.

This means that when you update a file, part of your data may have been written to disk, and

part may still be in memory. If the computer crashes, the update operation has not been

completed, and some data may be lost.

Usually you do not need to worry about this, as computers and disks are very reliable.

However, if you are writing a lot of important data in a lengthy process you might want to

force a flush to disk once in a while.

In code written in versions of Dyalog APL prior to Version 12.0 you may encounter the

expression ⎕FUNTIE ⍬, which instructs APL to flush buffers to disk (in order to prevent

damage to the file in the event of a crash). However, this technique is not reliable, and for this

reason Version 12.0 introduces optional File Journaling, which slows component file updates

down slightly, but causes APL to update files in such a way that the files will not be damaged

if APL should be terminated abnormally. Journaling is enabled using ⎕FPROPS:

 ('J' 1) ⎕FPROPS tienumber

Even with journaling enabled, there is a slight risk of damage if the operating system or the

machine itself crashes with data still in the operating system caches. Version 12.1 will

introduce additional optional levels of journaling, which, (at the cost of reducing performance

still further) will protect component files from the failure of just about any component other

than the disk itself.

Spe-1.7 – File Properties

To control file journaling, a new file system function ⎕FPROPS was introduced in Version

12.0. This function also makes it possible to query and in some cases set other properties of a

component file. There are currently four properties, each identified by a letter.

572 Dyalog APL - Tutorial

If the left argument to ⎕FPROPS is simple, it is a query:

 'SEUJ' ⎕FPROPS tienumber
64 0 1 0

S (Size) describes the architecture and can be either 64 (for 64-bit files) or 32 (usually

older files limited to 4Gb in size).

E is the "Endian-ness"
9
: 0 for files created on little-endian and 1 for big-endian machines.

Component files created by Dyalog APL version 11.0 or later may be exchanged and

shared between computers of different "endian-ness"; the APL system will

automatically perform the necessary conversions.

U is for Unicode and controls whether character data is forced to type 82 (U=0) for

compatibility with Classic Dyalog APL systems, or written as Unicode (U=1).

J controls whether Journaling is enabled.

Properties S and E are read only; once a file has been created, they cannot be altered.

Changing the journaling setting requires the file to be exclusively tied.

If you need to share data with old versions of APL, Journaling and Unicode must be switched

off. You can set more than one property at a time using name/value pairs:

 ('U' 0) ('J' 0) ⎕FPROPS tn

Spe-2 Native Files

Spe-2.1 - Internal Representation

Let us tie the little numeric file created in § 3.2.5: tie←(path,'nums.fun')⎕NTIE 0

Now, let us read the two first bytes, with two different conversion codes.

Read them as a two-byte integer: intg←⎕nread tie 163 1 0

Read them as 16 bits: bits←⎕nread tie 11 2 0

intg is equal to 141

bits is equal to 1 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0

We can retrieve our integer value by decoding these 16 bits in base 2, but on disk, the two

bytes are stored with the low order byte first.

9 "Endian-ness" is also known as "byte order". A "little endian" computer stores a multi-byte value (such as a large

integer) with the least significant byte in the lowest memory address. A "big-endian" computer stores the same value

reversed, i.e. with the most significant byte in the lowest memory address.

 Chapter N –File Processing 573

So the operation is:

 2∫8⌽bits
141

Conclusion: If you want to interpret a set of bits, it is necessary to know how numeric values

are represented on your hardware.

Spe-2.2 - Character Conversions

Character conversion using code 82 during a Read/Write operation uses a Translate vector.

A translate vector is a 256-item vector of integers from 0 to 255. Each item maps the

corresponding ⎕AV position onto an ANSI character code. This mostly concerns the Classic

Edition of Dyalog APL, but the Unicode Edition also supports conversion using code 82 in

order to allow the reading of files which have been written by the Classic Edition.

For example, to map ⎕AV[17] onto ANSI letter "a" (code 97), item 17 of the translate vector

should be set to 97.

A default mapping is defined by the current output translate table apltrans\win.dot, in the

Dyalog APL installation folder.

One can query that vector using monadic ⎕NXLATE:

 ⎕nxlate tie
0 8 10 13 32 12 6 7 27 9 11 14 37 39 184 190 95 97 98 etc…

One can change the mapping using dyadic form: NewTranslateVector ⎕nxlate TieNumber.

Spe-2.3 - Access Control on a Native File

In the right argument of ⎕NTIE, it is possible to add an optional second item, which controls

how the file is accessed.

The access code is the sum of 2 codes. The first code refers to the type of access that you need

to the file. The second code refers to the type of access you wish to grant to users who

subsequently try to open the file while you have it open.

Rights that you need 0 Read access

 1 Write access

 2 Read and Write access

Rights granted to other users 0 Compatibility mode (see below)

 16 No access (exclusive)

 32 Read access

 48 Write access

 64 Read and Write access

574 Dyalog APL - Tutorial

By default, a file is opened in Read and Write access mode. However, a user can open it in

Read-only mode (code 0) just to avoid accidental overwriting. He may also decide that during

the time he has a full access to that file, he wants to restrict other users to Read-Only access

(32).

The Compatibility mode provides compatibility with old MS-DOS programs. It allows any

process to open a file any number of times, but once a process has a file open in Compatibility

mode no other type of access to the file is possible. It is not recommended that you use this

mode.

Spe-2.4 - Lock Access to a File

We have seen that it was possible to control concurrent accesses to a component file by an

appropriate use of ⎕FHOLD.

For native files, the problem is not so straightforward. The component file system and the

⎕FHOLD mechanism are controlled completely by the APL system, whereas native files are

handled by the Operating System. Operating Systems and their file systems are different.

Some only manage a queue, but do not lock Read/Write operations which are not placed in the

queue (this is similar to how ⎕FHOLD works). Some others both manage the locks queue and

lock Read/Write attempts outside of the queue.

APL provides a function, ⎕NLOCK , that allows the user to lock a range of bytes or the entire

file. However, the way that this locking functionality works in detail is determined by the host

Operating System. There is no attempt to standardise the functionality across different

Operating Systems. Please consult the online help for more information.

The general syntax of ⎕NLOCK is: {R}←X ⎕NLOCK Y

The right argument contains 1, 2, or 3 items:

 Tie number

 The offset (from 0) of the first byte of the range to lock. The default value is 0.

 The number of bytes to lock. The default value is the maximum possible file size.

The left argument contains 1 or 2 items:

 The type of restriction: 0 = Unlock

 1 = Read lock

 2 = Write lock

 Timeout: The number of seconds to wait for the lock to be placed before a TIMEOUT error

will be signalled. If not specified the function will wait forever.

The shy result is the value of Y. To unlock the file this value should be subsequently supplied

as the right argument: 0 ⎕NLOCK Y.

 Chapter N –File Processing 575

Here are some typical cases, applied to a file with tie number equal to tie:

2 ⎕NLOCK tie Write-lock the entire file

0 ⎕NLOCK tie Unlock the entire file

1 ⎕NLOCK tie Read (share) lock the entire file

0 ⎕NLOCK ¨ ⎕NNUMS Unlock all files

1 ⎕NLOCK tie 12 1 Read-lock only byte 12

1 ⎕NLOCK tie 0 10 Read-lock the first 10 bytes

2 ⎕NLOCK tie 20 Write-lock from byte 20 onwards

2 ⎕NLOCK tie 10 8 Write-lock 8 bytes from byte 10

0 ⎕NLOCK tie 12 1 Remove the lock from byte 12

576 Dyalog APL - Tutorial

577

Chapter O: Namespaces

1 - Simple Namespaces

1.1 Introduction

1.1.1 - Definitions

As your workspace grows and you accumulate more functions, variables and operators,

choosing names gets more and more difficult, and the likelihood that you will pick a name

that you have already used for something else increases. Namespaces are containers that allow

you to organise the names in your workspace into separate compartments, avoid name

conflicts and make it easier to find related elements within the workspace:

 A namespace can contain variables, functions, operators, and other namespaces.

 Namespaces can be nested; they are analogous to folders in a file system.

 The workspace itself is considered to be the root of these nested containers; it is

represented by the symbol #. We say that the symbol # represents the root namespace.

 Within a namespace, the parent of the namespace is referred to as ##.

 From anywhere, any name within any space can be referred to by prefixing it with the

names of its parent namespaces, separated by dots.

For example: #.Utilities.PrintTools.FontsControl

Here we refer to the name FontsControl, which resides in the namespace PrintTools,

which is a namespace within the namespace Utilities.

 Namespaces can be manipulated using system commands, or using system functions.

For example: UK.CalcTax and France.CalcTax could be two similar functions for use in

different circumstances. In this example, UK and France are two namespaces and the dot is

used to show that the function CalcTax is to be found "inside" the relevant namepace.

Namespaces can also be used to permit different items of information to be referred to by

name, rather than by indices into an array.

578 Dyalog APL - Tutorial

For example, User could be a namespace containing User.Forename and User.Surname

as an alternative to a 2-item nested vector and the use of 1⊃User and 2⊃User to extract the

two parts of the name.

A namespace is roughly equivalent to what some languages refer to as a "dynamic class" - a

class which contains no predefined elements, but allows names to be inserted dynamically. In

the next chapter we shall see how we can use other types of classes, such as those which are

created by the Graphical User Interface - for example, when you create a dialog box like the

one represented below (figure O-1).

Just run the function CMDesign included in the associated workspace to obtain it:

Figure O-1

The code in CMDesign will be

explained in detail in the next chapter.

You do not need to know the details in

order to experiment with the dialog box

in this chapter.

As you will see in the next chapter this dialog box has the name Drinks. Drinks is the name

of a Graphical User Interface element called a Form, but it also looks very much like a kind of

namespace containing the various graphical elements (and anything else that you decide to

store in it). It contains two "Groups" for Hot and Cold drinks. Each of these Groups contains

a number of "Buttons", and each Button has several properties. These objects are arranged in a

hierarchy which we can "dot" our way into using an expression like for example:

 Drinks.Hot.B3.Caption←'Soup'

Try it; this will change "Chocolate" into "Soup".

1.1.2 - Create an Empty Namespace

One can create an empty namespace using one of three different techniques:

 using the function ⎕NS with an empty right argument:

 Bag ← ⎕NS '' Create an empty namespace

that we can refer to as Bag.

 Chapter O – Namespaces 579

As we will see later, the right argument can be used to copy objects into the newly created

namespace. When the argument is empty the new namespace will also be empty.

 using the system command)NS followed by the name of the new namespace:

)NS Box Create an empty namespace named Box.
#.Box

 using the function ⎕FIX to fix a "Namespace Script", which is a character representation

of a namespace and its contents. In this example the script just defines the namespace

name, so the new namespace will be empty:

 ⎕← ⎕FIX ':Namespace Coco' ':EndNamespace'
#.Coco

We can list the namespaces that we have just created:

)Obs We could instead have typed)Objects.
Bag Box Coco Drinks

 ⎕NL 9 Objects (including namespaces)

Bag are in name category 9.
Box
Coco
Drinks

 ⎕NC ∸⎕NL 9 9.1 for names created by ⎕NS,)NS or ⎕FIX;
9.1 9.1 9.1 9.2 Drinks is in name category 9.2.

1.1.3 - Namespaces without a Name?

A namespace does not need to have a name. Of the three examples above, the first one (using

⎕NS) created an unnamed namespace, while the others created two named namespaces. There

are no differences between named and unnamed namespaces, other than the fact that a name

was defined or not when the namespace was created.

The name Bag in the first example above is not the name of the new namespace; it is a

reference (pointer) to it. You will learn much more about references (often abbreviated to

Refs) later in this chapter.

All namespaces, whether they were named or not, are in fact referred to using references. This

may be slightly confusing, because it may look as if we use the name of a named namespace

to identify it, but we don't. For example we saw this list above:

)Obs
Bag Box Coco Drinks

We might think that this is a list containing one reference (Bag) and two names (Box and

Coco)? In fact, all three are references. But we haven't assigned any references to the two

named namespaces, as we did in the expression Bag ← ⎕NS '', have we?

580 Dyalog APL - Tutorial

Yes we have, but indirectly. When you create a named namespace a reference having the

same name is automatically created. So, Box and Coco in the list above are really references

that just happen to have the same names as the namespaces they refer to.

The default display of a namespace (what you see when you type an expression that returns a

namespace reference) is the full pathname of the namespace, starting with "#", followed by

the names of the hierarchy of containing namespaces, and lastly the name given when the

namespace was created:

 Box
#.Box

 Coco
#.Coco

 Drinks
#.Drinks

However, if any namespace in the path is an unnamed namespace there is no name to display,

so the system just tells you that it is a namespace using [namespace] in place of its name:

 Bag
#.[Namespace]

 ⎕NS ''
#.[Namespace]

This difference in the display is the only difference between a named and an unnamed

namespace.

Later we will see how the system function ⎕DF allows us to change the Display Form of an

object, to output a name or other information that might be useful when inspecting the

workspace.

Henceforth, when we in the following refer to the "name of a namespace" we actually mean

the name of a reference to the namespace.

1.1.4 - Copying Objects to a Namespace

When you create a new namespace using ⎕NS you can specify a list of object names in the

right argument. The named objects will then be copied (not moved) into the namespace that

you are creating. For example, we can simultaneously create a namespace and copy some

variables and functions into it:

 Bag ← ⎕NS 'Forecast' 'Chemistry' 'Average' 'Plus'

The same technique can be used to copy objects into an existing namespace:

 'Bag' ⎕NS 'Enlist' 'Prod' 'Boys'

The name specified in the left argument must then be the name of (a reference to) an existing

namespace.

The right argument can be a simple scalar or vector (to copy a single object), a nested vector

as above, or a matrix of names, with one name per row, as shown below.

 Chapter O – Namespaces 581

 Copied ← ↑'Money' 'Numbers' 'Root' 'Spin' 'Interlace' 'Words'

 'Box' ⎕NS Copied

Let us verify that the objects are still present in the workspace:

 ⎕NC Copied
2 2 3 3 3 2

More generally, ⎕NS can be used to copy objects from different source namespaces into a

given target namespace:

'Target namespace' ⎕NS List of objects

For example:

 '#.Compute' ⎕NS '#.Average' '#.Maths.Sqrt' '#.Tools.Stats.Stdev'

In this example we copied objects coming from three different namespaces into a single target

namespace. If the target namespace does not already exist it will be created.

1.1.5 - Change Space

One can also "step into" a namespace to work in it, and create new variables, functions, etc.

To step into a namespace, one can:

 Use the system command)CS followed by the target namespace

The command will then display the target namespace

 Use the system function ⎕CS, also followed by the target namespace

This function returns the original namespace as a Shy result

Changing space in this way works only if the namespace is a direct child of the current

namespace (or workspace, i.e. the root namespace). When this is not the case, one must

specify the full path leading to the target namespace, starting from the current space or from

one of its parents (commonly starting all the way from the root):

For example:)CS #.Canada.Quebec.Chicoutimi Start from the root

Or: ⎕CS ##.BrotherSpace.CoreSpace Start from a parent

Or: ⎕CS Utils.PrintUtils Dig deeper from this

space

Let us step into the namespace Bag that we created in the previous section, and list its

variables and functions:

 ⎕cs Bag

)Vars
Boys Chemistry Forecast Prod

)Fns
Average Enlist Plus

582 Dyalog APL - Tutorial

Where am I? The current namespace can be identified in various ways:

Using a system command:)NS #.Bag

or using the system function ⎕CS: ⎕←⎕CS'' #.Bag (as a character

vector)

or using the simplest method: ⎕THIS #.Bag (as a Reference)

Now we are in Bag, and we can create some new variables and functions; they will be strictly

local to this namespace like the functions and variables that we copied into the namespace:

 ∳ r←Useless v Create a function
[1] r←v+∯∰v
 ∳ Create variables

 Location ← 'You are in "Bag"'

 ⎕← Compass ← 5 5∰' N ↑ W←∬→E ∸ S '
 N
 ↑
W←∬→E
 ∸
 S

 Integers ← 12 63 54 21

 Useless Integers Apply the function to the variable just created
13 65 57 25

This expression worked perfectly because both Useless and Integers are present in the

current namespace. If we try to use objects located in the root, for example 5 Times 6 or
∰Girls, a VALUE ERROR will be generated, as objects in another namespace are not visible

from within Bag.

1.1.6 - Return To the Root

If we want to return to the root and make it the current namespace:

 We can again use the system function: ⎕CS #

 or we can use the system command:)CS #

 Using the latter we do not need to specify the destination:)CS

 Chapter O – Namespaces 583

1.2 Use the Contents of a Namespace

1.2.1 - Using Full Names

Let us return to the root using one of the methods shown above and try to use the function we

defined in the Bag namespace:

)cs
We are in the root now.

 Useless 4 3 2 1
VALUE ERROR The functions in Bag are not visible from here.
 Useless 4 3 2 1 The same problem would occur with Integers.
 ∧

To use objects contained in a namespace other than the current one we must specify the full

path to where they are defined.

 10 Times Bag.Integers Apply a function located in the root (Times) to a

120 630 540 210 variable located in Bag.

 Bag.Useless 14 23 32 41 Apply a function located in Bag to values

15 25 35 45 defined in the root.

 Box.Spin Bag.Compass Apply a function located in Box to a value
 E located in Bag.
 →
N↑∬∸S
 ←
 W

1.2.2 - Performing Operations inside a Namespace

Functions and operators are executed in the context in which they are defined, not in the

context from where they are called. For example, in the statement above Spin was executed

in the namespace Box.

This is true for all functions and operators, including system and primitive functions and

operators, which are considered to exist in all spaces. For example, one can obtain the names

of objects contained in a namespace by executing ⎕NL in that namespace:

 Box.⎕NL 3
Interlace Functions contained in Box
Root
Spin

584 Dyalog APL - Tutorial

 Bag.⎕NL 3
Average Functions contained in Bag
Enlist
Plus
Useless

 Box.⎕NL ¯2
 Money Numbers Words

 Box.⎕EX 'Words' Destroy a variable in a namespace

One can modify an existing variable, or even create a new one by assigning a value to it:

 Bag.Integers Its current value
12 63 54 21

 Bag.Integers ∲←10 Change it using a modified assignment

 Bag.Integers Check
120 630 540 210

 Bag.New ←'Just born' Create a new variable

 Coco.Number ← 5 Ditto

If a primitive function follows a dot, it is executed inside the namespace specified to the left

of the dot:

 Bag.⍎'Lotion←⌽Location' Execute an expression inside a namespace

 'L' Bag.⎕nl 2
Location
Lotion A new variable has been created

 Bag.Lotion
"gaB" ni era uoY

 Bag.⎕IO←0

 Bag.∯ 4
0 1 2 3 Uses the index origin in the Bag namespace

Multiple assigment is also possible, providing that the name list is enclosed in parentheses:

 Bag.(One Two Three)←1 2 3 Create three new variables

In addition to using variables and functions that are located in a namespace, it is possible to

execute expressions within the context of a space by enclosing them in parentheses to the right

of a dot:

 Bag.(Three+One) Use the variables we assigned above
4

 Bag.(+/One Two Three)
6

When properties of a GUI object are assigned new values, the result may have a visible effect:

 Drinks.Hot.B3.Caption←'Soup' Change "Chocolate" into "Soup"

 Drinks.Cold.B5.State←0 Deselect "With Ice"

 Chapter O – Namespaces 585

Figure O-2

With these two expressions (which we will explain in the next chapter), we have changed the

name (Caption) of one hot drink, and removed the selection (State) of the "With ice" option.

1.2.3 - Change Space

One can also execute one or more statements in a different namespace by temporarily

stepping into that namespace. This can be done in a function:

[11] statements
[12] Old←⎕CS '].Util.Print' Step into a target namespace, but keep trace of
[13] the original namespace
[14]
... statements Execute some statements in the target namespace
[17]
[18] ⎕CS Old Return to the initial namespace
[19] statements

In this example, statements 13 to 17 are executed in the namespace #.Util.Print.

We shall see later in this chapter that, using the control structure :With, one can also step

into a specified namespace for the duration of the control structure (terminated by

:EndWith), thus avoiding the repetition of references to an object or namespace. This is

preferable to using ⎕CS, because it is not possible to "forget" to change back again, and the

automatic indentation of statements within a control structure makes the program more

readable. See Section 2.2.3.

586 Dyalog APL - Tutorial

1.2.4 - Using a Search Path

It is very convenient to store a set of utility functions in a namespace:

 There are no name conflicts between objects in the workspace and objects in the

namespace; everything is "localised" in the namespace.

 The lists returned by)Vars,)Fns, etc. in the root of the workspace do not show the utility

programs; they are "hidden" inside the namespace.

However, it may be a little tedious to have to prefix all names of functions residing in a

namespace by the appropriate namespace identifier, e.g. #.Util.Print.PrintIt.

To avoid this, one can define a Search Path, which contains a list of namespaces in which the

interpreter will look for the function (or operator) names used in APL statements if they

cannot be found in the current space. For example:

 ⎕PATH←'].Box].Bag' Names are separated by one or more blanks

When ⎕PATH is not empty, and a statement refers to a function or operator which is not

present in the current context, APL will search in the namespaces specified in ⎕PATH, starting

with the leftmost one, then in the next one to the right, and so on. If the function (operator) is

found somewhere it will be used, else a VALUE ERROR message will be issued.

Using the ⎕PATH defined above we could simplify the expression

 Box.Spin Bag.Compass

to

 Spin Bag.Compass

Warning! Only defined functions and operators are located by the namespace search path

mechanism; variables are ignored.

Furthermore, when a function has been found by the path mechanism, it is

executed in the namespace in which it was found. So, if the function calls other

functions or refers to global variables it will use the ones found in its own

namespace, not the ones found in the calling environment.

To demonstrate this, let us step into #.Box and define a function and a global variable:

)CS Box Step into Box

 ∳ Z←{N}Root Y Define a function to calculate the Nth root
[1] :If 0=⎕NC'N' of a number
[2] N←DefaultPower By default, N takes its value from
[3] :End a global variable
[4] Z←Y*÷N
 ∳

 Chapter O – Namespaces 587

 DefaultPower←2 Set the default value

)CS Return to the root space

 DefaultPower←3 Define a different default value

 3 Root 64 Execution with a left argument
4

 Root 64 When the left argument is missing, the function
8 looks for DefaultPower in its own

namespace,

 not in the root namespace.

You can trace the function call, and use)NS or ⎕THIS to verify that execution takes place in

Box.

Parents list In the search path definition, the special character ↑ represents a search

upwards through all parent namespaces of the current space, i.e.:

The immediate parent ##

The parent of ## ##.##
The parent of ##.## ##.##.##

And so on, up to the root # (or up to ⎕SE if it is the top namespace)

Note that ⎕PATH is a session variable. This means that it survives)LOAD and)CLEAR. It can,

of course, be localised in the header of a defined function or operator.

Advice You can interrupt your study of namespaces at this point and skip to the next

chapter P, in which you will learn to use namespaces in a very intuitive way to

build a Graphical User Interface (GUI). After having read this chapter you

should be much more familiar with the namespace concept, and therefore

perhaps better prepared for reading the following sections.

However, the interfaces described in chapter Q, especially the interface with

Microsoft Excel, rely on namespaces and namespace references, so you will

need to return to this chapter and study the rest of it carefully before turning to

chapter Q.

588 Dyalog APL - Tutorial

2 - More about References

2.1 Namespace References

2.1.1 - Introduction

When working with namespaces, it is important to understand that the name that we might

think of as the namespace is in fact only a pointer, or reference (Ref in short) to the

namespace. After executing the expression:

 'Box' ⎕NS ''

the name Box contains a reference to the namespace which was created. In fact, although the

name category of 'Box' is 9 to show that it is a reference; Box is a scalar:

 ∰∰Box
0

As with any other array, we can make a copy of a ref using an expression like:

 Vuitton ← Bag

However, since Bag is a Ref, the value that gets copied is only the pointer: The namespace

itself is not copied; we now have two Refs pointing to the same namespace. If we display

Vuitton we will see the name that the namespace was given when it was created, for

example:

 Vuitton
#.Bag

It is important to realise that there is no difference between Vuitton and Bag, except that the

Ref Bag happens to have the same name that the namespace was given when it was created. In

fact:

 Vuitton.Location
You are in "Bag"

 Vuitton ≡ Bag
1

When creating a namespace with ⎕FIX, one can simultaneously give a name to the new

namespace and assign the result to a Ref:

 Souk←⎕FIX ':Namespace Bazaar' ':EndNamespace'

 Chapter O – Namespaces 589

In fact, the above statement creates two Refs to the same new namespace:

 Souk ≡ Bazaar
1

Based on our previous experience, the result of passing a Ref as an argument to a function can

be a bit surprising:

 When a function modifies the argument it received, it just modifies a local copy; the array

used as the argument is itself not modified. See what happens with this basic function:

 ∳ Mirror text
[1] text←⌽text The function reverses its argument and displays it
[2] text
 ∳

 Capital←'Washington'

 Mirror Capital If we apply our function to this variable, the
notgnihsaW copy of the argument is reversed.

 Capital The original variable itself is of course

unchanged.
Washington

 Let us change our function a little, to make it work on a child of its argument

 ∳ Mirror NSRef
[1] NSRef.Location←⌽NSRef.Location
 ∳

 Vuitton.Location
You are in "Bag" The original value

 Mirror Vuitton

 Vuitton.Location After executing the function on the Ref the array
"gaB" ni era uoY inside the namespace has been modified

In fact, the namespace itself was never passed to our new function. The Ref was passed,

and a local copy was made of the Ref.

If the function had assigned a new value to NSRef itself, this would have overwritten the

pointer, but would not have had any effect on the namespace which was referenced by it.

However, in reality the function only used the Ref indirectly, and modified a variable

within the referenced space. This actually changed the variable, and the change endures

after the local copy of the Ref was deleted at the end of executing the function.

Although this behaviour may at first sight seem counter-intuitive, everything is in fact

working according to the usual rules.

590 Dyalog APL - Tutorial

2.1.2 - Distributed Prefix or Suffix

Let’s create a couple of similar namespaces to contain data - first for an Italian car:

 Italy ← ⎕NS''

 Italy.Name ← 'Luciano'

 Italy.Car ← 'Fiat'

 Italy.Year ← 1997

 Italy.⎕NL 2
Car
Name Three variables have been created inside Italy.
Year

We can write a function that will work on a Ref, and display the information contained inside:

 ∳ Z←CarOwner Ref
[1] Z←Ref.Name,' bought a ',Ref.Car,' in ',⍃Ref.Year
 ∳

 CarOwner Italy No quotes around Italy, of course
Luciano bought a Fiat in 1997

Let us create a similar namespace for Germany: Germany ← ⎕NS ''

To initialise its variables we can group the three assignments into a single one, provided we

use a common prefix, as if it were "distributed" to each of the variables, like this:

 Germany.(Name Car Year)←'Helmut' 'Volkswagen' 2006

 CarOwner Germany
Helmut bought a Volkswagen in 2006

In fact it is possible to distribute both a prefix and a suffix:

 Italy.(Name Year Car) A single Ref is distributed to 3 variables
 Luciano 1997 Fiat

 (Italy Germany).Car A single variable is distributed to two Refs
 Fiat Volkswagen

Perhaps we can distribute both the Ref and the variable names simultaneously?

 (Germany Italy).(Name Year Car)
 Helmut 2006 Volkswagen Luciano 1997 Fiat

Note that this works like an Outer Product; all Refs are combined with all variables.

We can use the same technique inside the CarOwner function. Instead of repeating the Ref

before each variable name, we can distribute it. The new function looks like this:

 ∳ Z←CarOwnerDist Ref
[1] Z←Ref.(Name,' bought a ',Car,' in ',⍃Year)
 ∳

 Chapter O – Namespaces 591

 CarOwnerDist Italy
Luciano bought a Fiat in 1997 It works perfectly

2.1.3 - Control Structure :With

:With is a control structure that may be used to simplify a series of references to an object or

namespace. :With changes into the specified namespace for the duration of the control

structure, terminated by :EndWith.

We will use this control structure much more in chapter P on Graphical User Interfaces, but

we will demonstrate it here by showing a third definition of the CarOwner function. Within

the scope of the :With control structure, we can reference objects in the specified namespace

without any further qualification:

 ∳ Z←CarOwnerWith Ref ;a;b
[1] :With Ref
[2] a←Name,' bought a ',Car,' in ',⍃Year
[3] b←(⍃Year),' was a good year for ',Car
[4] Z←↑a b
[3] :EndWith
 ∳

 CarOwnerWith Germany
Helmut bought a Volkswagen in 2006
2006 was a good year for Volkswagen

The use of :With/:EndWith is much more pertinent when several statements refer to names

in a certain namespace.

2.2 Display Form

When one types the name or Ref of a namespace, the text displayed is called the "Display

Form" of the namespace. The default display form depends on whether the namespace was

named when it was created:

 Bag
#.Bag The Display form of a named namespace

 Italy Germany
 #.[Namespace] #.[Namespace] The Display form of two unnamed namespaces

One can change the Display Form of a namespace using the system function ⎕DF inside the

namespace, like this:

 Bag.⎕DF 'Leather bag' Assign a new Display Form to our namespaces

 Italy.⎕DF ↑'Luciano''s' 'namespace'

592 Dyalog APL - Tutorial

 Bag
Leather bag The new Display Form is shown when one types

 Vuitton the namespace identifier or a Ref to it

Leather bag

 Italy
Luciano's As you can see, a Display Form can be any

namespace character array (here it is a matrix)

One could be confused and think that Italy is a character matrix, but the following tests

clearly demonstrate that it is not the case:

 ⎕NC 'Italy' Italy is a Ref
9

 ∰Italy

 ∰∰Italy A Ref is a scalar
0

 ∰⍃Italy Format returns the Display Form

2 9

The function ⎕DF returns as a Shy result the previous Display Form of the object concerned.

3 - Arrays of Refs

3.1 Create an Array

You may construct arrays of Refs exactly like you create arrays of other types of scalars, for

example using strand notation, Concatenation (,), or Reshape (∰).

Let us create a vector of named namespaces:

 Sample←Italy Germany Create an array of Refs using strand notation

 ∰Sample
2

 ⎕NC 'Sample'
2 Category 9 is only reported for a Ref

 Sample
 Luciano's #.[Namespace] Italy was assigned its own Display Form,
 namespace while Germany has the default display form.

 Chapter O – Namespaces 593

This example shows that when you create an array of Refs the result is an ordinary array

(name category 2). A Ref is always a scalar, which can be an item of an array just as numbers

and characters. In fact, a Ref is a simple scalar, so that an array of Refs is a simple array, as the

following expression shows:

 ≡Sample
1

Using Reshape to create an array of Refs is a bit more complex.

Let us create two vectors of unnamed namespaces, using two different statements:

 VRef1 ← 3∰⎕NS'' A simple, straightforward statement

 VRef3 ← ⎕NS ¨ 3∰⊂'' A different statement using the Each operator

In fact, VRef1 and VRef3 are very different: VRef1 contains 3 references to a single

unnamed namespace. VRef3 contains references to 3 different unnamed namespaces

If you take a closer look at the first statement it should not be difficult to understand that

VRef1 does not reference three different namespaces. ⎕NS'' was only executed once, so

where would the other two namespaces come from?

Let us demonstrate the difference between the two arrays:

 VRef3.id←'First' 'Second' 'Third'

 VRef3.id
 First Second Third As expected, we have three different namespaces

 VRef1.id←'First' 'Second' 'Third'

 VRef1.id
 Third Third Third Three results, but the same namespace

Explanation: The three words were assigned to the same variable within the same namespace

one after the other, so only the last one remained. Then we display this variable three times, as

the three items of VRef1 refer to the same namespace.

If you are not aware of the differences demonstrated above, you may observe unexpected

results. However, since many APL primitive functions apply to arrays of Refs, we can easily

detect that the two arrays are different, for example:

 ∰∪VRef1
1 Only one unique item

 ∰∪VRef3
3 Three different items

 2=/VRef1
1 1 Adjacent items are identical

 2=/VRef3
0 0 Adjacent items are not identical

594 Dyalog APL - Tutorial

3.2 Indexing Arrays of Refs

Arrays of Refs are not different from other arrays: They can be indexed using traditional

bracket indexing, Squad, or Pick (or selected using Take, Drop, Compress, etc.). The extracted

Refs can be used in any statements where a single Ref could have been used:

 Sample[1].(Year Car)
1997 Fiat

 (2⊃Sample).Car (2⌷Sample).Car would work, too
Volkswagen

A function can be applied to an array of Refs:

 ↑ CarOwnerDist Sample The function returns a 2-item nested vector,
Luciano bought a Fiat in 1997 transformed into a matrix using Mix.
Helmut bought a Volkswagen in 2006

 Sample.⎕NL 2 Apply a system function to each namespace
 Car Car
 Name Name
 Year Year

 (Box Bag).⎕NL 3 Apply a system function to an implicit
 Interlace Average 2-item vector of Refs
 Root Enlist
 Spin Plus
 Root Useless

4 - The Session Namespace

⎕SE, the Session Namespace, is a namespace that exists in parallel to the workspace root

namespace and its child namespaces. As its name implies, the Session Namespace remains

unchanged when another workspace is loaded, replacing the active workspace and its

namespaces.

In the Dyalog APL Explorer there are two separate top-level entries: one for the root

namespace of the active workspace (represented by #), and one for the Session Namespace

(represented by ⎕SE).

The Session Namespace is an object that can be used to control the appearance and behaviour

of the APL session. It makes it possible to add, modify, and remove menus, menu items, and

toolbar buttons of the APL session window itself, i.e. the development environment.

 Chapter O – Namespaces 595

As with any namespace it is possible to store functions in the ⎕SE namespace. Since the ⎕SE

namespace "survives" the loading of another workspace it may be very convenient to store

frequently used utility functions in it.

This is especially useful when used together with an appropriate ⎕PATH setting. As mentioned

earlier, ⎕PATH is a session variable. So, if you include ⎕SE in ⎕PATH, then your utility

functions will be readily available in all workspaces.

The ⎕SE namespace can be saved using the menu items Session Save as or Session

Save.

Most of the things you can do with namespaces in general also apply to the Session

Namespace.

For example, you can change its Display Form:

 ⎕SE
⎕SE This is the default Display Form of ⎕SE

Let us change it:

 ⎕SE.⎕DF 'Production environment/April 2009'

 ⎕SE
Production environment/April 2009

 ⎕SE.⎕DF ⎕NULL This will restore the default display form

 ⎕SE
⎕SE Back to the default

Changing the display form may be convenient if you are working with more than one APL

session at a time, as it makes it easy to identify which session window is which.

Beware: The Session Namespace must remain independent of the active workspace, since

workspaces and session namespaces are saved separately. If you create a Ref which crosses

the boundary between the workspace and the Session Namespace you will not be able to save

the active workspace:

 Session←⎕SE

)save c:\temp\myws
Cannot perform operation when session namespace is referenced by #.
#...Session

596 Dyalog APL - Tutorial

And now, what kind of APLer are you?

 Chapter O – Namespaces 597

The Specialist's Section

Each chapter is followed by a "Specialist's Section" like this one.

This section is dedicated to skilled APLers, who wish to improve their knowledge.

If you are exploring APL for the first time,

skip this section and go to the next chapter

Spe - 1 The Dot as a Syntactic Element

The interpreter can distinguish between a dot used as a namespace separator and a dot used as

the Inner Product operator, because the symbol immediately to the left of the dot is a Ref

(category 9) when the dot is used as a namespace separator, and a function (category 3) when

the dot is used as part of an inner product.

Consider for example this expression:

 1 2 and.equal 1 2
1

Is this an Inner Product, or a call to a dyadic function equal in the namespace and?

We cannot tell without knowing the Name Category of and. Let us first create a namespace

and, define a function equal in it, and execute the expression above:

 and←⎕ns''

 and.⎕vr'equal'
 ∳ z←y equal x
[1] z←y≡x
 ∳

 1 2 and.equal 1 2
1

Instead we could have defined these two functions and executed the same expression above:

 ⎕vr'and'
 ∳ z←y and x
[1] z←y∧x
 ∳

 ⎕vr'equal'
 ∳ z←y equal x
[1] z←y=x
 ∳

 1 2 and.equal 1 2
1

598 Dyalog APL - Tutorial

This example shows that in a dynamic, not typed, and interpreted language like APL it is in

general not possible to fully analyse an expression unless you know the categories of the

names involved.

Usually you will know the categories of the names that appear in your APL code, simply

because you defined the functions, operators, namespaces, etc. yourself.

However, APL is so dynamic that it is possible to have an expression like the one above in a

function, and not know in advance whether the name and denotes a function or a namespace.

Moreover, it may be different from one time the function is called to the next, or even from

one time the function line is executed to the next, if it is part of a loop. This means that the

final analysis of an APL expression cannot take place until run-time, during each execution of

the expression itself.

Spe - 2 State Indicators

During the debugging of an application it is important to know not only which functions are

pending, but also where they are located (remember, functions in different namespaces may

share the same name), and from which namespace they were called.

This is why Dyalog APL includes two extra system functions in addition to the familiar ⎕SI

State Indicator:

⎕XSI (eXtended State Indicator) reports where each function on the stack is located

⎕NSI (NameSpace Indicator) reports from where each function on the stack has been called:

Refer to: Chapter E, Specialist's Section, Section Spe-3.

Spe - 3 Evaluation of Statements

Spe-3.1 - Execution Protocol

When the interpreter executes an expression that refers to a namespace the execution includes

the following steps:

 Switch into the namespace

 Evaluate the name in this namespace

 Switch back to the original namespace

For example: Suppose that the current namespace is #.Current, and we try to execute

the following statement:

 Res ← Tools.Print.SetFont Default

 Chapter O – Namespaces 599

The interpreter will evaluate it in the following way:

1. Evaluate Default in the current namespace (#.Current) to establish the argument to the

function.

2. Switch to namespace Tools (a child of #.Current) and evaluate the name Print.

3. Switch to namespace Print (a child of #.Current.Tools).

4. Call function SetFont in namespace #.Current.Tools.Print with the value found in

the first step.

5. Upon completion switch back to namespace #.Current.

6. Assign the result to variable Res in namespace #.Current.

Spe-3.2 - Distribution Rules

An array of namespace references (Refs) to the left of a dot '.' is distributed according to the

following rule, where R1 and R2 are Refs, and Exp is an arbitrary expression:

 (R1 R2).Exp (R1.Exp)(R2.Exp)

For example:

 (Germany Italy).(2008-Year)
2 11

If Exp is a function, the items of its argument(s) are distributed to each Ref as follows:

 Monadic (R1 R2).Func v3 v4 (R1.Func v3)(R2.Func v4)

 Dyadic v1 v2 (R1 R2).Func v3 v4 (v1 R1.Func v3)(v2 R2.Func v4)

For example: (Bag Box).⎕NL 3 2 is equivalent to (Bag.⎕NL 3)(Box.⎕NL 2)

This is fully in line with the usual shape compatibility rules for scalar functions, so that scalar

extension works as usual:

 (R1 R2).Func v5 (R1.Func v5)(R2.Func v5)

Likewise, a LENGTH ERROR will be reported if the length of the list of namespace Refs is

different from the length of the argument vector(s), and none of them are singletons (i.e.

arrays with a single item).

An array of Refs to the left of an assignment arrow is expanded like this:

 (R1 R2).Exp ← v1 v2 (R1.Exp ← v1)(R2.Exp ← v2)

600 Dyalog APL - Tutorial

Spe - 4 The Dyalog Workspace Explorer

The Workspace Explorer offers two top-level entries (look in the leftmost column):

 One for the root namespace of the active workspace, represented by #

 One for the session namespace, represented by ... ⎕SE

The root namespace itself may contain three types of entries:

 One for the functions and operators located in the root namespace [Fns/Ops]

 One for the variables located in the root namespace [Vars]

 One for each of the namespace children of the root namespace.

The hierarchy of namespaces may be explored to any depth.

Figure O-3

Here, we have selected #.Box on the left, and we can see on the right what it contains.

 Chapter O – Namespaces 601

Spe - 5 Control of Exported Functions

In section 1.2.4 we supposed that all functions contained in the namespaces specified in the

search path were visible. This is the default behaviour.

However, it may be desirable to designate certain functions (or operators) as private to a

namespace, so that they are not readily visible to and callable from other namespaces through

the namespace search path mechanism.

For example, the "public" functions in the namespace may use a number of private sub-

functions that are not designed to be called from outside the namespace.

This can be accomplished using the system function ⎕EXPORT.

The general syntax is: {R}←{X} ⎕EXPORT Y

 The right argument Y is a character scalar, vector, or matrix, or a vector of enclosed

character vectors, representing the name(s) of the functions and operators whose export

status is to be queried (monadic use) or set (dyadic use).

 The left argument X is a Boolean scalar (applies to all names in Y) or vector (one item per

name in Y) specifying the export status of each of the functions or operators, with the

following convention:

0 This function/operator cannot be exported (hidden from ⎕PATH).

1 This function/operator can be exported (visible).

 This is the default value.

 Since functions and operators by default are visible it suffices to specify the list of

functions and operators that should not be exported.

 The result (Shy in the dyadic use) reports the current export status of the names specified

in Y.

 ⎕EXPORT only affects the namespace search path mechanism. A function or operator that

has been declared invisible using ⎕EXPORT may still be called using its fully specified

name. If you want to prevent "private" functions from being called, you need to define a

Class, which is a part of the Object Oriented Programming extensions to Dyalog APL. For

more information please consult other literature from Dyalog Ltd., as Object Oriented

Programming is not covered by this tutorial.

It may be important to hide sub-functions that should not be visible through the namespace

search path, as the following example shows.

Let us suppose that we have the following set of namespaces:

#.Utils Contains a function PrintMe, which calls a sub-function

SetCoords, also located in this namespace.

602 Dyalog APL - Tutorial

#.PrintFuns Contains a function SetCoords, which is a different function

than the one located in #.Utils, and which is designed to be

called from outside of this namespace.

Root (#) Contains a function named Main, which needs to call the

SetCoords function that is located in #.PrintFuns.

A search path has been defined like this: ⎕PATH ← '].Utils].PrintFuns'

When Main is executing and it calls SetCoords the interpreter will first search for

SetCoords in the root namespace. Since there is no such function in the root namespace, it

will search for the function in #.Utils, as this is the first namespace listed in ⎕PATH.

 By default Utils.SetCoords is visible and will therefore be called by Main, though it is

not the intended function (it is a sub-function to PrintMe).

 In order to avoid this unfortunate behaviour Utils.SetCoords should be declared

invisible to the search path mechanism (0 ⎕EXPORT 'Utils.SetCoords'). Then this

function will be ignored during the search, and the search will instead continue with the

next namespace specified in ⎕PATH. This is #.PrintFuns, in which the proper

SetCoords function will be found and called.

Spe - 6 Retrieving a Namespace Source

When a namespace has been created by ⎕FIX, it is possible to retrieve the source script that

was used to create it:

 DISPLAY Code←⎕SRC Coco
┌→─────────────────────......───────────────────┐
│ ┌→──────────────┐ ┌→── ──┐ ┌→────────────┐ │
│ │:namespace Coco│ │ etc. │ │:endnamespace│ │
│ └───────────────┘ └─── ──┘ └─────────────┘ │
└∮─────────────────────......───────────────────┘

If the namespace is erased it can be reconstructed using the source code:

)erase Coco Erase the Namespace

 ⎕FIX Code Restore it

)obs
Coco All is well

If ⎕SRC is applied to a non scripted namespace a NONCE ERROR will be reported.

603

Chapter P: Graphical User Interface

Dyalog APL includes a cleverly designed interface with Windows (or with similar

functionalities emulated under Unix) to develop Graphical User Interfaces, or GUIs in short.

A complete description of this interface is beyond the scope of this tutorial, so we decided to

teach you some basic concepts and methods, so that you can quickly become autonomous.

You will then be able to develop small applications and improve your knowledge on your

own.

1 - Guidelines

1.1 Terminology and Options

The GUI interface can be manipulated using two different methodologies:

 One is consistent with the Object Oriented (OO) model that is employed by other modern

computer programming languages. When this approach is adopted GUI components are

manipulated using the same "dot-notation" as we use to work with namespaces, as shown

in Chapter O. It requires very strict observance to a rigorous syntax, and is perhaps a bit

discouraging for a beginner (unless you are already accustomed to Object Oriented design

and development).

 The second approach is also based on a set of GUI "objects", but uses a set of functions

very specific to Dyalog APL, which were originally designed to facilitate the use of the

Graphical User Interface by non specialists. This is the original Dyalog APL GUI

interface. The syntax of the Dyalog system functions is significantly more tolerant than the

OO model and is easier to use while learning the ropes. The object oriented features are in

fact an extension of this.

Within certain restrictions it is possible to mix the two GUI notations, although it is generally

not recommended to do so. In this tutorial we will mostly use the original GUI interface, but

we will also show examples of using namespace (dot) notation.

604 Dyalog APL - Tutorial

1.1.1 - GUI Objects

A Graphical User Interface consists of forms containing buttons, fields, lists of values, scroll

bars, and so on. All these components will be called Objects, although user interface elements

are sometimes referred to as Controls.

Let us again take a look at this dialog box, which we met in the previous chapter:

Figure P-1

As mentioned in the previous chapter, the different parts of this dialog box can be considered

as embedded namespaces (although the GUI objects are special namespaces, which contain

elements not written in APL):

 At the lowest level we have, for example, a Radio Button labelled "Guarana"

 This button is contained in a Group called "Cold Drinks"

 That group is contained in a Form entitled "Coffee Machine"

 The form itself is child of a general Root object, common to all GUI objects.

The Root object can be represented by a simple dot '.' or by a hash '#'. The two names are

synonymous, but while '.' was used in the original Dyalog APL GUI implementation, '#'

was added later to provide compatibility with the namespace concept, and may be used even

when programming with the original GUI interface. In this book we will use '#' as the root

object identifier.

1.1.2 - Properties

Objects have various characteristics like colour, position within the parent object, size,

character font, and so on. These characteristics are called Properties.

 Chapter P – Graphical User Interface 605

A complete list of all objects and their properties may be found in the reference manual and in

the on-line help.

 Some properties must be specified when an object is created, while others may be allowed

to take default values.

 Most properties can be changed (set) after an object has been created, but some properties

may only be set when the object is created, and cannot be changed afterwards.

Each property is specified by a Keyword (its name) followed by its value.

For example:

Keyword Value

'Posn' (10 10) specifies the position of an object within its parent

'Size' (20 50) specifies its size

'FCol' (0 0 192) is a Foreground Colour (for example, the colour of a text)

'Font' ('Arial' 16) specifies the font used to display a text

When a series of properties is specified, the keyword/value pairs are organised in a nested

vector, so that each property specification appears as a scalar:

('Posn'(10 10)) ('Size'(20 50)) ('FCol'(0 0 192)) ('Font'('Arial' 16))

1.1.3 - Four Basic Functions

Only four functions are needed to create and modify GUI objects, and to query information

about them:

⎕WC (Window Create) To create objects and specify their properties

⎕WS (Window Set) To modify properties of an object, or to specify additional ones

⎕WG (Window Get) To read the values of properties

⎕WN (Window Names) To obtain the names of child objects

The name of the object to work on is specified as the left argument to the first three functions,

and as the right argument to ⎕WN.

Warning! With this original GUI interface keywords may be typed loosely using any

mixture of lower-case or upper-case letters.
However, properties may also be set or queried using the newer namespace

syntax.

Using this syntax the spelling, including the case, of each word must be

respected.

Consider, for example, how we modified our little dialog box in the previous

chapter:

 Drinks.Hot.B3.Caption←'Soup'

 Drinks.Cold.B4.State←0

606 Dyalog APL - Tutorial

The words Caption and State must be typed in lower-case, with an upper-

case first letter. If this is not respected, these statements will uselessly create

variables named for example caption or STATE in the corresponding

namespaces, and nothing will happen in the GUI.

Using the original GUI interface the two statements could have been written as

follows:

 'Drinks.Hot.B3' ⎕WS 'caption' 'Soup'

 'Drinks.Cold.B4' ⎕WS 'STATE' 0

However, it is strongly recommended that you observe the same convention as

used in the namespace syntax when using the four functions listed above.

1.1.4 - Coordinate Systems

Some properties of the Root object will be inherited by its children, unless explicitly modified.

Among these inherited properties are those that specify the coordinate system.

When an object is created its position and size can be defined in three different ways:

 As a percentage of the parent object's size; the screen being the topmost parent object. This

is the default.

 In pixels. This is probably the most common setting, even if it is not the default setting.

 In a user-defined coordinate system.

Except for very specific uses (graphics or printouts), the most convenient coordinates are

pixels.

Positions and sizes are always measured from the top-left corner of the parent object (the

screen itself for a form), and vertical values are given first, then horizontal values.

We recommend that you immediately set the coordinate system at the highest level (the Root),

so that, by inheritance, all objects will be measured in pixels. This property will be saved with

your workspace. However, when it comes to programming real applications it is still safer to

set the appropriate coordinate system as a part of the general initialization of the application.

To set the root object's coordinate system to be measured in pixels, execute this:

 ']' ⎕WS 'Coord' 'Pixel'

or ']' ⎕WS ⊂('Coord' 'Pixel')

The right argument is a property composed of a keyword ('Coord') and its value ('Pixel').

We said that each property specification should be entered as a scalar, so to be completely

rigorous, the expression requires an Enclose symbol as shown in the second example.

However, the interface is tolerant and accepts a single property to be specified as a vector.

 Chapter P – Graphical User Interface 607

1.2 Create a Simple Dialog Box

1.2.1 - Create and Modify an Object

An object is created using the function ⎕WC (for Window Create), with the following syntax:

Object ⎕WC Properties

 The left argument is the name of the new object

 The right argument is a nested vector, each item of which specifies one of the characte-

ristics (Properties) of the object.

For example, to define the dialog box shown in Figure P1, we could start like this:

First, to create the form, we can specify: Keywords Values

 the type of object to create 'Type' 'Form'

 its title, or caption .. 'Caption' 'Coffee Machine'

 its position on the screen 'Posn' (50 100)

 its size .. 'Size' (250 330)

1.2.2 - A Simplified Notation

Writing all the stuff needed to create the form on a single line would lead to a very long

statement.

Fortunately the Dyalog GUI interface is rather tolerant, and we can simplify the statement:

 When keywords are omitted the interface assigns the property values to the properties

according to a predefined order of properties, specified in the documentation. You just

need to remember that for most of the objects we shall use, the first four properties are the

same: Type-Caption-Posn-Size

 The interface accepts a simplified way of writing properties and values:

 the expression ('Size' (250 330))
 can be simplified to ('Size' 250 330)

Using these simplifications we can write:

 'Drinks'⎕WC'Form' 'Coffee Machine' (50 100) (250 330)

Just type and execute this expression, and you will immediately see the form on your screen.

The top left corner of the working area of the form (the white surface) will be positioned at 50

pixels from the top of the screen, and at 100 pixels from its left border.

608 Dyalog APL - Tutorial

1.2.3 - When Keywords are Mandatory

If its position is not specified an object is centred within its parent object.

If its size is not specified an object's dimensions are half of the parent's dimensions.

Suppose we do not specify the position, the statement becomes:

 'Drinks'⎕WC'Form' 'Coffee Machine' (250 330)

But because we did not specify any keywords APL assumes that the third value (250 330)

refers to the third property (Posn), so we would see a form positioned at (250 330), with

default dimensions equal to half of the screen dimensions. This is not at all what we wanted to

obtain.

So, we must use the keyword 'Size' to specify that (250 330) is not the position, but the

size:

 'Drinks'⎕WC'Form' 'Coffee Machine' ('Size' 250 330)

If you execute this expression, the form will be created again, and placed at the centre of your

screen.

Each time an object is redefined the old version is discarded, and the new one is created.

1.2.4 - Buttons and Groups

Let us place the first button in our form. Since the button will be a child of the form, it will

become a sub-namespace, so its name must be prefixed by its parent's name. For example

'Drinks.bout'. The parameters will be very similar to those that we saw for the form itself:

 The type of the object 'Type' 'Button'

 Its caption.. 'Caption' 'Quit'

 Its position within the form 'Posn' (10 20)

 Its size (in pixels) 'Size' (25 60)

Here again, we shall use the simplified form of expression, and add a second and a third

button:

 'Drinks.bout' ⎕WC 'Button' 'Quit' (10 20) (25 60)

 'Drinks.bsel' ⎕WC 'Button' 'Select' (10 100) (25 210)

These two buttons are "Push buttons", which is the default. We will see different types of

buttons later.

Groups are containers in which one can place other objects. Let us define two groups. You are

now familiar with the meaning of the parameters:

 'Drinks.Hot' ⎕WC 'Group' 'Hot Drinks' (55 20) (180 130)

 'Drinks.Cold' ⎕WC 'Group' 'Cold Drinks' (55 180) (180 130)

 Chapter P – Graphical User Interface 609

Then we can fill these groups with buttons to allow the user to choose the drinks. For

exclusive choices we use "Radio" buttons. The type of button is specified by the "Style"

property, and for "Radio" (and" Check") buttons it is generally appropriate to use the default

size:

'Drinks.Hot.B1' ⎕WC 'Button' 'Coffee' (25 15)('Style' 'Radio')

'Drinks.Hot.B2' ⎕WC 'Button' 'Tea' (50 15)('Style' 'Radio')

'Drinks.Hot.B3' ⎕WC 'Button' 'Chocolate' (75 15)('Style' 'Radio')

Let us now add non-exclusive options, like adding sugar, milk, or ice. This is achieved by

using "Check" buttons:

'Drinks.Hot.B4' ⎕WC 'Button' 'More sugar'(130 15)('Style' 'Check')

'Drinks.Hot.B5' ⎕WC 'Button' 'Add milk' (150 15)('Style' 'Check')

Only one of the radio buttons within the same parent object may be selected at any one time.

So you can select "Guarana", "Orange juice", or "Tomato juice", for example, but not two or

three of them, because they are in the same group.

The check buttons are independent. You can select/unselect "With ice" without any influence

on your drink choice because it is not a radio button, but a check button.

Of course, you can select "Chocolate" and "Tomato juice" simultaneously, because they are in

two different parents. Ugh! I can't even imagine that combination, especially with added milk.

Let us stop here! These definitions are much too verbose; we will soon show a different and

simpler way of programming the dialog box definition.

1.2.5 - Let Us Simplify Further

Firstly, we can create variables containing repeated parameters like ('Style' 'Check').

Secondly, we can use the control structure :With, which was introduced in the previous

chapter.

Each call to ⎕WC returns the name of the object it creates as a shy result. This name is used by

the control structure :With. Objects created by the subsequent statements are considered as

children of the namespace just created:

[4] :With 'Drinks' ⎕WC 'Form' ...
[5] 'bout' ⎕WC 'Button' ...

is equivalent to:

[4] 'Drinks' ⎕WC 'Form' ...
[5] 'Drinks.bout' ⎕WC 'Button' ...

610 Dyalog APL - Tutorial

Here is the function we could write using these techniques (you don't have to type it; it is

provided in the accompanying workspace):

 ∳ CMDesign;Check;Radio
[1] Check←'Style' 'Check'
[2] Radio←'Style' 'Radio'
[3] :With 'Drinks'⎕WC'Form' 'Coffee Machine'('Size' 250 330)
[4] 'bout'⎕WC'Button' 'Quit'(10 20)(25 60)
[5] 'bsel'⎕WC'Button' 'Select'(10 100)(25 210)
[6] :With 'Hot'⎕WC'Group' 'Hot Drinks'(55 20)(180 130)
[7] 'B1'⎕WC'Button' 'Coffee'(25 15)Radio
[8] 'B2'⎕WC'Button' 'Tea'(50 15)Radio
[9] 'B3'⎕WC'Button' 'Chocolate'(75 15)Radio
[10] 'B4'⎕WC'Button' 'More sugar'(130 15)Check
[11] 'B5'⎕WC'Button' 'Add milk'(150 15)Check
[12] :EndWith
[13] :With 'Cold'⎕WC'Group' 'Cold Drinks'(55 180)(180 130)
[14] 'B1'⎕WC'Button' 'Guarana'(25 15)Radio
[15] 'B2'⎕WC'Button' 'Orange juice'(50 15)Radio
[16] 'B3'⎕WC'Button' 'Tomato juice'(75 15)Radio
[17] 'B4'⎕WC'Button' 'With ice'(150 15)Check
[18] :EndWith
[19] :EndWith
 ∳

1.3 Get Information

Run the function shown above to create the simple "Coffee Machine" dialog box. However, if

you have not already done so, you should first execute ']' ⎕WS 'Coord' 'Pixel' -

otherwise the dialog box will not have the correct size, and it may not be visible.

Select some options in it: for example Tea with extra Sugar, and Iced Guarana.

Now, let us try to determine which buttons you selected. This can be done using two different

techniques:

 You can use ⎕WG to "get" the value of the property 'State' for each of the buttons. This

is the method provided by original Dyalog GUI interface.

 You can use Namespace notation to query the value of the property.

For example, to obtain the state (selected or not) of the "Coffee" button, one can use either of

the following two methods:

 'Drinks.Hot.B1' ⎕WG 'State'
0 Coffee was not selected

 Drinks.Hot.B1.State
0

 Chapter P – Graphical User Interface 611

Now, let us try to determine the state of all the five buttons located in the "Hot" group.

We can first ask for the names of objects contained in "Hot" like this:

 ∰children←⎕WN 'Drinks.Hot'
5 It is a nested vector

We could have obtained the same result like this:

 children←Drinks.Hot.⎕NL ¯9

 ↑children
Drinks.Hot.B1 It contains the names of the children
Drinks.Hot.B2
Drinks.Hot.B3
Drinks.Hot.B4
Drinks.Hot.B5

 children ⎕WG¨⊂'State' We can apply ⎕WG'State' to each of the
0 1 0 1 0 child objects

This means that we had chosen tea with additional sugar.

Using the namespace notation we can obtain the same result as follows:

 Drinks.Hot.(B1 B2 B3 B4 B5).State
0 1 0 1 0

1.4 Changing Properties

With techniques similar to the ones we used above we can change one or more properties of

an object. For example, let us deselect "Tea", and select "Chocolate" instead, using the two

possible methods:

 'Drinks.Hot.B2' ⎕WS 'State' 0

 Drinks.Hot.B3.State←1

As you can see, the expression using namespace notation and assignment is often easier and

shorter to write.

612 Dyalog APL - Tutorial

1.5 Make It Work

1.5.1 - Some Experiments

If you have run the function CMDesign shown above you have now created the dialog box

"Coffee Machine".

It is a GUI namespace, as you can see using ⎕NC:

 ⎕NC ⊂'Drinks' Remember that namespaces created using ⎕NS

9.2 have a Name Category equal to 9.1.

We now have to solve two problems with this dialog box:

 It is always visible. To remove it, you must close it.

 It is inactive. Nothing happens when we press the "Cancel" or "Select" buttons.

The first thing we can do is to localise Drinks in the function, or in a calling function.

Let us choose the second solution, as it is often useful to separate the definition of a form from

the code handling the interaction with the form:

 ∳ CMUse;Drinks
[1] CMDesign
 ∳

 ⎕EX 'Drinks' Erase the global form

 CMUse Nothing happens; the form does not appear!

CMUse creates the dialog box as expected (just trace the function call if you wish to verify it),

but as soon as we exit from the function Drinks is erased, like any other local object. We

must therefore find a way of making the form interact with the user before it gets closed.

1.5.2 - The Windows Event Queue

When one or more dialog boxes are active a user can perform some actions, like moving the

mouse, selecting a button, typing data in an input field, moving a scroll bar, closing a dialog

box, and so on. These actions cause Events. In order to be processed one after the other,

events are placed into a queue, together with the appropriate information about what

happened, such as the cursor position, the button clicked, the key pressed, etc.

There are actually two event queues involved, one managed by the Operating System and one

managed by APL itself. The user may begin to enter data into the APL application, and then

switch to another program to send an e-mail, come back to the APL application again, and

then make a calculation in an Excel worksheet, or even in a different APL dialog box created

by a different application.

Dyalog APL events are processed using the function ⎕DQ.

 Chapter P – Graphical User Interface 613

⎕DQ must be followed by the name of the object (or objects) about which we feel concerned. If

followed by '#' (Root) events from all forms and dialog boxes created in this APL session

will be handled.

While ⎕DQ is executing the APL session is temporarily disabled, and the focus is given to the

object(s) listed in the argument. Let us try this modification to the CMUse function:

 ∳ CMUse;Drinks
[1] CMDesign
[2] ⎕DQ'Drinks' Activate the dialog box
 ∳

 CMUse Run the function

The dialog box is now displayed, and you can check that if you type something in the APL

session, your keystrokes are ignored. ⎕DQ behaves like a sub function, and takes control of all

user-interaction, until a specific Event returns control to the calling APL function. For the

moment, the only thing you can do is to close the dialog box by a click in its upper-right

corner (or by pressing Alt-F4 on the keyboard).

2 - Call-Back Functions

2.1 Discovery

2.1.1 - Theory

To make our application responsive we need to specify that certain Events should trigger some

specific actions, which in general means calling APL functions. Such functions are called

Call-Back functions, because ⎕DQ, which has been called by the application, is calling back to

the application to have it process the events.

In Dyalog APL, an Event is identified either by a character keyword or by a numeric code. A

programmer can use either the code or the keyword, but we recommend the use of keywords,

except for user-defined Events, which may be specified only by a number.

Action .. Keyword Code
Pressing a key on the keyboard KeyPress 22
Moving the mouse .. MouseMove 3
Selecting a button in a dialog box Select 30
… and so on (the full list is available in the on-line help)

614 Dyalog APL - Tutorial

The Event property may be thought of as a vector containing as many items as there are types

of event that can be generated by the object in question. A Call-back Function is associated

with a particular type of event by setting the corresponding item of the 'Event' property,

identified by an event keyword (or code), to the name of the function.

('Event' 'Select' 'Control') Would call the function named Control if the

 given object is selected.

('Event' 'KeyPress' 'UpperCase') Would call the function named UpperCase
 each time a key is pressed.

Setting the 'Event' property can be done at creation time via ⎕WC, or added later via ⎕WS.

The original GUI implementation used only event codes (e.g. 22), but since names were

introduced it is recommended that you use these (eg. KeyPress) for readability.

For a given object, several events can trigger the same call-back function, or different events

can trigger different functions:

('Event' (Event1 Event2 Event3) 'CallBack')

('Event' (Event1 'CallBack1') (Event2 'CallBack2') (Event3 'CallBack3'))

Call-Back functions are ordinary APL functions and can therefore do whatever is necessary,

such as query information on the different objects, change properties, delete objects, create

new forms or objects, print results, and so on.

2.1.2 - Specific Actions

Usually Events trigger Call-Back functions, but they can also be associated with one of two

specific actions represented by the values ¯1 and 1:

 ¯1 means: Ignore this Event as if it did not happen.

This can be used to protect an application from undesirable actions.

 1 means: Leave the control of ⎕DQ and return to normal APL execution flow.

This is the normal way to exit from the control of ⎕DQ.

2.1.3 - Example

Let us decide that when the "Select" button is activated, the application should display a

message confirming what kind of beverage the machine is supposed to prepare.

To achieve this, our Call-Back function needs to know the state of all the buttons, using the

technique shown in Section 1.3:

 hotbin ← Drinks.Hot.(B1 B2 B3 B4 B5).State

 coldbin ← Drinks.Cold.(B1 B2 B3 B4).State

Then we can use these two Boolean vectors to select the appropriate descriptions and produce

a text matrix, ready to be displayed:

 Chapter P – Graphical User Interface 615

 HotCaps←'Coffee' 'Tea' 'Chocolate' 'More sugar' 'Add milk'

 ColdCaps←'Guarana' 'Orange juice' 'Tomato juice' 'With ice'

 hotsel←hotbin/HotCaps

 coldsel←coldbin/ColdCaps

 choice←↑(⊂'Hot drinks:'),hotsel,(' ' 'Cold drinks:'),coldsel

We shall display the resulting matrix in a separate, special object called a Message Box, or

MsgBox.

If you consult the item "GUI interface" in the on-line help you will see that the first 3

properties of a Message Box are:

 its Type ... 'MsgBox'

 its Caption ... 'Your current choice is'

 the Text to display choice

Using the most simplified expression, we can write:

 'Report' ⎕WC 'MsgBox' 'Your current choice is' choice

This message box is not a child of our main form. It is an autonomous object, so if we want it

to be displayed and activated, we must use ⎕DQ again, like this:

 ⎕DQ 'Report'

Let us integrate all these ideas in our functions. We shall suffix their names by "1" so as to

keep the original versions unchanged.

First step: Change CMUse into CMUse1 to create our two nested character vectors:

 ∳ CMUse1;Drinks;HotCaps;ColdCaps
[1] HotCaps←'Coffee' 'Tea' 'Chocolate' 'More sugar' 'Add milk'
[2] ColdCaps←'Guarana' 'Orange juice' 'Tomato juice' 'With ice'
[3] CMDesign1
[4] ⎕DQ'Drinks'
 ∳

Second step: Modify the fifth statement of CMDesign in order to invoke a Call-Back

function named CMReport when the "Select" button is activated. This event

is referenced by the keyword 'Select'.

Then rename the function to CMDesign1.

[5]'bsel'⎕WC'Button' 'Select'(10 100)(25 210)
 ('Event' 'Select' '#.CMReport')

Names in statements embedded witin a :With clause are relative to the namespace specified

in the clause. To specify that CMReport is not a child of 'Drinks' we must use the notation

#.CMReport, which clearly specifies that the function is located in the root namespace.

616 Dyalog APL - Tutorial

Third step: Define the call-back function CMReport:

 ∳ CMReport;hotbin;coldbin;coldsel;hotsel;choice;Report
[1] hotbin←Drinks.Hot.(B1 B2 B3 B4 B5).State
[2] coldbin←Drinks.Cold.(B1 B2 B3 B4).State
[3] hotsel←hotbin/HotCaps
[4] coldsel←coldbin/ColdCaps
[5] choice←↑(⊂'Hot drinks:'),hotsel,(' ' 'Cold drinks:'),coldsel
[6] 'Report'⎕WC'MsgBox' 'Your current choice is'choice
[7] ⎕DQ'Report'
 ∳

Note that by localizing Report we ensure that the message box object will be deleted when

we exit from the reporting function.

We can now try to call CMUse1:

Figure P-2

When a message box is

shown it is centred on

the screen. We have

moved it to the right so

that it does not hide the

main form.

2.1.4 - Some Improvements

In the topmost function CMUse1 we defined two variables HotCaps and ColdCaps, to store

the captions of all our buttons so that they can be used by CMReport. However, we also had

to specify the same captions for the buttons within CMDesign1.

This is not good programming practice, because if the name of a drink needs to be changed

(for example, if "Tea" is to be replaced by "Soup"), the same modification must be made twice

in both programs.
10

10 This is a violation of the so called DRY Principle. DRY stands for "Don't Repeat Yourself", meaning that ideally

every piece of information should be defined in one single place and re-used appropriately.

 Chapter P – Graphical User Interface 617

As it turns out we don't need to specify the button captions again at all, we can simply pick

them up from the button objects themselves.

The new top-level function CMUse2 can therefore be simplified like CMUse. However, we

have also modified the function to DISPLAY the result of ⎕DQ, and we have added a useless 3
rd

statement (in a moment you will see why we did so):

 ∳ CMUse2;Drinks
[1] CMDesign2
[2] DISPLAY ⎕DQ'Drinks'
[3] 'That''s all, Folks!'
 ∳

CMDesign2 is identical to CMDesign1, except that we have changed the name of the call-

back function to CMReport2:

 ∳ CMDesign2;Check;Radio
...
[5] 'bsel'⎕WC'Button' 'Select'(10 100)(25 210)
 ('Event' 'Select' '#.CMReport2')
...
 ∳

CMReport2 now picks up the captions from the buttons themselves. We have also used the

DRY Principle
10

 inside the function in order to not having to refer to the button lists twice:

 ∳ CMReport2;hotbin;hotcaps;coldbin;coldcaps
 ;coldsel;hotsel;choice;Report;buttons
[1] buttons←Drinks.Hot.(B1 B2 B3 B4 B5)
[2] hotbin←buttons.State
[3] hotcaps←buttons.Caption
[4] buttons←Drinks.Cold.(B1 B2 B3 B4)
[5] coldbin←buttons.State
[6] coldcaps←buttons.Caption
[7] hotsel←hotbin/hotcaps
[8] coldsel←coldbin/coldcaps
[9] choice←↑(⊂'Hot drinks:'),hotsel,(' ' 'Cold drinks:'),coldsel
[10] 'Report'⎕WC'MsgBox' 'Your current choice is'choice
[11] ⎕DQ'Report'
 ∳

2.1.5 - The Result of ⎕DQ

If you execute these functions in trace mode, you can verify that the main program execution

is suspended while ⎕DQ is executing, because control is given to the form. In other words, the

calling function CMUse2 is frozen as long as the form remains active.

We can return to the calling APL function:

 By closing the form by clicking in the top right corner.

Then the result returned by ⎕DQ will be an empty vector.

618 Dyalog APL - Tutorial

 By explicitly specifying that a certain event should cause an exit from ⎕DQ.

This can be achieved by associating the value 1 with the appropriate item of the 'Event'

property (see Section 2.1.2), for example when the user activates the "Quit" button on the

form. Then the result returned by ⎕DQ will be a nested vector consisting of the name of the

object that caused the exit, followed by the event keyword or code.

Let us add this to the right of the fourth statement in CMDesign2:

 [4] 'bout'⎕WC'Button' 'Quit'(10 20)(25 60)('Event' 'Select' 1)

The program behaviour remains the same, except that when we click on the "Quit" button, we

return from ⎕DQ, and the following result is displayed:

┌→───────────────────────┐
│ ┌→──────────┐ ┌→─────┐ │ The first item is the object name.

│ │Drinks.bout│ │Select│ │ The second item is the event code or keyword
│ └───────────┘ └──────┘ │ as specified in the defining statement.
└∮───────────────────────┘
That's all, Folks! And now the execution continues.

Note The second item of ⎕DQ result will be 'Select' or 30, depending on the way we

wrote the statement in CMDesign2. This is important to know if the result is to be

processed by a function. For this reason it is highly recommended that you decide

to use one of the conventions consistently, and for improved readability we

recommend that you always use keywords.

2.2 The Arguments of a Call-Back Function

The rules for the valence of call-back functions are special.

The right argument to a call-back function is always provided by the APL system.

It is also possible to define that a programmer-defined argument be passed to a call-back

function. This will then be the function's left argument.

If no programmer-defined argument has been specified (see below) the call-back function may

be niladic or monadic. If it is necessary to examine the information provided by the APL

system the function must of course be monadic, but if not, it is perfectly possible to let the

call-back function be niladic. It will not cause a SYNTAX ERROR.

If a programmer-defined argument has been specified, the call-back function must be dyadic

or ambivalent.

 Chapter P – Graphical User Interface 619

2.2.1 - The Right Argument

If specified, the right argument to a call-back function is a nested vector containing

information about the event that has taken place. This information is provided by the APL

system, not the programmer, and is known as the Event Message.

 The first item of an event message always identifies the object that generated the event. If

the original GUI interface was used to specify the event the first item of the Event

Message will be a character vector containing the name of the object, as shown in Section

2.1.5 above. If namespace notation was used to specify the event the first item of the Event

Message will be a Ref, i.e. a Namespace reference. See Section Spe-2.2 for further details.

 The second item is the Event keyword or code, depending on how the event has been

specified.

 Depending on the type of the event, additional information may be provided in further

items of the right argument. For example, for a MouseMove event the 3
rd

 and 4
th

 items

contain the position of the mouse pointer, while the 5
th

 and 6
th
 items contain information

on the mouse buttons and the state of the Shift and Control keys on the keyboard. For a

KeyPress event the Event Message is also a 6-item vector, with the last 4 items containing

detailed information about which key was pressed and the state of the various shift keys.

2.2.2 - The Left Argument

A call-back function may take a left argument. The value to be passed to the function when

the event takes place must be specified in the same statement as is used to attach the call-back

function. Using the original syntax, it must be placed to the Right of the function name.

For example:

 ('Event' 'KeyPress' 'Check' Authorised)

Here Check is the name of the call-back function, and Authorised is the left argument to

the function, though it is specified to the right of the function name in the event definition. In

this specific case it contains a list of acceptable characters.

When a KeyPress event occurs, APL will call the function Check, and pass it:

 as its right argument the Event Message

 as its left argument the value of Authorised (specifically, the value that Authorised

had when the above expression was executed)

620 Dyalog APL - Tutorial

2.2.3 - Some Experiments

Let us write a function that creates a form containing 10 buttons labelled "A" to "J" as shown:

Figure P-3

We will use a new type of object, a Text object. We shall specify some of its properties like

this:

Type 'Text'
Text 'Select a button' Beware: it is not "Caption", but "Text"
Posn 15 180
FCol 255 0 0 Red foreground colour

Font 'Arial' 16 The font used to display the text, and its size

The foreground colour FCol is defined by the weights of the three basic colours: Red, Green,

and Blue (RGB), each in the range 0-255. Here we chose full red.

The font is defined by its face name (Arial) and its size in pixels.

We would like the function to create a random list of four upper-case letters. When the user

selects a button the function should display the message "Won" or "Lost" depending on

whether the selected button matches one of these random letters.

Here is the function. Long statements are folded onto two lines with "…" in the margin:

 ∳ GUI1;letters;Win;num;sufx;pos
[1] 'Win'⎕WC'Form' 'Call-Back experiment'('Size' 100 410)
[2] 'Win.Quit'⎕WC'Button' 'Quit'(10 10)(30 70)('Event' 'Select' 1)
[3] 'Win.Result'⎕WC'Text' 'Select a button'(15 180)
... ('FCol' 255 0 0)('Font' 'Arial' 16)
[4] letters←⎕A[4?10]
[5] :For num :In ∯10
[6] sufx←num⊃⎕A
[7] pos←50,(40∲num)-30
[8] ('Win.But',sufx)⎕WC'Button' sufx pos(30 30)
... ('Event' 'Select' 'GUI1_CB1' letters)
[9] :EndFor
[10] ⎕DQ'Win'
 ∳

 Chapter P – Graphical User Interface 621

Button names are generated automatically from ButA to ButJ, and they are positioned

horizontally at 40 pixels intervals. All the buttons are associated with the same Call-Back

function for the 'Select' event. The important part is the way that the call-back function is

called; you can see that the variable containing the random letters is placed to the right of the

function name. Let us now take a look at this function:

 ∳ WinningChars GUI1_CB1 EventMsg
[1] WinningChars
[2] DISPLAY EventMsg
 ∳

Note that the list of the winning letters will be passed as the left argument, while the right

argument will contain the Event Message as usual. For now, we will just display the value of

the two arguments.

Here we run the function and press the "F" button:

 GUI1
HEAC This is the left argument (random letters)
┌→────────────────────┐
│ ┌→───────┐ ┌→─────┐ │ The Event Message is exactly as expected
│ │Win.ButF│ │Select│ │
│ └────────┘ └──────┘ │
└∮────────────────────┘

Now we can write the final version of the Call-Back function:

 ∳ WinningChars GUI1_CB2 EventMsg;sufx;score
[1] sufx←(⊃EventMsg)⎕WG'Caption'
[2] score←(1+sufx∮WinningChars)⊃'Lost' 'Won'
[3] Win.Result.Text←score
 ∳

Please also remember to change the name of the call-back function in line 8 of GUI1.

All the 10 letter buttons call the same function when they are selected, so we must consult the

Event Message in order to determine which of them was selected. The first item of the Event

Message contains the button name, and the last letter of the name is the letter that we will

check against the list of "winning" letters. This example shows how the information provided

in the Event Message may be very useful.

Then we can create a character vector "Lost" or "Won", by comparing the button name suffix

with the winning letters.

The last statement modifies the "Text" property of the object Win.Result. We could as well

write this: 'Win.Result' ⎕WS 'Text' score.

You can test the GUI1 function and play with the little letter guessing game!

We have now learned how a call-back function is called and how arguments are passed to it.

Next we shall see that a call-back function may return different results that cause different

useful effects.

622 Dyalog APL - Tutorial

2.3 The Result of a Call-Back Function

2.3.1 - Default Processing

When a user-initiated Event occurs Windows will take a default, or standard action. For

example, if the user moves the mouse, the mouse pointer moves with it. Likewise, if a key is

pressed while an input field has the focus the corresponding character is displayed in the field.

This kind of standard behaviour will henceforth be described as the Default Processing of an

Event.

The Default Processing of an event may be modified, replaced, or cancelled by associating a

call-back function with the event. The call-back function is for obvious reasons called before

the Default Processing is executed, and the result of the Call-Back function determines

whether or not the Default Processing is to take place, perhaps in a modified form.

2.3.2 - Processing the Result

A call-back function may return a result or not, and the result influences the further actions as

follows:

 If the call-back function returns no result, or the result 1, or a result identical to the right

argument (the Event message), the system will execute the Default Processing of the

event, as if the call-back function had not been called.

This can, for example, be used when a call-back function is necessary in order to handle

very special cases, while the standard action is adequate in most cases.

 If the call-back function returns 0, the Default Processing will not take place, so the call-

back function is solely responsible for taking all actions that are needed for the event in

question.

This can, for example, be used to ignore unacceptable characters in an input field.

 If the call-back function returns a modified Event message the system will carry out the

Default Processing according to the modified Event Message, as if it describes what really

happened.

This can, for example, be used to convert lower-case keystrokes into upper-case letters.

2.3.3 - Example

Let us create a form containing only a "Quit" button and two Edit fields, a new type of object

used for entering text, as shown in Figure P-4:

 Chapter P – Graphical User Interface 623

Figure P-4

The upper edit field will be used to type text, left justified. The lower edit field will be used to

type numeric values, right-justified.

An Edit Field has many properties. For now we will only specify the following:

Text 'Type your name' An initial hint telling you what to do

Posn & Size As usual

FieldType 'Char' or 'Numeric'
MaxLength 30 The maximum number of characters

Decimals 0 The maximum number of decimal digits

A function to create and drive the form could be the following (with long statements folded):

 ∳ GUI2;Win
[1] 'Win'⎕WC'Form' 'Edit experiments'('Size' 130 300)
[2] 'Win.quit'⎕WC'Button' 'Quit'(10 110)(25 80)('Event' 'Select' 1)
[3] 'Win.ET'⎕WC'Edit' 'Type your name here'(50 30)(20 240)
... ('FieldType' 'Char')('MaxLength' 30)
... ('Event' 'KeyPress' 'GUI2_CB1')
[4] 'Win.EN'⎕WC'Edit' '0'(90 30)(20 240)('FieldType' 'Numeric')
... ('MaxLength' 10)('Decimals' 0)
[5] ⎕DQ'Win'
 ∳

A Call-Back function is triggered by the KeyPress (or 22) Event in the first field. In this first

version of the function it just displays the Event Message.

 ∳ GUI2_CB1 Msg
[1] Msg
 ∳

Suppose that the user wants to type "Hello", but accidentally types "Helo". He then presses the

BackSpace key to delete the "o", and types "Lo". The Call-Back function would display this:

Win.ET KeyPress H 72 72 1 "H" is typed in upper-case
Win.ET KeyPress e 101 69 0
Win.ET KeyPress l 108 76 0 This "l" is typed in lower-case
Win.ET KeyPress o 111 79 0 Erroneous "o"

624 Dyalog APL - Tutorial

Win.ET KeyPress DB 8 8 0 "DB" stands for "Destructive Backspace"
Win.ET KeyPress L 76 76 1 This "L" is typed in upper-case
Win.ET KeyPress o 111 79 0

As usual, the Event Message begins with the object name (Win.ET) followed by the Event

keyword (KeyPress). The four following items are:

 The entered character (like "H" and "e"), or an action code for special command keys (like

"DB").

 The Character Code

 The Key Number

 The Shift State

In the Unicode Edition, the Character Code is the Unicode code point of the character entered

by the user. In the Classic Edition, it is a number in the range 0-255 which specifies the ASCII

character that would normally be generated by the keystroke. If there is no corresponding

ASCII character, the reported code is 0. In the case of the characters typed above:

 ⎕UCS 72 101 108 76 111
HelLo

The Key Number is the physical key number reported by the operating system when the key is

pressed.

The Shift State is obtained by the sum of the 3 following indicators:

 Shift key pressed 1

 Ctrl key pressed 2

 Alt key pressed 4

For example, Ctrl+Shift would give 3.

It is important to note that the same key is pressed to type a lower-case "l" and an upper-case

"L". This is the reason why the Key Number is the same (76) for the two characters. But

because the Shift State is different (0 or 1) the Character Code generated is also different: 108

for "l", and 76 for "L".

Now that we have seen how this type of Event is reported, let us decide to dynamically change

the characters typed by the user, as follows:

 Lower-case "e" will be converted into "a", and vice versa.

 All upper-case letters will be ignored

We could modify our Call-Back function like this:

 ∳ Msg←GUI2_CB2 Msg;char The result equals the argument
[1] char←Msg[3]
[2] :If char∮⎕A
[3] Msg←0 Ignore upper-case letters

[4] :Else
[5] Msg[3]←('ae',char)['ea'∯char] Commute "a" and "e"
[6] :EndIf
 ∳

 Chapter P – Graphical User Interface 625

Please also remember to change the name of the call-back function in line 3 of GUI2.

Here are some explanations:

 By default the result returned by the function (Msg) is equal to the Event Message received

in the argument. This means that the character is to be processed normally (Default

Processing).

 If the character is an upper-case letter (belongs to ⎕A), the result is forced to zero. This

means that the Event is to be ignored, so nothing will appear in the field.

 And if the character is "a" or "e", it is converted to "e" or "a", respectively, and put back

into the Event Message. Windows will then process the modified Event as if it were a true

event.
11

With this strange function, if the user types "My name is Bond, James Bond",

the following letters will appear in the Edit field: "y nema is ond, emas ond"

It is perhaps stupid, but it works!

This example shows that a function can be called each time a key is pressed. The processing

time is so short that the user will hardly notice it.

2.4 Improve It

2.4.1 - Improve the Field Management

To be more "user friendly" the little input form needs some improvements:

 When you want to replace the content of a field you must first delete the current content. It

might be more useful to preselect the current content when the field receives the input

focus (Event "GotFocus"). Then the first letter typed will replace all the current text.

 Of course, when a field loses input focus (Event "LostFocus") its content should be

deselected.

 In this example, GUI2[4] specifies the numeric field so that a user may not enter decimal

digits ('Decimals' 0). However, the way in which this restriction works may be rather

confusing. In order to prevent the user from entering decimal digits, the system simply

ignores the decimal point (or a comma, depending on the regional settings); and this may

have unwanted consequences.

11 Note that it suffices to change the 3rd item of the event message, even if the returned message then becomes

inconsistent. This is because the 3rd item may be viewed as the final result of the key press. The information in items

4-6 merely contains detailed information on what the user did, which is immaterial when the resulting message is

created by the program.

626 Dyalog APL - Tutorial

For example, a user wants to enter 456.78.

The system will ignore the decimal point, but will accept the other characters, and if the

user is not vigilant he will type 45678! This is not acceptable, so we will change the

function to detect that the user has tried to enter a decimal point and display a message

when it happens. This can be extended to the case where an application does not accept

negative numbers.

Writing three different Call-Back functions to achieve these three objectives would be a bit

heavy, so let us write a single function with a left argument specifying:

S = Select the current text in the field

U = Deselect the current text in the field

W = Issue a warning if a decimal point is typed

The main function will be modified as shown below (the modified statements are in black):

 ∳ GUI3 ;Win
[1] 'Win'⎕WC'Form' 'Edit experiments'('Size' 130 300)
[2] 'Win.quit'⎕WC'Button' 'Quit'(10 110)(25 80)('Event' 'Select' 1)
[3] 'Win.ET'⎕WC'Edit' 'Type your name here'(50 30)(20 240)
... ('FieldType' 'Char')('MaxLength' 30)
[4] 'Win.ET'⎕WS'Event'('GotFocus' 'SecureEdit' 'S')
... ('LostFocus' 'SecureEdit' 'U')
[5] 'Win.EN'⎕WC'Edit' '0'(90 30)(20 240)('FieldType' 'Numeric')
... ('MaxLength' 10)('Decimals' 0)
[6] 'Win.EN'⎕WS'Event'('GotFocus' 'SecureEdit' 'S')
... ('LostFocus' 'SecureEdit' 'U')('KeyPress' 'SecureEdit' 'W')
[7] ⎕DQ'Win'
 ∳

The Call-Back function looks like this:

 ∳ Msg←X SecureEdit Msg;va;vm;vo;vp
[1] :Select X
[2] :Case 'S' ⍝ Implements the GotFocus event
[3] vo←1⊃Msg
[4] vp←∰,vo ⎕WG'Text'
[5] vo ⎕WS'SelText' 1,1+vp
[6] :Case 'U' ⍝ Implements the LostFocus event
[7] vo←1⊃Msg
[8] vo ⎕WS'SelText' 1 0
[9] :Case 'W' ⍝ Implements the KeyPress event
[10] :GoTo (~Msg[3]∮'.,')/0
[11] 'vm'⎕WC'MsgBox' 'Attention'('Please,' 'no decimal point')
[12] ⎕DQ'vm'
[13] Msg←0
[14] :EndSelect
 ∳

 Chapter P – Graphical User Interface 627

Explanations:

[3] The first item of the Event Message contains the name of the field that received the

input focus.

[4] Then we determine the size of the field's current content.

[5] Select characters from the first to one past the last (Figure P-5).

[8] Same technique, but we select no characters when leaving a field.

[11] If the typed character is a decimal point (or comma), a warning is issued (Figure P-6).

[13] The result is forced to zero in order to ignore the character typed.

Figure P-5 Figure P-6

2.4.2 - More about Edit Fields

Once data has been entered into an Edit field, the program can read its contents using the

properties:

 Text Returns the character vector typed in the field.

 Value Returns the same character vector if the FieldType is "Char",

 but returns a number if the FieldType is "Numeric".

If no FieldType was specified in the definition of the field APL decides whether "Value" will

report a number or a character vector, depending on the characters typed. This may be

difficult to work with, so we recommend that you always explicitly declare the type of your

fields.

When a field has been defined as "Numeric" the decimal separator is defined by the Windows

regional settings. So the property "Value" will always return a proper number according to

the local standard.

2.4.3 - Passwords

One can also specify a "Password" property for a character field. Then the characters typed

will automatically be replaced by the specified character, so there is no need for a Call-Back

function.

628 Dyalog APL - Tutorial

For example:

'Win.EP'⎕WC'Edit' ''(5 5)(20 80) ('Fieldtype' 'Char') ('Password' '*')

Of course, it is always possible for the program to know what was really typed by the user,

with a statement like this: Letters←Win.EP.Text.

2.5 Tracing Call-Back Functions

When you trace a function remember that ⎕DQ is also a function. If you just execute it (by

pressing the Enter key), ⎕DQ will proceed to execute all the Call-Back functions normally (i.e.

not in trace mode) and you will not be able to trace them.

If you want to follow all of the function calls step by step you must execute ⎕DQ in trace

mode (press Ctrl-Enter, or click on the appropriate button).

If an object is sensitive to for example "KeyPress" or "MouseMove" events, and there are call-

back functions associated with these events, you may see so many calls to the Call-Back

functions that tracing may become too difficult. In this situation we suggest that you

temporarily disable the disturbing function calls, if this is possible.

Alternatively, you could for example insert a conditional error in a call-back function, to allow

you to trace a particular case. For example, the following line will stop execution in a call-

back function handling "KeyPress" events, if A, B or C is pressed:

:If 'KeyPress'≡2⊃msg ⋄ :AndIf (3⊃msg)∮'ABC' ⋄ ∬ ⋄ :EndIf

However, this technique may not work as expected if some kind of error trapping is active.

Then you can use another technique, which dynamically sets a breakpoint in the function, for

example:

:If char∮'xyz'
 (1+⎕LC)⎕STOP⊃⎕SI
 ⍝ Stop here!
:EndIf

3 - Selection Tools

3.1 List

The List object is, as its name suggests, used to display a list of items, and it also allows the

user to select one or more of the items in the list. Using variables already present in your WS,

you can type the following function and execute it:

 Chapter P – Graphical User Interface 629

 ∳ GUI_List;Win
[1] 'Win'⎕WC'Form' 'List object'('Size' 300 200)
[2] 'Win.quit'⎕WC'Button' 'Quit'(10 20)(25 160)('Event' 'Select' 1)
[3] 'Win.countries'⎕WC'List'Countries(50 20)(180 160)
[4] 'Win.show'⎕WC'Button' 'Show selection'(250 20)(25 160)
[5] ⍝ ('Event' 'Select' 'ShowSel')
[6] ⎕DQ'Win'
 ∳

Figure P-7

As you can see, this function creates a List

object containing the matrix Countries.

A vector of character vectors would have

been accepted too.

The scroll bar is automatically added by

Dyalog APL, depending on the size of the

matrix.

The only thing you can do is select a single

country ("Kenya" here). If you change your

mind and select another one, the first gets

deselected.

For now, the second button ("Show

selection") is inactive, because we have

commented out the 5
th

 statement.

Let us change the function a little and add the property ('Style' 'Multi') to the List

object.

Now it becomes possible to select more than one country, using standard Windows

conventions. Press the Control key to add/remove a country to/from the already selected ones,

or press the Shift key to mark the end point of a set of rows, starting from the last selected

row.

Each time a new country is selected or deselected a "Select" event is issued, so it is

generally not very pertinent to run the Call-Back function each time; it is usually better to wait

until the final choice has been made. However, in some situations you might want to

immediately update other controls on the form depending on the selected item(s), and then

you must handle each "Select" event as it occurs.

630 Dyalog APL - Tutorial

In our example we will not react to each individual "Select" event. Instead we will show the

selection when the "Show selection" button is clicked. We will remove the comment from line

5 of GUI_List and write the ShowSel function shown below. The "SelItems" property

returns a Boolean vector having one item per item in the list and containing a 1 in the

positions of the selected rows:

 ∳ ShowSel Msg
[1] DISPLAY Win.countries.SelItems⌿Win.countries.Items
 ∳

Here we show the result of executing ShowSel:

Figure P-8

As you can see, you can now select as many

countries as you want.

When the "Show selection" button is

clicked, the following is written to the APL

session:

┌→─────────────────┐
∸Italy │
│Canada │
│Egypt │
│Angola │
│Finland │
│Brazil │
└──────────────────┘

The same property "SelItems" can be used to define a list of pre-selected countries before

the form is shown to the user (and in general to re-define the selection at any time). The

Boolean vector must have as many items as the number of items in the list, as you can see in

this statement used to pre-select only the third and fifth countries:

'Win.countries'⎕WS 'SelItems' ((1↑∰Countries)↑0 0 1 0 1)

 Chapter P – Graphical User Interface 631

3.2 Combo

The Combo object is used to offer a quick choice among a limited number of options, in a

very limited screen space (in terms of pixels). The word Combo stands for Combined Box,

because one of the possible styles is a combination of a drop-down selection list and an Edit

field.

Let us write a function GUI_Combo inspired by GUI3 shown in Section 2.4.1. We will reduce

the width of the numeric field, and add a choice of a list of currencies, stored in the following

matrix:

 Currencies
EUR Euro
USD United States Dollar
GBP United Kingdom Pound
JPY Japan Yen
DKK Denmark Kroner
RUB Russia Rubles

 ∳ GUI_Combo;Win
[1] 'Win'⎕WC'Form' 'Combo demonstration'('Size' 130 300)
[2] 'Win.quit'⎕WC'Button' 'Quit'(10 110)(25 80)('Event' 'Select' 1)
[3] 'Win.EN'⎕WC'Edit' '0'(50 30)(20 100)
 ('FieldType' 'Numeric')('MaxLength' 10)('Decimals' 2)
[4] 'Win.CC'⎕WC'Combo' Currencies 'Hello' (50 150)(⍬ 120)
[5] ⎕DQ'Win'
 ∳

Some details must be noticed:

 Here we used a matrix for the choices; we could just as well have used a nested character

vector.

 A Combo has a Text property ('Hello' in our example) which is ignored.

 The height of the Combo field cannot be decided by the programmer; it is fixed by the

system. This is the reason why we specified Zilde, (which in this case means default).

Here is how this would appear on the screen before and after one has clicked on the arrow:

632 Dyalog APL - Tutorial

Figure P-9

You can determine which item was selected by two different means:

 Win.CC.SelItems would return 0 0 1 0 0 0

 Win.CC.Text would return GBP United Kingdom Pound

Use whichever you feel is more convenient for your program.

The default 'Style' of a Combo is 'Drop', which provides a drop-down selection list. The

user must choose among the items in the list. Two other styles are possible:

 DropEdit Provides a drop-down selection list like the 'Drop' style, but the user can

also type something different in the Edit part of the Combo field. For

example, he can type "I don't know".

 Simple The user can also type his own text, but the list of choices is always

displayed (i.e. it does not "drop down"). The list occupies some screen

space, but sometimes this may be useful.

For these two styles, in which the user may enter an arbitrary string of text, the SelItems

property will return a list of zeros if the user has typed in the Edit field. If so, the user's entry

must be obtained by reading the Text property.

Comparisons

Compared to a List, the advantage of a Combo is that it occupies only a very limited amount

of screen space. The list of choices is visible only shortly, while the List occupies a permanent

space.

The disadvantage is that a List can allow multiple choices, a Combo cannot.

 Chapter P – Graphical User Interface 633

4 - Colours, Fonts, and Root

4.1 Colours

We have already mentioned that colours may be represented by three-item vectors containing

the weights (or intensities) of the three basic colours Red, Green, and Blue (RGB), each in the

range 0-255. This allows for more than 16 million colours. Here are some example colours:

 R G B

Red is represented by 255 0 0

Dark Blue is represented by 0 0 192

Yellow is represented by 255 255 0
Light Grey is represented by 192 192 192

It is also possible to define the colour of an object using a negative scalar, which then refers to

one of the standard Windows colours (defined by the current "Theme"):

 0 Default ¯11 Active Border

 ¯1 Scroll Bar ¯12 Inactive Border

 ¯2 Desktop ¯13 Application Workspace

 ¯3 Active Title Bar ¯14 Highlight

 ¯4 Inactive Title Bar ¯15 Highlighted Text

 ¯5 Menu Bar ¯16 Button Face

 ¯6 Window Background ¯17 Button Shadow

 ¯7 Window Frame ¯18 Disabled Text

 ¯8 Menu Text ¯19 Button text

 ¯9 Window Text ¯20 Inactive Title Bar text

¯10 Active Title Bar text ¯21 Button Highlight

4.2 Fonts

4.2.1 - Font Characteristics

Instead of using the default font it is possible to specify different fonts and font characteristics

to display a piece of text, a list, a caption, and so on. However, one cannot modify the fonts

used in the window title bar or in a menu, as these are determined by the system.

A font is completely defined by the following eight parameters:

634 Dyalog APL - Tutorial

PName This is the name of the font. For example "Arial" or "Times New Roman".

Size Specifies the character height in pixels.

Fixed Is a Boolean value that specifies whether the font is fixed-width (1) or pro-

portional (0). In fixed-width fonts all the characters have the same width. In

proportional fonts, an "m" is wider than an "l" or an "i".

Italic Specifies whether characters are in italic (1) or not (0).

Underline Specifies whether characters are underlined (1) or not (0).

Weight Specifies how bold or heavy the characters are from 0 (thin) to 1000 (bold).

Rotate Is a numeric scalar that specifies the font angle of rotation in radians,

measured from the x-axis in a counter-clockwise direction.

Charset In Dyalog APL Classic Edition,this is an integer that specifies the character

encoding; where 0 is for Western (ANSI) characters, 161 for Greek, and so

on. In the Unicode Edition this parameter is ignored.

Notes When, under Windows, you specify a font, you are actually asking Windows

to load the font that it deems to most closely match the characteristics you

have specified. It matches your request with one of its available fonts using

an algorithm whose description is beyond the scope of this tutorial.

However, please note that there is absolutely no guarantee that you will get a

font that precisely matches a specified set of parameters, not least the font

name. None of the characteristics are mandatory; one could, for example,

request a fixed-width font by just specifying (Fixed 1).

4.2.2 - Using the Font Object

Fonts use Windows resources which are managed using the Dyalog APL Font object. To use a

particular font with a particular GUI object requires two steps:

 First create a Font object for each font (and font variant) that you need.

 Then associate the Font object with each of the objects that you want to use it with.

Font objects can be defined as children of the Root. Then it will be possible to use them for all

objects. They can also be defined as child objects of a given form. They will then be available

for the children of that form, and they will automatically be unloaded (deleted) when the form

itself is destroyed.

In the example below we will write the same piece of text in a form using different fonts.

The form is created using a ":With" control structure; all the Text objects created afterwards

are children of the form, and need not be localised.

Specific fonts are associated with the Text objects via their 'FontObj' properties that refer to

the corresponding Font objects. These Font objects are created by a sub function named

GUI_FontDefine.

 Chapter P – Graphical User Interface 635

 ∳ GUI_Fonts;Win
[1] :With 'Win'⎕WC'Form' 'Font control'('Size' 200 350)
[2] Droopy←'You know what? I''m happy['
[3] #.GUI_FontDefine ⎕THIS
[4] 'BQ'⎕WC'Button' 'Quit'(20 20)(40 40)('Event' 'Select' 1)
[5] 'T0'⎕WC'Text' Droopy (20 80)
[6] 'T1'⎕WC'Text' Droopy (50 80) ('FontObj' 'FonSml')
[7] 'T2'⎕WC'Text' Droopy (80 20) ('FontObj' 'FonBig')
[8] 'T3'⎕WC'Text' Droopy (110 20)('FontObj' 'FonIta')
[9] 'T4'⎕WC'Text' Droopy (140 20)('FontObj' 'FonAPL')
[10] 'T5'⎕WC'Text' 'V e r t i c a l'(180 300)
... ('FontObj' 'FonRot')
[11] :EndWith
[12] ⎕DQ'Win'
 ∳

The sub-function GUI_FontDefine is located in the Root namespace. We pass a Ref to the

GUI namespace Win and use :With to have the fonts created as children of the form:

 ∳ GUI_FontDefine ns
[1] :With ns
[2] 'FonSml' ⎕WC'Font' 'MS Sans Serif' 14
[3] 'FonBig' ⎕WC'Font' 'Arial' 20 0 0 0 1000
[4] 'FonIta' ⎕WC'Font' 'Times New Roman' 24 0 1
[5] 'FonAPL' ⎕WC'Font' 'APL385 Unicode' 16
[6] 'FonRot' ⎕WC'Font' 'Arial' 32 0 0 0 700(ⓑ÷2)
[7] :EndWith
 ∳

The result is the following:

Figure P-10

The 1
st
 text uses the default font.

The 3
rd

 text is bold.

The 4
th

 is italic.

The 5
th

 uses a fixed-width APL font.

The 6
th

 text has been rotated by Pi/2.

When Fonts are defined at the Root level, they are autonomous objects, and they remain in the

workspace, as you could verify by executing)Obs. In our example they were created as

children of the form, and were therefore destroyed when the form was closed.

636 Dyalog APL - Tutorial

4.3 Properties of the Root Object

We have already said that that the topmost object is the Root, represented by either '.' or

'#'. We recommend that you use '#' as we do in our examples.

The Root object has some interesting properties, some of which can be modified, while some

other ones can only be read.

4.3.1 - The Coordinate System

We have already mentioned that the position and size of an object can be specified in three

different ways:

 As a percentage of the parent object's size; the screen is the topmost parent object. This is

the default.

 In pixels. This is probably the most commonly used setting, even though it is not the

default setting.

 With a user-defined coordinate system.

These three possibilities are defined by the keyword 'Coord', followed by 'Prop',
'Pixel', or 'User', respectively.

It is recommended that you work in pixels, by executing:

 ']' ⎕WS 'Coord' 'Pixel'

4.3.2 - Screen Characteristics

One can adapt an application to the current screen characteristics as obtained by the

'DevCaps' (Device Capabilities) property of the root object. The result is a 3-item nested

vector containing:

 The screen size (height and width) in pixels.

 The screen size in millimetres.

 The number of available colours. For a screen supporting 32-bit colours the number of

colours is 4294967295. APL interprets this number as a 2's complement number and

reports ¯1 (¯1 = 323⎕DR 32∰1).

 DISPLAY '#' ⎕WG 'DevCaps'
┌→────────────────────────┐
│ ┌→───────┐ ┌→──────┐ │
│ │900 1440│ │240 320│ ¯1 │
│ └~───────┘ └~──────┘ │
└∮────────────────────────┘

 Chapter P – Graphical User Interface 637

The size in pixels is exact, but the size in millimetres may be just an approximation. The

system cannot know which kind of physical screen is attached to the computer, so the

"physical" size is calculated as:

 ⌊0.5+25.4×pixels÷dpi

In this expression dpi is the "dots per inch" setting for the screen, and 25.4 is the number of

millimetres per inch. Common values for dpi are 72 and 96, but if a generic display driver is

used this value is independent of whether e.g. a 15", 17", or 19" screen is connected to the

computer.

4.3.3 - Available Printers

One can ask for the list of currently available printer drivers using 'PrintList', a read-only

property of the root object. The result is a nested vector of character vectors. Each item

contains the name of a printer, followed by a comma, followed by the name of the physical

device to which it is attached.

The first item is the default printer defined under Windows.

 ↑'#'⎕WG 'PrintList'
HP Deskjet F300 series,Ne03:
PDFCreator,Ne00:
hp color LaserJet 2550 PCL 6,Ne04:
... and so on...

Figure P-11

The list of available printers can

be displayed in a Combo, with the

first item selected by default.

The user can then choose the

printer most appropriate to his

needs

A printer definition may be a long character string, especially in a network environment, so a

wide Combo may be necessary.

4.3.4 - Available Fonts

The list of currently available fonts can be obtained by: '#'⎕WG 'FontList'

The result is a nested vector of vectors. Each item contains the same eight items as described

in Section 4.2.1.

638 Dyalog APL - Tutorial

Here is an example:

 fonts←↑'#'⎕WG 'FontList'

 ∰fonts
152 8

 fonts
System 16 0 0 0 700 0 0
Terminal 12 1 0 0 400 0 255
Fixedsys 15 1 0 0 400 0 0 Of course, the parameters have
Roman 37 0 0 0 400 0 255 default values that can be changed
Script 36 0 0 0 400 0 255 as explained in Section 4.2.
Modern 37 0 0 0 400 0 255
Small Fonts 3 0 0 0 400 0 0
MS Serif 10 0 0 0 400 0 0

… and so on.

As you can see, the font list is not returned in alphabetic order.

4.3.5 - Cursor Shape

You can change the shape of the mouse pointer for any object by specifying its 'CursorObj'

property. The shape is represented by either an empty vector (the default), or a number (which

selects one of the standard Windows cursors), or the name of or the Ref to a (programmer

defined) Cursor Object. Some of the common Windows standard cursors are:

 0 = Arrow (the default)

 1 = Hourglass (which is shown as an animated ring in Windows Vista)

 2 = Crosshair

 …

 13 = Arrow with hourglass

You can look up the full list in the on-line GUI help. We will not describe the Cursor Object

in this tutorial; please refer to the on-line GUI help for more information.

When the value of the 'CursorObj' property is an empty vector the cursor will not change

shape when the mouse pointer enters the object. When the 'CursorObj' property is set to

anything other than an empty vector the mouse pointer will assume the specified shape when

entering the object.

When you specify the 'CursorObj' property for the root object the setting will affect all

forms and their child objects, regardless of their own 'CursorObj' settings. This is very

useful when you want to change the cursor into an hourglass to inform the user that a long

operation is going on. This may be done by:

 '#' ⎕WS 'CursorObj' 1

Don't forget to restore the normal shape when the operation has finished by executing:

 '#' ⎕WS 'CursorObj' 0

 Chapter P – Graphical User Interface 639

If an application crashed while the cursor had a non default shape the workspace might

inadvertently have been saved with that definition. This may mislead the user. For this reason

any application should execute '#' ⎕WS 'CursorObj' 0 as part of its initialization.

4.3.6 - APL Version

You can obtain information about the version of Dyalog APL you are using by reading the

'APLVersion' property of the root object:

 DISPLAY '#'⎕WG 'APLVersion'
┌→─────────────────────────────────────┐
│ ┌→──────┐ ┌→─────┐ ┌→┐ ┌→──────────┐ │
│ │Windows│ │12.0.1│ │W│ │Development│ │
│ └───────┘ └──────┘ └─┘ └───────────┘ │
└∮─────────────────────────────────────┘

The result is a 4-item nested vector containing:

 The environment.

 The version.

 The version type: W for Windows, M for Motif, P for Pocket APL.

 'Development' or 'Runtime'.

This information may be important because, for example:

 File path separators are different in Windows (\) and in Unix (/).

 An application may trap all errors when executing in a run time environment, but allow the

standard error handling in a development (debugging) environment.

5 - Improve Your User Interface

5.1 Default Keys

When using an application it is very convenient for a user to be able to rely on the following

keyboard shortcuts:

 The Escape key usually exits from a dialog box without taking any further action..

 The Enter key usually confirms a selection or initiates the default action.

This can be achieved by specifying the following properties for appropriate button objects:

('Cancel' 1) this button will be actioned (selected) by pressing the Escape key

('Default' 1) this button will be actioned (selected) by pressing the Enter key

640 Dyalog APL - Tutorial

For example, in CMDesign2, we defined a "Quit" button like this:

 'bout'⎕WC'Button' 'Quit'(10 20)(25 60)('Event' 'Select' 1)

If we append ('Cancel' 1) to the right of this statement it will become possible to quit the

application by pressing the Escape key, because('Cancel' 1) associates the Escape key as

a keyboard short-cut equivalent to clicking the button with the mouse.

We also defined a "Select" button to display the final choice, with the following statement:

 'bsel'⎕WC'Button' 'Select'(10 100)(25 210)
('Event' 'Select' '#.CMReport')

If we append ('Default' 1) to the right of this statement we can just press the Enter key; a

shortcut for clicking the button. Just try it!

5.2 Enqueuing Events and Using Methods

5.2.1 - Event Simulation

We have seen how we can use ⎕DQ (de-queue) to process the information that the system

places in the event queue. We can also ourselves place events in the queue, using the monadic

function ⎕NQ (en-queue).

For example, in Section 2.4.1, we used the GotFocus and LostFocus events to select or

deselect the contents of an Edit field when the user entered or left the field. We will now

explore the way to cause the field to receive the input focus, under program control.

Monadic ⎕NQ takes as its argument a nested vector similar to an Event Message. The informa-

tion will be placed at the end of the Event queue, and processed as if it were a real Event when

it arrives at the top of the queue.

For example, working with the function GUI3, let us insert a new statement just before calling

⎕DQ:

[7] ⎕NQ 'Win.ET' 'GotFocus'
[8] ⎕DQ 'Win'

This artificial Event will be placed in the event queue before the dialog box is displayed, so it

will be the first one to be processed by ⎕DQ, before any user-generated events. The event will

cause the input cursor to be placed in the character Edit field and the corresponding Call-Back

function to be called, which in turn will cause all text in the field to be selected. This may

make the dialog box easier to use.

One can artificially generate any Event, including User-Defined Events, which may be

identified by any free event numbers (but numbers above 1,000 are recommended). The

Events that are put into the event queue will cause the appropriate action to take place or the

specified call-back function to be called.

Monadic ⎕NQ returns an empty character vector as a shy result.

 Chapter P – Graphical User Interface 641

5.2.2 - Dyadic Use

⎕NQ can be used with a left argument equal to 0, 1, 2, 3, or 4. The values 3 and 4 are for

interaction with OLE and ActiveX controls and will not be described here. Using a left

argument equal to 0 is equivalent to using ⎕NQ monadically.

1 ⎕NQ EventMsg Processes the event immediately, as if it had been placed first in the

event queue and ⎕DQ had been called.

 If a Call-Back function is specified for the Event it will be called

normally.

 The shy result is the Event Message, perhaps modified by the call-

back function.

2 ⎕NQ EventMsg If the name supplied is an Event name ⎕NQ performs the Default

Processing for the Event, but it does not invoke a Call-Back function,

even if one has been attached to the event. The shy result of ⎕NQ is 1.

 If the name supplied is the name of a Method (cf. Section 5.2.3

below) the method is invoked. The shy result of ⎕NQ is then the result

of the method.

5.2.3 - Methods

We have seen that GUI objects have Properties. The time has now come to introduce

Methods, which can be compared to functions, because they cause some action to take place.

 Methods are initiated by a dyadic ⎕NQ, with a left argument equal to 2. ⎕NQ then returns as

a shy result the result returned by the Method.

 Methods can also be invoked directly using namespace syntax:

For example: 2 ⎕NQ 'Printer' 'NewPage'

is equivalent to: Printer.NewPage

We shall use Methods in Section 8.2 about Printers.

5.3 Activating Objects

An application may use many forms and objects, but they may not necessarily have to be

visible and active all the time. In order to hide them we could delete the objects and re-create

them later, if needed. However, that would require unnecessary computer resources, and it

might be very complex to re-establish exactly the same state again,

Dyalog APL contains two properties that make it easy and effortless to control the visibility of

objects, and to control whether they are active or not:

642 Dyalog APL - Tutorial

Active Specifies whether an object is active (1) or not (0).

Visible Specifies whether an object or a form is visible (1) or not (0).

By default, objects are visible and active. An inactive object may still be visible, but the object

cannot get focus, and the user cannot interact with it in any way. For example, if you set the

Active property of an Edit object to 0 the text in the Edit field becomes grey and cannot be

edited. As a consequence no call-back function associated with the object will be called.

Controls that are inactive or made invisible still exist as APL GUI objects and can be modified

by the program.

When hidden forms are made visible again, you can place any form on top of all the other

forms you have created, using the property 'OnTop':

For example: 'XYZ' ⎕WS ('Visible' 1)('OnTop' 1)

5.4 Form Appearance

Forms have by default a standard Windows look with a border and a title bar. In the upper-left

corner is a System Menu button (SysMenu) with a Dyalog APL icon, and in the upper-right

corner are the three familiar buttons to minimize, maximize, or close the window.

This appearance can be changed, as shown in the figures below.

Figure P-12

The minimize and/or the maximize buttons can be

de-activated using the property settings

('MinButton' 0) and ('MaxButton' 0).

When both are inactive they are not shown (as

shown here), but the SysMenu is still active.

Figure P-13

All the buttons can be removed by the single

property setting ('SysMenu' 0).

Then the window can only be closed by the

program, not by the user directly. This may be

used to secure an application.

Important: All these properties must be set at creation time (⎕WC); they cannot be

changed (using ⎕WS) once the form has been created.

 Chapter P – Graphical User Interface 643

You can also replace the Dyalog APL icon (in the top-left corner) with any icon of your

choice. The replacement icon must be a standard ".ico" file. Two steps are needed:

 First create an Icon object (a separate type of GUI object) by specifying the appropriate

resource file, for example:

 'Hic' ⎕WC 'Icon' (Path,'heart.ico')

 Then apply the Icon object to your form, using the IconObj property like this:

 'P14'⎕WC'Form' 'Ma Doudou'('Size' 80 200)('IconObj' 'Hic') etc…

Figure P-14

In this example we have not only changed the

icon, but we have also removed the minimize and

the maximize buttons.

When this form is minimized (which can only be

done under program control), the heart will

identify the application in the Windows TaskBar.

Figure P-15

You can remove the border and have a pure

dialog box appearance, as you can see here.

This is obtained by using the property setting

('Border' 2).

Without a border the form is no longer sizable,

and neither the system menu nor the minimize

and maximize buttons are shown.

Finally, you can replace the form background with any picture of your choice, provided as an

appropriate bitmap file. This needs again two steps:

 First create a Bitmap object (a separate type of GUI object) by specifying the appropriate

image file, for example:

 'South' ⎕WC 'Bitmap' (Path,'Snapshot.bmp')

 Then insert that Bitmap in your form, using the Picture property like this:

 'P16'⎕WC'Form' 'Landscape'('Size' 100 200)('Picture' 'South' 3)

644 Dyalog APL - Tutorial

Figure P-16

By default, the picture is centred, but you can

specify a different alignment:

0 The picture is attached to the top-left corner

1 It is repeated (tiled) to fill the form

2 It is scaled (up or down) to fit the form

3 It is centred (this is the default)

6 - Menus

Menus are a very convenient way of offering a large number of options in an application.

The anchor point of the menu hierarchy is the MenuBar object.

A Menu may contain MenuItems and/or sub-menus containing other Menus or MenuItems,

and so on, in a tree-like structure.

The MenuItems may be associated with a Call-Back function for the "Select" event, which

implements the action that the menu stands for.

One can split a menu into blocks using a Separator, as shown in Figure P-17 below: There is

a Separator between the items "Properties" and "Quit" in the "File" menu. A Separator does

not generate any events.

Suppose that we want to create two menus with entries as shown in Figure P-17:

Figure P-17

 Chapter P – Graphical User Interface 645

In a real application it would perhaps be most convenient to associate each MenuItem with a

different call-back function, but in this small example we have chosen to use a common call-

back function ShowMsg, which only displays the Event Message.

When defining a tree structure like a menu tree it may be very convenient to make use of the

:With clause. This will both reduce the need for very long names and lines, and it will

enhance the readability, as the program text resembles the menu structure that it defines. Here

is an example of how a function to define the menu structure above could be written:

 ∳ GUI_Menu;Win;ExeEvent
[1] ExeEvent←'Event' 'Select' '#.ShowMsg'
[2] :With 'Win'⎕WC'Form' 'Menu demonstration'('Size' 130 300)
[3] :With 'MB' ⎕WC 'MenuBar'
[4] :With 'one' ⎕WC' Menu' 'File'
[5] 'fia' ⎕WC 'MenuItem' 'New' ExeEvent
[6] 'fib' ⎕WC 'MenuItem' 'Open' ExeEvent
[7] 'fic' ⎕WC 'MenuItem' 'Save' ExeEvent
[8] :With 'fid' ⎕WC' Menu' 'Print'
[9] 'pra' ⎕WC 'Menuitem' 'In a file' ExeEvent
[10] :With 'prb' ⎕WC 'Menu' 'On a printer'
[11] 'ploc' ⎕WC 'MenuItem' 'Local' ExeEvent
[12] 'prem' ⎕WC 'MenuItem' 'Remote' ExeEvent
[13] :EndWith
[14] 'prc' ⎕WC 'MenuItem' 'Send by e-mail' ExeEvent
[15] :EndWith
[16] 'fie' ⎕WC 'MenuItem' 'Properties' ExeEvent
[17] 'fif' ⎕WC 'Separator'
[18] 'fig' ⎕WC 'MenuItem' 'Quit'('Event' 'Select' 1)
[19] :EndWith
[20] :With 'two' ⎕WC 'Menu' 'Edit'
[21] 'eda' ⎕WC 'MenuItem' 'Cut' ExeEvent
[22] 'edb' ⎕WC 'MenuItem' 'Copy' ExeEvent
[23] 'edc' ⎕WC 'MenuItem' 'Paste' ExeEvent
[24] 'edd' ⎕WC 'Separator'
[25] 'ede' ⎕WC 'MenuItem' 'Find' ExeEvent
[26] 'edf' ⎕WC 'MenuItem' 'Replace' ExeEvent
[27] :EndWith
[28] :EndWith
[29] :EndWith
[30] ⎕DQ'Win'
 ∳

To make it easier to read, we have inserted extra spaces in the listing and aligned the

definitions of the call-back functions for the "Select" events.

For example, if we select the option "Print on a Local Printer", we will see:

┌→───────────────────────────────────┐
│ ┌→──────────────────────┐ ┌→─────┐ │
│ │Win.MB.one.fid.prb.ploc│ │Select│ │
│ └───────────────────────┘ └──────┘ │
└∮───────────────────────────────────┘

646 Dyalog APL - Tutorial

7 - The Grid Object

Dyalog APL provides a rich and flexible tool to display and update data in a tabular

representation, resembling a spreadsheet. The Grid object is extremely rich, and we will only

describe its main features in this tutorial.

Figure P-18

As you can see, a Grid consists of:

 Cells Cells may contain any data (characters or numeric values).

 In many applications the columns contain homogeneous data, but this is

 not mandatory: any cell can contain any type of data.

 Column titles By default, the columns titles are the letters A, B, C, D, …

 Row titles By default, the row titles are the numbers 1, 2, 3, 4, …

 Chapter P – Graphical User Interface 647

7.1 Geometry & Titles

7.1.1 - Controlling the Geometry

When you define the cell dimensions the titles automatically adopt the same height (for row

titles) or the same width (for column titles). Therefore you can only modify the width of the

row titles and the height of the column titles.

To define the geometry of a Grid object you must specify the following properties:

TitleWidth This value refers to the row titles, on the left.

If this value is set to zero there will be no titles.

CellWidths Specifies the column widths. You can specify a single value if all the

columns have the same width, or as many values as you have

columns.

TitleHeight Determines the height of the column titles, on top of the grid.

If this value is set to zero there will be no titles.

CellHeights Specifies the row heights. Usually, a single value is provided, which

applies to all the rows, but one can also specify a different height per

row.

All these properties take default values.

Of course, the Grid itself has its own height and width. Depending on the data array

dimensions, horizontal and vertical scroll bars will be automatically provided, as required. So,

the data array may be smaller than the grid dimensions, and unused margins may appear.

It is possible that the cells dimensions are such that the bottom row or the rightmost column

cannot be displayed completely. You can decide to let them be displayed partially using

('ClipCells' 1), or to only have entire cells shown in the grid using ('ClipCells' 0).

This second option is recommended to avoid misinterpretation of partially displayed data

(especially numeric data).

7.1.2 - Defining Titles

By default, titles are letters (on top of columns) or numbers (to the left of rows), but one can

specify any titles using these properties:

RowTitles In our example they take default values.

ColTitles We will specify our own titles.

Titles must be given as nested vectors of character vectors. A matrix will not be accepted.

648 Dyalog APL - Tutorial

Here is the beginning of a function to create a Grid filled with a nested array named

GridData, which may be found in the accompanying workspace:

 ∳ Grid_1 griddata;F
[1] 'F'⎕WC'Form' 'Grid Experiments'('Size' 260 470)
[2] 'F.Q'⎕WC'Button' 'Quit'(3 5)(25 50)('Event' 'Select' 1)
[3] :With 'F.G'⎕WC'Grid'griddata(35 5)(220 460)('ClipCells' 0)
[4] ⍝--- Geometry & Titles
[5] TitleWidth←40
[6] CellWidths←100 60 60 60 80 40
[7] TitleHeight←30
[8] ColTitles←'Name' '2006' '2007' '2008' 'Country' 'Y/N'
[9] :EndWith
[10] ⎕DQ'F'
 ∳

It is possible to control the formatting of the titles with the following four properties:

RowTitleFCol These properties control the foreground (text) colour.

ColTitleFCol One can use an RGB value or a negative value (see Section 4.1).

RowTitleAlign These properties control the position of the titles.

ColTitleAlign The possible values are: Top, Bottom, Left, Right, Centre

 and TopLeft, TopRight, BottomLeft, BottomRight.

7.2 Cell Types

7.2.1 - Cell Appearance

By default all cells are defined and handled identically with respect to these five properties:

 The background colour BCol

 The character colour FCol

 The font CellFonts

 The input behaviour Input

 The input cell type shown ShowInput

It is not possible to specify these properties directly for each cell. Instead it is possible to

define an arbitrary number of combinations of these five properties, numbered 1, 2, 3..., and

then assign a particular combination to each cell.

The different combinations are called CellTypes.

The CellTypes are defined by assigning a vector of values to each of the five properties

listed above. Cell type #n is then defined as the n'th item of the BCol property, the n'th item of

the FCol property, the n'th item of the CellFonts property, the n'th item of the Input

property, and the n'th item of the ShowInput property. Scalar extension applies, so if a

property is to have the same setting for all cell types it may be specified as a scalar.

 Chapter P – Graphical User Interface 649

The cell types are assigned to the cells using the CellTypes property.

The value of this property is a numeric matrix with a shape exactly equal to the shape of the

data array, and containing values from 1 to N, where N is the number of combinations of the

five properties that have been defined. If the shape of the matrix is different from the shape of

the data array the consequences for the grid layout and behaviour are unpredictable, and the

same is true if the cell type is defined to have larger number than the number of defined

property combinations.

Often all cells in a column have the same type, but in many applications this is not necessarily

the case, as we shall see in Section 7.4.

For our specific example we shall define 4 cell types. They will be numbered from 1 to 4:

 Type Contents Columns

 1 Names 1

 2 Numeric values 2 3 4

 3 Countries 5

 4 Yes/No 6

We shall associate types to cells by the following statement:

 CellTypes ← (∰#.GridData)∰ 1 2 2 2 3 4

We can see that three columns have the same definition.

Now, if we need to define properties like a background colour or a font, we will not refer to

the 6 columns but to the 4 cell types, and specify four BCol and four CellFonts definitions.

Just to show how it works in our example:

 Let us define two Font objects: "Garamond" bold italic for characters (types 1 and 3), and

plain "APL385 Unicode" for numbers (types 2 and 4).

 Let us decide that all the columns will be on a default background (0), except the numeric

values (type 2), which should appear on a blue-grey background (220 220 240).

 And finally, all the cells will appear with black characters (0), except that the names will

be shown in dark blue (0 0 128), and the Yes/No column will be shown in red (255 0
0).

Having made these decisions, we can modify the function Grid_1 to become Grid_2 and

look like this (we have not repeated all the statements that are unchanged):

650 Dyalog APL - Tutorial

 ∳ Grid_2 griddata;F
[1] 'F'⎕WC'Form' 'Grid Experiments'('Size' 260 470)
[2] 'F.Q'⎕WC'Button' 'Quit'(3 5)(25 50)('Event' 'Select' 1)
[3] 'F.Fnt'⎕WC'Font' 'Garamond' 16 0 1 0 700
[4] 'F.APL'⎕WC'Font' 'APL385 Unicode' 16
[5] :With 'F.G'⎕WC'Grid'griddata(35 5)(220 460)('ClipCells' 0)
...
[10] ColTitles←'Name' '2006' '2007' '2008' 'Country' 'Y/N'
[11] ⍝--- Types and Attributes
[12] CellTypes←(∰#.griddata)∰1 2 2 2 3 4
[13] BCol← 0 (220 220 240) 0 0
[14] FCol← (0 0 128) 0 0 (255 0 0)
[15] CellFonts←].F.(Fnt APL Fnt APL)
[16] :EndWith
[17] ⎕DQ'F'
 ∳

Remember that the BCol, FCol, and CellFonts attributes are not associated with 6 columns,

but with 4 cell types. Also note that so far we have not specified the Input and ShowInput

properties, so the default values for these properties will be used for all cells.

Here is how the result looks:

Figure P-19

7.2.2 - Input Fields

The grid defined so far is output only - it does not allow any data to be entered into any cells.

This is because we have not (yet) specified the Input property. Let us do that now, so that it

will be possible to enter data into the grid.

 Chapter P – Graphical User Interface 651

It is obvious that various types of data need different input specifications. So we will define

different Input fields and associate them with the 4 cell types. For now we will just define an

Edit field for the names, and another Edit field for the numeric values. The last two columns

will continue to be read-only fields.

This can be achieved with the following additional statements in the function Grid_2:

[16] 'IChar'⎕WC'Edit'('FieldType' 'Char')
[17] 'INums'⎕WC'Edit'('FieldType' 'Numeric')('Decimals' 0)
[18] 'INada'⎕WC'Edit'('ReadOnly' 1)

As you can see we have not specified a size for these fields (it is defined by the Grid

configuration) and no position (as the definition will be used by all cells sharing the same cell

type). These input fields can be considered as "floating fields". The last field has no FieldType

because it is read-only.

Once these definitions are established we can assign them to the four CellTypes using a

statement that is very similar to the ones we used for BCol and CellFonts:

[19] Input←'IChar' 'INums' 'INada' 'INada'

If you run the function Grid_2 after having made these modifications you will see that you

can now modify the values in the first four columns, and that you can navigate in the last two

columns, but you cannot type anything there.

7.2.3 - Combo and Check Fields

Column 5 in the grid example specifies a country code, for which a drop-down Combo object

is an ideal input control.

Column 6 in the grid specifies a Boolean value, for which a check button is an ideal input

control.

We can define such two "floating" Input fields like this:

 Where←'AUS' 'D' 'DK' 'E' 'F' 'GB' 'I' 'USA'

 'IComb'⎕WC'Combo'Where

 'IChck'⎕WC'Button'('Style' 'Check')

We also need to incorporate these new definitions into the Input property:

 Input←'IChar' 'INums' 'IComb' 'IChck'

We can also remove the read-only field, which we no longer use. With these modifications the

function Grid_2 allows all grid cells to be modified.

In the figure below we have pasted two images, to show how things will appear. The large one

shows how a cell in the 5
th

 column changes to become a drop-down control when it gets the

input focus, allowing a country to be selected. Similarly, the smaller image show that a cell in

the 6
th

 column changes to become a check button control when it gets the input focus,

allowing the user to select or deselect this parameter. To simplify the function we have

removed the two different fonts used in the first versions of the function:

652 Dyalog APL - Tutorial

Figure P-20

7.2.4 - Show Input; The Final Version

When the cursor enters a cell in column 5 or 6, that cell is temporarily transformed into a

Combo (column 5) or into a Check button (column 6), as you can see in Figure P-20.

However, the cells that do not have the input focus are shown as plain text output fields.

It is possible to have the Combos and the Check buttons displayed permanently in columns 5

and 6. To do so, one must set the property ShowInput to 1 for the cells in question. Since

ShowInput is defined via the cell types we must specify 4 values, one for each of the 4 cell

types we are using in this example: 0 0 1 1 (see statement [20] in the listing of the function

Grid_Demo1 below).

 Chapter P – Graphical User Interface 653

Here is the final version of our function. It creates exactly the form shown in figure P-18:

 ∳ Grid_Demo1 griddata;F
[1] 'F'⎕WC'Form' 'Grid Experiments'('Size' 260 470)
[2] 'F.Q'⎕WC'Button' 'Quit'(3 5)(25 50)('Event' 'Select' 1)
[3] :With 'F.G'⎕WC'Grid'griddata(35 5)(220 460)('ClipCells' 0)
[4] ⍝--- Geometry
[5] TitleWidth←40
[6] CellWidths←100 60 60 60 80 40
[7] TitleHeight←30
[8] ColTitles←'Name' '2006' '2007' '2008' 'Country' 'Y/N'
[9] ⍝--- Attributes
[10] CellTypes←(∰#.griddata)∰1 2 2 2 3 4
[11] BCol←0(220 220 240)0 0
[12] FCol←(0 0 128)0 0(255 0 0)
[13] ⍝--- Inputs
[14] Where←'AUS' 'D' 'DK' 'E' 'F' 'GB' 'I' 'SN' 'UA' 'USA'
[15] 'IChar'⎕WC'Edit'('FieldType' 'Char')
[16] 'INums'⎕WC'Edit'('FieldType' 'Numeric')('Decimals' 0)
[17] 'IComb'⎕WC'Combo'Where
[18] 'IChck'⎕WC'Button'('Style' 'Check')
[19] Input←'IChar' 'INums' 'IComb' 'IChck'
[20] ShowInput←0 0 1 1
[21] :EndWith
[22] ⎕DQ'F'
 ∳

7.3 Interaction with a Grid

7.3.1 - Events

More than 40 different events may be generated and reacted to when working with a grid. We

will list a few of them here and refer to the on-line help and the manuals for the full story:

CellUp This Event is reported when the user releases the mouse button in a cell.

We shall use it very soon in an example. You can also use CellDown.

CellMove Reported when the user tries to enter a cell. This Event may be used to

allow an application to perform some action prior to the user entering a

cell, or to inhibit entry into a cell.

CellChanged This event is reported after the contents of a cell has been changed,

when the focus is moved to another cell or to another object outside of

the grid. This Event may, for example, be used to start a calculation

using the new values.

The event is reported after the action has occurred, so it is impossible to

prevent it from happening. If you want to verify the entered value before

updating the array, use the CellChange event instead.

654 Dyalog APL - Tutorial

CellChange This event is reported when the content of a cell has been changed, but

before the user leaves the cell. It is possible to verify the validity of the

entered value before the data array is updated.

IndexChanged Reported when the user has scrolled the Grid. The event is reported after

the action occurred, so it is impossible to prevent it from happening. You

may, for example, use the event to synchronise another object with the

grid.

7.3.2 - Actions

Interactions between an application and the Grid generally involve the following properties:

Values This property is used to get or set the data displayed in the Grid. This is

of course the main information.

CellTypes In some applications, it is interesting to change the cell type of some

cells, for example to have them displayed in a different colour (see the

example shown in Section 7.4).

CurCell This property returns the current position of the input cursor (row and

column). This information may be valuable in Call-Back functions.

7.4 Example

Though rather artificial, this example is interesting because its uses CellTypes to select cells

in a Grid. The theme is the following:

 For the 7 days of a week, a Grid displays which movies are programmed on 6 TV

channels. They are displayed in white on a deep blue background.

 On some days, there is no movie on certain channels. The cell is then empty and displayed

with a grey background (e.g. Monday/BBC).

 The user may select at most one movie per day by clicking on the corresponding cell. The

selected movies then appear in black on white (e.g. Wednesday/"Mission" on MTV). A

second click on the same cell cancels the choice.

 When the user has made his choice, a click on the "OK" button produces a little summary

that is just displayed in the session, with Day / Channel / Movie.

 Chapter P – Graphical User Interface 655

Figure P-21: What we expect to see on the screen:

Here is the result that should be produced by the OK button:

Monday None :
Tuesday CNN : The Mask
Wednesday MTV : Mission
Thursday CBS : Apollo 13
Friday Bingo TV : Rain Man
Saturday None :
Sunday BBC : More

7.4.1 - The Main Program

The movies programmed on the various channels are provided in Movies, a 7 by 6 nested

character matrix containing movie titles, or empty vectors when there is no movie. This matrix

is passed to the main program as its argument.

Most statements in the main function TV are very similar to those that we have already seen.

Please notice the following details:

 As we said, the size reserved for the grid may be slightly larger than the space occupied by

the grid titles and cells. To fill the gap we use GridBCol←¯16 in line [8], but then it does

not make sense to draw a border around the grid, so we specify ('Border' 0) in line

[5].

 Row titles are left-justified, and column titles are centred.

656 Dyalog APL - Tutorial

 We have defined three cell types with the following characteristics:

 Type Meaning BCol FCol

 1 No movie Grey (does not matter)

 2 Not selected movie Dark Blue White

 3 Selected movie White Black

7.4.2 - The Selection Call-Back Function

Here are the comments relating to the selection Call-Back function TVZap:

[1] When the user clicks in a cell, we place the cell's row and column numbers in the

variables row and col.

[3] We keep the current state (cell type) of the cell in old.

[4] If any other cell had been already selected for that day (cell type = 3) we must deselect

it, because the user is only allowed to select one movie per day.

[5] This is the "intelligent" part of the function. We determine the new state of the cell

based on its old state.

[6] The new status is registered in the cell type matrix.

[7] Finally wt is used to update the CellTypes property of the Grid.

7.4.3 - The Result Display

There is nothing special to mention about the second Call-Back function which displays the

final choice.

A loop examines the cell types stored in the CellTypes property one day at a time and

determines the position vp of the first (hopefully the only!) selected movie (cell type = 3). If a

film has been selected vp will be in the range 1-6, but if no choice has been made for this day

vp will contain 7. This is the reason why we added the word "None" after the TV channel

names, and a column of enclosed empty vectors to the right of the movie names.

The day, channel, and film are extracted by simple indexing and displayed.

The three functions are given on next page.

 Chapter P – Graphical User Interface 657

7.4.4 - The Functions

 ∳ TV D;Win;WTypes;vj;vc;vi;vs;vp;vf
[1] WTypes←2-D∮⊂''
[2] :With 'Win'⎕WC'Form' 'TV Program choice'('Size' 245 515)
[3] 'BQ'⎕WC'Button' 'Quit'(5 10)(25 70)('Event' 'Select' 1)
[4] 'BV'⎕WC'Button' 'OK'(5 90)(25 70)
... ('Event' 'Select' '#.TVShow')
[5] :With 'Gr'⎕WC'Grid'D(40 5)(205 505)('Border' 0)
[6] vj←'Monday' 'Tuesday' 'Wednesday' 'Thursday' ... etc.
[7] vc←'BBC' 'MTV' 'CNN' 'Channel 5' 'Bingo TV' 'CBS'
[8] GridBCol ←¯16
[9] TitleWidth ←80
[10] CellWidths ←70
[11] TitleHeight ←25
[12] CellHeights ←25
[13] RowTitles ←vj
[14] ColTitles ←vc
[15] RowTitleAlign←'Left'
[16] ColTitleAlign←'Center'
[17] CellTypes←WTypes
[18] BCol←(3∰192)(0 0 128)(3∰255)
[19] FCol←(0 0 0)(3∰255)(0 0 0)
[20] Event←'CellUp' '#.TVZap'
[21] :EndWith
[22] :EndWith
[23] ⎕DQ'Win'
 ∳

 ∳ TVZap;old;col;row;vn;wt
[1] row col←Win.Gr.CurCell
[2] wt←Win.Gr.CellTypes
[3] old←wt[row;col]
[4] wt[row;]⌊←2
[5] vn←1 3 2[old]
[6] wt[row;col]←vn
[7] Win.Gr.CellTypes←wt
 ∳

 ∳ TVShow;vj;vc;vb;vi;vm;vp;vf;wt
[1] vj←↑Win.Gr.RowTitles
[2] vc←↑(Win.Gr.ColTitles),⊂'None'
[3] vm←D,⊂''
[4] wt←Win.Gr.CellTypes
[5] :For vi :In ∯7
[6] vp←wt[vi;]∯3
[7] vf←(⊂vi vp)⊃vm
[8] vj[vi;],' ',vc[vp;],' : ',vf
[9] :EndFor
 ∳

658 Dyalog APL - Tutorial

7.5 Multi-Level Titles

7.5.1 - Hierarchy of Titles

Up to now we have only worked with simple titles, but it is possible to define multi-level titles

for both rows and columns, as shown in Figure P-22 below:

Figure P-22

The titles must be prepared with each top level title ("Previous year") immediately followed

by its subtitles ("S1" and "S2"), and so forth. We have placed them in two global variables:

Row_Tree←'France' 'Paris' 'Nice' 'Agen' 'USA' 'New York' 'Boston' etc.

Col_Tree←'Previous year' 'S1' 'S2' 'Current year' 'Q1' 'Q2' … etc.

This can be extended to titles with 3 levels or more.

The function Grid_Demo2 which creates the example shown in Figure P-22 is very similar to

what we have already seen. The only remarkable details are:

 The title widths and heights must be increased (to 160 and 50) in order to make room for

the two levels of titles.

 Two new properties (RowTitleDepth and ColTitleDepth) indicate at which level a

title should be placed. For example, "Previous year" is at level 0, while "S1" and "S2" are

at level 1; "Current year" is at level 0, and "Q1" to "Q4" are at level 1.

 Chapter P – Graphical User Interface 659

 We used a form with ('Border' 2) to show something different from the previous

examples.

 ∳ Grid_Demo2;Win;title
[1] title←'Grid titles hierarchy'
[2] :With 'Win'⎕WC'Form'title('Size' 245 472)('Border' 2)
[3] :With 'Gr'⎕WC'Grid'(?7 6∰15984)(10 5)(227 462)
[4] TitleWidth←160 ⋄ CellWidths←50
[5] TitleHeight←50 ⋄ CellHeights←25
[6] RowTitles←#.Row_Tree
[7] RowTitleDepth←0 1 1 1 0 1 1 1 1
[8] ColTitles←].Col_Tree
[9] ColTitleDepth←0 1 1 0 1 1 1 1
[10] :EndWith
[11] :EndWith
[12] ⎕DQ'Win'
 ∳

7.5.2 - A Tree of Row Titles

One can also organise the tree of row titles in such a way that sub-trees can be expanded or

collapsed, similar to the file folder tree in Microsoft Windows Explorer.

This applies only to row titles, not to column titles.

Figure P-23

In this example the sub-tree for "L.A." has been expanded, but not the sub-tree for "Chicago".

660 Dyalog APL - Tutorial

We used the following list of row titles:

Row_DeepTree←'USA' 'New York' 'Chicago' 'Center' 'Suburbs' … etc.

The function Grid_Demo3 which creates the form shown in Figure P-23 is very similar to the

previous function Grid_Demo2. The main difference is that the property RowTitleDepth

has been replaced by the property RowTreeDepth.

This function is contained in the accompanying workspace, so you can test it yourself.

 ∳ Grid_Demo3;Win
[1] :With 'Win'⎕WC'Form' 'Row Title Tree'('Size' 245 372)
[2] :With 'Gr'⎕WC'Grid'#.Row_DeepData(10 5)(227 362)
[3] BCol←¯16
[4] TitleWidth←160 ⋄ CellWidths←50
[5] TitleHeight←30 ⋄ CellHeights←25
[6] ColTitles←'Q1' 'Q2' 'Q3' 'Q4'
[7] RowTitles←].Row_DeepTree
[8] RowTreeDepth←0 1 1 2 2 1 1 2 2
[9] RowTreeStyle←'AllImagesAndLines'
[10] :EndWith
[11] :EndWith
[12] ⎕DQ'Win'
 ∳

7.6 Some Additional Properties

Many other properties apply to grids. Some of them are the following:

GridBCol The area occupied by the cells of a grid may be smaller than the total

size reserved for the grid. The gap can be given any background colour,

but we recommend ¯16, which is the form background. We also

recommend removing the Grid border by ('Border' 0).

OverflowChar When a numeric value is larger than the width of a cell allows it can be

shown as a string of overflow characters, for example a list of asterisks.

AutoExpand This property indicates whether or not a Grid will be expanded when the

user tries to move further than the rightmost column or below the bottom

row. The argument is a 2-item Boolean vector (for rows and columns).

By default, a Grid cannot be expanded (0 0).

InputModeKey When the cursor is placed in a cell and the user presses a key to move the

cursor to the left or to the right, the cursor moves to the next cell, not to

the next character. This is also how e.g. Microsoft Excel works.

When the cell content is to be edited an "Input Mode" key can be

pressed, so that it becomes possible to move the input cursor within the

field, using the cursor keys.

 Chapter P – Graphical User Interface 661

The property InputModeKey specifies this "Input Mode" key as a 2-

item vector of integer values containing the key number and the shift

state, respectively.

The default is (113 0), which is "F2" - the same as the edit key in

Microsoft Excel.

8 - Using Printers

Defining in detail how text and/or graphics is to be printed may be a rather complex and

tedious job, no matter which programming language you are using. As you will learn in

Chapter S Dyalog APL is endowed with extremely powerful tools to print nicely looking

documents and reports and to create PDF files. For this reason we will limit our coverage of

controlling printers in this section to the basic principles.

8.1 The Printer Object

A Printer object is an invisible GUI object defined as any other top level GUI object. At any

point in time, it represents the contents of a single sheet of paper.

In this Printer object one can create (write) text or drawings, very much like we placed Text

objects in a form; they are children of the page. However, the child objects created on a

printer page cannot be removed.

When the printer page has been filled as desired we can send it to a printer. The printer may

be a real printer or a logical printer, as defined by the operating system.

8.1.1 - Creation, Orientation, and Coordinate System

When creating the Printer object, it is recommended that you specify its orientation:

Portrait (the default) or Landscape:

 'Pr' ⎕wc 'Printer' ('Orientation' 'Portrait')

This statement creates a printer object for the system's default printer. In Section 8.2.8 you can

see how to select another printer.

If the default coordinate system is 'Pixel' and a program writes a letter in position 500 1000

the result will be extremely different if the physical printer has a resolution of 300 dpi (Dots

Per Inch) or 1200 dpi. A more convenient coordinate system is to count positions in

millimetres, so the first thing we will do is to query the printer characteristics using the

property 'DevCaps'. We have already seen this property being used for the Root object to

obtain the display screen characteristics.

662 Dyalog APL - Tutorial

 'Pr' ⎕WG 'DevCaps' (or Pr.DevCaps)
6672 4800 282 203 16777216

The result is a nested vector having the same structure as the result obtained for the display

screen:

 The page size (height and width) in pixels (usually called "dots" for printers).

 The page size in millimetres.

 The number of available colours (a monochrome printer would return 2).

The size of a sheet of paper in A4 format is not 282 by 203 millimetres, but 297 by 210

millimetres. However, few printers can print to the edge of the paper; most leave an

unprintable margin. The 'DevCaps' property reports the printable area, adjusted for the

necessary printer margins.

One can ask for the printer resolution (in dpi) by: Pr.Resolutions

We can now redefine the printer's coordinate system using the specification 'User':

 Y X ← 2⊃'Pr' ⎕WG 'Devcaps'

 'Pr' ⎕WS ('Coord' 'User')('YRange' 0 Y)('XRange' 0 X)

With this definition coordinates can in our example be specified in millimetres, from 0 to 282

vertically, and from 0 to 203 horizontally.

Once these basic settings are in place we can begin to print data on the page.

8.1.2 - Unnamed Child Objects

The various things you print cannot be deleted or changed, so it would in most cases be

useless to give them names. Just to indicate they are children of the printer object, we shall

type a dot, but nothing after it.

For example: 'Pr.' ⎕WC 'Text' ... and so on ...

However, it is always possible to give a name to a child object. Then you will be able to

reference it later, for example in the left argument to ⎕WS. However, since the old definition of

the object cannot be changed the use of ⎕WS will create a new object in addition to the

previous one, with the new definition. This allows us to "clone" objects to different parts of

the page.

8.1.3 - Simple Graphic Shapes

Dyalog APL provides some simple graphic shapes that can be used both on a Form and on a

printer object: lines, rectangles, circles, and ellipses. Lines and rectangles are very convenient

to draw frames in which it will be possible to place text or numbers. In this tutorial, we shall

just draw rectangles; please refer to the reference documentation for the following objects:

 Chapter P – Graphical User Interface 663

Circle To draw complete circles, or just arcs, and to produce pie charts.

Ellipse The same as for Circle.

Poly To draw sets of straight lines, or polygons.

Let us just create 3 contiguous rectangles: you will see how accurate the drawing is.

A rectangle is defined by the position of its top-left corner, and its dimensions:

 'Pr.' ⎕WC 'Rect' (40 20)(20 80)

 'Pr.' ⎕WC 'Rect' (40 100)(20 80)('FCol' 255 0 0)

 'Pr.' ⎕WC 'Rect' (60 20)(10 160)('LWidth' 3)

For the moment, the 3 rectangles we created have been buffered: they will be printed later.

8.1.4 - Write Some Text

To write text we shall use the same technique as we used in Section 4.2.2: We shall first

prepare one or more Font objects defined as children of the Printer object, to be sure that the

font definition is the one currently used by our printer driver. This is important because printer

fonts are not the same as display fonts, and it is by creating a Font object as a child of a

Printer object that you tell the system that it is a printer font that you want!

The text can be aligned horizontally and vertically, using the following properties:

HAlign

0 The x coordinate specified in the position defines the left end of the text.

1 The x coordinate specified in the position defines the centre of the text.

2 The x coordinate specified in the position defines the right end of the text.

VAlign

0 The base line of the text is placed on the specified y coordinate

1 The text is centred on the specified position

2 The top of the text is aligned on the specified y coordinate

3 The bottom of the character cell is aligned on the specified y coordinate

4 The top of the text cell is aligned on the specified y coordinate (this is the default)

Let us define two fonts:

'Pr.F1' ⎕WC 'Font' 'Arial' 133 0 1

'Pr.F2' ⎕WC 'Font' 'Times New Roman' 200 0 0 0 800

And use them to write two texts:

'Pr.' ⎕WC 'Text' 'Dyalog APL' (50 100)('VAlign' 1)('FontObj' 'Pr.F1')

'Pr.' ⎕WC 'Text' 'Hello World'(60 100)('HAlign' 1)('FontObj' 'Pr.F2')

664 Dyalog APL - Tutorial

8.1.5 - Character Size

Maybe you were surprised by the size we specified for the fonts (133 and 200). Placed on a

form they would be huge, but on the paper you will soon discover that they are not so big.

The reason is that the font definition is specified in pixels, or dots, and most printers have a

much higher resolution (given in Dots Per Inch) than a computer screen. Or, to put it in

another way, to obtain a given text size we "need many more pixels" on a printer than on a

screen.

Our printer's characteristics are: 6672 dots are equivalent to 282 mm

So, for our Arial font 'Pr.F1': 133 dots should give approximately 5.6 mm

The printer's resolution can be calculated as 25.4×6672÷282 dpi ~ 600 dpi.

We said "approximately" above because the different letters in a font are not equally tall. The

font size is the height of the smallest box that may contain all characters.

8.2 Printer Management

What we have written or printed so far has only been buffered in the invisible Printer object;

it has not yet been sent to the printer. We will now show how we can send the buffered output

to the printer, and how to control the printing.

8.2.1 - Using Methods

If the Printer object is deleted for any reason (because it was localised in a function, or

because we explicitly erased it using ⎕EX), the current page will be processed, and in our

example the page we had prepared would be physically printed on the default printer.

This may seem surprising, but by deleting the printer object we did not delete the buffer

contents. We just released the link between APL and the buffer.

You can try: ⎕EX 'Pr'

Remark This way of printing the buffered document is rather brutal. It does not allow

us to control the printing parameters, and because the Printer object is no

longer available it will have to be re-defined if we need to print something

more. We recommend that you control the printing explicitly, as shown

below.

The normal way of managing the printer is using Methods.

Methods can be executed using a dyadic ⎕NQ, or by a direct call using the namespace notation

(refer to Section 5.2.3).

 Chapter P – Graphical User Interface 665

A printer object has seven Methods, all represented by a name and a numeric code, like

Events. Since it is considered obsolete to use the numeric codes we will only use names here.

The numeric codes can be looked up in the on-line help, should you ever need them.

You can obtain the list of supported methods by executing: Pr.⎕nl ¯3.

We shall study only the most important printer methods.

8.2.2 - Method NewPage

We said that a Printer represented one single page of paper. To print more than one page one

can separate pages by executing a NewPage Method:

 2 ⎕NQ 'Pr' 'NewPage'

or Pr.NewPage

Subsequent statements will write to a (virtual) new page, and so forth…

8.2.3 - Method Print

This Method sends all the pages that have been prepared to the printer. You can invoke it by:

 2 ⎕NQ 'Pr' 'Print'

or Pr.Print

Now you can see how the page that we have prepared is printed!

8.2.4 - Method RTFPrintSetup

This Method displays a dialog box which allows the user to control the parameters for

physical printing. RTF stands for Rich Text Format, and the method has this name because it

is possible to provide a RichEdit object as a parameter, in which case the system can

calculate the number of pages required and allow the use to select pages for printing. We will

not be using this option in our example.

Prepare some pages and issue this command: 2 ⎕NQ 'Pr' 'RTFPrintFormat'

When this dialog box is used, one can select a printer, modify the printing parameters, and

decide to print all of the pages or only a subset of them.

666 Dyalog APL - Tutorial

Figure P-24

8.2.5 - Method Abort

Suppose that you have prepared a document by filling a Printer object and that you no longer

want it to be printed. As we have described above you cannot just delete the Printer object, as

this will cause the document to be printed, which is exactly the opposite of what you want.

This is why you need this Method to abort the printing operation, discarding all contents in the

printer object (but not deleting the printer object):

 2 ⎕NQ 'Pr' 'Abort'

or Pr.Abort

8.2.6 - Method Setup

Perhaps you need to change some settings for the physical printer before sending a document

to it.

The Setup Method activates the printer's Control Panel.

8.2.7 - Method GetTextSize

It is often helpful to know in advance what will be the exact size of a given piece of text when

printed. This can be obtained using the Method GetTextSize.

 Chapter P – Graphical User Interface 667

The argument to GetTextSize is a 2-item vector containing the text to print, and the Font in

which it will be printed:

 Pr.GetTextSize 'Hello World' '#.Pr.F2'

or Pr.GetTextSize 'Hello World' 'F2'

8.454504572 39.50864763

The result is given in the units of the Printer object's coordinate system (millimetres here).

If you check it you will see that the width is perfectly exact, but the height is probably not.

The height of the printed text is smaller than indicated, because the Method gives the size of

the bounding rectangle containing the text, including some space for tall letters and for letters

extending below the base line.

The GetTextSize method is also supported by forms and many other GUI objects.

8.2.8 - Selecting a Printer

The physical printer can be chosen using the RTFPrintSetup dialog box, but generally it is

defined when the Printer object is created, using one of the printers listed as available in the

Root object, as explained in Section 4.3.3.

The syntax is (do not forget the final colon, the name must be identical to that reported by the

PrintList method!):

 'Pr' ⎕WC 'Printer' 'hp color LaserJet 2550 PCL 6,Ne04:'

9 - And Also …

There are so many different objects (many more than 50), that it is impossible to describe

them all in this tutorial. Fortunately, once you have used the basic objects we have described,

you will be able to use more and more new objects just by reading the documentation.

Among the most frequently used objects, let us mention the following:

BrowseBox To select a folder on a local or network disk.

FileBox To browse through your disk and select one or more files.

ListView Provides presentation capabilities very similar to Windows Explorer.

ProgressBar Provides different ways of representing the progression of a long process.

Spinner To choose among a set of values like months, days, and so on, much like a

Combo, but without the drop-down list.

TipField To display a pop-up information box when the cursor enters an object.

668 Dyalog APL - Tutorial

ToolBar A container for buttons, like those which appear on the upper part of most

applications.

TrackBar Provides a convenient way of showing a value between two limits, like for

example the volume of a loudspeaker, or the intensity of a colour.

Not a word to my Mother:

she's convinced I use C# !

 Chapter P – Graphical User Interface 669

The Specialist's Section

Each chapter is followed by a "Specialist's Section" like this one.

This section is dedicated to skilled APLers, who wish to improve their knowledge.

If you are exploring APL for the first time,

skip this section and go to the next chapter

Spe-1 Lists of Properties, Methods, Events

When you have created an object you can obtain the list of its Properties, the Methods you

can apply to it, and the Events which it can react to. Of course you can look up this

information in the on-line help, but sometimes it is convenient that the object itself can

provide the necessary information.

For example, just place a Break Point in the middle of the function TV that we used in Section

7.4 (somewhere between statements 1 and 15), and run the function: TV Movies.

When the function is interrupted, check that you are in the appropriate namespace:

TV[13]

)ns
#.Win.Gr That's good!

Spe-1.1 - Properties

You can now obtain the list of Properties by two different means. Both return long nested

character vectors; we will show only their first five items:

 5↑PropList
Type Values Posn Size FCol

 5↑⎕NL ¯2
Accelerator AcceptFiles Active AlignChar AlwaysShowBorder

The two techniques do not return exactly the same result:

 ⎕NL ¯2 returns the property names listed in alphabetic order.

 PropList returns the property names in the order in which the properties are expected

by ⎕WC and ⎕WS.

670 Dyalog APL - Tutorial

This is not the only difference: you can see that the results do not have the same size:

 ∰ PropList
87

 ∰ ⎕NL ¯2
91

Let us use Without to see the missing items:

 (⎕NL ¯2)~PropList
 D WTypes vc vj These are variables

Now we can see the difference: PropList returns only names of real Properties, but ⎕NL ¯2

returns also names of variables known at this point of function execution.

⎕NL ¯2.6 would return only the property names.

Spe-1.2 - Methods

We said that Methods are similar to functions. They can be listed by:

 ∰ML1←MethodList
24

 ∰ML2←⎕NL ¯3 This time both techniques return the same

24 number of items.

Here the items are also returned in different order:

 5↑MethodList
Detach ChooseFont GetTextSize Animate GetFocus

 5↑⎕NL ¯3
AddComment Animate CellFromPoint ChooseFont ColChange

Spe-1.3 - Events

The same techniques as shown for properties and methods can be used to obtain a list of

possible Events, which have a Name Category equal to 8:

 ∰EL1← EventList
44

 ∰EL2← ⎕NL ¯8
44

Let us verify that the Event we used (CellUp) is in one of the lists:

 EL2 ∯ ⊂'CellUp'
10

 Chapter P – Graphical User Interface 671

Spe-2 Different Syntaxes

Spe-2.1 - Properties and Methods

We have seen that two different syntaxes can be used to define the properties of an object and

to invoke an object's methods. For example, to set the cells widths, we could write:

 'Win.Gr'⎕WS 'CellWidths' 70

or Win.Gr.CellWidths← 70

Spe-2.2 - Events

This choice of syntax also applies to the way that we associate actions and call-back functions

with Events, but in this case we actually have a choice of three different syntaxes. For

example, to specify that our Grid object is sensitive to the CellUp event we can use any of

these three expressions:

 'Win.Gr'⎕WS 'Event' 'CellUp' '#.TVZap'

or Win.Gr.Event ← 'CellUp' '#.TVZap'

or Win.Gr.onCellUp ← '].TVZap'

The first two correspond to the two different syntaxes for properties and methods. In our

program TV (cf. Section 7.4.4) we used the second syntax, the namespace notation, but

slightly modified because we also used the control structure :With.

The third syntax is new for events, and it is an extension of namespace syntax. It introduces

each individual event as a kind of assignable property, which allows a shorter, more direct,

and very readable specification.

When an Event is assigned to an object using extended namespace syntax, the name of the

event must be preceded by "on".

So, in the example above 'CellUp' becomes ".onCellUp".

Also note that, when events are specified using the third syntax shown above, the first item of

the argument to the call-back function (the Event Message) is a Ref to the object, rather than

the name of the object. This can be seen in the following example, in which the function TV is

our original function, whereas the function TV2 uses the statement onCellUp←'].TVZap'.

We have displayed the Event Message that the call-back function TVZap receives:

672 Dyalog APL - Tutorial

 TV Movies
┌→───────────────────────────────────┐
│ ┌→─────┐ ┌→─────┐ │
│ │Win.Gr│ │CellUp│ 39 190 1 0 1 2 0 │
│ └──────┘ └──────┘ │
└∮───────────────────────────────────┘

 TV2 Movies
┌→───────────────────────────────────┐
│ ┌→─────┐ │
│].Win.Gr │CellUp│ 39 190 1 0 1 2 0 │
│ └──────┘ │
└∮───────────────────────────────────┘

This difference may influence the way you write your call-back functions.

For example, in section 2.2.3 the function GUI1_CB2 used the Event Message to determine

which button had triggered the event. It used the expression:

 sufx←(⊃EventMsg)⎕WG'Caption'

This expression returns the button caption, for example 'B', using the button object's name.

It worked because we had used the traditional syntax when we defined the event:

 'Event' 'Select' 'GUI1_CB1' letters

We could have used the third notation introduced above instead:

 onSelect←'GUI1_CB1' letters

Then the expression to obtain the button caption should have been this one:

 sufx←(⊃EventMsg).Caption

Spe-3 Using Classes

In this chapter, we deliberately used the simplest GUI interface most of the time, using ⎕WC

and ⎕WS.

We could just as well use a different syntax inspired by Object Oriented Programming. With

this approach, objects are created as Instances of generic Classes by means of a system

function: ⎕NEW.

In fact, the same is true when we use ⎕WC, but the syntax of ⎕NEW is more stringent: keywords

are mandatory, and the spelling is case-sensitive.

For example, let us compare the two techniques when used to create a form:

'F1'⎕WC'Form' 'Example'(100 200)(300 450)

F2←⎕NEW'Form'(('Caption' 'Example')('Posn'(100 200))('Size'(300 450)))

 Chapter P – Graphical User Interface 673

The syntax is stricter, but we see clearly what is being done! The stricter form also avoids

hard-to-find application bugs that are possible with the relaxed form. For example, as a

ListView object has a property called Items, one might write:

 myitems←'One' 'Two'

 'f.LV'⎕WC'ListView' myitems (10 10)(100 500)

The line of code above might work fine for years, until the application one day encounters

data where the first item of myitems happens to coincide with the name of some other

property of a ListView object, for example (myitems←'Border' 'Center'). Now suddenly,

the statement causes a LENGTH ERROR, because the interpreter interprets the second item as

an attempt to set the Border property to 'Center'.

Here is a version of our function TV written using the more modern convention. Unchanged

parts are in grey:

 ∳ TVNew D;Win;WTypes;vj;vc;vi;vs;vp;vf
[1] WTypes←2-D∮⊂''
[2] :With Win←⎕NEW'Form'(('Caption' 'TV choice')('Size'(245 515)))
[3] BQ←⎕NEW'Button'(('Caption' 'Quit')('Posn'(5 10))
... ('Size'(25 70)))
[4] BQ.Cancel ←1
[5] BQ.onSelect←1
[6] BV←⎕NEW'Button'(('Caption' 'OK')('Posn'(5 90))
... ('Size'(25 70)))
[7] BV.Default ←1
[8] BV.onSelect←'].TVShow'
[9] :With Gr←⎕NEW'Grid'(('Values'D)('Posn'(40 5))
... ('Size'(205 505))('Border' 0))
[10] ⍝------- The remaining statements are unchanged

Using this notation we can use the Namespace distribution rules to group statements [4-5]
and [7-8] like this:

[4] BQ.(Cancel onSelect)← 1
...
[7] BV.(Default onSelect)← 1 '].TVShow'

674 Dyalog APL - Tutorial

675

Chapter Q: Interfaces

1 - Introduction

Sometimes it is convenient or necessary to interface an APL program with other applications,

or with program parts written in other languages. For example, you may need to exchange

data with a Microsoft Excel worksheet, or an advanced analytics package may exist as a

subroutine library written in a compiled language, and it may be necessary to use some of the

features in the package from an APL application.

APL provides a number of interfaces to other programs; some of them are:

 OLE is a protocol which allows APL to start another application, for example Microsoft

Excel, and then exchange data with the other application, or have it perform some tasks.

APL may also act as an "OLE Server" that other applications may start and communicate

with.

 ⎕NA (for Name Association) is a system function which provides access to compiled

functions packaged in a DLL (Dynamic Link Library). ⎕NA associates a function name

with an external program, so that the developer can use the external program as if it were

an APL function.

 Auxiliary processors are programs written in a compiled language (most often C or C++),

but packaged as an executable file rather than a DLL file. As with ⎕NA, a special protocol

associates the routines in the executable file to function names in the workspace, thereby

allowing APL to use the functionality of the external software.

 Together with the Object Oriented extensions to Dyalog APL the language has become

well integrated with the Microsoft .Net programming environment. For example, user-

defined APL classes may be created based upon .Net classes.

In this chapter we shall explain the OLE interface in some detail, and we will also show how

⎕NA may be used to interface to a DLL library. These examples may be followed by an APL

developer, even if he does not possess detailed knowledge of other programming languages.

More advanced uses of ⎕NA , Auxiliary processors, and object oriented programming with

Microsoft .Net interfacing requires a certain knowledge of compiled programming languages

like C, C#, PASCAL, etc. These topics are outside of the scope of this tutorial; for more

information on them please refer to the reference manuals published by Dyalog Ltd.

676 Dyalog APL - Tutorial

References

The Dyalog APL User Guide, Chapter 7, gives an extensive description of Auxiliary

Processors. A toolkit is also provided for developers who intend to develop their own AP.

A long and detailed description of ⎕NA is provided in the Dyalog APL Language Reference

manual, Chapter 6.

2 - OLE Interface with Excel

2.1 Introduction

OLE
12

 is a Microsoft technology. Originally it was designed to allow embedding and linking

to documents and other objects, but it is now a more powerful architecture for developing

applications using components; components which may be written in any programming

language. It is based on the Component Object Model, or COM.

OLE can be used to take advantage of functionality offered by one application from the inside

of another application. For example, APL can use a Microsoft Excel worksheet as a user

interface, and Excel can submit highly complex calculations to APL.

APL can also interface to Microsoft Word. This can be very useful, and can be used to create

documents and reports from within APL. Chapter S describes a different, and in some ways

more flexible and powerful way of producing printed documents using NewLeaf, an APL add-

on software package that is included with Dyalog APL.

So, OLE is certainly not limited to being an interface between APL and Excel, but the

cooperation between these systems provides some major advantages.

Nowadays, most people use Excel for the flexibility it offers to input and format data, or to

produce simple business graphics. However, while Excel is easy to use for relatively simple

calculations, it is not particularly well suited for more complex calculations and situations in

which one needs to integrate operations on a large number of worksheets or workbooks.

The OLE interface makes it possible to build APL applications which for example read data

from Excel worksheets, process them, and output results in some other worksheets, where

users will be able to calculate additional results on their own, or produce graphs.

12
 OLE originally meant Object Linking and Embedding, but this term is no longer used by Microsoft. OLE is now

described as a "reusable architecture for component software".

 Chapter Q - Interfaces 677

2.2 Create, Fill, and Save a Workbook

2.2.1 - Initiate the Communication

To start the communication between APL and Excel, we must start an instance of the Excel

"engine". This can be done like this (be careful: this statement is case-sensitive):

 XL←⎕NEW'OleClient'(⊂'ClassName' 'Excel.Application')

Apparently nothing happened, but this is pure illusion: Excel was started as an "engine", ready

to accept instructions from APL, but with no visible user interface. This is the normal use, but

in our experiments we would like to see what is happening, so we shall issue the following

statement:

 XL.Visible←1

Excel is now visible, but with no document loaded.
13

 Let us discover what XL is.

 XL
#.[OLEClient] XL is a Ref (see Chapter O)

 ⎕NC ⊂'XL'
9.2 It is an instance of the application

The object has some Properties (similar to variables) and Methods (similar to functions).

We can query the lists of properties and methods, but they are much too big to be displayed

here:

 ∰ props← XL.⎕NL ¯2
216

 ∰ meths← XL.⎕NL ¯3
74

If you take a look at props you will see that "Visible" is a property. We shall use other

properties like "Workbooks" and "ActiveWorkbook", and so on.

If you look at meths, you will see a Method named "Quit", used to exit from and close

Excel.

2.2.2 - Create a Workbook

Now, let us open a new workbook, like this:

 XL.Workbooks.Add ⍬

13
 Note that the behaviour is somewhat different if you already have an Excel session running before you create the

OLEClient.

678 Dyalog APL - Tutorial

A new (empty) workbook appears, and it will be known as our active workbook, an object

identified by the property XL.ActiveWorkbook.

Once again, you can explore the properties and methods of this object:

 ∰props←XL.ActiveWorkbook.⎕nl ¯2
106

 ∰meths←XL.ActiveWorkbook.⎕nl ¯3
56

Using the appropriate properties of the object "ActiveWorkbook" we can answer a number

of questions:

 What is the name of the workbook?

 XL.ActiveWorkbook.Name
Workbook1

 How many sheets do we have in it?

 ⎕←number←XL.ActiveWorkbook.Sheets.Count
3

The answer obtained depends on the Excel installation options in effect. The default is 3,

but you may see another value.

 What are the names of these sheets?

To answer this last question, we must apply the property "Name" not to a single sheet, but

to a collection of sheets. We shall use a special symbol that returns this collection: it is the

monadic Squad.

2.2.3 - Collection of Objects

We already used the dyadic Squad in Chapter B, Section 5.6 to index an object.

For example:

 4 ⌷ 84 56 32 19 76 20 64
19

In its monadic use, Squad returns the entire right argument (even if it is an array), as if the

elided left argument had selected everything along all dimensions.

If the right argument is an instance of an "enumerable" object (like Sheets, which is a

collection of Worksheet objects), monadic ⌷ returns all the elements contained within the

object as an array.

This is exactly what we need. Let us try:

 XL.ActiveWorkbook.(⌷Sheets)
#.[OLEClient].[_Workbook].[_Worksheet] #.[OLEClient].[_Workbook etc...

The display shows us that we obtained a vector of three references (Refs) to 3 instances of the

object "_Worksheet". We can ask for their names:

 XL.ActiveWorkbook.(⌷Sheets).Name
Sheet1 Sheet2 Sheet3

 Chapter Q - Interfaces 679

We can now rename the worksheets using explicit names, for example the names contained in

our matrix Towns. We must Split the matrix and take the right number of titles:

 XL.ActiveWorkbook.(⌷Sheets).Name←number↑∸Towns

You can see in Excel that the sheets have been renamed.

We asked for all the sheet names. If we had to ask for only one (instead of 3 here), we could

use any of the following methods:

 XL.ActiveWorkbook.(⌷Sheets)[3].Name

 XL.ActiveWorkbook.Sheets[3].Name14

 XL.ActiveWorkbook.Sheets.Item[3].Name

Whatever the method
15

, the result would be the same: Washington

2.2.4 - Fill a Sheet, Save, and Quit

By default, Excel had activated the first sheet. Let us activate the second sheet instead:

 XL.ActiveWorkbook.Sheets.Item[2].Activate

Instead of endlessly repeating the left part of the expressions below, which refer to the

currently active sheet, we can assign a Ref to the active sheet to a name:

 act←XL.ActiveWorkbook.ActiveSheet

We can prepare some data, and write it into the active sheet. Here is a nested matrix with

country names in the first column and numeric values in the other 4 columns:

 vv←'Italy' 'Cuba' 'Spain' 'Russia' 'France' 'Greece',6 4∰∯24

We must specify in which part (Range) of the sheet the values are to be placed. The

coordinates are specified using the Excel convention, and enclosed. The property Value2

represents the contents of a given Range; it can be assigned (written to the sheet) or queried

(read the content of a range into APL):

 act.Range[⊂'C3:G8'].Value2←vv

You can check that your worksheet has been modified.

14 In fact, Sheets[3] is shorthand for Sheets.Item[3], "Item" being the "default property".

15 Indexing on a COM object is defined by the object itself, not by Dyalog APL. Dyalog APL translates indexing to

a call on the object's "Get" method, passing the index as an argument. You can also index using non-numeric

indices, and the origin may be 0. For example, Sheets['Sheet3'] is valid. Monadic Squad was added to Dyalog

APL to give the APL programmer an easy way of saying "Give me the items contained within this object as an

array".

680 Dyalog APL - Tutorial

We could repeat these operations to fill some other parts in this sheet and then activate another

sheet and fill it too. When the workbook is ready, we can successively:

 save the workbook XL.ActiveWorkbook.SaveAs(⊂path,'NewBook.xls')

 close it XL.ActiveWorkbook.Close 0

 quit Excel XL.Quit

 stop the Excel engine ⎕EX 'XL'

2.3 Open and Process a Workbook

We shall now open an existing workbook and process some of the data it contains. For this

exercise we shall use a workbook downloaded from http://dyalog.com/intro.

 path indicates where the workbook has been stored

 bookid is the name of the workbook file: 'XLDemo.xls'

2.3.1 - Initiate the Communication

The first part of the process is very similar to that of the previous section, except that we use

the "Open" method instead of "Add", and that its argument is the enclosed file path and name.

We shall work on the second sheet, and create a Ref to it.

 XL←⎕NEW'OleClient'(⊂'ClassName' 'Excel.Application')
 XL.Visible←1
 XL.Workbooks.Open ⊂ path,bookid Note: the fileid must be enclosed
 XL.ActiveWorkbook.Sheets.Item[2].Activate
 Act←XL.ActiveWorkbook.ActiveSheet

We have here shown the left part of the sheet:

Figure Q-1

 Chapter Q - Interfaces 681

2.3.2 - Read the Workbook Contents

An active sheet has an important property named UsedRange. It represents the rectangular

part of the sheet that is effectively used, starting from the topmost row / leftmost column

(often but not always cell "A1"), down to the bottom row / rightmost column.

 Act.UsedRange.Count
90 The total number of cells

 Act.UsedRange.(Rows Columns).Count
10 9 The number of rows and columns

It is possible to read only a part of the sheet, but usually it is simpler to read the entire sheet

and select the different parts in the workspace. We shall use the property Value2 again:

 Data←Act.UsedRange.Value2

The result is too large for this page; let us just display 7 rows and columns:

 7 7↑ Data
 2009 [Null] Sales Forecast [Null] [Null] [Null]
 Updated on [Null] January 17 2008 [Null] Source
 Year Coffee Tea Chocolate Soda Sugar Biscuits
 Germany 1089 783 5217 2309 643 304
 Spain [Null] [Null] 5420 4380 650 320
 Italy 1050 800 5500 3210 660 330
 Canada 1080 800 5620 2560 [Null] 380

This is, of course, a nested array.

The empty cells are represented in APL by the value ⎕NULL, displayed as [Null]. It is very

useful to have this special value as an indicator of empty cells, but if we just want to display the data, as

in this simple example, it could be convenient to avoid the ⎕NULL values. We can replace ⎕NULL with

an empty character vector where the ⎕NULL appears in cells that are supposed to contain character data,

and with zero in cells that are supposed to contain numeric data, and we can use Selective assignment

to do it (see Chapter H):

 ((,3↑[1]Data∮⎕NULL)/,3↑[1]Data)←⊂''

 ((,(3 1∸Data)∮⎕NULL)/,3 1∸Data)←0

Now the upper rows are easier to read, and the numeric part may be easier to work with using

numeric functions, for example:

 +⌿3 1∸Data
9188 6546 57324 32078 5586 3668 14132 128522

In our example, we have read only one sheet. It is also possible to read all the sheets in a

single statement, using the UsedRange of each of the items in a collection of sheets:

 ∰Big←XL.ActiveWorkbook.(⌷Sheets).UsedRange.Value2
5

 ∰¨Big
 10 9 10 9 10 9 10 9 7 3

682 Dyalog APL - Tutorial

2.3.3 - Modify the Presentation

We can see that Spain and Canada have not filled some of the cells they were supposed to fill.

Let us highlight these anomalies in the spreadsheet itself:

 The country names in question will be right aligned and displayed in bold italics

 The empty cells will be painted with a light blue background

This can be achieved by modifying the properties of the corresponding Ranges.

Each block of contiguous cells referenced in a Range must be expressed as a scalar (the Range

itself being a scalar or a vector), so:

 A rectangular block of cells must be enclosed: Range[⊂'B5:F9']

 It may contain a single cell Range[⊂'F4']

 A set of several blocks is a nested vector Range['B1:B7' 'D3:F6']

To modify the presentation of countries as mentioned above, we could write:

 Act.Range['A5' 'A7'].Font.(Bold Italic)←1

 Act.Range['A5' 'A7'].HorizontalAlignment←XL.xlHAlignRight

Note that xlHAlignRight is a member of the xlHAlign Enum that is exported by Excel, and

actually has the numeric value ¯415216
, so we could have said:

 Act.Range['A5' 'A7'].HorizontalAlignment←¯4152

We think that you will agree that the former is preferable. The entire set of names/values of

this Enum can easily be obtained:

 XL.XlHAlign
 xlHAlignCenter ¯4108
 xlHAlignCenterAcrossSelection 7
 xlHAlignDistributed ¯4117
 xlHAlignFill 5
 xlHAlignGeneral 1
 xlHAlignJustify ¯4130
 xlHAlignLeft ¯4131
 xlHAlignRight ¯4152

Modifying the background colour of empty cells is easier, but there is a little trick; colours are

not described using the RGB (Red-Green-Blue) convention, but the BGR convention, which

also uses intensities between 0 and 255:

16 The horizontal alignment property uses a so-called enumerated data type (Enum), like many other properties do. A

property using an enumerated data type may only take one of a pre-defined set of values, and the allowable values

are referred to by names (constants) which are described in the appropriate documentation. The names (and values)

of these constants may also be obtained using the Workspace Explorer.

 Chapter Q - Interfaces 683

 Act.Range['B5:C5' 'F7'].Interior.Color←256∫255 200 120

The last thing we will demonstrate is setting or changing a formula in a cell. For example, let

us compare the sales of (Coffee+Tea) to Soda, and place the percentage in cell C11:

 Act.Range[⊂'C11'].Formula←'=100*(B10+C10)/E10'

Of course, because this is an Excel formula, multiplication and division are represented by *

and / respectively. We will also change the formatting of the cell to show 2 decimal digits:

 Act.Range[⊂'C11'].NumberFormat←']]0.00'

Where: "0" a digit in this position will always be shown

 "#" a digit in this position will only be shown if it is non-zero.

This format must be defined in accordance with the regional settings in Windows, including

the "thousands" separator:

With English settings we would write: '##,###,##0.00'

With French settings we would write: '## ### ##0,00'

You now have all the necessary information to exchange data with Excel (Read, Write,

modify). Excel is so rich that a book would not be sufficient to mention all the possibilities.

Since this book is primarily an APL course we will let you explore all the possibilities on your

own. The following web page contains reference information about Microsoft Excel 2007:

http://msdn.microsoft.com/en-us/library/bb979621.aspx

To finish, let us try to solve a very frequent problem.

2.4 A Simple Example

This is something extremely common: people located in different towns or countries send an

Excel sheet to the corporate sales department with their monthly or quarterly results. The

problem consists of adding these results to produce a global sheet.

Usually, people place their workbook in a dedicated directory, somewhere on the company's

network. Here, to simplify the example, we have grouped all the sheets in a single workbook

named WorldSales.xls. It contains six worksheets: Paris, Madrid, Tokyo, Denver,

Montreal, and Dakar.

The figure below represents two of these sheets (Paris and Madrid). You can see how they are

organised:

 Two rows of titles

 Then the leftmost column contains makes of cars, and the three next columns contain the

number of cars sold. Note that some cells may be empty.

http://msdn.microsoft.com/en-us/library/bb979621.aspx

684 Dyalog APL - Tutorial

Figure Q-2

Paris Madrid

The general organisation is the same, but the makes of cars sold are not the same, and they are

not listed in the same order.

The line "BMW" has been written in red in all the sheets in order to make it easier to check

the results (BMW totals for all cities should be 100 110 120).

In a real application some parameters would probably be obtained through a GUI dialog box.

For this educational purpose they will be placed in global variables:

 path← … enter your own path here (ending with a backslash)

 bookid←'WorldSales.xls'

A main function calls three sub-functions, each in charge of a specific step:

 ∳ CarSales;XL;towns;makes;sales
[1] towns←CarSales_Init
[2] (makes sales)←towns CarSales_Read (''(0 3∰0))
[3] towns CarSales_Store (makes sales)
[4] XL.Quit
[5] ⎕EX'XL'
 ∳

The first step looks a lot like our previous example: it initialises some variables, starts the

communication with Excel, opens the workbook, and reads the sheet names:

 Chapter Q - Interfaces 685

 ∳ R←CarSales_Init
[1] XL←⎕NEW'OleClient'(⊂'ClassName' 'Excel.Application')
[2] XL.Visible←1 This is optional
[3] XL.Workbooks.Open ⊂path,bookid Open the workbook
[4] R←XL.ActiveWorkbook.(⌷Sheets).Name Get the town names
 ∳

In normal use Excel should not be visible, but you can make it visible for a test.

Second step: a loop reads sheet after sheet. We saw earlier that it would have been possible to

read all the sheets in a single statement, but in a real application we should probably have to

open different workbooks, each containing a single sheet. This would need a loop, too.

Furthermore, by trying to read everything in one statement we increase the risk of causing a

WS FULL error.

For each sheet read we identify any new makes of cars, and expand the variable sales

holding the totals. Then we use dyadic Iota to update the right rows in sales.

 ∳ (makes sales)←where CarSales_Read (makes sales);Act;sh;Data;
 townmakes;townsales;new;pos
[1] Act←XL.ActiveWorkbook.(⌷Sheets)
[2] :For sh :In ∯∰where
[3] Data←2 0∸Act[sh].UsedRange.Value2 Read one sheet

[4] ((,Data∮⎕NULL)/,Data)←0
[5] townmakes←Data[;1] Separate column 1
[6] townsales←Data[;2 3 4] from the other ones
[7] new←~townmakes∮makes Find the new makes
[8] makes,←new/townmakes Append them
[9] sales←(∰makes)↑[1]sales Expand the sales
[10] pos←makes∯townmakes Look up the makes
[11] sales[pos;]+←townsales Update the sales
[12] :EndFor
[13] XL.ActiveWorkbook.Close 0 Close the workbook
 ∳

Final step: the results are ordered in alphabetic order of makes, and written to a new

workbook, including titles.

686 Dyalog APL - Tutorial

 ∳ where CarSales_Store (makes sales);Act;range;Data;lim
[1] XL.Workbooks.Add ⍬
[2] Act←XL.ActiveWorkbook.ActiveSheet
[3] Act.Range[⊂'A1'].Value2←'Cumulated sales for:'
[4] Act.Range[⊂'A2'].Value2←,' ',↑where
[5] Act.Range[⊂'B4:D4'].Value2←'January' 'February' 'March'
[6] Data←makes,sales
[7] Data←Data[⍋↑makes;]
[8] range←⊂'A6:D',⍃3+∰makes
[9] Act.Range[range].Value2←Data
[10] lim←⍃5+∰makes
[11] range←⊂'A',lim,':D',lim
[12] Act.Range[range].Value2←(⊂'Total'),+⌿sales
[13] Act.Range[range].Font.Bold←1
[14] XL.ActiveWorkbook.SaveAs(⊂path,'CumulatedSales.xls')
[15] XL.ActiveWorkbook.Close 0
 ∳

If you do not make Excel visible, this function will probably execute in less than one second.

This shows how the cooperation between Excel and APL to aggregate data may be easy to

program and perform well.

Warning! This example does not include any validation. Our experience shows that Excel

is so permissive that people sometimes enter text (for example "None") in

numeric columns, and may write the same word with different typesetting (Audi

/ AUDI, for example). A real-world application should of course include

extensive validation and error reporting to avoid problems.

3 - Name Association

3.1 Introduction

3.1.1 - Definitions

A Dynamic Link Library, or DLL, is a set of compiled functions generally written in C or

C++. Most DLLs are provided as part of the Operating System or with other third party

software installed on the machine. They can also be written by a developer to fit some specific

need.

Each function contained in a DLL may take arguments and return a result.

 Chapter Q - Interfaces 687

Name association, or ⎕NA, is something like a bridge which allows an APL developer to use a

function contained in a DLL as if it were an APL defined function.

When this bridge between APL and a DLL is activated, for a function in the DLL named for

example "fcopy", ⎕NA will create a new function in the workspace. By default the new

function will also be named "fcopy", but one can assign it a different name.

The syntax is {Res ←} {'APLName'} ⎕NA 'Calling protocol'

Calling protocol is a character vector which defines:

 The type of result provided by the DLL function, if any.

 The name of the DLL file, followed by the function name.

They are separated by a vertical bar '|'.

 Optionally, the type of function call (P32 or C32; see below).

 The type(s) of the argument(s) expected by the function.

APLName An optional name given to the function in the APL workspace.

Res A Shy result containing the name of the function just created.

3.1.2 - Commented Example:

 ⎕NA 'F8 Tolkien|Hobbit I4 F8'

Suppose that somewhere on our computer there is a DLL file named Tolkien.dll.

This DLL may contain dozens of functions, and among them, one is named Hobbit. In

Dyalog's manuals, DLL functions like Hobbit are known as "external functions".

Hobbit expects two arguments, described by the right part of the calling protocol: a 4-byte

integer number (I4), and an 8-byte floating-point number (F8).

The result returned by Hobbit is described by the left part of the string. It is also an 8 byte

floating-point number

Because we did not specify a left argument, ⎕NA will create a function in our workspace

named Hobbit too. This may be changed by providing a different name via the left argument,

like this:

 'MyPrecious' ⎕NA 'F8 Tolkien|Hobbit I4 F8'

Now, ⎕NA will create a function named MyPrecious, but still associated with the same

function Hobbit in the Tolkien.DLL file.

The Name Category (⎕NC) of MyPrecious is 3 (more precisely 3.1 like any defined

function).

When this APL function is called (for example: val←MyPrecious 46 1410.1952) it passes

the two values to the external function Hobbit, which returns a result (that is assigned to val

in the example).

688 Dyalog APL - Tutorial

3.2 Detailed Syntax

Before you try to use a DLL function, you must consult the associated documentation, which

describes the behaviour of the function, and the type of its arguments and results.

The full syntax for the right argument of ⎕NA is:

{result} DLL|function {arg1} {arg2} ...

3.2.1 - DLL Description

The DLL may be specified using a full or relative pathname, file extension, and function type.

If the path is omitted, the DLL file is searched for in the standard operating system directories

(like c:\windows\system32) in a particular order. For further information, see your

operating system manuals.

When necessary, a full or relative pathname may be supplied in the usual way:

 ⎕NA'... d:\folder\myfile|function ...'

When the file extension is "DLL", it can be omitted as above. However, many DLLs are

".exe" files and then the extension must be specified explicitly:

 ⎕NA'... d:\folder\myfile.exe|function ...'

For a computer running Windows, the arguments and the result can be transferred to/from a

DLL using two different function call conventions referred to as "C" for C language, and "P"

for Pascal, followed by 16 or 32, depending on whether the code is run in 16-bit or 32-bit

mode.

The default is C32. If this is not the case, you must specify the protocol after the function

name. For example:

 ⎕NA'... d:\folder\mydll.exe.P32|function ...'

This DLL will be called with the 32 bit Pascal convention.

3.2.2 - Function Syntax

DLL functions follow the conventions used by many languages like C, and cannot be dyadic;

they receive values through a (possibly nested) vector to the right of the function.

In most languages an argument can be used both for input and output. This is not the case in

APL: a function cannot overwrite its arguments. For this reason the result of the APL function

is a nested vector:

 Chapter Q - Interfaces 689

 The first item is the result explicitly defined in the DLL function calling syntax.

 Subsequent items are results that the function returns in some of its arguments. These

arguments are identified in the calling syntax by a Direction symbol > (output only) or =

(input and output).

The type of the result and each of the arguments must be described using the following

scheme:

{Direction}{Special}Type{Width}{Array}

The type is mandatory, while the other parameters are optional.

Note: Some external functions don't return a result.

Examples:

<I2 Pointer to a 2-byte integer input to the external function.

>C Pointer to character output from the external function.

=T Pointer to character input to and output from the external function.

=A Pointer to an APL array input to and output from the external function.

<0T Pointer to a null-terminated character string input to the external function.

=F8 Pointer to an 8-byte floating-point number input to and output from the

external function.

The table shown below describes the possible values for these parameters. A detailed

explanation can be found in:

Dyalog Language Reference manual

Chapter 6: System Functions & Variables

Section ⎕NA

690 Dyalog APL - Tutorial

Data type coding conventions

Description Symbol Meaning

Direction < Pointer to an array input to the DLL function

> Pointer to an array output from the DLL function

= Pointer to an input/output array

Special 0 Null-terminated string (this is the digit 0, not the letter O)

Byte-counted string

Type I Integer

U Unsigned integer

C Untranslated Character

T Classic Edition: Character translated to/from ANSI
Unicode Edition: Character

F Floating point value

A APL array

Width 1 1 byte

2 2 bytes

4 4 bytes

8 8 bytes

Array [n] Array of n items

[] Array, length determined at call-time

{...} Structure

In the Classic Edition of Dyalog APL C specifies untranslated characters, whereas T specifies

that the character data will be translated to/from ⎕AV. The use of T with default width is

recommended if portability between the two editions is important.

3.3 See How It Works

Dyalog APL is delivered with many utility workspaces, and among them you can load this

one:

)Load Files

This workspace provides functions to work with files (copy, move, delete, and so on); they are

contained in a Namespace named Files.

 Chapter Q - Interfaces 691

Let us take a look at two of them, and see how they work.

3.3.1 - Example 1

The first function deletes a file:

 ∳ Delete name;DeleteFileX;GetLastError
[1] 'DeleteFileX'⎕NA'I kernel32.C32∵DeleteFile* <0T'
[2] :If 0=DeleteFileX⊂name
[3] ⎕NA'I4 kernel32.C32|GetLastError'
[4] 11 ⎕SIGNAL⍨'DeleteFile error:',⍃GetLastError
[5] :EndIf
 ∳

 The function creates a Name Association with a DLL-file named kernel32.dll

 It is located in one of the default directories: c:\windows\system32. So we need not

specify the directory and the file extension.

We could as well have omitted the function call type C32, since it is the default.

 This DLL, like many others, contains two "twin" functions:

o The first one is named DeleteFileA.

It works with ANSI 1-byte characters (A=ANSI)

o The other one is named DeleteFileW.

It works with Unicode 2-byte characters (W=Wide)

To avoid a function crash if the wrong name is used, and to simplify writing portable code

for both Classic and Unicode Editions, you may specify the character "*" instead of "A" or

"W" at the end of a function name. This character will be automatically replaced by "A" in

the Classic Edition and "W" in the Unicode Edition.

 We specified DeleteFileX as the name of the APL function. It is localised in the header.

 If we had not specified the left argument to ⎕NA the APL function name used would have

been DeleteFile (without the A or W).

 This external function accepts only one input (<) value, which is a character string (0T).

 It returns an integer of undefined length (I)

 Note that the string passed in statement [2] must be enclosed.

This external function is supposed to delete a file from disk. If something goes wrong (for

example, if the file does not exist), the function returns a zero result. The only way to obtain

information on what happened is to call another external function GetLastError:

 GetLastError is located in the same DLL.

 Because we did not provide a left argument to ⎕NA, the APL function will be created with

the same name. It is localised in the header.

 The external function returns a 4-byte integer error number.

692 Dyalog APL - Tutorial

The function signals the error, including an error message:

 Delete 'd:\tets.txt'
DeleteFile error:2
 Delete'd:\tets.txt' The correct name is test, not tets
 ∧

 ⎕EN
11

3.3.2 - Example 2

This second function returns the current directory, for example:

 GetCurrentDirectory
C:\Documents and Settings\ [...] \Dyalog Apl 12.0 Unicode Files

 ∳ r←GetCurrentDirectory;GCD;GetLastError
[1] 'GCD'⎕NA'I kernel32.C32∵GetCurrentDirectory* I4 >0T'
[2] :If 0≠1⊃r←GCD 256 256
[3] r←2⊃r
[4] :Else
[5] ⎕NA'I4 kernel32.C32|GetLastError'
[6] 11 ⎕SIGNAL⍨'GetCurrentDirectory error:',⍃GetLastError
[7] :EndIf
 ∳

 This function creates a Name Association with the same DLL: kernel32.dll.

 This function also exists in two variants, "A" and "W", so we used the asterisk notation

and provided "GCD" as the APL function name.

 The function returns an integer.

 It takes two arguments: a 4-byte integer, and a string that will be output (>) as the second

item of the result.

 In case of an error, the same technique as used in the function Delete is used to obtain the

error number and to signal the error to the calling environment.

When the external function is called,

 The first argument (described by I4) is set to 256: it is the maximum length of the result.

 The second argument is set to the same value: it prepares a string of length 256 to receive

the result output by the external function.

That's all, folks!

We shall not go further in this chapter. It would require a better knowledge of C programming

conventions, and this is out of this tutorial scope.

Please refer to the Language Reference manual, or to the on-line help.

693

Chapter R: SALT

1 - Introduction

1.1 Why a Source Code Management System?

1.1.1 - Maintenance of Vital Big Applications

Up to now, all the functions and operators that we have defined were created with an APL

function editor, and stored in an APL workspace. The workspace is very well suited to a

single developer. In this respect it is like a spreadsheet which contains data and the macros

which operate upon it in a single convenient package. However, as your collection of APL

functions grows, you will almost certainly want to share some functions between workspaces.

You will find yourself copying utility functions into several workspaces, and wondering

whether every workspace has the latest version of your utilities – or which versions are in use,

when users encounter problems in old workspaces.

When you hire a team of programmers to share responsibility for the code, the situation gets

harder to manage. Each developer will need a copy of the workspace to work on, and changes

need to be merged – without overwriting changes that others have made.

As time goes by, the workspace, which is an indivisible "capsule" containing code and data,

becomes less and less convenient.

Traditionally, APL development teams have solved the above problems by writing "source

code management systems" in APL. These systems prevent developers from overwriting each

others work, allow you to compare new and old versions of code, and load selected versions

of code into the workspace when the application starts, etc. These systems typically store APL

code in collections of workspaces or APL component files, and provide functions to compare

and merge versions – and build "releases" in a controlled fashion. These systems often work

very well, and are integrated with data- or project-management systems, and other "corporate

workflow".

However, the adoption of Unicode as a standard now allows APL code to be stored in

"ordinary" Unicode text files and take advantage of work done by all the developers in the

world. It is no longer necessary for APL programmers to maintain their own systems for this

purpose. If there is a good reason for using your own system to handle part of the source code

management, Unicode files allows you to be selective about which parts of the problem you

write your own solutions for.

694 Dyalog APL - Tutorial

SALT – the Simple APL Library Toolkit – was introduced with version 11.0 of Dyalog.

SALT makes it possible to store individual APL functions, or entire namespaces and classes

in Unicode text files which can be edited and managed using industry standard tools which

make it easy to share code between projects and teams of developers. Unlike "traditional"

APL code stores based on special APL files, code saved using SALT can easily be embedded

in electronic mail, published on the web, and viewed and edited using generally available

tools. Even the simplest editors like Microsoft’s Notepad are able to edit Unicode text files,

and it becomes possible to use excellent, free comparison tools. If APL is used together with

other programming languages, SALT makes it straightforward for the APL code to be

managed using the same tools as the rest of the project.

Although SALT makes it possible to use external tools, it does not require the use of external

tools. You can use the APL editor to edit functions, and SALT will automatically update the

Unicode files which can then easily be shared or simply archived more easily.

SALT contains a simple version control system, which may be adequate for small systems.

However, Dyalog recommends the use of Subversion, CVS, Visual SourceSafe – and other

"industrial strength" systems (many of which are free) for management of larger projects. At

Dyalog, Subversion is used to manage APL code and the code written in other languages,

which implement the APL system itself.

1.1.2 - Main Characteristics

The main characteristics of SALT are:

 APL programs (or groups of programs and variables) can be developed using any text

editor like, for example, Microsoft Notepad.

 They are stored on disk in separate text files and can be read and maintained

independently.

 They are loaded into APL when needed to be executed.

 It is possible to assign a version number to each module, so that one can keep track of all

the modifications made in the past.

 Different versions of a module can be compared using either an APL program or any

comparison tool available on the market, including excellent freeware programs.

1.1.3 - Script Files

SALT consists of a series of APL functions stored in ⎕SE to manipulate the source code of

objects. Because it is APL code it is very flexible and can be enhanced at will.

Text files can be used to define functions, Namespaces including Classes, for people who use

Object Oriented Programming. In this tutorial we shall only use Namespaces.

The source code (or Script) for each object (Class or Namespace) is stored in a single Unicode

text file with a file extension ".dyalog".

 Chapter R - SALT 695

Warning! Under Unix file names are case sensitive.

When Dyalog APL is installed under Windows the keyboard driver installed with APL makes

it possible to edit ".dyalog" files with APL characters in Notepad, which is configured to

open the ".dyalog" files automatically.

A Script file:

 begins by a clause :Namespace followed by the name of the Namespace

 or :Class or Class/interface to create

 or :Interface

 and is closed by :EndNamespace
 or :EndClass
 or :EndInterface

If it doesn’t, it is assumed to be a function.

In the Script body, one can define variables, functions, and operators.

 Direct functions are defined as usual with delimiting braces.

 Procedural functions must be delimited by an opening and a closing Del or Carrot (∳).

Among the files distributed for this book is a demonstration Script file named

DemoScript.dyalog; its contents are displayed on next page.

The Namespace is named "Simple" in the first line:

This Script defines:

Three variables, named Nested
 Airports
 RounDefault

Four Procedural functions, named average
 Round
 CloseRound
 Plus

One Direct function, named Primes

696 Dyalog APL - Tutorial

:Namespace Simple

Nested←'My name is Bond' 0 0 7

∳ m←average val;s;n
 s←+/val
 n←∰val
 m←s÷n
∳
Primes←{(~v∮1 1∸v∬.∲v)/v←∯∱}

Airports←↑'LGW' 'CDG' 'CPH' 'KBP' 'DKR'
RounDefault←2

∳ Res←N Round Val
 Res←⌊0.5+Val×10*N
 Res←Res÷10*N
∳

∳ R←CloseRound Y;RndSum;SumRnd;Diff;Great
 RndSum←⌊0.5++/Y
 SumRnd←+/R←⌊0.5+Y
 Diff←Rndsum-SumRnd ⍝ Intentional error
 Great←⍒,Y
 R[(|Diff)↑Great]+←∲Diff
∳

∳ r←a Plus b
 r←a+b
∳
:EndNamespace

There are very few things to say about these functions; let us just make some comments:

 Round Rounds values to the number of digits given as the left argument.

 CloseRound Rounds values to the nearest integer. However, if the values are just

rounded individually the sum of the rounded values may be different

from the rounded sum of the original values. To avoid this problem, our

function will add 1 or ¯1 to the largest rounded values, if necessary, in

order to correct the sum of the rounded values.

 The functions have been typed without line numbers because it is simpler, but typing line

numbers would not generate an error. However, if the code is modified and saved again

using SALT, the line numbers will be removed.

 Chapter R - SALT 697

1.2 Using Script Files

1.2.1 - Loading a Script into the Session

To demonstrate how SALT can use this Script, let us work in a clear workspace.

)clear
clear ws

Then we can load the contents of our file, using the Load function of SALT, like this:

 Path←'d:\MyFiles\' Adapt the path to your own configuration,

 ⎕←⎕SE.SALT.Load Path,'DemoScript' and load the script file.
#.Simple

The function returns, as a Shy result, the name of the Namespace just created (Simple).

 Simple.⎕nl ¯2 As expected, a namespace has been built,
 Airports Nested RounDefault and it contains what we had prepared.

 Simple.⎕nl ¯3
 CloseRound Plus Primes Round average

 17 Simple.Plus 23 Now we can use these functions.
40

 ⎕PATH←'Simple' We can use ⎕PATH to make it easier.

 1 Round 75.218 34.963 55.467
75.2 35 55.5

 Simple.Nested
 My name is Bond 0 0 7 The variables have been created too.

1.2.2 - Generic Names

One can load a set of Namespaces with a single statement using a pattern. For example, our

directory contains three scripts:

File: Contains Namespace:

Test.3.dyalog Blabla
Telefon.dyalog Gaston
Teton.dyalog Doudou

We can load them all using this single statement:

 ⎕SE.SALT.Load Path,'Te*' This will create 3 Namespaces.

698 Dyalog APL - Tutorial

1.2.3 - Source Directory

In the example above, we specified the path leading to our file explicitly. It may be more

convenient to specify a default source directory, or set of source directories. Then, if we just

specify a script name, SALT will automatically explore the specified directories.

When Dyalog APL is installed, the default directory is: [Dyalog]\SALT , where [Dyalog]
represents the path where Dyalog APL has been installed.

You can query the current directory setting using the following command:

 ⎕SE.SALT.Settings 'workdir'
[Dyalog]\SALT

For example, under Windows, Dyalog APL is most often installed in:

 c:\Program Files\Dyalog\Dyalog APL 12.0 Unicode

So, the default directory used by SALT will be:

 c:\Program Files\Dyalog\Dyalog APL 12.0 Unicode\SALT

You can change this to another directory, or to a list of directories, separated by semi-colons.

For example, to avoid using a path as we did, we could write:

 ⎕SE.SALT.Settings 'workdir [Dyalog]\SALT ; d:\MyFiles -Permanent'
 ↑_____↑ ↑___________↑ ↑________↑ ↑________↑
 Keyword Directory 1 Directory 2 Option

The option "-Permanent" means that the new setting will be stored in the Windows Registry,

so that we will no longer have to repeat it in each session.

Now, to load the same script, we can just execute:

 ⎕SE.SALT.Load 'DemoScript' No path is needed

Recommendation: Specify immediately your own preference as indicated above.

1.2.4 - "Target" and "Disperse"

By default, the loaded Namespace is created in the Root namespace, but we can insert it into

any existing Namespace using the parameter "-Target=nnn ".

For example:

 ⎕←⎕SE.SALT.Load 'DemoScript -target=Cool.Mec'
#.Cool.Mec.Simple

 Chapter R - SALT 699

Instead of loading the Namespace as a whole, one can load the objects it contains and disperse

them directly into the specified target, using the option "-Disperse". For example:

)clear
clear ws

 ⎕←⎕SE.SALT.Load'DemoScript -disperse'
1 This time, the answer is 1 (success)

 ⎕NL - 2 3
 Airports CloseRound Nested etc...

)obs
 No answer

Clearly, the objects have been placed in the Root namespace, and the namespace Simple was

not created.

This option can be combined with a target specification:

 ⎕SE.SALT.Load'DemoScript -disperse -Target=Cool'

It is also possible to disperse only some objects, using the option "-Disperse=", followed by

the names of the objects, separated by commas:

)clear
clear ws

 ⎕SE.SALT.Load'DemoScript -disperse=Plus,Airports,Round'

 ⎕NL - 2 3
 Airports Plus Round

)obs
 No answer

Only the three specified objects have been loaded. The other ones have been ignored, and the

Namespace has not been created.

1.2.5 - Source Code

When a script is loaded, SALT remembers from which file it was loaded. As shown in Chapter

O, Spe-6, it is possible to retrieve the source code of a scripted namespace using the system

function ⎕SRC:

 Code←⎕SRC Simple Beware: you must not put quotes around

 Simple as it is a Ref (see Chapter O-2).

 ∰Code

31 The result is a nested vector.

700 Dyalog APL - Tutorial

 ↑Code Let us have a look to the code

:Namespace Simple

Nested←'My name is Bond' 0 0 7

∳ m←average val;s;n
 s←+/val
 n←∰val

etc...

 This is exactly what we have defined

1.3 Updating a Script From the APL Session

Up to now, everything was really simple, but one of our functions is wrong.

Let us try to execute CloseRound, which is intended to perform better rounding.

 +/vec←1.07×?1000∰345 Create random values and sum them.
184704.47

 +/⌊0.5+vec We would like the sum of the rounded
184714 values to be 184704, not 184714!

 +/CloseRound vec This function is supposed to return a

VALUE ERROR better result.
CloseRound[7] Diff←Rndsum-SumRnd Unfortunately we misspelled RndSum;
 ∧ the "S" should be in upper-case.

Depending on your configuration options, the trace window will pop up or not. Anyway, in

order to solve the problem we must edit the function and make the necessary correction.

However, when we try to close the editor window, the following dialog box pops up:

Figure R-1

SALT knows that the function we modified was created from an external script file, and asks if

we want to update that file. We can reply:

 Chapter R - SALT 701

Yes If we are sure of our modifications and want to save them.

The function contained in the Namespace and the script file will both be modified.

No If we are not sure, and prefer to test it first.

The version contained in the Namespace will be modified, but not the script file.

If we choose to reply "Yes", this second message box may also appear:

Figure R-2

This box appears when the timestamp of the source file has changed between the time when

the script was loaded, and the time when we try to save it again. This means that the source

file has been changed while we were working in APL. The message box asks for a permission

to overwrite the script file.

If you are sure that nobody has tampered with the file since you loaded it into APL reply

"Yes" again. If you’re not sure reply "No" and investigate what has happened, cf. Section 2.3

below. The latter is probably the better choice.

In any case, we can resume execution:

 →7
184704 The result is excellent!

Remarks

 When loading or saving a Script, a default file extension ".dyalog" is assumed. This is

why we did not specify it in the examples above. SALT will work with a file with a

different extension, but you would then have to specify it in the "Load" command.

 A single Script file can contain only one Namespace (or Class) definition or function.

702 Dyalog APL - Tutorial

2 - Version Management

2.1 Creating and Using Versions

2.1.1 - Starting the Process

When a piece of code has been modified (as we just did above) it may be a bad idea to

overwrite the original script file. It would probably be a better idea to create a new version of

the file, identified by a version number. SALT can help us with this.

To start the process we must manually save the Namespace using the "Save" function,

followed by the option "-Version". This will create a new file suffixed by ".1".

 ⎕SE.SALT.Save 'Simple -Version'
d:\MyFiles\DemoScript.1.dyalog Confirmation of the new file id

We could just as well have specified any arbitrary version number, 3 for example, like this:

 ⎕SE.SALT.Save 'Simple -Version=3'
d:\MyFiles\DemoScript.3.dyalog Confirmation of the new file id

Our directory now contains:

DemoScript.dyalog This is the original file.
DemoScript.1.dyalog

DemoScript.3.dyalog This is the latest file, version 3.

Notes

 Options, like "-Version" or "-Target" are also termed Modifiers or Switches.

Each of them must be prefixed by a dash

 They can be shortened to any number of letters, provided it is not ambiguous.

For example: -Version could have been abbreviated -Ver or even -v.

 By default, the Namespace is saved in its source directory, and under the same name,

suffixed by the version number.

However, it would have been possible to store the script file under a different name and in

any other directory (please don't do it if you would like to be able to follow the

forthcoming examples):

 ⎕SE.SALT.Save 'Simple g:\secure\Bis -ver=43'

 Chapter R - SALT 703

2.1.2 - Automatic Version Recognition

Now, let us make some modifications in our Namespace:

First, we define a new function named Times, which just calculates the product of two arrays:

 Simple.Times←{∭×∱}

Because this function was defined using direct assignment, the APL text editor was not

involved, so SALT is unable to detect the modification we made to the Namespace. Nothing

happens: SALT does not create a new version.

We would now like to change our function Round to make it ambivalent. The left argument

will now be optional. If it is omitted when the function is called, it will take the value of our

global variable RounDefault. The new definition of the function can be written like this:

 ∳ Res←{N}Round Val
[1] :If 0=⎕NC'N'
[2] N←RounDefault
[3] :EndIf
[4] Res←⌊0.5+Val×10*N
[5] Res←Res÷10*N
 ∳

The modification is made with the text editor. When we close the editor, SALT detects the

modification, and a message box is displayed to ask if we agree on it creating a new script file,

with a version number equal to 4 (the version number has been automatically incremented):

Figure R-3

Of course, we reply Yes to accept, and we now have 4 files on our disk:

DemoScript.dyalog The original.

DemoScript.1.dyalog
DemoScript.3.dyalog
DemoScript.4.dyalog Version 4, just created.

When we load the script again, SALT will always reload the latest version of "Simple" (if we

don’t specify the version number to retrieve).

704 Dyalog APL - Tutorial

Let us try:

)off Quit APL without saving our function.

Dyalog APL/W Version 12.0.1 Start a new session.
clear ws

 ⎕SE.SALT.Load 'DemoScript' Load our script file.

 ⎕PATH←'Simple'

 Primes 28
1 2 3 5 7 11 13 17 19 23

 Round 7.359 8.942 9.287 This proves that the new version is available
7.36 8.94 9.29 Executed in its Namespace, the function found

 the requested global parameter RounDefault.

Let us try to use the direct function we introduced earlier:

 5 Times 6
VALUE ERROR When Version 4 of the script was created, the

 5 Times 6 only objects saved were those modified with

 ∧ the text editor; our direct function wasn't.

Warning!

 SALT tries to update a script file whenever a function or variable is modified using

Dyalog's function editor. If a function is created or updated using ⎕FX, or if a single-line

Direct function or Direct operator is created by direct assignment SALT is not informed,

and it will not be saved.

 When a variable is added or modified by any operation except the function editor, SALT

will not change the related script file. The same if any objects are deleted from the

Namespace.

 Even if you manually save the Namespace in the source script file, using

⎕SE.SALT.Save the modifications will not be saved. This is a limitation due to the

current implementation and may be relaxed in the future.

2.1.3 - Reloading an Old Version

We said that SALT always loads the latest version of a script, but it may be useful to reload an

old version to carry out some tests, or because the latest one appears to be inappropriate.

One can reload an old version using the modifier "-Version= nn"'.

For example, suppose that you have versions 1 to 8 of a script file and wish to reload version

5:

 ⎕SE.SALT.Load 'd:\MyFiles\Foolish -ver=5'

 Chapter R - SALT 705

Now, if a modification is made to a function, SALT will suggest that it be stored in version 9

(one plus the highest known version).

If you agree, just reply Yes, but if this is not appropriate you can reply No and save the script

manually, using again any explicit version number:

 ⎕SE.SALT.Save 'Foolish -ver=8'

2.2 File Management

SALT can give us a list of the script files contained in a given directory:

2.2.1 - Simple Lists

 ⎕SE.SALT.List 'd:\MyFiles'
Type Name Version Size Last Update
 DemoScript 580 2008/06/02 17:33:36
 Experiment 192 2008/05/31 11:42:56
 Telefon 179 2008/06/04 7:10:48
 Test 260 2008/06/02 14:10:58
 Teton 214 2008/06/04 7:11:34
<DIR> Coco 2008/06/03 8:47:16

Only the very latest version of DemoScript is mentioned, without any version number. Sub-

directories are just listed, but not explored.

2.2.2 - Modifiers; Full Lists

We can specify options to the List command, also called "Switches" or "Modifiers". One can

get the list of all possible modifiers for a command with a question mark:

 ⎕SE.SALT.List '?'
List pathname The first line gives the function syntax

Modifiers accepted: Then comes the list of possible Switches

-Full[=1∵2] 1 Show full pathnames below first folder found;
 2 returns "rooted" names.
-Recursive Recurse through folders
-Versions List versions
-Folders Only list folders
-Raw Return unformatted date and version numbers

Let us ask for the versions (-Version) and the contents of sub-directories (-Recursive):

706 Dyalog APL - Tutorial

 ⎕SE.SALT.List'd:\MyFiles -Vers -Recur
 Type Name Version Size Last Update
 MyFiles\DemoScript [4] 624 2008/06/04 13:52:38
 MyFiles\DemoScript [3] 544 2008/06/04 13:42:36
 MyFiles\DemoScript [1] 544 2008/06/04 13:42:04
 MyFiles\DemoScript 918 2008/06/04 13:39:48
 MyFiles\Experiment [7] 192 2008/05/31 11:42:56
 MyFiles\Telefon 179 2008/06/04 7:10:48
 MyFiles\Test [3] 167 2008/06/03 18:01:24
 MyFiles\Test [1] 167 2008/06/03 17:33:40
 MyFiles\Test 282 2008/06/02 21:41:02
 MyFiles\Teton 214 2008/06/04 7:11:34
 <DIR> MyFiles\Coco 2008/06/03 8:47:16
 MyFiles\Coco\Bisou 282 2008/06/02 21:41:02
 MyFiles\Coco\Sacha 192 2008/05/31 11:42:56

We obtained all the versions for each script file.

When the modifier "-Raw" is used, titles and formatting characters are removed, so it is easier

to process the data with APL functions.

2.2.3 - Exploring Directories and Files

It is also possible to open Windows Explorer in a specific folder like this:

 ⎕SE.SALT.Explore'd:\MyFiles'

If a specific script name is specified, the latest version of the script is edited using the default

editor (Notepad):

 ⎕SE.SALT.Explore'd:\MyFiles\DemoScript'

Note that if the script has been loaded into the active workspace previously the changes that

you make to the script file will not be made to the objects in the workspace. The script file and

the workspace may therefore contain different versions of some objects.

2.2.4 - Removing Old Versions

As time goes by one may have collected a large number of versions.

It is possible to remove one or more versions, using the command "RemoveVersions",

followed by the Path and generic Filename of the scripts to remove:

 To remove a single version, just specify ... -Version= 3

 To remove versions less than a given version (e.g. 27), type -Version= <27

 To remove versions greater than a given version, type -Version= >42

 To remove a range of versions, type (e.g. 27 to 42) -Version= 27-42

 To remove all the versions, specify .. -all

In this case, confirmation is asked for, and SALT will preserve the highest version:

 Chapter R - SALT 707

 ⎕SE.SALT.RemoveVersions'd:\oldstuff\DemoScript -all'

Figure R-4

After confirmation the following messages appear::

4 versions deleted.
1 version renamed

All the versions have been destroyed, except the last one which has been renamed so as not to

have a version number. It may be used as a root for a future set of derived versions.

It is also possible to remove minor intermediate versions, up to the highest one, using the

same command with the modifier "-Collapse".

For example, suppose that we have 31 versions, and we want to remove versions 19 to 30:

 ⎕SE.SALT.RemoveVersions Path,'Appli -ver=>18 -collapse'

Versions 19 to 30 are deleted (after confirmation), and version 31 is renamed to 19 (or the first

free number after the deletion).

2.3 Comparing Scripts

Once one has got several versions of the same script, it may be useful to identify which

modifications were made between two versions, often between the last one and a previous

one. None of them need to be loaded in the workspace.

To perform this kind of comparison, SALT can use an APL routine provided with Dyalog APL

(the default) which is sufficient for light applications, or any other third-party product for

more professional use.

Among the systems on the market; we can mention:

SubVersion with Tortoise-SVN
Compare It!

Here is the APL comparison between the latest (highest) version of our script, and version 4.

 ⎕SE.SALT.Compare'd:\MyFiles\DemoScript -ver=4'

708 Dyalog APL - Tutorial

We can compare any two versions, (for example versions 4 & 6), by typing their numbers:

 ⎕SE.SALT.Compare'd:\MyFiles\DemoScript -version=4 6'

Here the result is the same since the latest version is 6:

Comparing d:\MyFiles\DemoScript.4.dyalog
 with d:\MyFiles\DemoScript.6.dyalog
 [4] ∳ m←average val;s;n
 [5] s←+/val
←[6] n←∰val
→ m←s÷∰val
←[7] m←s÷n
 [8] ∳
 [9]
 [14] ∳ Res←{N} Round Val
 [15] :if 0=⎕nc 'N'
←[16] N←RounDefault
→ N←3⌊RounDefault
 [17] :end
 [18] Res←⌊0.5+Val∲10*N
 [23] RndSum←⌊0.5++/Y
 [24] SumRnd←+/R←⌊0.5+Y
←[25] Diff←RndSum-SumRnd ⍝ Intentional error
→ Diff←RndSum-SumRnd
←[26] Great←⍒,Y
→ Great←⍒,Y ⍝ Dispatch on highest values
 [27] R[(|Diff)↑Great]+←∲Diff
 [28] ∳

In the header, SALT specifies which files are compared.

Then the lines of the first script are displayed, with lines numbers.

In the left margin one can see:

→ When a line has been inserted

← When a line has been removed

When a line has been modified (see line [16]), a left arrow shows the old version (removed)

and immediately a right arrow shows the new version (inserted).

Sometimes, the difference is just a removed or added comment (lines [25] or [26]), and

sometimes there is a real modification in the code.

It is also possible to compare the version in the workspace with the latest version on file. This

can come in handy to eliminate confusion arising from the warning issued by a save

command.

 Chapter R - SALT 709

For example, suppose you attempt to save your script and get this

If you are unsure as to why this is happening you should reply No and compare your

workspace version with the one on file by doing

 ⎕SE.SALT.Compare'd:\demoFiles\DemoScript -version=ws'

SALT will show you the differences and you may then take whatever action is appropriate to

rectify this situation.

3 - Settings

SALT uses the following global parameters:

Keyword Meaning Default

compare Program used to compare two scripts APL function

editor Editor used to view/edit script files. Notepad

workdir Directory where scripts are placed/searched by default [Dyalog]\SALT

owpfk PFKey to use to overwrite the last version when saving

edprompt Is a confirmation required (1) or not (0) at Save time? 1

These parameters are stored in the Windows Registry, and are retrieved at the start of each

new APL session.

The command "Settings" can be used to consult or modify these parameters, like this:

 An empty argument returns the values of all the parameters:

 ⎕SE.SALT.Settings ''
compare apl
editor notepad
workdir [Dyalog]\SALT
owpfk
edprompt 1

710 Dyalog APL - Tutorial

 If the argument is one of these keywords, the command returns its current value

 ⎕SE.SALT.Settings 'workdir'
[Dyalog]\SALT

 Finally, a parameter can be modified by specifying the keyword followed by the new

value. The new value will only have effect during the current session. However, it will be

made permanent (written to the Registry) if it is followed by the switch "-Permanent".

Examples:

If you prefer Wordpad to Notepad when using Explore, you can type:

⎕SE.SALT.Settings 'editor c:\Windows\ServicePackFiles\i386\wordpad'

 If this temporary change was inappropriate, you can restore the permanent value stored in

the Windows Registry using "-Reset".

 If the change is to be made permanent, you just have to add -Permanent.

If you decide to use the product "Compare It!" to compare scripts, you should declare it in

your settings as follows:

 ComProg←' \[ProgramFiles]\Compare It!\wincmp3"'

 ⎕SE.SALT.Settings 'compare ',ComProg,' -Permanent'

But you can also use it just once, and declare it using the Switch "-use" like this:

 ⎕SE.SALT.Compare'd:\MyFiles\DemoScript -ver=4 6 -use=',ComProg

 Chapter R - SALT 711

The Specialist's Section

Each chapter is followed by a "Specialist's Section" like this one.

This section is dedicated to skilled APLers, who wish to improve their knowledge.

If you are exploring APL for the first time,

skip this section and go to the next chapter

In the preceding pages we used SALT to store programs outside of a workspace. This

"SALTed" code was then loaded into the workspace, and executed very traditionally by

starting an APL function.

One can also call an external ("SALTed") function, apply it to some data, and destroy it

immediately after, so that nothing remains stored in the workspace.

Let us experiment with this file:

The file itself is named Maths.Dyalog

It contains a Class

The Class is named Compute

It contains three function definitions:

 Plus
 Times
 Sqrt

They are all Shared and Public

:Class Compute

∳ R←A Plus B
 :Access Shared Public
 R←A+B
∳

∳ R←A Times B
 :Access Shared Public
 R←A∲B
∳

∳ R←Sqrt B
 :Access Shared Public
 R←'Invalid'
 :If B≥0
 R←B*0.5
 :EndIf
∳
:EndClass

We could load the Class into the workspace and use its functions:

 ⎕SE.SALT.Load 'Maths'

 87 Compute.Plus 21
108

The following syntax would produce the same effect:

712 Dyalog APL - Tutorial

 30 (⎕SE.SALT.Load 'Maths').Plus 70
100

)obs
Compute

It works, but we loaded the whole Class in the workspace just to use one of its components.

In this case it might have been better to load an unnamed copy that will disappear immediately

after use. This can be achieved using the switch "-noname':

)clear
clear ws

 30 (⎕SE.SALT.Load 'Maths -noname').Times 70 20
2100 600

)obs No Namespace was created

The function has been temporarily loaded and used, but nothing remains in the workspace.

This could be made slightly easier to do with the help of a small Direct function, as shown

here:

 use←{⎕SE.SALT.Load ∱,' -noname'}

 40(use'Maths').Plus 45 17 29 31
85 57 69 71

Actually, SALT provides itself a command to do just that. It is called New:

 30 (⎕se.SALT.New 'Maths').Plus 70

100

The difference here is that New can give an argument to the constructor of the class, should it

need one. For example, if Maths needed a constructor argument, say 'abc', it would have

been specified this way:

 30 (⎕se.SALT.New 'Maths' 'abc').Plus 70

The result would have been calculated and the instance discarded at the end, just as above.

Storing Entire Workspaces in SALT

You may wish to store the contents of a workspace in SALT to benefit from the automatic

version update and other goodies, but the idea of storing every function and namespace one by

one may repel you. SALT comes to the rescue again by providing a command to do just this

for you. This command is called Snap. In its simplest form Snap takes a folder as argument

and stores everything it finds in the workspace into the specified folder:

 ⎕se.SALT.Snap ‘\mycode\myws’

For a complete description of what Snap can do you should refer to the specific SALT

documentation.

713

Chapter S: Publishing Tools

You are now an APL expert (aren't you?) and you are able to write programs to solve very

complex problems.

But if you need to present your results in an elegant report or booklet, possibly including

fancy graphs, you may have to spend many hours, perhaps many days, to obtain what you had

in mind.

This is not specific to APL; it is the same in all programming languages. We are so familiar

with text processing tools and spreadsheet managers that we want to produce output of at least

a comparable quality, but if we try to do so without proper tools the complexity of producing

even the most simple layouts is overwhelming.

Dyalog APL includes two excellent tools to produce high quality documents and graphs with

very little programming effort. They have been developed by Causeway Graphical Systems

Ltd. and have existed as separate commercial products for many years before being included

in Dyalog APL. The two complementary products are:

NewLeaf for producing printed documents, and

RainPro for producing graphs.

NewLeaf and RainPro allow the production of extremely rich layouts, and they are well

adapted for processing large amounts of data. They are delivered with their own easy to read

documentation; so the purpose of this chapter is just to help you make the very first steps, to

explore some major features and concepts, and to act as a link between what we have already

learned, and what these publishing tools can do for us.

714 Dyalog APL - Tutorial

1 - NewLeaf

1.1 Getting Started

1.1.1 - What You Need

NewLeaf consists of a number of Namespaces included in a workspace named NewLeaf.

The Namespaces are:

 leaf Allows you to position and present data on a page.

 PostScrp Manages the preview and printing of what you have prepared.

 Layout Used to prepare predefined presentations that will be used repeatedly.

 pdf Needed if you want to output data in PDF format.

If you just want to use the product in a given application, copy the Namespaces that you need

into your application workspace. For example:

)load MyAppli

)copy newleaf leaf PostScrp Layout

1.1.2 - A Quick Introduction

Before embarking on your own design you might want to explore the main features of the

product. If so, just load the whole workspace Newleaf and follow the instructions given in

the welcome text. If you run Help, you will be encouraged to execute this set of APL

statements:

leaf.Use '' Use a default page layout

leaf.Font 'heb,18' Set the font to Helvetica, bold, 18 points

leaf.Place 'Subheading is here' Place a title

leaf.Font 'ti,12/16' Now use Times New Roman, 12 points

leaf.Flow txt Place a piece of text, contained in variable txt

leaf.table.List 3 4∰∯12 Place a numeric matrix

leaf.Include pg2 Include a graph prepared with RainPro

PG←leaf.Close The final result is a variable named PG

 Chapter S – Publishing Tools 715

The result of these statements is a long character vector (PG), which can be considered as a

PostScript script, defining a complete document, ready for printing. Of course, many options

or parameters, like fonts, have default values.

Then you can:

 preview this layout using: PostScrp.View PG

 or print it directly using PostScrp.Print PG

After this first example you are encouraged to try some other examples. After each of them,

you can execute View PG to see the result:

Test Caps Indents Folder
Testgrid John SalesRep Booklet

The function View is just a cover function for PostScrp.View, so that you don't have to type

"PostScrp." each time.

If you want to explore most of the NewLeaf features you can also run this demonstration:

Seatrial 0

It is a rather long demonstration, which runs more than 25 examples (stored in the variable

∆seatrial) one by one, and automatically displays the result (some of them spread on

several pages; use Page-Up/Page-Down to scroll). You are not obliged to print them, just

click on "Close" to terminate a demo and skip to the next one.

1.2 Frames and Text

1.2.1 - Main Concepts

NewLeaf allows you to place text and graphics in rectangular areas called Frames, which are

placed on a Page.
Figure S-1

 Pages can be created, filled, and printed when needed, but it is

generally better practice to prepare a set of predefined pages,

including frames etc. The pages may then serve as templates

that can be re-used several times with different contents.

 You can define as many frames as needed on a page.

However, NewLeaf requires at least one frame per page.

 Figure S-1 to the right shows a grey page with an outer rect-

angle representing the printable area, which depends on the

printer you use. Four frames are defined, represented by white

areas.

716 Dyalog APL - Tutorial

 Frames (and all other page elements) are positioned in an (x,y)

coordinate system that has its origin at the bottom-left corner

of the page, as shown in the figure.

 Since the coordinates start from the edges of the page your document will always look the

same when printed on any printer, provided that your frames are within the printer's

printable area.

 All measurements are in Points, one point being 1/72 of an inch.

 Usually frames have no border, but you can decide to put a border around some of them.

On figure S-1, only the top-right frame has a border.

 Text normally starts at the frame's left margin, but you can indent it to the right, and even

place "bullets", as shown in the large frame.

 The default page (defined earlier by leaf.Use '') contains a single frame, with 1-inch

margins all around, and a page number at the bottom of the page.

1.2.2 - Filling Frames with Text

Each frame can be filled with one or more paragraphs of text, graphics defined with RainPro,

or images (Bitmaps or Metafiles). For now we shall only consider text.

NewLeaf has been designed to simplify the production of documents as much as possible, so

many parameters and options take default values, and the user is offered a number of typical

fonts and paragraph formats. The default paragraph starts from the frame's left margin, and the

default font is "Times New Roman", size 12 points.

A paragraph can be specified as:

 A character vector (used most frequently)

 A character matrix

 A numeric array

A nested character vector is processed as a set of paragraphs, each item being a separate

paragraph.

A paragraph can be written to the page using two different functions:

 leaf.Place Places the text without any transformation. If the text is wider than the

frame, excess characters will overflow the frame, unless the frame has

been defined with the property Clip set to True (in which case the text

will be truncated).

 leaf.Flow Ravels the text and wraps it to fit the frame width. A long character vector

may therefore be folded on several lines.

 Chapter S – Publishing Tools 717

While the user is preparing his document NewLeaf creates a spool file, in which it places a

script describing all the operations and parameters necessary to obtain the desired result. Each

page is stored in a separate component in the spool file.

Once the document is ready, leaf.Close completes and closes the spool file, and returns the

script in a shy result.

If the document is not too large the result returned by leaf.Close can be printed using

PostScrp.Print, or previewed using PostScrp.View.

For large documents it is recommended that you leave the report in the spool file and browse

or print it from there. Then you can view or print several thousands of pages without running

the risk of causing a WS FULL error:

Instead of leaf.Close we must use fn←leaf.Spool ''

The result can be previewed as before by PostScrp.View fn

And to print the entire report, one can execute PostScrp.RunOff fn

The result returned in fn is the path and name of the spool file.

1.2.3 - Some Experiments

Let us write a function to see how NewLeaf presents different data. This may help you

understand the differences between Place and Flow:

 ∳ NLExp data;page
[1] leaf.Use'' Use a default page, with a single frame

[2] leaf.Place data Place some text
[3] leaf.Flow data Wrap the same text
[4] page←leaf.Close Close the spool file
[5] PostScrp.View page View the result
 ∳

Test this with variables that we have used earlier:

 NLExp Countries

 NLExp Forecast

 NLExp 'What' 'about' 'a nested' 'vector?'

You can see that Place places the rows of a matrix under each other, while Flow ravels them

and wraps the resulting vector to fit the page width. Numbers are formatted poorly; we shall

find a better technique later.

The nested vector is formatted like a matrix by Place, and like a list of paragraphs by Flow.

We shall now try to present MLK; a nested vector consisting of 12 items, extracted from Martin

Luther King's famous speech "I have a dream".

The first version of our function, NLText1, is identical to NLExp, except that we have

neutralised leaf.Place with a comment sign. Now, try this:

718 Dyalog APL - Tutorial

 NLText1 MLK

You can see that each item produces a paragraph, starting at the left margin, and folded to fit

in the frame width, like this:

Figure S-2

I have a dream

Martin Luther King Jr.

Washington, August 28th 1963.

So I say to you, my friends, that even though we must face the difficulties of today and

tomorrow, I still have a dream. It is a dream deeply rooted in the American dream that one

day this nation will rise up and live out the true meaning of its creed: we hold these truths to

be self-evident, that all men are created equal.

I have a dream that one day, on the red hills of Georgia, sons of former slaves, etc…

This is not bad, but we could perhaps try to improve the layout of the title.

NewLeaf provides a set of predefined paragraph layouts, with different alignments, fonts, and

spacings. These Styles are contained in what is called a Gallery. They can be invoked by

leaf.Style.

 ∳ NLText2 data;page
[1] leaf.Use'' A default page
[2] leaf.Style'Heading' Invoke a predefined style
[3] leaf.Place 1⊃data Place the title
[4] leaf.PopStyle Restore the previous (default) style
[5] leaf.Flow 1∸data Write the following paragraphs as before
[6] page←leaf.Close
[7] PostScrp.View page
 ∳

If you try NLText2 MLK you will see that the title is now centred, and written using a bigger

font.

Just execute leaf.Gallery and have a look at these two Style definitions:

Body Normal Paragraph Font Ti,12
 Pitch 15
 Align Left
 Spacing 0 12
... etc.

Heading Major heading Font ti,24
 Spacing 24 6
 Align Centre

For each style (Body, Indent, … Heading), the Gallery contains various settings (font,

alignment, spacing, etc.).

Fonts are represented by shortcuts: "ti" stands for "Times New Roman".

 Chapter S – Publishing Tools 719

You can see that a normal paragraph (Body) is printed in Times New Roman, 12 points, and

left aligned, while our title (Heading) is printed in size 24 and centred.

We can use leaf.Align to centre the subtitle, like this:

 ∳ NLText3 data;str;page
[1] leaf.Use''
[2] leaf.Style'Heading'
[3] leaf.Place 1⊃data
[4] leaf.PopStyle
[5] leaf.Align'centre' Centre the next paragraph(s)
[6] leaf.Place 2⊃data
[7] leaf.Align'left' Left align the following paragraph(s)
[8] leaf.Flow 2∸data
[9] page←leaf.Close
[10] PostScrp.View page
 ∳

We now obtain something like this:

Figure S-3

I have a dream

Martin Luther King Jr.

Washington, August 28th 1963.

So I say to you, my friends, that even though we must face the difficulties of today and

tomorrow, I still have a dream. It is a dream deeply rooted in the American dream that one

day this nation will rise up and live out the true meaning of its creed: we hold etc…

The subtitle is written on two successive lines because it contains a NewLine character.

The function Align accepts the values "Left", "Centre" (or "Center"), and "Right".

These parameters are not case sensitive, and can be abbreviated to any number of letters; "L"

and "Left" are equivalent.

The very last thing we shall do with this text is to magnify the first letter of each paragraph,

using the DropCap feature. To achieve this, we need a little loop to process the first letter and

the rest of a paragraph differently. The beginning of the program remains unchanged; we have

not reproduced it below:

 ∳ NLText4 data;str
[1-7] ... The first seven instructions are unchanged
[8] :For str :In 2∸data
[9] leaf.DropCap 1↑str Magnify the first letter

[10] leaf.Flow 1∸str Wrap the remaining text around that letter
[11] :End
[12] PostScrp.View leaf.Close
 ∳

720 Dyalog APL - Tutorial

If now you execute: NLText4 MLK, you should obtain something similar to the figure below:

Figure S-4

This technique is not limited to the first character, you can apply it to a (limited) set of the first

characters, but you must Enclose them. For example: leaf.DropCap (⊂3↑str)

The default presentation expands the letter on two lines of text, using the current text font.

This can be changed by specifying the desired height and font name after the character:

leaf.DropCap 1↑str Default presentation on 2 lines

leaf.DropCap (1↑str) 3 Presentation on 3 lines

leaf.DropCap (1↑str) 3 'ARBI' The same, but in ARial Bold Italic

1.3 Fonts

1.3.1 - Font Definitions

To simplify the use of fonts, NewLeaf has an internal table of fonts. You can display it with:

 leaf.∆fonttbl

TI : 'Times New Roman' 0 400 /Times-Roman
TII : 'Times New Roman' 1 400 /Times-Italic
TIB : 'Times New Roman' 0 800 /Times-Bold
TIBI: 'Times New Roman' 1 800 /Times-BoldItalic
AR : 'Arial' 0 400 /Helvetica
ARI : 'Arial' 1 400 /Helvetica-Oblique
ARB : 'Arial' 0 800 /Helvetica-Bold
ARBI: 'Arial' 1 800 /Helvetica-BoldOblique
CO : 'Courier New' 0 400 /Courier
COI : 'Courier New' 1 400 /Courier-Oblique
COB : 'Courier New' 0 800 /Courier-Bold
etc...

 Chapter S – Publishing Tools 721

The first item in each line is the font short code used by NewLeaf. Each font is identified by

two letters (TI, AR, and so on), which can be qualified by "I" for Italic, "B" for Bold, or "BI"

for Bold and Italic. Remark: Arial is a clone of Helvetica.

The second item is the font definition that will be passed to Windows, using conventions

similar to the ones we use in the APL GUI interface:

 Font name (for example "Times New Roman")

 Normal or Italic (0 or 1)

 Normal or Bold (400 is normal, 800 is bold)

The font size will be defined separately when the font is used.

The third item is the name of the PostScript font that will be used to build PDF files.

1.3.2 - Using Fonts

When a font is required, it is identified by its short code, a comma, and its size in points.

For example:

Times New Roman, Italic, size 12 will be identified by TII,12
Arial (or Helvetica), Bold, size 9 will be identified by ARB,9

By default, the spacing between two lines of text is 120% of the font size. This is convenient

for most documents, but if you prefer a smaller or larger line spacing you can specify any

value (in points) after a slash. For example: 'ARI,9/12'

In general, NewLeaf expects you to work with the fonts described in the table. This allows

your documents to be output directly to PostScript devices, and will enable documents to be

rendered well in HTML browsers. However, you can use any other font available on your

system. Instead of using Leaf.Font, you can then use leaf.TrueFont. The argument to

leaf.TrueFont is the font's full name and size, and as before 0 or 1 (normal or Italic)

followed by the weight. For example:

leaf.TrueFont 'Comic Sans MS,14' 1 Italic

leaf.TrueFont 'Garamond,12' 0 800 Bold

The names you provide are matched against the current font list given by Windows, case

independently, omitting the blanks, and limited to any number of unambiguous leading

characters. So you could have typed 'comic' or 'garam', provided that you do not have

any other fonts installed with similar names.

1.3.3 - Add New Fonts

You can also add new fonts to the table by editing it directly, or by using the function

leaf.DefineFont.

722 Dyalog APL - Tutorial

If you specify a two-character short code the function will automatically create a set of four

fonts: normal, Italic, Bold, and Bold Italic:

leaf.DefineFont 'ga' 'Garamond' Adds four short codes:

 ga gai gab and gabi.

1.4 Tables

1.4.1 - Default Presentation

NewLeaf contains functionality to present data in a tabular way. To test these facilities, let us

prepare some data, derived from an existing variable, GridData:

 Tabu←20 6↑GridData

 Tabu[;2 3 4]∲←89.17

 Tabu[;6]←' ' 'No'[1+Tabu[;6]]

Tabu is now a nested matrix containing data like this:

Sabatier 6152.73 5082.69 2585.93 DK
Depond 10343.72 9184.51 5885.22 E No
Laure 2318.42 10611.23 5350.2 F
Jakubovar 9987.04 7668.62 3031.78 D
Perdoux 6509.41 2496.76 2675.1 SN No

One can present this variable using the default presentation offered by NewLeaf:

 leaf.Use ''

 leaf.table.List Tabu A new function

 PostScrp.View leaf.Close

As you can see, the presentation is not so bad, except that numbers are left aligned.

NewLeaf divided the frame width evenly into as many columns as needed (6 in this example).

1.4.2 - Controlled Presentation

You can specify a better presentation using the following functions:

 leaf.table.Set To control cell widths and the fonts

 leaf.table.Align To define the alignment in the cells

 leaf.table.Titles To enter the column titles

 leaf.table.TDepth To define their level of depth, like in a Grid object

 Chapter S – Publishing Tools 723

Let us write the initial version of the function:

 ∳ NLTable1 data;tex
[1] leaf.Use''
[2] leaf.table.Set 'cellw'(80 50 50 50 40 40)
[3] leaf.table.Set ('TFont' 'ARB,8')
[4] leaf.table.Set ('Font' 'tib,10',(3∰⊂'co,8'),'ar,8' 'tib,10')
[5] leaf.table.Align'left' 'd2' 'd2' 'r' 'l' 'c'
[6] tex←'Name' 'Results' 'Jan' 'Feb' 'Mar' 'Country' 'Checked'
[7] leaf.table.Titles tex
[8] leaf.table.TDepth 0 0 1 1 1 0 0
[9] leaf.table.Spread data
[10] PostScrp.View leaf.Close
 ∳

The function Set is first called to define the cells widths (in points)

It is called again to define the fonts, in two steps:

 The keyword "TFont" defines the font used for the titles (Arial Bold, size 8).

 The keyword "Font" is used to define as many fonts as there are columns. We have

chosen "Times New Roman (bold)" and "Arial" for the texts, and "Courier New" for the

numeric columns, because it is a non-proportional font, so the digits will be aligned

vertically.

The function Align is used to control the presentation. As we said before, it is possible to

abbreviate Left, Centre, and Right into L, C, and R. We shall explain what "d2" means in

Remark 1.

The titles are entered in their natural order, each main title being followed by its subtitles. The

levels of the titles are specified by the function TDepth, in a way that is very similar to that

which we saw for the Grid object (Chapter P, Section 7.5.1).

In instruction [9] we no longer use List, but Spread.

724 Dyalog APL - Tutorial

Try: NLTable1 Tabu. You should obtain something like this:

Figure S-5

Remark 1:

Everything is correct, except that some values are not aligned properly (as shown within the

red circle) because they do not have the same number of decimal digits. This can be

improved: instead of specifying Align 'Right', we could specify Align 'decimal2' (or

'd2' in short). NewLeaf will then provide two positions for the decimal digits, and the

decimal points will be aligned.

We used this alignment for the first two numeric columns, and you can look at the last three

rows: the result is well aligned.

We shall see very shortly that we can also specify an explicit format for numbers.

Remark 2:

Now let us re-execute the 3 instructions we used in 1.4.1 to test the default presentation:

 leaf.Use ''

 leaf.table.List Tabu

 PostScrp.View leaf.Close

Surprisingly, we obtain the same "improved" presentation as produced by NLTable1! The

reason for this is that some parameters are cached in global variables. This may be an

advantage when one has to produce several similar tables.

To clear the cache and restore all the parameters to their default values, run the function

leaf.Init.

 Chapter S – Publishing Tools 725

Remark 3:

The two functions we used to fill a table, List and Spread, are slightly different:

 It may happen that the content of a cell is wider that the cell itself. If so, Spread wraps the

text on several lines, while List accepts only one line of text in a cell. If the text is too

long, it may overflow on the right (the default), or it may be clipped if required.

 When processing wide tables which do not fit on a single page, they will be printed on

several pages. List works down the rows, then steps across the columns. On the other

hand, Spread steps across the columns, then works down the rows. Spread never splits a

cell onto two successive pages.

 List is generally faster, but Spread offers more formatting options.

1.4.3 - Define Styles and Formats

To further improve our presentation we shall:

 define a new paragraph style and use it to place a title above the table

 define an explicit format for the numeric columns

To define a new style, we use leaf.DefineStyle, followed by some parameters:

 font specification

 alignment

 spacing before and after the current line, in points

For example:

 cusfor←('Font' 'HeB,18')('Align' 'L')('Spacing' 60 18)

 'Custom'leaf.DefineStyle cusfor

"Custom" is the name given to the new style. If you execute leaf.Gallery, you will see the

style just added:

Custom Font HeB,18
 Align L
 Spacing 60 18

Once it has been defined, the style can be applied to all the forthcoming paragraphs, using

leaf.Style, which we have already used.

It can also be used just for a single paragraph. In this case the style name must be passed as

the left argument to leaf.Place or leaf.Flow.

We can also specify an explicit format for numbers, using the function leaf.table.Qfmt,

with format descriptors similar to the ones we used with ⎕FMT (see Section F-3).

726 Dyalog APL - Tutorial

We shall specify a format 'CF9.2' for each numeric column. For text columns, NewLeaf can

use its standard presentation, so we shall specify an empty format (⊂'').

Here is the resulting function:

 ∳ NLTable2 data;tex;cusfor
[1] leaf.Use''
[2] cusfor←('Font' 'HeB,18')('Align' 'L')('Spacing' 60 18)
[3] 'Custom'leaf.DefineStyle cusfor
[4] 'Custom'leaf.Place'First quarter sales'
[5] leaf.table.Set'cellw'(80 50 50 50 40 40)
[6] leaf.table.Set ('TFont' 'ARB,8')
[7] leaf.table.Set ('Font' 'tib,10',(3∰⊂'co,8'),'ar,8' 'tib,10')
[8] leaf.table.Align'left' 'r' 'r' 'r' 'l' 'c'
[9] leaf.table.Qfmt(⊂''),(3∰⊂'CF9.2'),2∰⊂''
[10] tex←'Name' 'Results' 'Jan' 'Feb' 'Mar' 'Country' 'Checked'
[11] leaf.table.Titles tex
[12] leaf.table.TDepth 0 0 1 1 1 0 0
[13] leaf.table.Spread data
[14] PostScrp.View leaf.Close
 ∳

You can run it, and see that the result is pretty good.

1.5 The Page Designer

Up to now, we have worked in a default page containing a single frame, but generally most

documents contain several frames and some other objects. Instead of defining the required

pages when they are to be used, it is easier and more convenient to predefine them and store

their definitions. The stored definitions can be retrieved, filled, and then published.

To define pages in this way, an interactive interface named the Page Designer is provided. It

is contained in the Namespace Layout.

After you have defined the pages you need, the namespace Layout is no longer needed, so

you can remove it.

1.5.1 - The Contents of a Page

The pages we have designed so far all contained just a single frame, but a page can contain

many things:

 several frames

 some fixed texts

 horizontal or vertical rules, drawn across the whole page, or shorter

 images; typically the logo of a company

 the page number, the date and time of printing

 etc…

 Chapter S – Publishing Tools 727

The elements that are not frames (images, page number, print time, fixed text) will be repeated

on all the pages, with the page number automatically being incremented.

1.5.2 - Page Description

The definition of a page is contained in a 5-column nested matrix, each row of which

describes one of the areas or objects positioned on that page. The columns have the following

meaning:

1 - The type of the area or object: pg = the page itself,

 fr = a frame,

 tx = a fixed text,

 rl = a rule

 etc…

2 - The name of the area or object.

3 - The position measured from the bottom-left corner.

Negative positions are measured from the top-right corner.

4 - The size in points. Negative sizes indicate the value of the page size minus the object size

in the given direction. This will be explained later.

5 - A nested matrix containing non-default properties for the area or object.

The matrix has two columns: Property and Value.

Here is a typical page description:

┌──┬───────────────────┬──────┬─────────┬────────────┐
│pg│ Fun3 │461 46│ 595 840 │ │
├──┼───────────────────┼──────┼─────────┼────────────┤
│fr│ Intro │72 ¯90│¯379 ¯720│ │
├──┼───────────────────┼──────┼─────────┼────────────┤
│tx│ &p │72 32│ ¯144 0 │ │
├──┼───────────────────┼──────┼─────────┼────────────┤
│fr│ Body │72 72│¯139 ¯324│ │
├──┼───────────────────┼──────┼─────────┼────────────┤
│ │ │ │ │ ┌──────┬─┐ │
│ │ │ │ │ │Colour│4│ │
│rl│ Rule1 │24 755│ ¯50 0 │ ├──────┼─┤ │
│ │ │ │ │ │Weight│2│ │
│ │ │ │ │ └──────┴─┘ │
├──┼───────────────────┼──────┼─────────┼────────────┤
│bm│d:\myfiles\logo.bmp│72 735│ 84 72 │ │
└──┴───────────────────┴──────┴─────────┴────────────┘

728 Dyalog APL - Tutorial

1.5.3 - Exploring the Designer

The designer is invoked by Layout.Design followed by the name given to the new page:

 Layout.Design 'MyPage'

One can duplicate an existing page and modify the copy:

 clone←oldpage

 Layout.Design 'clone'

As soon as we execute Layout.Design 'MyPage', a visual interface is displayed (see next

page), with a floating toolbox called the "Property watcher".

Our new page is shown with a light grid to help us place our objects. The grid/rulers are

always marked in inches and halves, starting from the bottom-left.

There are only two objects on our page:

 A single frame, named "body" (the default), delimited by a green rectangle. It is centred,

with a 1-inch margin all around.

 At the bottom, the page number is placed at half an inch from the bottom of the page. It is

represented by a place holder: &p.

Both objects have two square "handles", which become blue when the object is selected. The

handles can be dragged using the mouse to modify the shape of the object. It is also possible

to change the position and size of an object using the corresponding fields of the Property

Watcher.

The header of the Property Watcher tells us that this page will be saved in the variable

MyPage. The name field contains "New report"; we can change that to "First trial", for

example. The page header will be modified accordingly.

If you now click anywhere in the "Body", the Property Watcher will be modified to display

the information related to the selected object, as listed here:

 Object name Body

 Position (x,y) 72 72

 Size (width, height) -144 -144

No surprise with the position: our frame begins at 1 inch (72 points) from the corner. Positive

positions are counted from the bottom-left. You can also count from the top-right by typing

negative values.

 Chapter S – Publishing Tools 729

Figure S-6

730 Dyalog APL - Tutorial

The negative sizes mean that we have a total margin of 144 points both horizontally and

vertically.

The reason for this is that the frame is attached to the borders of the page. This means that if

we changed the page size the margins would not change, but the size of the frame would

change in order to preserve the margins. How the frame is attached to the borders may be

changed using the six buttons located just below the Position/Size fields:

Figure S-7

For the moment buttons 3 and 6 (attach to Width / Height) are activated.

If you press button 1 or 2 instead of 3 the width of the frame will no longer be determined by

the page width, so the width of the frame will be show as a positive value equal to the current

width of the frame in points. Similarly for the height of the frame if you press button 4 or 5

instead of button 6.

1.5.4 - Create a Page

We shall create a page with four frames: one for titles, two for two columns of text, and one

frame for comments. We shall place a logo and a fixed piece of text at the top of the page,

with a horizontal rule, and we shall move the page number to the right, because the document

is supposed to be inserted into a binder.

Follow these steps to create the page:

1 - Click on the page number (&p) and change its position and size in the Property Watcher

to the following values: Position (-72,32) / Size (36,0).

2 - Drag the bottom corner of "Body" to reduce its size to 3 by 6,5 inches, or 216 by 468

points. This can also be done by typing the values (216,468) directly in the appropriate

fields.

3 - Move it to position (72,144).

4 - Rename "Body" to "Column1" in the Property Watcher

5 - Duplicate "Column1" to obtain our second column. This can be achieved by clicking

anywhere in the frame, and then pressing the "+" key on the numeric pad, by clicking on

the fourth button located at the bottom of the Property Watcher, or by right-clicking on

the frame and select "Duplicate" on the pop-up menu.

A new frame appears, named "Copy of Column1". It is positioned slightly offset from

"Column1".

6 - Rename the new frame to "Column2".

 Chapter S – Publishing Tools 731

7 - Move it to position (-72,144), i.e. at the same vertical position (144) as "Column1" and

with the same distance to the right edge of the page (-72) as the distance from the left

edge of the page to "Column1".

It is also possible to align two or more objects using the 5
th

 and 6
th

 buttons at the bottom

of the Property Watcher.

8 - Right-click anywhere on the page (outside of the two frames), and select "New Frame".

This will create a new frame, and by moving the mouse pointer (without pressing any

buttons) you can "draw" the frame. Click on any mouse button to finish drawing the

frame. Then rename the new frame to "Title".

9 - Move "Title" to position (72,624), and change its size to (-144,96).

10 - "Title" is probably not properly centred horizontally. To adjust its width so that its

distance to the right margin is the same as its distance to the left margin, make sure that

the frame is selected and click on the first button at the bottom of the Property Watcher.

11 - Duplicate the frame "Title", rename the new frame to "Comments", move it to position

(72,72), and change its size to (-144,60).

12 - Let us change a few attributes of the new "Comments" frame to the following:

Border 1 This frame will be bordered

Gutter 6 The "gutter" is an inner margin separating the text from the

border

Shadow True Only bordered frames can have a shadow

Colour Red

At any time you can click on the magnifying glass in the top row of buttons in the Property

viewer to preview the resulting page.

13 - Right-click anywhere on the page (outside of the frames), and select "New Rule". Draw

an approximately horizontal line and click.

14 - Set the new rule to cross the page from left to right: Position (2,-82), Size (-4,0). The

rule will be horizontal, since its vertical size is 0. Then set its Colour=Blue and its

Weight=3.

 15 - To finish this first part of the design, right click again on the page itself and select "New

Simple text". Rename the new text to "The Blue Hammer" (the name of our fictitious

company). Then choose the font Arial Bold (arb), size 28.

For text, the vertical position parameter refers to the bottom of the letters, so set the

position to (-72,780).

That's all; you can preview the page and click on the "Fix" button.

You can see that the designer has created the variable MyPage in the workspace. It is a matrix

containing:

732 Dyalog APL - Tutorial

pg New report 13 28 597 840 Colour 12
fr Column1 72 144 216 468
tx &p ¯72 32 36 0
fr Column2 ¯72 144 216 468
fr Title 72 624 ¯144 96
fr Comments 72 72 ¯144 60 Border 1
 Gutter 6
 Shadow 1
 Colour 9
rl Rule1 2 ¯82 ¯4 0 Weight 3
 Colour 12
tx The Blue Hammer ¯72 780 200 0 Font arb
 Size 28

Colours are represented by a number which refers to the internal "Colour Map" of NewLeaf

known as: leaf.∆cmap. The colour names are in leaf.∆colours.

1.5.5 - Using The Page

 In the "Title" frame we will place the text "Oh, happy day" as the first line, using the style

Heading, and the text "This is my first trial, and it works!" as the second line in the

default style, but centred.

 In the twin columns, we will flow 12 paragraphs filled with the content of the variable

Blah.

 And in the "Comments" frame, we will flow the 6
th

 item of MLK.

Here is a function to do that:

 ∳ PageDef Hammer(Main Comments);page
[1] leaf.Use PageDef
[2] leaf.NewFrame'Title'
[3] 'Heading'leaf.Place'Oh, happy day'
[4] leaf.Align'c'
[5] leaf.Place'This is my first trial, and it works!'
[6] leaf.Align'L'
[7] leaf.NewFrame'Column1'
[8] leaf.Flow Main
[9] leaf.NewFrame'Comments'
[10] leaf.Flow Comments
[11] page←leaf.Close
[12] PostScrp.View page
 ∳

Try this: 'MyPage' Hammer (12∰Blah) (6⊃MLK)

You will see that the result is horrible: the title prepared by instructions [2] to [6] is

overridden by the text written by instruction [8]. We must force NewLeaf to start writing the

main text in the twin columns.

 Chapter S – Publishing Tools 733

This will be done by inserting leaf.FlowList 1 2 between lines [7] and [8]. This means

that the flow of paragraphs must fill the first two frames ("Column1" & "Column2"), even if

their definitions are separated by the definition of a text.

You can call the modified function Hammer2.

Once more, before you try this new function, clear the cache and restore all the parameters to

their default values by running the function leaf.Init.

If you preview the page after having made this modification you will see that the text is too

long to fit within the first page: a second page is automatically opened, and the text fills again

the twin columns in this page.

The very last frame ("Comments") appears only after all the paragraphs have been written.

1.5.6 - Add a Logo

Assume that we have drawn a logo for our company (a blue hammer) and saved it in the file

d:\MyFiles\Hammer.bmp.

Let us duplicate MyPage and insert the logo into the copy:

 MyPage2←MyPage

 Layout.Design 'MyPage2'

In the same way as we inserted other objects earlier we just have to right-click on an empty

area of the page, choose "New Bitmap image", and place it near the top-left corner of our

page. For example at Position (72,732), and with a Size of (210,100).

In order to have the bitmap file loaded we must replace "Bitmap Image1" with

"d:\MyFiles\Hammer.bmp" in the name field.

We just have to click on "Preview" to have our blue hammer drawn.

You can also test the Hammer2 function as follows:

 'MyPage2' Hammer2 (12∰Blah) (6⊃MLK)

734 Dyalog APL - Tutorial

Figure S-8: This is what you should see

1.5.7 - Using Multiple Pages

Using the Designer, you can create many page descriptions, or "Master pages", or templates.

Sometimes a program needs to use several of such master pages. For example, the layout of

the first page of a letter is usually different from the layout of the following pages.

Let us examine a second example.

Suppose that you want to prepare a document for double-sided printing. If you intend to use a

spiral binding, it will be good if odd pages have a wide left margin with the page number on

the right, and even pages have a wide right margin, with the page number on the left.

We will define two master pages named for example OddPage & EvenPage:

 Even pages Odd pages

¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯ ¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯
pg New report 200 28 597 840 pg New report 200 28 597 840
fr Body 72 72 288 ¯144 fr Body ¯72 72 288 ¯144
tx &p 72 36 60 0 tx &p ¯72 36 60 0

 Chapter S – Publishing Tools 735

You can see that the only differences are the horizontal positions: positive for the left (even)

pages; negative for the right (odd) pages.

To use the two master pages alternatively, start your program by:

 leaf.Use OddPage EvenPage

Warning! Don't place the names between quotes

Test this: leaf.Use OddPage EvenPage

 leaf.Flow 20∰Blah

 PostScrp.View leaf.Close

You should obtain this kind of presentation, ready for binding:

Figure S-9

1.6 More Tools, Better Quality

1.6.1 - HTML Tags

If you are familiar with HTML you can use tags to change the appearance of words in the

middle of a paragraph when using Flow (this feature is not supported by Place). The portion

to modify must be embedded between two tags, the closing tag being identical to the opening

one, preceded by a slash:

Normal text This part of text will be bold Normal text

Normal text <i>This part of text will be in italics</i> Normal text

Normal text ^{This part will be in small superscript} Normal text

These tags are used in Blah; you can write the text to a default page and see how it looks.

736 Dyalog APL - Tutorial

1.6.2 - Insert a RainPro Chart

You can produce many types of graphs using the second product we shall study: RainPro.

Like NewLeaf, RainPro produces a script, which can be included in a frame prepared by

NewLeaf using the function leaf.Include.

Just to test how it works, copy one of the examples provided with NewLeaf, and insert it in

one of your pages. For example:

)copy newleaf pg2 Copy the script produced by RainPro

 leaf.Use OddPage

 leaf.Flow Blah[1 2] Flow some text

 leaf.Include pg2 Insert the graph

 leaf.Flow Blah[3 4] Some more text

 PostScrp.View leaf.Close View the resulting page

1.6.3 - Widow / Orphan Control

In a printed document one should avoid cutting a paragraph just after its very first few lines,

or just before its very last few lines. You can ask NewLeaf to skip to the next frame if there is

not enough free space left in the current frame to start a paragraph. Similarly, you can ask

NewLeaf to move the page break backwards until enough lines will be written on the next

frame to prevent a paragraph being split just before its last lines.

This is known as "Widow/Orphan control".

The default minimum number of lines that can be written in a frame is 2.

It can be set to any other value (for example 5) by: leaf.Keep 5

1.6.4 - Page Break

You can insert a page break by: leaf.NewPage

The next text you insert will then be inserted into the first frame of the next page.

1.6.5 - Placeholders

In the fixed text placed in the header or footer of a page, one can include "Placeholders" that

will be replaced by real values when the document is built.

 Chapter S – Publishing Tools 737

There are four built-in placeholders:

&p is the page number

&r in the page number in Roman numbers

&d is the current date, in the Windows short date format

&t is the current time, in 24 hour format

For example, the bottom line of a page can contain these two bits of text (one on the left and

one on the right):

Printed on &d at &t Page &p

There are also 10 user-defined placeholders named from %1 to %9.

If the values of the required user-defined placeholders are all known when you begin the

report, simply give them as the left argument to leaf.Use.

For example, if %1 and %2 represent a numeric code and a country, respectively, you can call

the page with:

 (code country) leaf.Use MyReport

If the real values are not known at the beginning, but calculated during the process, you can

assign the real values to the placeholders "on the fly".

For example if %3 is to be replaced by a currency, you can use the following function call:

 3 leaf.Subst Currency

1.6.6 - Produce PDF Output

PDF (Portable Document Format) is a very popular file format defined by Adobe. As its

name implies, documents in the PDF format can be read on virtually any platform and are

widely used to distribute documents on the web.

Instead of printing your results you can write them to a PDF file using the function pdf.PS

which requires a valid file name on its left.

For example, you can execute this set of instructions:

 leaf.Use OddPage EvenPage

 leaf.Flow 20∰Blah

 page← leaf.Close

 'd:\myfiles\quicktest.pdf' pdf.PS page
12845 bytes written to file d:\myfiles\quicktest.pdf

Advice: NewLeaf offers many other possibilities, as you can see by running the various

examples suggested in the welcome message of the workspace. Please refer to

the appropriate manual for a full description of the product.

738 Dyalog APL - Tutorial

2 - RainPro

RainPro was created to allow an APL developer to build a wide variety of charts. It was

designed to maximize the visibility of data at the expense of spurious decorations, artificial

3D effects and unnecessary ink such as grids and moiré-shadings. To appreciate the origin and

philosophy of the product, we recommend that you read "Understanding the Rain approach"

in the RainPro help file.

2.1 Getting started

2.1.1 - What You Need

The product is contained in a Namespace ch delivered in the workspace RainPro. In addition

to copying ch into your workspace you may also need two other namespaces:

 PostScrp to preview and print what you prepared

 pdf to output data in PDF format

The last two namespaces are from the NewLeaf workspace.

2.1.2 - The Same Family

NewLeaf and RainPro were created by the same author, so they share some common features:

 Everything possible has been done to ease the user's task, so many parameters take default

values. It is often possible to draw a chart just with a single instruction.

 A main program prepares a PostScript script that can be previewed or printed using the

same functions as we used in NewLeaf.

 Fonts and colours are represented in the same way as in NewLeaf, and you can add a new

font using the same technique, e.g.: ch.DefineFont 'CS' 'Comic Sans MS'

When you load RainPro a welcome message will encourage you explore the main possibilities

of the product through a large number of predefined demonstrations.

All the functions produce a character vector (PG) that completely describes a graph or chart,

ready for printing. Then you can:

 Chapter S – Publishing Tools 739

 preview the graph using: PostScrp.View PG

 print it directly using PostScrp.Print PG

 create a PNG file 'fileid' ToPNG PG

Attention: The function ToPNG is not stored in one of the Namespaces of RainPro, but

directly at the Root level. Do not forget to copy it if you need it.

Two additional namespaces can help you produce documents for internet use, compatible with

most browsers:

svg to save the chart in W3C standard SVG format

vml to save an HTML page for viewing in Internet Explorer only

Several lists of possible demonstrations can be obtained like this:

To see a list of 2D charts, type Help (about 15 demos)

 or Experiments (more than 25 demos)

To see a list of 3D charts, type Perspectives (about 7 demos)

Recommendation

Before you examine the many demos mentioned above, we strongly recommend

that you execute:

 Seatrial 1

You will get an automated demonstration of the large variety of graphs you can

create (more than 40).

Explaining all the features of RainPro in detail would need hundreds of pages, so we shall just

study some basics, and then you will be able to list and explore the functions you are

interested in.

2.1.3 - Important Remark

The product has recently been enhanced, so it accepts both the original and a new syntax to set

the parameters used in the production of a chart.

Suppose that we want to define the three following parameters:

Place a heading .. My first chart

Place a footnote ... Thanks to Adrian Smith

Define the font for the footnote Arial, 8 points

Using the original syntax, most parameters were set using a single function: ch.Set, which

accepted one or more pairs of Keyword and Value. We could have written:

740 Dyalog APL - Tutorial

ch.Set 'Heading' 'My first chart'

ch.Set ('Foot' 'Thanks to Adrian Smith')('FFont' 'AR,8')

Because the keywords could be abbreviated to a minimum of 2 characters, this code could

sometimes become a bit obscure.

Using the new syntax each setting is specified by a dedicated function whose name begins

with the prefix "Set" followed by the name of the property to be changed. Thanks to the

Autocomplete feature in Dyalog APL you'll rarely have to type the full function names.

The same three operations as shown above can now be written like this:

ch.SetHeading 'My first chart'

ch.SetFootnote 'Thanks to Adrian Smith'

ch.SetFootnoteFont 'AR,8'

Sometimes the new syntax will lead to more lines of code than the old one, but it is easier to

use and easier to read, because you no longer have to interpret abbreviated codes.

And now, let us draw our first chart!

2.2 Multiple Bar Chart

2.2.1 - Basic Approach

We would like to represent the sales made by Paul and Suzy, two salesmen of "Blue Hammer,

Inc." during the last 6 years. The numbers are stored in BHSales.

We just have to write this short function:

 ∳ RPBars Data
[1] ch.SetHeading'Compared Sales' Place a heading
[2] ch.SetXLabels 2003+∯6 Place labels on the X axis
[3] ch.Bar Data Draw the chart
[4] PostScrp.View ch.Close Preview it
 ∳

 Chapter S – Publishing Tools 741

Let us test it like this: RPBars BHSales

Figure S-RP-1: Here is the result

The viewer allows you to zoom in on a part of the graph. Click the left mouse button, drag it

to delimit a rectangle, and release the button to zoom in on the selected area. Then, using the

cursor keys, you can move the "window" all over the chart.

To return to the normal display, press the right mouse button and select "Zoom Out" in the

menu.

As in NewLeaf the right button pop-up menu offers various actions:

 Send the chart to the clipboard as a bitmap or as a metafile.

Then you will be able to import it into e.g. a Word document.

 Save the chart as a Windows Metafile. You will be prompted for a file id.

 Print the page on the Windows standard printer using the standard printer driver.

 If your standard printer is a PostScript printer, you may print the chart directly by sending

the appropriate script to your printer. This method may be up to 10 times faster than using

the standard printer driver.

 Save the chart as an EPS file (Encapsulated PostScript) that can be printed or incorporated

into another PostScript file.

In the Viewer toolbar, don't forget to select the option Use colour on PostScript and Clipboard

output.

742 Dyalog APL - Tutorial

2.2.2 - Some General Improvements

We can add a few features to our example, which will also be used in most other examples.

 Add a subtitle, and control the fonts, using the same conventions as we saw in NewLeaf:

ch.SetHeadingFont'Ar,16'

ch.SetSubhead'US market only'

ch.SetSubheadFont'Tib,8'

 Add "keys" to explain what is shown on the chart, and a caption on the Y axis:

ch.SetKeyText'Paul,Suzy'

ch.SetYCaption'US$'

ch.SetYAxisStyle'AtEnd'

The property "AtEnd" means that the caption is to be put at the end of the axis

instead of being placed vertically along it (the default).

 Add a footnote. By default it will be left aligned; let us put it on the right, and change its

font:

ch.SetFootnote'Blue Hammer Inc.'

ch.SetFootnoteStyle'Right'

ch.SetFootnoteFont'ARB,8,Blue'

Figure S-RP2

 Chapter S – Publishing Tools 743

2.2.3 - The Final Touch

 Looking at this chart, sales seem to have increased considerably during the years shown.

This is emphasized by the fact that the bars begin at 450 and not at 0.

If required, this can be changed using the style "ForceZero".

 The style "Values" may be used to have the exact values written on top of each bar.

 In the same statement we can specify "Boxed" to have a box drawn around the chart.

 We can also control the gap between bars. The default is 0.618 of the bar width; it can be

set to any value, including negative values (in which case the bars will overlap).

 Of course, we can change the default colours and the "Fill Style".

By default RainPro does not use pure colours, but rather pale colours. One can choose a

different fill style, from 1 (no fill) to 15 (full colour). Here we will chose 6.

To obtain a full description of all possible Fill Styles and Patterns just run: Patterns.

These improvements can be achieved with the following statements:

ch.SetStyle'ForceZero,Values,Boxed'

ch.SetGap 0.1

ch.SetColors'Blue,Green'

ch.SetFillStyles 6

Figure S-RP3: Including the last 5 modifications

744 Dyalog APL - Tutorial

Here is the final function:

 ∳ RPBars Data
[1] ⍝--- Headings
[2] ch.SetHeading'Compared Sales'
[3] ch.SetHeadingFont'Ti,16'
[4] ch.SetSubhead'(US market only)'
[5] ch.SetSubheadFont'Ar,8'
[6] ⍝--- Keys and axis
[7] ch.SetXLabels 2003+∯6
[8] ch.SetKeyText'Paul,Suzy'
[9] ch.SetYCaption'US$'
[10] ch.SetYAxisStyle'AtEnd'
[11] ⍝--- Foot notes
[12] ch.SetFootnote'Blue Hammer Inc.'
[13] ch.SetFootnoteStyle'Right'
[14] ch.SetFootnoteFont'ARB,8,Blue'
[15] ⍝--- Chart
[16] ch.SetStyle'ForceZero,Values,Boxed'
[17] ch.SetGap 0.1
[18] ch.SetColors'Blue,Green'
[19] ch.SetFillStyles 6
[20] ch.Bar Data
[21] PostScrp.View ch.Close
 ∳

If you want to explore other possible bar chart layouts you can run the following functions,

which are all found in the RainPro workspace:

Sambars

Population

ErrorBars

BaasChart

2.3 Scattered Points

2.3.1 - Basic Approach

This is a very classic problem: given the age and the salary of a number of people, how can

we represent them? BHSalaries is a 3-column matrix containing data for 12 people:

Column 1 Age

Column 2 Salary in 2008

Column 3 Salary in 2009

Let us just execute: ch.Scatter BHSalaries ⋄ PostScrp.View ch.Close

Nothing more to say, it works perfectly.

 Chapter S – Publishing Tools 745

Figure S-RP4

However, this presentation may not be as exciting as we could wish. We can improve it by

adding instructions very similar to the ones we used for the bar chart:

 Place a heading.

 Place captions along both axes (not at the end of them).

 Explain what the figure shows by adding appropriate keys.

We shall also use some new decoration parameters:

 Place a box around the keys and a drop shadow behind the box.

 Draw a grid to help reading the positions, and specify the style of the grid lines, their

thickness, and their colour.

 Change the markers to bigger symbols; the default ones were hardly visible.

746 Dyalog APL - Tutorial

Here are some of the choices available to us (for a full description, refer to the help):

Line style Thickness (weight) Markers

1 = Solid

2 = Dashed

3 = Dotted

4 = Dot-Dash

5 = Dash-Dot-Dot

6 = Invisible

Hairline

Fine

Medium

Broad

1 = ×

2 = +

3 = ⋄

4 = ∆

5 = ∳

…

10 = Small bullet

11 = Bullet

…

15 = Ball

… etc

We can use this information to write the following function:

 ∳ RPScat Data
[1] ch.SetHeading'Salary vs Age'
[2] ch.SetXCaption'Age'
[3] ch.SetYCaption'Salary'
[4] ch.SetKeyText 2008 2009
[5] ch.SetKeyStyle'Boxed,Shadow'
[6] ch.SetStyle'Grid'
[7] ch.SetGridLineStyle'Solid,Fine'
[8] ch.SetMarkers 15
[9] ch.Scatter Data
[10] PostScrp.View ch.Close
 ∳

 Chapter S – Publishing Tools 747

Let us test it: RPScat BHSalaries

Figure S-RP5: This is much better!

The youngest age is 20, and we didn't use "ForceZero", so the leftmost points are placed on

the vertical axis.

2.3.2 - Advanced Features

This is so encouraging that we shall immediately try to improve the diagram even further:

 First we shall draw a horizontal line to visualize the average salary. This is obtained by

SetYDatum (SetXDatum also exists) followed by the value at which the line is to be

drawn.

 The line will be defined to be Dashed, Medium weight, and we shall change its colour to

Lime.

 We would also like to show a "Least Squares line" for each year. This can be done by

appending the property "Model" to "SetStyle". There is nothing to calculate; RainPro

will do it for us! By default, RainPro executes a linear fitting, and draws a straight line,

but it is possible to fit the points by a polynomial (up to 4
th

 degree), using

SetOrderOfFit.

 We shall also force the colours to 2 (Green) and 9 (Red).

748 Dyalog APL - Tutorial

The modifications to our function are shown in black:

[6] ch.SetStyle'Grid,Model'
...
[9] ch.SetYDatum Average Data[;2]
[10] ch.SetDatumLineStyle'Dashed,Medium,Lime'
[11] ch.SetColors 2 9
[12] ch.Scatter Data

The result is really impressive … but some details are not correct. Can you see them?

Figure S-RP6: A not very readable result

The YDatum line is OK, and the two least square lines have been drawn OK too.

The first problem is that the two least squares lines cannot be identified because both are red

and all the markers are now green!

The second problem concerns the keys: the first one is good, but the second one shows a

dashed red line, like the least squares lines, instead of a red bullet.

The reason is that RainPro assigns colours cyclically to the objects it draws, so it painted 2008

markers in green, the first fit line in red, 2009 markers in green, and the second fit line in red.

Instead of 2 9, we should have defined our colours like this: 2 2 9 9.

 Chapter S – Publishing Tools 749

Similarly, RainPro assigns the symbols used to draw the objects to the associated keys, so it

allocated a bullet, a dashed line, a second bullet, and a second dashed line to the four objects.

To neutralise the second symbol, instead of 2008 2009, we should rather write 2008 ⍬
2009. We could also write '2008,,2009': the double comma meaning that no legend will

be assigned to the second object.

The final function is the following; you can try it, it works perfectly now.

 ∳ RPScat Data;Sink
[1] ch.SetHeading'Scattered points'
[2] ch.SetXCaption'Age'
[3] ch.SetYCaption'Salary'
[4] ch.SetKeyText 2008 ⍬ 2009
[5] ch.SetKeyStyle'Boxed,Shadow'
[6] ch.SetStyle'Grid,Model'
[7] ch.SetGridLineStyle'Solid,Fine'
[8] ch.SetMarkers 15
[9] ch.SetYDatum Average Data[;2]
[10] ch.SetDatumLineStyle'Dashed,Medium,Lime'
[11] ch.SetColors 2 2 9 9
[12] ch.Scatter Data
[13] PostScrp.View ch.Close
 ∳

Figure S-RP7: The final result

750 Dyalog APL - Tutorial

If you want to learn more about this type of chart, take a look at these two interesting demo

functions contained in RainPro:

 Scatter

 Cloud

2.4 Min-Max Vertical Lines

2.4.1 - First Draft

Believe it or not: "Blue Hammer, Inc." is listed on the famous New York Stock Exchange!

We have stored the last 60 quotations in the three columns of a matrix named BHStock, and

we would like to represent, day by day, the minimum, closing, and maximum quotation. This

is a very classic chart.

This can be achieved by the functions Vline (for the Min-Max line) and Scatter for the

closing quotation. Let us add some other features that we have not seen before:

 The chart will be drawn on a coloured background, just to see "La vie en rose". The colour

can be defined as RGB values, using a hexadecimal representation prefixed by a hash.

 Because we draw a grid, the ticks normally placed on the axes are less useful: let us

remove them using the option "NoTick".

Our first draft could be:

 ∳ RPLines Values;avglong;avgshort;Price
[1] Price←Values[;2] The closing price
[2] ch.SetBackground'#FFF0F4' Light Pink (nearly white on the screen)
[3] ch.SetStyle'Grid,Notick'
[4] ch.Vline Values[;1 3] Minimum / Maximum
[5] ch.SetMarkers 14
[6] ch.Scatter Price
[7] PostScrp.View ch.Close
 ∳

We can try it: RPLines BHStock

 Chapter S – Publishing Tools 751

Figure S-RP8: NYSE in rose

2.4.2 - Moving Averages

Traders generally love moving averages! However, in order to represent both data points and

the moving average on the same chart the series must have the same lengths. Here is a

function that meets this requirement:

 ∳ R←Step MovAvg Vec;vi
[1] R←⍬
[2] :For vi :In ∯Step-1
[3] R,←{(+/∱)÷∰∱}vi↑Vec
[4] :EndFor
[5] R,←(Step+/Vec)÷Step
 ∳

For the Step-1 first values the function calculates plain averages, and from the next value it

calculates moving averages using N-wise reduction.

We will calculate a 3-day and a 15-day moving average, and place them in the chart using the

function Plot, like this (we removed the pink background):

752 Dyalog APL - Tutorial

 ∳ RPLines Values;avglong;avgshort;Price
[1] Price←Values[;2]
[2] ch.SetStyle'Grid,Notick'
[3] ch.Vline Values[;1 3]
[4] ch.SetMarkers 14
[5] ch.Scatter Price
[6] avgshort←3 MovAvg Price
[7] avglong←15 MovAvg Price
[8] ch.SetLines'solid'
[9] ch.SetColors'Red,Green'
[10] ch.Plot(∯∰Price),avgshort,[1.5]avglong
[11] PostScrp.View ch.Close
 ∳

Figure S-RP9

We could have added titles and keys, but you should now be familiar with that.

If you want to learn more about this kind of graph, execute: Temp 2 in the RainPro

workspace.

 Chapter S – Publishing Tools 753

2.5 Polar Representations

Blue Hammer, Inc. intends to hire a new marketing director, and before the final decision, the

Human Resources manager submits a personality test to the lady who applies for the position.

The test result is a list of scores from 0 to 100 for 7 criteria like Creativity, Strategy,

Organisation, and so on. The scores are given in both a professional context and a private

context.

The labels of the 7 criteria are stored in PersoAxis

The result of the test is given in BHPerso

The first 10 statements in the following function are very similar to those that we have seen

before, and the final representation is produced by the function Polar:

 ∳ Name RPPolar Values
[1] ch.SetHeading'Personnality analysis'
[2] ch.SetSubhead Name
[3] ch.SetXLabels PersoAxis
[4] ch.SetMarginTop 80
[5] ch.SetKeyText'Professional,Personnal'
[6] ch.SetKeyStyle'Boxed,shadow'
[7] ch.SetStyle'Grid,ForceZero,Boxed,Markers'
[8] ch.SetMarkers 11
[9] ch.SetLines'Solid'
[10] ch.SetColors'Green,Red'
[11] ch.Polar Values
[12] PostScrp.View ch.Close
 ∳

Our function takes the candidate's name as its left argument, and her results as its right

argument:

 'Carolyn Rumweiss' RPPolar BHPerso

754 Dyalog APL - Tutorial

Figure S-RP10

There are a lot of possible uses of polar representation. You can take a look at the following

demonstration functions in the RainPro workspace:

Polar (excellent)

Ammonite

2.6 Multiple Charts

It is possible to draw several graphs in a single chart. Here is a commented example inspired

by the demo function Sample.

We shall draw a line and a pie chart.

 Chapter S – Publishing Tools 755

Figure S-RP11

 ∳ RPMulti ;font;box
[1] ch.SetHeading'Collection of Charts'
[2] ch.SetHeadingStyle'Left'
[3] ch.Nul
[4] ⍝---- Line graph
[5] ch.New 5 5 200 280
[6] ch.SetHeading'Line Graph using "Plot"'
[7] ch.SetHeadingFont font←'AR,9,Green'
[8] ch.SetStyle'XYPlot'
[9] ch.SetFrameStyle box←'Boxed,Shadowed,Rounded'
[10] ch.Plot BHBump
[11] ⍝---- PieChart
[12] ch.New 201 5 510 320
[13] ch.SetHeading'World Sales using "Pie"'
[14] ch.SetHeadingFont font
[15] ch.SetXLabels∸Towns
[16] ch.SetPieExplosion 0 0 0 20
[17] ch.SetColors'Aqua,Lime,Navy,Yellow,Red,Gray'
[18] ch.SetFillStyles 6
[19] ch.SetFrameStyle box
[20] ch.Pie 12 11 20 9 5 17
[21] PostScrp.View ch.Close
 ∳

756 Dyalog APL - Tutorial

Line Comment

[1-2] Nothing new, except that we place the general heading on the left.

[3] When two or more charts share the same screen and the same heading, it is

necessary to draw the title before defining any drawing regions, using Nul.

[5] Then we must define the next plotting region that we will use.

It is delimited by the (x,y) coordinates of its bottom-left and top-right corners.

[6-7] Nothing new. We place a first heading for the leftmost chart, and assign the font

definition to a variable, so that we can re-use it later.

[8] This definition says that we will draw segments between successive (x,y) points.

[9] The chart will be boxed, but with rounded corners and a drop shadow.

[10] Plot a line using the global variable BHBump.

[12] Define a second plotting region next to the first one, but slightly higher.

[13-14] Place the second heading, using the font defined in [7].

[15] Use the variable Towns to place labels. The matrix must be split.

[16] One segment will be slightly offset from the pie. The distance is given in per cent

of the pie radius. The vector will automatically be extended to match the number of

segments.

[17-18] Define non-standard colours, and use the same Fill Style as for the bar chart.

[19] Use the same box as in [9].

[20-21] Draw some random values, and view the result.

2.7 There is Much More To Explore!

We have not seen all the features of this fantastic tool. We encourage you to explore at least

the following topics.

About pie charts .. Rose

 PieMarkers

About multiple charts in a single picture MultiTrellis

 PYGS

About representation of axes ... Axes

 MultiSec

For 3-D demos, run the examples listed by Perspectives

757

 Chapter X: Solutions

The solutions we propose in the following pages are not necessarily the "best" ones; perhaps

you will find other solutions that we have never considered. APL is a very rich language, and

due to the general nature of its primitive functions and operators there are always plenty of

different ways to express different solutions to a given problem. Which one is "the best"

depends on many things, for example the level of experience of the programmer, the

importance of system performance, the required behaviour in border cases, the requirement to

meet programming standards, and also personal preferences. This is one of the reasons why

APL is so pleasant to teach and to learn!

Chapter B

B-1 For the moment we have only one method: 1∰S

A scalar has an empty shape, so we can create one like this: ⍬∰V

B-2 If X were numeric, its shape would be 4, so it is a text vector '2 15 8 3'

B-3 THE CAT, of course!

B-4 The values to replace are the entire 1
st
 and 5

th
 columns.

Tab[1 2;1 5]← 21 45 78 11 would cause a RANK ERROR, because it is an attempt to

replace a 2 by 2 matrix with a vector.

The right solution is: Tab[1 2;1 5]←2 2∰21 45 78 11

Since we are replacing the entire columns

we can also do the replacement like this: Tab[;1 5]←2 2∰21 45 78 11

B-5 X ← 1 2 9 11 3 7 8

 X[3 5] ← X[4 1] Item 4 (11) is copied to item 3,

 X and item 1 (1) is copied to item 5.
1 2 11 11 1 7 8

 X[4 6] ← X[6 4] Items 4 and 6 are swapped
 X
1 2 11 7 1 11 8

758 Dyalog APL - Tutorial

B-6 To solve this, just notice that the 3
rd

 item is 8, the 1
st
 is 11, the 6

th
 is 3, and so on.

The final value is: 11 2 8 15 9 3

B-7 Find where the values appear in Vec: 6 3 2 10 8 5

B-8 The shape of the result of indexing a vector is always equal to the shape of the index. Hence

the shape of Result is equal to the shape of Set (3 3).

 You must first calculate the value of Set: 4 3 6
 9 1 5
 7 3 4

Then replace each item of Set by the corresponding item of Source:

For example, in the first row, 4 is replaced by the 4th item (3), 3 is 3 13 0
replaced by the 3rd item (13), 6 is replaced by the 6th item (0), and so on, 2 10 9
giving this result: 7 13 3

B-9 There is no difference. Both are 3-item simple character vectors.

B-10 V3 is a 6-item vector. Some items are numeric, some are characters; it is a Mixed vector.

V4 is a 4-item vector. It is a Nested array, since the 3
rd

 item is an enclosed character vector.

B-11 Replacing Two (not 'Two') by 2, one obtains: 2 2∰2 2 '∰' 'Two'

And the result is a nested 2 by 2 matrix: 2 2
 ∰ Two

Chapter C

C-1 Copy each expression to the APL session and execute them. If you are surprised by an answer,

analyze the expression step by step, starting from the right. For example, for the first

expression: 3×26, 6≠60, 2+02, 3×26. You should find:

6
12 6 1
5 5 6
7 ¯3 6
42
⍬ (a scalar has an empty shape)

 Chapter X - Solutions 759

C-2 4 4
6 6
4 6
2 4 4

C-3 1+∰A is equivalent to: 1+(∰A) the result is 5
∰A+1 is equivalent to: ∰(A+1) the result is 4
1+∯∰A is equivalent to: 1+(∯(∰A)) the result is 2 3 4 5
∯¯1+∰A is equivalent to: ∯(¯1+(∰A)) the result is 1 2 3
∯∰A-1 is equivalent to: ∯(∰(A-1)) the result is 1 2 3 4

C-4 3⌈¯1+∯4 the result is 3 3 3 3
7⌊3⌈∯9 the result is 3 3 3 4 5 6 7 7 7

1+5∲1 4 3 2 5=∯5 the result is 6 1 6 1 6

C-5 0=∰∰A

C-6 3+4∲A≥B

C-7 (A≠0)∰3∲B≠0

C-8 ∧ can be replaced by × or ⌊

∨ can be replaced by ⌈

C-9 a) 1 1 1 0 1 1 e) 1 0 1 0 0 1
b) 0 1 0 1 1 1 f) 0 0 0 1 0 0
c) 0 0 0 0 1 0 g) 0 0 1 0 1 0
d) 0 0 0 0 1 0 h) 1 0 0 1 1 0

C-10 a) 1
b) 1 0 0 1 0
c) 1 1
d) 2 1

C-11 +/Tex='e' returns 5

760 Dyalog APL - Tutorial

C-12 The last test shows that Z is a 4 by 1 matrix. Its first 3 items are 1, 7 and 9, and because the

sum is 20, the last item must be 3. We can create Z like this:

Z←4 1∰1 7 9 3

C-13 8 0 7 5
0 7 ¯1 0

C-14 (Tex='e')/∯∰Tex

C-15 ((∰Vec)∰1 0)/Vec

C-16 ∰,Prod or ∲/∰Prod

C-17 ((Vec≥20)∧Vec<30)/Vec

C-18 Vec←20⌈Vec⌊30

C-19 a) 3+(5-(6+2)×4 There are unbalanced parentheses.

b) 121÷(∯4)-3 The 3
rd

 item of (∯4)-3 is zero, and a division by zero is

 usually not accepted (see C-Spe-1).
c) (¯X+5)*2 The high minus sign cannot be attached to a name

 ¯9 or -X would be valid; ¯X is invalid.
d) ∰4 5 6+2 3-1 One cannot add a 2-item vector to a 3-item vector
e) ∯4 0 ¯4+2 0 1 The argument to Iota cannot be negative.

C-20 12+11∲∯17

C-21 First we must separate the codes from the quantities: M←((0.5∲∰Wanabuy),2)∰Wanabuy
Then search the products bought in the list of codes: Pos←PCodes∯M[;1]
And finally multiply prices by quantities and add: +/Prices[Pos]×M[;2]

C-22 a) Tickets~Sold
b) ∨/~Winners∮Sold or 0≠∰Winners~Sold
c) +/Ours∮Winners or +/Winners∮Ours The result is the same
d) +/(Winners∮Ours)/Prizes

 Chapter X - Solutions 761

In d) it is important to use (Winners∮Ours) rather than (Ours∮Winners), because the

items of Winners correspond one-to-one to the items of Prizes, but the items of Ours have

no relation to the items of Prizes.

C-23 (0=(∯N)|N)/∯N

Chapter D

D-1 ∳ Z←X Extract Y
[1] Z←Y[∯X⌊∰Y]
 ∳

D-2 ∳ Z←X Ignore Y
[1] Z←Y[(X⌊∰Y)+∯0⌈(∰Y)-X]
 ∳

D-3 ∳ Z←Reverse Y
[1] Z←Y[1+(∰Y)-∯∰Y]
 ∳

D-4 ∳ Z←Totalise Y;sum
[1] sum←+/[2]Y
[2] Z←Y,[2]sum
[3] sum←+/[1]Z
[4] Z←Z,[1]sum
 ∳

D-5 ∳ Z←Lengths Y;pos
[1] pos←(Y=' ')/∯∰Y Positions of the blanks

[2] Z←(pos,1+∰Y)-(0,pos) Shift them and subtract
[3] Z←Z-1 The blanks must not be counted
 ∳

D-6 ∳ Z←X To Y;start
[1] start←X-1
[2] Z←start+∯Y-start
 ∳

762 Dyalog APL - Tutorial

D-7 ∳ Z←Frame Y;nr;nc
[1] Z←'-',[1]Y,[1]'-'
[2] Z←'|',[2]Z,[2]'|'
[3] nr nc←∰Z Number of rows, number of columns

[4] Z[1,nr;1,nc]←'+' Second step
 ∳

You can obtain line drawing characters by pressing the Ctrl key in conjunction with the

numeric keypad (Dyalog APL Classic Edition), or using ⎕UCS (Unicode Edition). The

horizontal and vertical lines are ⎕UCS 9472 9474 and the four corners are ⎕UCS 9484
9488 9492 9496:

 ∳ Z←Frame2 Y;nr;nc
[1] Z←(⎕UCS 9472),[1]Y,[1]⎕UCS 9472
[2] Z←(⎕UCS 9474),[2]Z,[2]⎕UCS 9474
[3] nr nc←∰Z

[4] Z[1,nr;1,nc]←2 2∰⎕UCS 9484 9488 9492 9496
 ∳

Note that it is necessary to arrange the corners in a 2 by 2 matrix.

D-8 The functions shown in D-7 above do not accept vectors because the second instruction tries

to work on the second dimension of Z, and a vector has only one dimension. The solution is to

transform the argument into a matrix. If it is a matrix, it should remain unchanged; if it is a

vector, it should be transformed in a one-row matrix. There is a very simple solution using a

function we have not explored yet, but we can achieve the same result as indicated in the first

3 instructions of the final function:

 ∳ Z←Frame Y;nr;nc;rank;shape
[1] rank←∰∰Y The rank of Y
[2] shape←(1 1,∰Y)[rank+1 2] Calculate the new shape
[3] Z←shape∰Y Reshape Y into a matrix
[4] Z←(⎕UCS 9472),[1]Z,[1]⎕UCS 9472
[5] Z←(⎕UCS 9474),[2]Z,[2]⎕UCS 9474
[6] nr nc←∰Z
[7] Z[1 nr;1 nc]←2 2∰⎕UCS 9484 9488 9492 9496
 ∳

D-9 ∳ Y←X Switch1 Y;pos
[1] pos←(Y=X[1])/∯∰Y The positions of the first character

[2] Y[pos]←X[2] Replace by the second character

 ∳

Note that the right argument and the result have the same name.

 Chapter X - Solutions 763

D-10 The "traditional" solution is very similar to Switch1 shown in D-9 above:

 ∳ Y←X Switch2 Y;pos1;pos2
[1] pos1←(Y=X[1])/∯∰Y
[2] pos2←(Y=X[2])/∯∰Y
[3] Y[pos1]←X[2]
[4] Y[pos2]←X[1]
 ∳

However, there is a more elegant solution that uses the Index Of function:

 ∳ Z←X Switch3 Y;pos This solution uses the technique we used
[1] pos←(X,Y)∯Y in Chapter C, Section 12.2, to convert
[2] Z←(X[2 1],Y)[pos] lower-case characters to upper-case.
 ∳

D-11 MaxPlace←{
[1] max←⌈/v←,∱
[2] pos←v∯max
[3] width←(∰∱)[2]
[4] row←⍃⌈pos÷width
[5] col←⍃1+width|pos-1
[6] 'Greatest value: ',(⍃max),', in row ',row,', column ',col
[7] }

D-12 To convert a temperature T, one can apply the formula: a+b×(T-c) in which the coefficients

a b c have the following values:

 For F to C 0 (5÷9) 32

 For C to F 32 1.8 0

Then, the function is easy to write:

 ∳ Z←X Convert Y;coefs;used
[1] coefs← 2 3∰0,(5÷9),32 32 1.8 0 Create a matrix of coefficients
[2] used←coefs[1+'C'=Y[1];] Select the right row
[3] Z←used[1]+used[2]×X-used[3] Apply the formula
 ∳

D-13 ∳ Z←LoopSum Y;n
[1] Z←0 Initialise the final sum to zero
[2] :For n :In Y Take the values one after the other
[3] Z←Z+n Add them to the sum
[4] :EndFor
 ∳

764 Dyalog APL - Tutorial

D-14 ∳ Z←ReverLoop vec;letter
[1] Z←''
[2] :For letter :In vec
[3] Z←letter,Z
[4] :EndFor
 ∳

D-15 ∳ Z←X SubSum Y;row;col;slices
[1] row col←∰Y Number of rows; number of columns
[2] slices←col÷X Number of slices
[3] Z←((row∲slices),X)∰Y Move the slices one under the other
[4] Z←Z,+/Z Catenate the sums
[5] Z←(row,col+slices)∰Z Move back the slices
 ∳

D-16 ∳ Z←X Sorry Y;index;max;num;pos;prev;sep;slice;tail;width
[1] pos←(X=Y,X)/∯1+∰Y Positions of separators
[2] tail←(width←∰Y)∰' '
[3] Z←(0,width)∰''
[4] prev←max←0 Position of previous separator

[5] :For sep :In pos Current separator

[6] num←sep-prev+1 Number of elements to take

[7] index←prev+∯num Index of those elements

[8] slice←Y[index]
[9] prev←sep
[10] max←max⌈num The longest piece found so far
[11] Z←Z,[1](slice,tail)[∯width]
[12] :EndFor
[13] Z←Z[;∯max] Truncate Z
 ∳

D-17 ∳ Y←Syracuse2 Y;Last;Next
[1] Y←,Y
[2] :While 1<Last←Y[∰Y] This is an example of simple solution
[3] :If 0=2|Last with a loop
[4] Y←Y,Last÷2
[5] :Else
[6] Y←Y,1+3∲Last
[7] :EndIf
[8] :EndWhile
 ∳

 Chapter X - Solutions 765

There is also a recursive version:

 ∳ Y←Syracuse1 Y;Last;Next
[1] Y←,Y
[2] →(1=Last←Y[∰Y])/0
[3] :If 0=2|Last
[4] Next←Last÷2
[5] :Else
[6] Next←1+3∲Last
[7] :End
[8] Y←Syracuse1 Y,Next
 ∳

Chapter G

G-1 Using only Take: 2 ¯3↑XG1 ¯2 4↑XG1 3 ¯3↑3 4↑XG1

Using only Drop: ¯1 2∸XG1 1 ¯1↑XG1 1∸[2]¯1∸[2]XG1

G-2 (1+∰XG1)↑XG1

G-3 With a Direct function: ShowVowels←{∱,[0.5]' ↑'[1+∱∮'aeiouy']}

With a Procedural function: ∳ Z←ShowVowels Y;index
 [1] index←1+Y∮'aeiouy'
 [2] Z←Y,[0.5]' ↑'[index]
 ∳

G-4 ∳ Z←Contraction Y;dim
[1] dim←∰Y
[2] Y←,Y
[3] Z←dim,(Y≠0)/Y,[0.5]∯∰Y
 ∳

 ∳ Z←Restore Y;dim
[1] Z←(∲/dim←Y[;1])∰0
[2] Y←0 1∸Y
[3] Z[Y[2;]]←Y[1;]
[4] Z←dim∰Z
 ∳

766 Dyalog APL - Tutorial

G-5 ∳ Y←X Whiten1 Y;u A traditional solution not using Expand.
[1] ((Y∮X)/Y)←' '
 ∳

 ∳ Z←X Whiten2 Y;bin
[1] bin←~Y∮X
[2] Z←bin\bin/Y A solution using Compress and Expand
 ∳

G-6 ∳ R←X Ontop Y;width;nb;title
[1] width←¯1↑∰Y←⍃Y
[2] nb←0⌈⌈0.5×width-∰X
[3] title←width↑(nb∰' '),X
[4] R←titleⓐ'-'ⓐY
 ∳

G-7 You found
the right
solution Of course!

G-8 ∳ R←X Free Y;dim;mat;bin
[1] dim←∰Y←,Y
[2] mat←(X,dim)∰Y Create a matrix by repeating the vector X times
[3] mat←(¯1+∯X)⌽mat Shift the rows with a Rotate function
[4] bin←(dim-X)↑∨⌿mat An all-zero column contains the wanted series
[5] R←bin∯0 We look for the first one
[6] R∲←R≤∰bin Return 0 if no zero-list was found
 ∳

G-9 ∳ R←X Split Y;Shape
[1] Shape←∰Y
[2] Shape←X,(⌈Shape[1]÷X),Shape[2]
[3] R←Shape∰((∲/2↑Shape),2∸Shape)↑Y
[4] Shape←∰R←2 1 3⍉R,' '
[5] Shape←Shape[1],∲/1∸Shape
[6] R←Shape∰R
 ∳

G-10 ∳ R←X Expand Y;bin1;bin2;pos
[1] bin1←X≠1∸X,0
[2] pos←bin1/∯∰bin1
[3] bin2←~(∯∰pos,X)∮pos+∯∰pos
[4] R←bin2⍀⍃X,' ',Y
 ∳

 Chapter X - Solutions 767

Chapter I

We will use a function named DISP to display the results It draws boxes around an array like

DISPLAY, but in a more compact form You can obtain it by:)Copy Util DISP

I-1 a) A B C × 1 2 3 ┌─────┬───────┬────────┐
 │1 2 3│8 10 12│21 24 27│ No surprise
 └─────┴───────┴────────┘

b) (10 20),A 10 20 1 2 3 This is a simple vector

c) (10 20),A B ┌──┬──┬─────┬─────┐
│10│20│1 2 3│4 5 6│ This one is nested
└──┴──┴─────┴─────┘

d) A B 2 × C[2] ┌───────┬────────┬──┐ The three items in A B 2 have

│8 16 24│32 40 48│16│ each been multiplied by 8
└───────┴────────┴──┘

e) 10×A 20×B LENGTH ERROR A 20 has 2 items, and B has

three!

I-2 a) +/A B C ┌────────────┐ This is not a vector, but an

 │ ┌→───────┐ │ enclosed vector, cf. Section 4.4.1.
 │ │12 15 18│ │ We used DISPLAY, as DISP
 │ └~───────┘ │ would show the difference.
 └∮───────────┘

b) +/¨A B C 6 15 24 This is a simple vector

c) 1 0 1/¨A B C ┌→────────────────────┐ For this example DISP would

│ ┌→────┐ ┌⍁┐ ┌→────┐ │ give a misleading representation.
│ │1 2 3│ │0│ │7 8 9│ │ This is why we used DISPLAY.
│ └~────┘ └~┘ └~────┘ │ Take a look at Section I-3.2 if you
└∮────────────────────┘ need help to interpret the result.

d) (A B C)∯(4 5 6) 4 4 4

e) 1 10 3 ∮ A 1 0 1

f) (⊂1 0 1)/¨A B C ┌───┬───┬───┐
│1 3│4 6│7 9│ See Section I-3.2.
└───┴───┴───┘

g) 1 10 3 ∮ A B C 0 0 0

768 Dyalog APL - Tutorial

I-3 +/NA is equivalent to ⊂ 1 + 2 + (2 2∰3 4 5 6) + 7 + 8

The result will be: ┌─────────┐
│ ┌→────┐ │ Don't forget: the reduction of a
│ ∸21 22│ │ vector always returns a scalar.
│ │23 24│ │ In this case it is an enclosed
│ └~────┘ │ matrix.
└∮────────┘

,/NA is equivalent at 1 , 2 , (2 2∰3 4 5 6) , 7 , 8

The result will be: ┌─────────────┐
│ ┌→────────┐ │ Start from the right, and execute
│ ∸1 2 3 4 7│ │ only one catenation at a time.
│ │1 2 5 6 8│ │
│ └~────────┘ │
└∮────────────┘

I-4 We shall create a partition vector by comparing each code to the next one. The value of ¯1

(negative one) placed at the beginning creates a leading 1:

 ⎕←bin←I4Ref ≠ ¯1,¯1∸I4Ref
1 0 1 0 0 0 0 1 1 0 0 1 0

This vector will be used to break the vector into five blocks. Then a total can be made inside

each block:

 +/¨ bin ⊂ I4Qty
13 39 10 152 19

I-5 A simple Index Of will suffice: (∸I5Big)∯(∸I5Small)

I-6 I6Text[⊃,/I6Start+⊂¯1+∯5] or I6Text[,I6Start∬.+¯1+∯5]

I-7 I6Text[¯1+⊃,/I6Start+∯¨I6Long]

Chapter J

J-1 This requires several steps. First, the function header will dispatch the argument into 3

variables:

 ∳ R←StudRefund(Rates Categories Expenses)

The new rates are obtained by subtracting each column from the column on its left. The first

row (the limits) is dropped:

 newrates←1∸[1]0.01∲Rates-1∸[2]Rates,0

 Chapter X - Solutions 769

An outer product compares the expenses to the three given limits, like in Section J-4.3.3:

 limexp←Expenses∬.⌊Rates[1;]

This matrix can be multiplied by the new rates corresponding to the students' categories:

 refund←+/newrates[Categories;]∲limexp

The result is obtained by placing three vectors side by side. Here is the final function:

 ∳ R←StudRefund(Rates Categories Expenses);newrates;limexp;refund
[1] newrates←1∸[1]0.01∲Rates-1∸[2]Rates,0
[2] limexp←Expenses∬.⌊Rates[1;]
[3] refund←+/limexp∲newrates[Categories;]
[4] R←Expenses,Categories,[1.5]refund
 ∳

J-2 a) ⌈/M 8 7 6
b) ⌊/+/M 16
c) ∲/⌊/[1]M 0
d) ∲/∰M 15

J-3 a) -\1 1 1 1 1 1 1 0 1 0 1 0
b) -\5 4 3 2 1 5 1 4 2 3
 This is equivalent to: 5,(5-4),(5-4-3),(5-4-3-2),(5-4-3-2-1)

c) ×/+\6∰1 720

J-4 a) ∧/ 1 1 1 0 1 1 0
b) ∧\ 1 1 1 0 1 1 1 1 1 0 0 0
c) =/ 0 1 1 1 0 1 1 1
d) =\ 0 1 1 1 0 1 1 0 0 0 0 1 1 1

J-5 Just divide each value by the preceding one:

 res←7 14 70 210 840
 res÷1,¯1∸res
7 2 5 3 4
 ×\7 2 5 3 4 Let us verify

7 14 70 210 840

J-6 +\N∰1

J-7 ∳ Z←Area Lengths;p
[1] p←0.5∲+/Lengths
[2] Z←(p∲.-0,Lengths)*0.5
 ∳

770 Dyalog APL - Tutorial

J-8 One can compare each value to all the other ones by this outer product: V∬.=V

The values are all different if the resulting binary matrix has only one 1 per row.

This can be verified like this: ∧/1=+/V∬.=V

It can also be written like this: 1∧.=+/V∬.=V

Using an Inner Product: (V∯V)∧.=∯∰V

J-9 This expression takes two contiguous letters and compares them, all along the text:

The result will be: 0 0 1 0 0 0 0 0 1 0 0 1 0

J-10 This can be solved using different techniques. In the first one, we compare the word and the

text using an Outer product. We obtain a Boolean matrix similar to the following one:

 Word∬.=Text
1 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 etc ...

We can see a diagonal of 1's (in black) where the word appears. This would be complex to

use: let us shift the rows of this matrix to place the 1's one under the other, using Rotate:

 0 1 2 ⌽ Word ∬.= Text
1 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 etc ...

Then it is really easy to find the positions of the word. This function can do it:

 ∳ R←X In1 Y;bin
[1] bin←X∬.=Y
[2] bin←(¯1+∯∰X)⌽bin
[3] R←(∧⌿bin)/∯∰Y
 ∳

In this first solution, we used an Outer product; let us demonstrate a different solution using

an Inner product:

 ∳ R←X In2 Y;bin;mat
[1] mat←((∰X),1+∰Y)∰Y Shift the letters

[2] mat←¯1∸[2]mat Drop the last column
[3] bin←X∧.=mat Find the word as we did in Section J-5.3.3
[4] R←bin/∯∰bin Find the position(s)
 ∳

The first instruction repeats the text on several lines, but shifted one character left each time:

CAN YOU CANCEL MY FLIGHT ON AIR CANADA?C
AN YOU CANCEL MY FLIGHT ON AIR CANADA?CA
N YOU CANCEL MY FLIGHT ON AIR CANADA?CAN

 Chapter X - Solutions 771

Once the extra column on the right has been dropped, a simple inner product returns a

Boolean vector, easy to process in a function like the one shown above.

J-11 As the first step, we must obtain the possible values for each argument, and sort them. After

this, two Outer products produce two Boolean matrices. They can be combined using an Inner

product.

 ∳ R←X CrossCount2 Y;ux;uy;binx;biny
[1] ux←∪X ⋄ ux←ux[⍋ux]
[2] uy←∪Y ⋄ uy←uy[⍋uy]
[3] binx←ux∬.=X
[4] biny←Y∬.=uy
[5] R←binx+.∧biny
[6] R←(' ',uy)ⓐux,R This is to add legends

 ∳

Chapter K

K-1 n ∫ 12 34 60 77 19 is equivalent at: n n n n n n ∫ 12 34 60 77 19 whatever the

value of n. If you refer to Section 2.1.3, you can calculate the Weights used in the conversion:

⌽1,×\⌽1∸ 0 0 0 0 0 will result in: 0 0 0 0 1

⌽1,×\⌽1∸ 1 1 1 1 1 will result in: 1 1 1 1 1

In the first case, 4 values are multiplied by zero, the last by 1. The result is: ¯1↑Vector

In the second case, the values are multiplied by 1 and added. The result is: +/Vector

K-2 ∳ Z←H2D Y;dec;mat
[1] mat←↑Y
[2] dec←'0123456789ABCDEF'∯mat
[3] Z←16∫⍉dec-1
 ∳

 ∳ Z←D2H Y;hex
[1] hex←⍉(4∰16)∴Y
[2] Z←∸'0123456789ABCDEF'[hex+1]
 ∳

K-3 a) 7+12?23
b) 36+?4 6∰11
c) ¯6+5 2∰10?11

K-4 0.0001∲99+?15∰801

772 Dyalog APL - Tutorial

K-5 This expression returns a vector with a length in the range 11-20.

It contains integers in the same range, with possible duplicates.

K-6 List[5?∰List]

K-7 2+?(5+?11)∰38

K-8 (x*P)-.÷[P←2∲0,∯N

K-9 a) (1ⓑⓑ÷4)*2 is the square of (sin π/4) 0.5

b) 2∲0.5+¯2ⓑ1ⓑ0.5 is 2×0.5+(arccos sin 1/2) 3.141592654

K-10 5 ¯7 2⍂3 3∰1 ¯1 0 0 1 ¯2 ¯1 0 1
¯2 ¯7 ¯1.837075273E¯15

The last value should be zero (but isn't exactly due to the limited numeric precision of the

representation of fractional numbers): ¯2 ¯7 0

K-11 We must first solve the equations:

 ⎕←abc←13 ¯6 10⍂3 3∰1 ¯1 3 ¯2 4 0 1 ¯2 2
2 ¯0.5 3.5

Then we can use the coefficients as shown in Section K-5.4.2

 3 5 ¯1+.×abc
¯1.865174681E¯14 This should also be 0

773

Appendices

Appendix 1 : Scalar Functions

Function Monadic Dyadic Function

Identity + B A + B Add

Negative - B A - B Subtract

Signum × B A × B Multiply

Reciprocal (inverse) ÷ B A ÷ B Divide

Magnitude | B A | B Residue

Floor ⌊ B A ⌊ B Minimum

Ceiling ⌈ B A ⌈ B Maximum

Exponential * B A * B Power

Natural Logarithm ⍟ B A ⍟ B Logarithm

Pi Times ⓑ B A ⓑ B Trigonometry

Factorial ! B A ! B Binomial

Not ~ B Not a scalar function

Roll ? B Not a scalar function

Type ∮ B Not a scalar function

 A ∧ B And / LCM

 A ∨ B Or / GCD

 A ∶ B Nand (Not-And)

 A ∷ B Nor (Not-Or)

 A < B Less

 A ≤ B Less or equal

 A = B Equal

 A ≥ B Greater or equal

 A > B Greater

 A ≠ B Not Equal / Xor

774 Dyalog APL - Tutorial

Appendix 2 : Invoking the Editor

The editor provided with Dyalog APL can be invoked by a double-clicking the name of an

existing object. Then the editor knows the object type, and adapts its behaviour accordingly.

The system command)ED opens the editor to create a new object. By default a new function

is created.

A prefix can be used to specify the type of the new object, according to the following table:

Prefix Example Object Created

none

∳

-

→

∮

⍟

ⓑ

∬

)ed new

)ed ∳ borscht

)ed - papyrus

)ed → crouton

)ed ∮ grunt

)ed ⍟ ns

)ed ⓑ myclass

)ed ∬ bridge

Function

Function

Simple character matrix

Simple character vector

Nested vector of character vectors

Namespace script

Class script

Interface script

It is possible to open several edit windows using a single command. For example:

)ed Tyrex -Moose

This command will open two edit windows. The first to create or edit a function named

Tyrex, and the second to create a character matrix named Moose.

If a prefix is specified for the name of an already existing object, the prefix is ignored.

 Appendices 775

Appendix 3 : Selective Assignment

Selective assignment cannot be applied to every primitive function; only the following

selection functions may be used. When appropriate, the functions can be used with an Axis

specification.

Function Name Example

∰

/ and ⌿

↑

∸

,

⌽ and ⍁

⍉

⊃

\ and ⍀

⌷

Reshape

Compress / Replicate

Take

Drop

Ravel

Reverse, Rotate (monadic & dyadic)

Transpose (monadic and dyadic)

Disclose, Pick

Expand

Index

(6∰Mat) ← Vec

(bin/Vec1) ← Vec2

(2 2↑Mat) ← 2 2∰∯4

(5∸Vec1) ← Vec2

(,Mat) ← Vec

(⌽Vec1) ← 20↑Vec2

(⍉Mat1) ← Mat2

(((2 3)(4 1))⊃Nest) ← 'APL'

(bin\Vec1) ← Vec2

(3 2⌷Mat) ← 0

In the examples above:

 Vec, Vec1, Vec2 represent vectors

 Mat, Mat1, Mat2 represent matrices

 bin represents a Boolean vector

776 Dyalog APL - Tutorial

Appendix 4 : Dyalog APL Operators

The following table of primitive operators in Dyalog APL uses the following conventions:

 and represent functions: primitive, user defined, or derived from another operator.

 X and Y represent the left and right arguments of the derived function, respectively.

 Fun represents a function.

 n is a numeric array used as argument to Axis, Compose, and Power.

 A distinction is made between the syntax of the operator itself, and the syntax of its

derived functions (a monadic operator can generate a dyadic derived function). The syntax

is indicated by M for Monadic and D for Dyadic.

Name
Syntax of
Operator

Derived
Function

Notation Example

Each M M ¨Y ∰¨Y
 D X ¨ Y 3↑¨Y
Reduce M M /Y or ⌿Y +/Y

Reduce n-Wise D X /Y or X ⌿Y 2+/Y

Axis (*) D M [n] Y ∸[1]Y

 D X [n] Y X,[1]Y

Scan M M \Y or ⍀Y ×\Y

Outer Product D D X ∬.Y X∬.<Y
Inner Product D D X .Y X+.×Y
Commute M M ⍨ Y ∰⍨Y
 D X ⍨ Y X/⍨Y
Compose form 1 D M ∬ Y ∰∬∰Y
 form 2 M n∬ Y 2 2∬∰¨Y

 form 3 M ∬n Y (*∬3)Y
 form 4 D X ∬ Y 3↑∬∰¨Y
Spawn M M & Y Fun&5
 D X & Y 2 Fun&5
Power D M ⍣n Y or ⍣ Y (Spin⍣3)M

 D X ⍣n Y or X⍣Y 1+∬÷⍣=1

(*) Strictly speaking, axis is not an operator, cf. Chapter J, Section 2-3.

 Appendices 777

Appendix 5 : Identity Items

Reducing an empty vector Y using any function (/Y) returns the identity item for the

function, if it is defined. Here is the list of the identity items in Dyalog APL:

 /⍬ Remarks

+ 0

× 1

- 0 Identity item on the right only

÷ 1 Identity item on the right only

* 1 Identity item on the right only

⌈ ¯1.7977E308 The smallest value supported by the system

⌊ 1.7977E308 The largest value supported by the system

∧ 1

∨ 0

< 0

≤ 1

= 1

≥ 1

> 0

≠ 0

∪ ⍬ or ''

| 0 Identity item on the left only

! 1 Identity item on the left only

∴ 0 Identity item on the left only

⌽ and ⍁ 0 Identity item on the left only

/ and ⌿ 1 Identity item on the left only

\ and ⍀ 1 Identity item on the left only

Functions that do not appear in this table will cause a DOMAIN ERROR if they are used to

reduce an empty vector.

778 Dyalog APL - Tutorial

Appendix 6 : Event Numbers

Event
Number

Event Message

0 Any event in the range 1-999

1

2

3

4

5

6

7

10

11

12

16

WS FULL

SYNTAX ERROR

INDEX ERROR

RANK ERROR

LENGTH ERROR

VALUE ERROR

FORMAT ERROR

LIMIT ERROR

DOMAIN ERROR

HOLD ERROR

NONCE ERROR

18

19

20

21

22

23

24

25

26

28

30

31

32

34

35

38

FILE TIE ERROR

FILE ACCESS ERROR

FILE INDEX

FILE FULL

FILE NAME ERROR

FILE DAMAGED

FILE TIED

FILE TIED REMOTELY

FILE SYSTEM ERROR

FILE SYSTEM NOT AVAILABLE

FILE SYSTEM TIES USED UP

FILE TIE QUOTA USED UP

FILE NAME QUOTA USED UP

FILE SYSTEM NO SPACE

FILE ACCESS ERROR - CONVERTING FILE

FILE COMPONENT DAMAGED

(Continued on the next page)

 Appendices 779

Event Numbers (continued)

Event
Number

Event Message

52

53

54

55

56

57

58

59

60

61

62

63

70

71

72

84

90

91

92

FIELD CONTENTS RANK ERROR

FIELD CONTENTS TOO MANY COLUMNS

FIELD POSITION ERROR

FIELD SIZE ERROR

FIELD CONTENTS/TYPE MISMATCH

FIELD TYPE/BEHAVIOUR UNRECOGNISED

FIELD ATTRIBUTES RANK ERROR

FIELD ATTRIBUTES LENGTH ERROR

FULL-SCREEN ERROR

KEY CODE UNRECOGNISED

KEY CODE RANK ERROR

KEY CODE TYPE ERROR

FORMAT FILE ACCESS ERROR

FORMAT FILE ERROR

NO PIPES

TRAP ERROR

EXCEPTION

EXTERNAL DLL EXCEPTION

TRANSLATION ERROR

200 - 499 Reserved for distributed auxiliary processors

500 - 999 User-defined events

1000 Any event in the range 1001-1006

1001

1002

1003

1005

1006

1007

Stop vector

Weak interrupt

INTERRUPT

EOF INTERRUPT

TIMEOUT

RESIZE

780 Dyalog APL - Tutorial

Appendix 7 : System Variables and Functions

ND Not documented in this tutorial

OOP Documented in Object Oriented Programming brochures

xxx Functions grouped and described in a same chapter

Symbol Description Pages

⎕A Upper-case Alphabet (from A to Z) 505

⎕AI Account Information 490

⎕ARBIN Arbitrary Input (obsolete) ND

⎕ARBOUT Arbitrary Output (obsolete) ND

⎕AT Function Attributes 498

⎕AV Atomic Vector (obsolete in the Unicode Edition) 433; 503; 573

⎕AVU Atomic Vector Unicode 503

⎕BASE Base Class Implementation OOP

⎕CLASS Reference to Classes or Interfaces OOP

⎕CLEAR Clear Workspace 480

⎕CMD Execute a DOS or UNIX command 507

⎕CR Canonical Representation 494

⎕CS Change Space 581; 585

⎕CT Comparison Tolerance 427; 501

⎕CY Copy a Workspace 479

⎕D Digits 505

⎕DF Display Form 591

⎕DIV Division Control 140

⎕DL Delay 503

⎕DM Diagnostic Message 241

⎕DQ DeQueue 612

⎕DR Data Representation 554

⎕ED Edit 160; 493

⎕EM Event Message 519

⎕EN Event Number 249; 519

 Appendices 781

Symbol Description Pages

⎕EX Expunge (Delete) 486

⎕EXCEPTION Most recent .Net exception OOP

⎕EXPORT Export a defined function or operator 601

⎕FIX Fix a class from a script 578; 588

⎕FMT Format 280

⎕FX Fix a function 496

⎕Fxxx Component file management 536; 547

⎕INSTANCES Current instances of a class OOP

⎕IO Index Origin 322; 426; 489

⎕KL Key Labels ND

⎕LC Line Counter 241

⎕LOAD Load a workspace 478

⎕LOCK Lock a function 497

⎕LX Latent eXpression 477

⎕MAP Associates a mapped file with an array ND

⎕ML Migration Level (IBM APL2 compatibility) 366; 372

⎕MONITOR Execution monitoring 514

⎕NA Name Association 675; 686

⎕NC Name Category of objects 208; 234; 485

⎕NEW Create a new instance of a class 296; 599; 677

⎕NL Name List 483; 597

⎕NQ En-Queue 640

⎕NR Nested Representation 494

⎕NS Create a Namespace 578; 592

⎕NSI Namespace Indicator 270

⎕NULL Null Item 505; 594; 681

⎕Nxxx Native file management 559

⎕OFF Quit APL 507

⎕OR Object Representation 495; 511

⎕PATH Namespace search path 586; 594

⎕PFKEY Define Programmable Function Keys 491

⎕PP Print Precision 83; 488

⎕PW Page Width 508

782 Dyalog APL - Tutorial

Symbol Description Pages

⎕REFS Cross References 498

⎕RL Random Link 466

⎕RTL Response Time Limit 513

⎕SAVE Save the active workspace 481; 510

⎕SE Session Namespace 594

⎕SH Execute a UNIX or DOS command 507

⎕SHADOW Shadow (localise) a name 230; 497

⎕SI State Indicator 241

⎕SIGNAL Signal an Event 530; 691

⎕SIZE Memory space occupied by an object 487

⎕SRC Returns the script used to define a class 602

⎕STACK SI Stack ND

⎕STATE State of an object ND

⎕STOP Set/Query breakpoints 265

⎕SVxxx Shared variable management ND

⎕Sxxx Screen management in character mode ND

⎕TC Terminal Control (obsolete) 504

⎕THIS Reference to the current namespace 581

⎕TRACE Set/Query trace points 265

⎕TRAP Trap Events 522; 530

⎕TS Time Stamp 488

⎕TSYNC Thread Synchronisation 418

⎕Txxx Multi-Threading management ND

⎕UCS Unicode Conversions 504

⎕USING .Net namespace search path 296

⎕VFI Verify and Fix Input 512

⎕VR Visual Representation (Vector Representation) 159; 218; 495

⎕WA Workspace Available 482

⎕WSID Set/Query the active workspace name 476

⎕WX Expose Windows object properties ND

⎕Wxxx Graphic User Interface (GUI) management 605

⎕XSI Extended State Indicator 269

⎕XT External variable query 566

 Appendices 783

Appendix 8 : System Commands

Some commands, explained in other specialised brochures, are not developped in this tutorial.

They are mentioned below just for information (empty cells).

Command Description Pages

)CLASSES Lists the APL classes in the active workspace.

)CLEAR Returns to an original empty workspace. 72 ; 480

)CMD Submits an operating system command; equivalent to)SH. See:)SH

)CONTINUE Saves the active workspace as CONTINUE and exits APL. 511

)COPY Copies all or selected objects from a saved workspace into the active workspace. 76; 479

)CS Changes Namespace. 581

)DROP Deletes a library workspace. 79

)ED Invokes the Editor. 154; 493

)ERASE Deletes objects from the active workspace. 72; 486; 509

)EVENTS Lists the events that the current GUI namespace may generate.

)FNS Lists global functions in the active workspace. 72; 482; 509

)HOLDS Lists the tokens acquired or requested by :Hold.

)INTERFACES List the currently active interfaces.

)LIB Lists saved workspaces. 73; 480

)LOAD Replace the active workspace by a saved workspace. 73; 478

)METHODS Lists the methods in the current namespace.

)NS Create a global namespace/ Query the name of the current namespace. 579

)OBS List the global namespaces in the active workspace. Synonym:)OBJECTS. 483; 579

)OFF Quit APL. 78; 507

)OPS Lists global operators in the active workspace. 482

)PCOPY Like)COPY, but does not overwrite existing objects. 76; 480

)PROPS Lists the properties of the current namespace.

)RESET Clears the execution stack. 249; 250

)SAVE Saves the active workspace to disk. 73; 481

)SH Submits an operating system command; equivalent to)CMD. 507

)SI State Indicator. 241

)SINL State Indicator with Name List. 269

)TID Switches to suspended thread, or lists the current thread number.

)VARS Lists global variables in the active workspace. 72; 482; 509

)WSID Query / Set the identity of the active workspace. 476

)XLOAD Load a workspace without executing its Latent Expression. 478

784 Dyalog APL - Tutorial

Appendix 9 : Symbolic Index

In the following table: X and Y represent the left and right arguments, respectively
 and represent any primitive, defined, or derived dyadic function

Symbol Description Pages

Functions

 + Y Identity 96

X + Y Plus 90

 - Y Negative 97

X - Y Subtract 90

 × Y Signum 97

X × Y Multiply 90

 ÷ Y Reciprocal (inverse) 97

X ÷ Y Divide 92

 * Y Exponential 97

X * Y Power 92

 ⌈ Y Ceiling (round-up) 98

X ⌈ Y Maximum 92

 ⌊ Y Floor (round down, truncate) 98

X ⌊ Y Minimum 92

 | Y Absolute value 98

X | Y Residue 94; 145

X < Y Less 93

X ≤ Y Less or Equal 93

X = Y Equal 93

X ≥ Y Greater or Equal 93

X > Y Greater 93

X ≠ Y Not Equal / Exclusive Or (XOR) 93; 100

 Appendices 785

Symbol Description Pages

 ∰ Y Shape of 50; 52

X ∰ Y Reshape 47; 86

 ~ Y Not 100

X ~ Y Without 102

 ∮ Y Type of / Enlist 357; 369

X ∮ Y Membership 99; 127

X ∨ Y Or / Greater Common Divisor 100; 106; 450

X ∧ Y And / Lower Common Multiple 100; 106; 451

X ≠ Y Exclusive Or (XOR) / Not Equal 93; 100

X ∷ Y Not-Or (Nor) 141

X ∶ Y Not-And (Nand) 141

 , Y Ravel 132; 143

X , Y Catenate/Laminate along the last axis 113; 305; 322

X ⓐ Y Catenate/Laminate along the first axis 117

X / Y Compress/Replicate along the last axis 120

X ⌿ Y Compress/Replicate along the first axis 121

 ∯ Y Index generator 125; 142

X ∯ Y Index Of 121; 127

 ⌷ Y Collection of objects 678

X ⌷ Y Index function (Squad) 62; 352

 ⍃ Y Format, default presentation 276

X ⍃ Y Format, specified presentation 277; 295

 ⍎ Y Execute 233; 273; 292

 ↑ Y Mix (nested arrays) 354; 356

X ↑ Y Take 299; 303

 ∸ Y Split (nested arrays) 354

X ∸ Y Drop 299; 303

X \ Y Expand along the last axis 310

X ⍀ Y Expand along the first axis 311

 ⌽ Y Reverse along the last axis 312

 ⍁ Y Reverse along the first axis 312

786 Dyalog APL - Tutorial

Symbol Description Pages

X ⌽ Y Rotate along the last axis 314

X ⍁ Y Rotate along the first axis 314

 ⍉ Y Transpose 312

X ⍉ Y Dyadic transpose 316; 322

 ⍋ Y Grade Up 431

X ⍋ Y Grade Up with explicit ordering 434

 ⍒ Y Grade Down 431

X ⍒ Y Grade Down with explicit ordering 434

X ⍷ Y Find 435

X ∫ Y Decode 436; 463

X ∴ Y Encode 436; 463

 ? Y Roll Random numbers with repetition 445; 466

X ? Y Deal Random numbers without repetition 445; 466

 ⍟ Y Natural logarithm 447

X ⍟ Y Base X logarithm 447

 ! Y Factorial / Gamma function 448; 468

X ! Y Binomial 448; 468

 ⓑ Y Y times Pi 449

X ⓑ Y Circular and Hyperbolic trigonometry 449

 ⍂ Y Domino: Matrix inverse 453; 468

X ⍂ Y Domino: Matrix divide 454; 468

X ∩ Y Set Intersection 451

 ∪ Y Unique 131

X ∪ Y Set Union 451

 ⊂ Y Enclose 332

X ⊂ Y Partition / Partitioned Enclose 365

 ⊃ Y Disclose / First 333; 357

X ⊃ Y Pick 361; 376

 ≡ Y Depth 339

X ≡ Y Match 341

X ≢ Y Natch (Not-Match) 341

 Appendices 787

Special syntax

Symbol Description Pages

) Prefix of System Commands 72; 518

() Force execution 53; 95

¯ Minus sign for negative numbers 43

'' Quotes, character constant delimiters 53

E Exponent indicator in number representation 83

⍬ Zilde; empty numeric vector 134

← Assignment arrow 44; 325

→ Branch arrow 186; 231

∭/∭∭ Left argument of a Direct function/Direct Operator 112; 421

∱/∱∱ Right argument of a Direct function/Direct Operator 112; 421

⍝ Comment sign (Lamp) 205

⋄ Diamond; statement separator 205

; Index separator or local name separator 59; 157

[] Indexing / Axis 56

{ } Curly braces; optional argument/result of a function 112

∳ Del (Carrot); function definition delimiter 159; 217; 695217

∆ _ ⍙ Allowed letters in names 45

: Control structure prefix / Label suffix 168; 186

⍞ Character input / Bare output 204; 235

⎕ Evaluated input / Session output 196; 203

⎕ Prefix of "distinguished" names (system fns and vars) 159; 474

The root namespace 604

788 Dyalog APL - Tutorial

Operators (see Appendix 4 for a more detailed description)

Symbol Description Pages

 / Y Reduce along the last axis 104; 424

 ⌿ Y Reduce along the first axis 111; 424

 X / Y n-Wise Reduce along the last axis 380

 X ⌿ Y n-Wise Reduce along the first axis 380

 \ Y Scan along the last axis 383

 ⍀ Y Scan along the first axis 383

[] Axis operator (*) 143; 382

∬. Outer product 386

. Inner product 394

¨ Each 342; 346

∬ Compose 410

⍨ Commute 414

⍣ Power operator 234; 415 ; 427

& Spawn operator 418

(*) Strictly speaking, axis is not an operator, cf. Chapter J, Section 2-3.

789

INDEX

This index contains only entries for the words used throughout the book.

For System Functions and Variables like ⎕TS or ⎕ML Refer to Appendix 7

For Commands like like)Save or)Load Refer to Appendix 8

For Symbols like ∰ or ⍂ Refer to Appendix 9

A

Absolute Value 98

Access Control Matrix 546

Account Information 490

Active Workspace 72

Alphabet & Digits 505

Ambivalent 148, 208

And (function) 100

AndIf (flow control) 170

APL Language Bar 34

APL-Excel Communication 198

Aplnid (user number) 540

Apostrophes 54

Area 406

Arguments 152

Arrays of Items 47

Arrays of Refs 592

Assignment Arrow 44

Associated Files 37

Atomic Vectors 503

Auto Complete 39

Axis Specification 109, 110, 114, 382

B

Banana 72

Bar Chart 390

Bar Charts (RainPro) 740

Bare Output (Quote-Quad) 235

Beta (function) 468

Binary Algebra 100

Binary Data 99

Binomial 448

Branch Arrow 167

Break Points 262, 265

Buffering Considerations 571

C

Call-Back Functions (GUI) 613

Canonical Representation 494

Can't Fix (error) 257

Carrot (or Del) Delimiter 159

Case / CaseList (flow control) 174

Catenate 113

Ceiling (round-up) 98

Change Space 581, 585

Character Arrays 53

Chipmunk Idiom 365

Circle (function) 449

Circular Trigonometry 449

Classic Edition 31, 433, 503

Code Points 504

Colon 193

Colon (prefix / suffix) 168, 181, 186

Colours (GUI) 633

Comma See Ravel or Catenate

790 Dyalog APL - Tutorial

Commands 71, 473

Comment / Uncomment Lines 224

Comments 205

Commute 414

Comparison Tolerance 501

Component Files 535

Component Information 540

Compose 410

Compression (Compress) 118, 345

Concatenation (Concatenate) 113

Configurate the Tracer 242, 261

Continue (flow control) 181

Continue (system command) 511

Control Structures 167

Coordinate System (GUI) 606

Cube 51

Curve Fitting 460

Cutback (Trap action code) 523

D

Data Representation 554

Date & Time 488

Deal (dyadic ?) 445

Debugging 500

Decode 436, 463

Default Left Argument 215

Del (or Carrot) Delimiter 159

Delay 503

Delete Objects 486

Delete Variables/Functions 72

Delta 45

Depth 339, 374

Derived Functions 141, 377

Destructive Copy 76

D-Fns 147

Diagnostic Message 241

Diagonal Sections 323

Diamond (Statement Separator) 205

Digits 505

Direct (Dynamic) Functions 147

Direct (Dynamic) Operators 421

Direct Functions (multi-lines) 213

Direct Functions (single-line) 152

Disclose 333

DISP Utility Function 65

Disperse (SALT) 698

Display Form (namespaces) 591

DISPLAY Utility Function 66, 336

Distributed Prefix/Suffix 590

Distribution Rules 599

Divide 44

Division by Zero 92

Division Control 140

Domain Error 255

Domino 452, 468

Dot (Outer / Inner products) 386, 396

Dot (root object) 604

Drop 299

Duplicated values 131

Dyadic 89, 148

Dyalog Configuration Box 151

Dyalog Explorer 594

Dyalog File extension 694

Dyalog Manuals 40

Dynamic (Direct) Functions 148

E

Each 342

Edit Objects 493

ElseIf (flow control) 172

Empty Arrays 70, 337

Empty Vectors 134

Enclose 332

Encode 436

Endless Loops 182

Enlist 369, 374

Erase Objects 486

Event Default Processing 622

Event Handling 517

Event Message 519

Event Number 249, 519

Event Simulation 530

Event Simulation (GUI) 640

Event Trapping 500, 518

EventList (GUI) 670

Events 612

Events Queue 612, 640

Excel-APL Interface 676

Exclusive Or (function) 100

Execute 273, 292

Execute (Trap action code) 523

Execution Monitoring 514

Expand 310

Explicit Result 207

 Index 791

Exponential 97

Exponential Representation 83

Export Functions (namespaces) 601

Extended State Indicator 269

External Variables 566

F

Factorial 448

Fibonacci 416

File Extensions 75

File Hold Queue 551

File Journaling 571

File Processing 535

File Properties 571

Fill Items 120, 301, 358

Find / Search 435

First 357, 374

Fixpoint 427

Floor (round-down) 98

Flow Control (modern) 167

Flow Control (traditional) 186

Fonts (GUI) 633, 637

For / In (flow control) 176

Format 276

Format (function) 194

Format Qualifiers & Affixtures 288

Format Specifications 282

Format System Function 280

Fractional Axis 143, 306, 427

Frames (NewLeaf) 715

Function Attributes 498

Function Editor 220

Function Fix (creation) 496

Function Input/Output 193

Function Lock 497

Function Representations 493

G

Gallery (NewLeaf) 718

Gamma (function) 468

Garbage Collector 482

GCD 450

Generalised Arrays 331

Global Variables 157, 197

Golden Mean 413

GoTo (flow control) 181

Grade Up/Down 431

Greatest Common Divisor 450

Grid Object (GUI) 646

Guards 215

GUI (Graphical User Interface) 603

H

Hash (root object) 604

Header of a function 154

High Minus 43

Host-System Commands 507

HTML Tags (NewLeaf) 735

Hyperbolic Trigonometry 449

I

Identity 96

Idiom 130

Idioms 130

If (flow control) 169

Implicit Result 207

Import Objects 479

Index Error 254

Index Function 62

Index Generator 125, 142

Index Of (function) 121, 127

Index Origin 426, 489

Indexing 56

Indexing Arrays 58

Indexing Vectors 56

InEach (flow control) 236

Inflate Values 385

Inner Product 394

Input Buffer 39

Input/Output Methods 193

Interface with Excel 676

Internal References 498

Internal Representation 572

Interrupts (Weak / Strong) 183

Intersection 369, 451

Inverse 97

Inverse Function 417, 429

Invoking the Editor 160

Invoking the Tracer 258

Iota Also see Index Generator

Iota (Index Generator) 125

Iota (Position / Index Of) 121

792 Dyalog APL - Tutorial

J

Jot 265, 386

K

Key Combinations 35

L

Label 181

Laminate 305, 322

Lamp (Comment symbol) 205

Latent Expression 477

LCM 450

Leading/Trailing Blanks 385

Least Squares Fitting 457

Leave (flow control) 181

Left Arrow 44

Left Inverse of a Matrix 468

Length Error 253

Line Counter 242

Linear Regression 457

List of Functions 159

List of Variables 72

Load a WS 74, 478

Local Names 156

Local sub-Functions 216

Localise Names 224

Logarithms 447

Loop Control 231

Loops (conditional) 178

Loops (predefined) 176

Lowest Common Multiple 451

M

Magnitude 98

Match & Natch 341

Matrix 51

Matrix Division 455

Matrix Inverse 453

Matrix Product 394

Maximum 92

Membership 99, 127

Memory Compaction 482

Memory Space Available 482

Menus (GUI) 644

Merge Workspaces (copy) 76, 479

MethodList (GUI) 670

Migration Level 366, 372

Minimum 92

Min-Max Lines (RainPro) 750

Mirror (Reverse) 312

Mix 354, 374

Mixed Arrays 63

Modified Assignment 325

Monadic 89, 148

Monadic Index Function 87

Monadic Scalar Functions 96

Monitor 514

Multi-dimentional Arrays 49

Multiple Assignment 46, 326

Multiplication Table 386

Multiply 44

Multi-Threading 418

N

Naked Trace 258

Name Association 686

Name Category 208, 234, 485

Name Class See Name Category

Name List 483

Name Shadowing 497

Namespace References 588

Namespace Search Path 586

Namespaces 577

Nand (function) 141

Natch (Not-Match) 342

Native Files 535, 559

Negative Function 97

Negative values 43

Negative Values Encoding/Decoding 463

Nested Arguments & Result 211

Nested Arrays 64, 102, 331

Nested Representation 494

Neutralise the Traps 530

NewLeaf 714

Next (Trap action code) 524

Niladic 148

Niladic Arrow 231

Nor (function) 141

Not (function) 100

Not Saved (error) 257

Not-And (function) 141

Not-Match 342

Not-Or (function) 141

 Index 793

Null Item 505

N-Wise Reduce 380

O

Object Representation 495, 511

Object Size 487

OLE 675

Operators 105, 377

Or (function) 100

Orange 449

Order of Evaluation 94

OrIf (flow control) 170

Outer Product 386

Overtaking 301

P

Page Designer (NewLeaf) 726

Page Width 508

Partition 365, 374

Pass Numbers 547, 570

Pass-Through Value 62

PDF Format 714

Perimeter 406

Pervasive Functions 103, 346

PFK 491

Pi (trigonometry) 449

Pick 361, 376

Pie Chart (RainPro) 755

PNG Output 739

Polar Representation (RainPro) 753

Polygn Area & Perimeter 406

Polynomials 442

Position (function) 121

Power Function 44, 92

Power Operator 415

Primitive Functions 89

Print Precision 488

Print your experiments 37

Printer Object (GUI) 661

Printers (GUI) 637, 661

Procedural Functions 147, 154

Programmable Function Keys 491

Properties (GUI) 604

PropList (GUI) 669

Protected Copy 76, 480

Prototype 358

Pseudo Right-Inverse of a Matrix 470

Q

Quad (Evaluated Input) 203

Quad (symbol) 196

Quiet Load 478

Quit APL 78, 507

Quote (delimiter) 53

Quote-Quad (Character Input) 204

R

RainPro 738

Random Link 466

Randomised Values 444

Rank 50

Rank Error 254

Ravel 85, 132

Ravel with Axis 143

Read/Write Text Files 199

Reciprocal 97

Recursion 217

Reduction 104, 350

Reduction of Empty Vectors 425

Reformat a Function 224

Refs 588

Refs in a function 498

Relationship Functions 93

Remainder 94

Repeat (flow control) 178

Replay Input 223

Replication (Replicate) 120

Representation of Values 554

Representation of Variables 557

Reset the State Indicator 250

Reshape 47

Residue 94, 145

Reverse 312

Rho 47

Right Arrow 167

Right-align Text 443

Right-to-Left Evaluation 95

Roll (monadic ?) 445

Root Object 604

Root Object (GUI) 636

Rotate 314

Round Up/Down 98

794 Dyalog APL - Tutorial

S

SALT 693

Save a WS 74, 481

Scalar 51

Scalar Dyadic Functions 90

Scan 383

Scattered Points (RainPro) 744

Scientific Representation 83, 295

Script Files (SALT) 694

Scroll Back/Forward 39

Search / Find 435

Search Path 74, 586

Search Tool 253

Select (flow control) 174

Selective Assignment 327, 364

Semi-colon 59

Session Log 38

Session Namespace 594

Set Union/Intersection 451

Sets of Equations 454

Settings (SALT) 698, 709

Shadowed Names 230, 497

Shape 50

Shape of a Result 84, 111

Shape of an Array 47

Shared Component Files 544

Shortest Route in a Graph 401

Show/Hide Line Numbers 224

Shy Result 210, 216

Signum 97

Size of Objects 487

Sorting Data 431

Source-Code Management 693

Spawn 418

Special Notations 111, 117, 121

Special Syntax 420

Split 354, 374

Squad 62, 678

Startup Expression 477

State Indicator 241

Statement Separator (Diamond) 205

Stop (Trap action code) 523

Stops 262

Stops (Break points) 262, 265

Strand Notation 64, 331

Strong Interrupt 183

Styles (NewLeaf) 718

Synonyms 218

Syntax Error 256

System Commands 72, 473

System Interfaces 473

System Variables/Functions 473

T

Table 51

Take 299

Target (SALT) 698

Terminal Control 374, 504

Text Editor 160, 220

Threads 205, 418

Time Limit 513

Time Stamp 488

Trace Points 265

Tracing Call-Back Functions 628

Transpose (dyadic) 316, 322

Transpose (monadic) 312

Trap 520

Trigonometry 449

Type 302, 358, 374

U

UK APL Keyboard 35

Underscore 45

Underscored Letters 45

Undo / Redo 222

Unicode Conversions 504

Unicode Edition 31, 433, 504

Union 369, 451

Unique (function) 132

Universal Character Set 504

Unnamed D-Fns 153

Unnamed Namespace 579

Until (flow control) 178

US APL Keyboard 36

User Identity 545

User-Defined Events (GUI) 640

User-Defined Functions 89

User-Defined Operators 421

V

Valence of a Function 207, 499

Value Error 252

Variable/Function Names 45

 Index 795

Vector 51

Vector Notation 64, 331

Vector Representation 495

Verify & Fix Input 512

Version Management (SALT) 702

Visual Representation 159

W

Weak Interrupt 183

While (flow control) 178

Windows Language Bar 32

With (control structure) 591, 609

Without (function) 102

Workspace 36, 72

Workspace Explorer 600

Workspace Identification 77, 476

Workspace Management 475

Workspace Search Path 74, 478

WS 72

WS Full (error) 256

X

Xor (function) 100

Z

Zilde 126

796 Dyalog APL - Tutorial

	Contents
	Introduction - Will You Play APL With Me?
	Will You Follow Us?
	Beware: Dyalog APL is Addictive!
	Installation and Keyboard
	Utilities and Data

	Our First Steps into APL's Magic World
	Simple Operations
	Variables

	Array Processing
	More Symbols
	Most Symbols Have a Double Meaning
	Conventions

	Reduction Unifies Traditional Notations
	Let's Write Our First Programs
	Indexing
	Calculating Without Writing Programs
	Friendly Binary Data
	Counting
	Selection
	Discovery

	A Touch of Modern Math
	A Powerful Search Function
	An Example
	Generalisation

	After Values, Let Us Process Shapes
	Take and Drop
	Mirrors and Transposition

	Back to Primary School
	A Useful Application

	There Is a Lot to Discover Yet
	Attractively Simple Syntax Rules
	Use Many Other Calculating Tools
	Create User-friendly Applications with the GUI
	Access Your Data
	Build an Efficient Partnership With Microsoft Excel
	And Also…

	FAQ
	Is Dyalog APL A Professional Tool?

	Getting Started
	1 - Installing the Software
	1.1 Installation
	1.2 First Contact
	1.2.1 - The Dyalog Working Environment
	1.2.2 - Check Your Installation
	1.2.4 - Key Combinations

	1.3 Demonstration Files
	1.3.1 - The Workspace Concept
	1.3.2 - Associated Files
	1.3.3 - Print What You Have Done
	1.3.4 - The Session Log
	1.3.5 - The Input Buffer
	1.3.6 - Auto-Complete

	2 - Working with This Tutorial

	Data and Variables
	1 - Simple Numeric Values
	1.1 Our First Operations
	1.2 Variables
	1.3 Operations on Variables

	2 - Arrays of Items
	2.1 Create a List or a Matrix
	2.2 Special Cases with Reshape
	2.3 Multi-dimensional Arrays

	3 - Shape, Rank, and Vocabulary
	3.1 Shape and Rank
	3.2 Scaling Down the Ranks
	3.3 Vocabulary
	3.4 Beware!
	3.4.1 - The Shape is Always a Vector
	3.4.2 - Do Not Rely on the Visual Aspect of a Variable
	3.4.3 - Displaying Long Vectors

	4 - Simple Character Values
	4.1 Character Vectors and Scalars
	4.2 Character Arrays

	5 - Indexing
	5.1 Traditional Vector Indexing
	5.2 The Shape of the Result
	5.3 Array Indexing
	5.4 Convention
	5.5 Warnings
	5.5.1 - Shape Compatibility
	5.5.2 - Replace or Obtain All the Values
	5.5.3 - "Pass-Through" Value

	5.6 The Index Function

	6 - Mixed and Nested Arrays
	6.1 Mixed Arrays
	6.2 Four Important Remarks
	6.3 Nested Arrays
	6.4 DISPLAY
	6.4.1 - Conventions
	6.4.2 - Examples

	6.5 Be Simple!
	6.6 That's Not All, Folks!

	7 - Empty Arrays
	8 - Workspaces and Commands
	8.1 The Active Workspace
	Remark 1

	8.2 The Libraries
	8.3 Load a WS
	8.4 File Extensions
	8.5 Merge Workspaces
	8.5.1 - Protected Copy
	8.5.2 - Intentionally Destructive Copy
	8.5.3 - Evolution of Your Code
	8.5.4 - Active WS Identification

	8.6 Exiting APL
	8.7 Contents of a WS
	8.8 Our First System Commands
	Exercises
	Spe-1 Variable Names
	Spe-2 Representation of Numbers
	Spe-3 The Shape of the Result of Indexing
	Spe-3.1 - Rule
	Spe-3.2 - Using Ravel to Preserve a Dimension

	Spe-4 Multiple Usage of an Index
	Spe-5 A Problem With Using Reshape (⍴)
	Spe-6 Monadic Index (⌷)

	Some Primitive Functions
	1 - Definitions
	2 - Some Scalar Dyadic Functions
	2.1 Definition and Examples
	2.2 Division By Zero
	2.3 Power
	2.4 Maximum & Minimum
	2.5 Relationship
	2.6 Residue

	3 - Order of Evaluation
	4 - Monadic Scalar Functions
	4.1 The Four Basic Symbols
	4.1.1 - Identity
	4.1.2 - Negative
	4.1.3 - Signum
	4.1.4 - Reciprocal

	4.2 Other Scalar Monadic Functions
	4.2.1 – Exponential
	4.2.2 - Floor and Ceiling
	4.2.3 - Magnitude (Absolute Value)
	4.2.4 - Comparison Symbols

	5 - Processing Binary Data
	5.1 Membership
	5.2 Binary Algebra
	5.3 Without

	6 - Processing Nested Arrays
	6.1 Scalar vs. Non-scalar Functions
	6.2 Be Careful With Shape/Type Compatibility

	7 - Reduction
	7.1 Presentation
	7.2 Definition
	7.3 Reduction of Binary Data
	7.4 Reduction of Nested Arrays
	7.5 Application 1
	7.6 Application 2

	8 - Axis Specification
	8.1 Totals in an Array
	8.1.1 - Processing Arrays
	8.1.2 - Axis Is Like an Operator
	8.1.3 - Processing Arrays

	8.2 The Shape of the Result
	8.3 Special Notations

	9 - Our First Program
	10 - Concatenation
	10.1 Concatenating Vectors
	10.2 Concatenating Other Arrays
	10.3 Concatenating Scalars
	10.4 Special Notations

	11 - Replication
	11.1 Basic Approach: Compression
	11.2 Replication
	11.3 Scalar Left Argument
	11.4 Special Notations

	12 - Position (Index Of)
	12.1 Discovery
	12.2 Application 3

	13 - Index Generator
	13.1 Basic Usage
	13.2 Application 4
	13.3 Comparison of Membership and Index Of
	13.3.1 - Example
	13.3.2 - First Question
	13.3.3 - Second Question
	13.3.4 - Comparison

	13.4 Idioms
	13.5 Application 5
	13.6 Application 6

	14 - Ravel
	15 - Empty Vectors and Black Holes
	Exercises
	Spe - 1 Division Control - ⎕DIV
	Spe - 2 Derived Functions
	Spe - 3 Nor & Nand
	Spe - 4 Index Generator of Arrays
	Spe - 5 Ravel With Axis
	Spe-5.1 - Empty Axis
	Spe-5.2 - Fractional Axis
	Spe-5.3 - A List of Dimensions
	Spe-5.4 - Border Cases

	Spe - 6 Residue

	User Defined Functions
	1 - Landmarks
	1.1 Some Definitions
	1.2 Configure Your Environment
	1.2.2 - A Text Editor; What For?

	2 - Single-Line Direct Functions
	2.1 Definition
	2.2 Unnamed D-Fns
	2.3 Modifying The Code

	3 - Procedural Functions
	3.1 A First Example
	3.2 Local Names
	3.3 Miscellaneous
	3.3.1 - List of Functions
	3.3.2 - Use of the Result
	3.3.3 - Visual Representation
	3.3.4 - Invoking the Text Editor

	3.4 Second Example
	Exercises
	3.5 Calls to Sub-Functions

	4 - Flow Control
	4.1 Overview
	4.2 Conditional Execution
	4.2.1 - Simple Conditions (:If / :EndIf)
	4.2.2 - Alternative Processing (:If / :Else / :EndIf)
	4.2.3 - Composite Conditions (:OrIf / :AndIf)
	4.2.4 - Cascading Conditions (:ElseIf / :Else)

	4.3 Disparate Conditions
	4.3.1 - Clauses (:Select / :Case / :CaseList)
	4.3.2 - Remark
	4.3.3 - Attention

	4.4 Predefined Loops
	4.4.1 - Basic Use (:For / :In / :EndFor)
	4.4.2 - Control of Iterations

	4.5 Conditional Loops
	4.5.1 - Bottom-Controlled Loop (:Repeat / :Until)
	4.5.2 - Top-Controlled Loop (:While / :EndWhile)

	4.6 Exception Control
	4.6.1 - Skip to the Next Iteration (:Continue)
	4.6.2 - Leave the Loop (:Leave)
	4.6.3 - Jump to Another Statement (:GoTo)
	4.6.4 - Quit This Function (:Return)

	4.7 Endless Loops
	4.7.1 - A Time Consuming Function
	4.7.2 - Weak and Strong Interrupts
	4.7.3 - How Can You Generate an Interrupt?
	4.7.4 - First a Weak Interrupt
	4.7.5 - And Now a Strong Interrupt

	5 - Traditional Flow Control
	5.1 Conditional Execution
	5.1.1 - Equivalent of :If … :EndIf Controls
	5.1.2 - Equivalent of :If … :Else … :EndIf Controls
	5.1.3 - Loops
	5.1.4 - Other Conditional Expressions

	5.2 Multiple Conditions
	5.2.1 - Transform a Value into a Destination
	5.2.2 - Multiple Conditions and Destinations

	5.3 Modern and Traditional Controls Cooperate

	6 - Input, Output, and Format
	6.1 Some Input and Output Methods
	6.2 Format
	6.2.1 - Monadic Format
	6.2.2 - Dyadic Format

	6.3 Displaying Intermediate Results
	6.4 Using Global Variables
	6.5 Exchanging Data With an Excel Worksheet
	6.5.1 - Importing Data
	6.5.2 - Exporting Data

	6.6 Reading or Writing a Text File
	6.7 Printing Results on a Printer
	6.8 Using a Graphical User Interface
	6.9 Requesting Values From the Keyboard
	6.9.1 - Quad Evaluated Input
	6.9.2 - Quote-Quad Character Input

	7 - Syntax Considerations
	7.1 Comments & Statement Separators
	7.1.1 - Comments
	7.1.2 - Statement Separators

	7.2 Why Should a Function Return a Result?
	7.3 Different Types of Functions
	7.3.1 - What Is an Explicit Result?
	7.3.2 - Six Major Types of Functions (Valence)
	7.3.3 - Ambivalent Functions
	7.3.4 - Example
	7.3.5 - Shy Result
	7.3.6 - An Argument Used as a Result

	7.4 Nested Argument and Result
	7.4.1 - Nested Right Argument
	7.4.2 - Choice of Syntax
	7.4.3 - Nested Result

	7.5 Choice of Names

	8 - Multi-Line Direct Functions
	8.1 Characteristics
	8.2 Guards
	8.3 Syntax Considerations
	8.3.1 - Default Left Argument
	8.3.2 - Shy Result
	8.3.3 - Local Sub-Functions

	9 - Recursion
	10 - Synonyms
	11 - About the Text Editor
	11.1 What Can You Edit?
	11.2 What Can You Do?
	11.2.1 - Cut / Copy / Paste
	11.2.2 - Drag/Drop Restrictions
	11.2.3 - Open a New Line or Statement
	11.2.4 - Delete a Line or Statement
	11.2.5 - Exit the Editor

	11.3 Undo, Redo, Replay
	11.3.1 - Undo
	11.3.2 - Redo
	11.3.3 - Replay Input Lines
	11.3.4 - Advice

	11.4 Miscellaneous
	11.4.1 - Reformat
	11.4.2 - Show/Hide Line Numbers
	11.4.3 - Localise Names
	11.4.4 - Comment / Uncomment Lines

	12 - SALT
	Exercises
	Spe-1 Shadowed Names
	Spe-2 Loop Control
	Spe-3 Labels and the Branch Arrow
	Spe-3.1 - Niladic Arrow
	Spe-3.2 - Branch to a Wrong Label

	Spe-4 Other Conditional Execution
	Spe-4.1 - Conditional Execution Using Execute
	Spe-4.2 - Conditional Execution Using the Power Operator

	Spe-5 Name Category of Synonyms
	Spe-6 Bare Output
	Spe-7 :InEach

	First Aid Kit
	1 - When an Error Occurs
	1.1 Our First Error
	1.1.1 - Your Environment and Indicators
	1.1.2 - The Diagnostic Message
	1.1.3 - State Indicator and Line Counter
	1.1.4 - The Trace Window
	1.1.5 - You Can See the Local Variables
	1.1.6 - What Can We Do?

	1.2 Cascade of Errors
	1.2.1 - Preparation
	1.2.2 - Let Us Create More Errors
	1.2.3 - Switch to Edit Mode
	1.2.4 - Continue Execution

	1.3 Information and Actions
	1.3.1 - Indicators
	1.3.2 - Some Possible Actions

	1.4 Why Should You Reset Your State Indicator?

	2 - Most Frequent Error Messages
	2.1 Execution Errors
	2.1.2 - LENGTH ERROR (⎕EN=5)
	2.1.3 - RANK ERROR (⎕EN=4)
	2.1.4 - INDEX ERROR (⎕EN=3)
	2.1.5 - DOMAIN ERROR (⎕EN=11)
	2.1.6 - SYNTAX ERROR (⎕EN=2)
	2.1.7 - WS FULL (⎕EN=1)

	2.2 Some Other Errors
	2.2.1 - Can't Fix
	2.2.2 - Not Saved, This Ws Is…

	3 - Trace Tools
	3.1 Invoke and Use the Tracer
	3.1.1 - Invoke the Tracer
	3.1.2 - Trace Actions
	3.1.3 - Trace Strategies

	3.2 Choose Your Configuration
	3.3 Break-points and Trace-controls
	3.3.1 - Set Break-points
	3.3.2 - Remove Break-points
	3.3.3 - Trace-controls
	3.3.4 - Intentional Interruption

	3.4 System Functions
	Exercises
	Spe-1 Value Errors
	Spe-1.1 - Namespaces
	Spe-1.2 - Nightmare

	Spe-2)SINL
	Spe-3 Namespaces and Indicators
	Spe-3.1 - Extended State Indicator
	Spe-3.2 - Namespace Indicator

	Execute & Format Control
	1 - Execute
	1.1 Definition
	1.2 Some Typical Uses
	1.2.1 - Convert Text into Numbers
	1.2.2 - A Safer and Faster Solution
	1.2.3 - Other Uses

	1.3 Make Things Simple

	2 - The Format Primitive
	2.1 Monadic Format
	2.2 Dyadic Format
	2.2.1 - Definition
	2.2.2 - Overflow
	2.2.3 - Multiple Specifications
	2.2.4 - Scalar Descriptor

	3 - The ⎕FMT System Function
	3.1 Monadic Use
	3.2 Dyadic Use
	3.2.1 - Overview
	3.2.2 - Specifications I and F
	3.2.3 - Specification A
	3.2.4 - Specification X
	3.2.5 - Text Inclusion Specification
	3.2.6 - Specification G – The Picture Code
	3.2.7- Specification T
	3.2.8- Specification K

	3.3 Qualifiers and Affixtures
	3.3.2 - Examples of Qualifiers
	3.3.3 - Affixtures
	3.3.4 - Examples of Affixtures

	Spe-1 Execute
	Spe 1.1 - Name Conflict
	Spe 1.2 - Conditional Execution
	Spe 1.3 - Case Selection
	Spe 1.4 - Dynamic Variable Creation
	Spe 1.5 - Dyadic Execute

	Spe-2 Formatting data
	Spe 2.1 - Lack of Precision
	Spe 2.2 - Scientific Representation
	Spe 2.3 - Specification E
	Spe 2.4 - Formatting Using the Microsoft.Net Framework

	Working on Data Shape
	1 - Take and Drop
	1.1 Take and Drop Applied to Vectors
	1.1.1 - Starter
	1.1.2 - Remark
	1.1.3 - Be Careful
	1.1.4 - Produce Empty Vectors
	1.1.5 - Take More Cash Than You Have

	1.2 Three Basic Applications
	1.2.1 - Determine the Type of a Variable
	1.2.2 - Change a Vector into a Matrix
	1.2.3 - Calculate Growth Rates

	1.3 Take and Drop Applied to Arrays
	1.3.1 - Use Without Axis
	1.3.2 - Take and Drop With Axis

	2 - Laminate
	2.1 Application to Vectors and Scalars
	2.1.1 - Laminate Applied to Vectors
	2.1.2 - Laminate Scalars with Vectors

	2.2 Applications
	2.2.1 - Interlace Matrices
	2.2.2 - Show Vectors

	3 - Expand
	3.1 Basic Use
	3.2 Extended Definition
	3.3 Expand Along First Axis

	4 - Reverse and Transpose
	5 - Rotate
	5.1 Rotate Vectors
	5.2 Rotate Higher-Rank Arrays
	5.2.1 - Uniform Rotation
	5.2.2 - Multiple Rotations
	5.2.3 - Application

	6 - Dyadic Transpose
	Exercises
	Spe - 1 More About Laminate
	Spe - 2 Dyadic Transpose
	Spe-2.1 - Conditions
	Spe-2.2 - Diagonal Sections of an Array
	Spe-2.3 - Diagonal Section of a Matrix

	Special Syntax
	1 - Modified Assignment
	2 - Multiple Assignment
	3 - Selective Assignment
	3.1 Quick Overview
	3.2 Available Primitives

	Nested Arrays (Continued)
	1 - First Contact
	1.1 Definitions
	1.2 Enclose & Disclose
	1.2.1 - Enclose
	1.2.2 - Disclose
	1.2.3 - Mnemonics
	1.2.4 - Simple and Other Scalars

	1.3 More About DISPLAY
	1.3.1 - Conventions
	1.3.2 - Change the Default Presentation
	1.3.3 - Distinguish Between Items
	1.3.4 - Empty Arrays

	2 - Depth & Match
	2.1 Enclosing Scalars
	2.2 Depth
	2.3 Match & Natch

	3 - Each
	3.1 Definition and Examples
	3.2 Three Compressions!

	4 - Processing Nested Arrays
	4.1 Scalar Dyadic Functions
	4.2 Juxtaposition vs. Catenation
	4.3 Characters and Numbers
	4.3.1 - Solution 1
	4.3.2 - Solution 2
	4.3.3 - Solution 3

	4.4 Some More Operations
	4.4.1 - Reduction
	4.4.2 - Index Of and Membership
	4.4.3 - Indexing
	4.4.4 - Always Keep In Mind the Following Rules

	Exercises

	5 - Split and Mix
	5.1 Basic Use
	5.2 Axis Specification
	5.2.2 - Mix

	6 - First & Type
	7 - Prototype, Fill Item
	8 - Pick
	8.1 - Definition
	8.2 - Beware!
	8.3 - Important
	8.4 - Selective Assignment
	8.5 - An Idiom

	9 – Partition & Partitioned Enclose
	9.1 The Dyalog Definition
	9.2 The IBM Definition
	9.2.1 - Working on Vectors
	9.2.2 - Working on Higher-Rank Arrays

	10 - Union & Intersection
	11 - Enlist
	Exercises
	Spe-1 Compatibility and Migration Level
	Spe-1.1 - Migration Level
	Spe-1.2 - A List of Differences

	Spe-2 The IBM Partition on Matrices
	Spe-3 Ambiguous Representation
	Spe-4 Pick Inside a Scalar

	Operators
	1 - Definitions
	1.1 Operators & Derived Functions
	1.2 Sequences of Operators
	1.3 List of Built-in Operators

	2 - More About Some Operators You Already Know
	2.1 Reduce
	2.2 n-Wise Reduce
	2.2.1 - Elementary Definition
	2.2.2 - Full Definition

	2.3 Axis

	3 - Scan
	3.1 Definition
	3.2 Scan with Binary Values
	3.3 Applications
	3.3.2 - Remove Leading/Trailing Blanks

	4 - Outer Product
	4.1 Definition
	4.2 Extensions
	4.2.2 - Other shapes and types of data

	4.3 Applications
	4.3.1 - Dispatching Items into Categories
	4.3.2 - Draw a Bar Chart
	4.3.3 - Decreasing Refunding

	Exercise

	5 - Inner Product
	5.1 A Concrete Situation
	5.2 Definitions
	5.3 Typical Uses of Inner Products
	5.3.1 - Two Simple Problems
	5.3.2 - A Useful Family
	5.3.3 - A Special Case
	5.3.4 - Similar Applications
	5.3.5 - Shortest Routes in a Graph
	5.3.6 - Is a Graph Contiguous?

	5.4 Other Uses of Inner Product
	5.5 Application
	Exercises

	6 - Compose
	6.1 Form 1
	6.2 Form 2
	6.3 Form 3
	6.4 Form 4

	7 - Commute
	8 - Power Operator
	8.1 - Elementary Use (Form 1)
	8.2 - Conditional Execution (Form 1)
	8.3 - Left Argument (All Forms)
	8.4 - Inverse Function
	8.5 - Fixpoint, and Use with Defined Operators

	9 - Spawn
	9.1 Main Features
	9.2 Special Syntax

	10 - User-Defined Operators
	10.1 Definition Modes
	10.1.1 - Direct Operators
	10.1.2 - Using the Function Editor

	10.2 Some Basic Examples
	Spe-1 Reduction Applied to Empty Vectors
	Spe-1.1 - Identities
	Spe-1.2 - Rule
	Spe-1.3 - Examples
	Spe-1.4 - Non-commutative Functions
	Spe-1.5 - Application to n-Wise Reduction

	Spe-2 Index Origin and Axis operator
	Spe-3 The Power Operator
	Spe-3.1 - Form 2 of Power, and Fixpoint
	Spe-3.2 - Using User-Defined Operators

	Spe-4 Defined Operators
	Spe-5 The Result of an Inverse Function

	Mathematical Functions
	1 - Sorting and Searching Data
	1.1 Sorting Numeric Data
	1.1.1 - Sorting Numeric Vectors
	1.1.2 - Sorting Numeric Matrices

	1.2 Sorting Characters
	1.2.1 - Using the Default Alphabet
	1.2.2 - Using an Explicit Alphabet

	1.3 Finding Values

	2 - Encode and Decode
	2.1 Some Words of Theory
	2.1.1 - Familiar, But Not Decimal
	2.1.2 - Three Important Remarks
	2.1.3 - Base and Weights

	2.2 Using Decode & Encode
	2.2.1 - Decode
	2.2.2 - Shape Compatibility
	2.2.3 - Encode
	2.2.4 - Limited Encoding
	2.2.5 - Using Several Simultaneous Bases

	2.3 Applications
	2.3.1 - Condense or Expand Values
	2.3.2 - Calculating Polynomials
	2.3.3 - Calculating Positions in a Matrix
	2.3.4 - Right-aligning Text

	3 - Randomised Values
	3.1 Deal: Dyadic Usage
	3.2 Roll: Monadic Use
	3.3 Derived Uses
	3.3.1 - Decimal Random Values
	3.3.2 - Sets of Random Characters

	4 - Some More Maths
	4.1 Logarithms
	4.2 Factorial & Binomial
	4.3 Trigonometry
	4.3.1 - Multiples of π
	4.3.2 - Circular and Hyperbolic Trigonometry
	4.3.3 - Some Examples

	4.4 GCD and LCM
	4.4.1 - Greatest Common Divisor (GCD)
	4.4.2 - Lowest Common Multiple (LCM)

	4.5 Set Union and Intersection

	5 - Domino
	5.1 Some Definitions
	5.1.1 - Identity Matrix
	5.1.2 - Inverse Matrices

	5.2 Matrix Inverse
	5.2.1 - Monadic Domino
	5.2.2 - Singular Matrices
	5.2.3 - Solving a Set of Equations

	5.3 Matrix Division
	5.4 Two or Three Steps in Geometry
	5.4.1 - A Complex Solution to a Simple Problem
	5.4.2 - Calculating Additional Y-coordinates

	5.5 Least Squares Fitting
	5.5.1 - Linear Regression
	5.5.2 - Extension
	5.5.3 - Non-linear Adjustment

	Exercises
	Spe - 1 Encode and Decode
	Spe 1.1 - Special decoding
	Spe 1.2 - Processing Negative Values
	Spe 1.3 - Multiple Encoding/Decoding

	Spe - 2 Random Link
	Spe 2.1 - Making Random Numbers Predictable or Unpredictable
	Spe 2.2 - Algorithm

	Spe - 3 Gamma and Beta Functions
	Spe - 4 Domino and Rectangular Matrices
	Spe 4.1 - Left Inverse of a Matrix
	Spe 4.2 - Pseudo Right Inverse
	Spe 4.3 - Summary
	Spe 4.4 - Scalars and Vectors

	System Interfaces
	1 - Overview
	1.1 Commands, System Variables, and System Functions
	1.2 Common Properties
	1.3 Organisation

	2 - Workspace Management
	2.1)WSID & ⎕WSID Workspace Identification
	2.1.1 - Conventions
	2.1.2 - Get Identification
	2.1.3 - Change Identity

	2.2 ⎕LX Startup Expression
	2.3)LOAD,)XLOAD & ⎕LOAD Load a Workspace
	2.3.1 - Normal Loading
	2.3.2 - Loading Without the Execution of ⎕LX

	2.4)COPY,)PCOPY & ⎕CY Import Objects
	2.4.1 - Normal Copy
	2.4.2 - Exceptions
	2.4.3 - Protected Copy

	2.5)LIB Explore a Workspace Library
	2.6)CLEAR & ⎕CLEAR Clear the Active Workspace
	2.7)SAVE & ⎕SAVE Save a Workspace
	2.8 ⎕WA Memory Space Available

	3 - Object Management
	3.1)VARS,)FNS,)OPS,)OBS & ⎕NL Object Lists
	3.1.1 - System Commands
	3.1.2 - Name List

	3.2 ⎕NC Name Category
	3.3)ERASE & ⎕EX Delete Objects
	3.4 ⎕SIZE Object Size

	4 - Environment Control & Information
	4.1 ⎕TS Current Date & Time
	4.2 ⎕PP Print Precision
	4.3 ⎕IO Index Origin
	4.4 ⎕AI Account Information
	4.5 ⎕PFKEY Programmable Function Keys

	5 - Function Definition and Processing
	5.1)ED & ⎕ED Edit Objects
	5.2 ⎕CR, ⎕NR, ⎕VR & ⎕OR Function Representations
	5.2.1 - Canonical Representation
	5.2.2 - Nested Representation
	5.2.3 - Vector Representation
	5.2.4 - Object Representation

	5.3 ⎕FX Function Creation
	5.4 ⎕SHADOW Name Shadowing
	5.5 ⎕LOCK Locking a Function
	5.6 ⎕REFS Internal References
	5.7 ⎕AT Function Attributes

	6 - Debugging and Event Trapping
	7 - Calculation Control
	7.1 Already Studied
	7.2 ⎕CT Comparison Tolerance
	7.3 ⎕DL Delay

	8 - Character Processing, Input/Output
	8.1 ⎕AV & ⎕AVU Atomic Vectors
	8.2 ⎕UCS Unicode Conversions
	8.3 ⎕TC Terminal Control
	8.4 ⎕A & ⎕D Alphabet & Digits
	8.5 ⎕NULL Null Item

	9 - Miscellaneous
	9.1 ⎕OFF &)OFF Quit APL
	9.2 ⎕SH, ⎕CMD,)SH &)CMD Host System Commands
	9.3 ⎕PW Page Width
	Spe-1 Commands vs. System Functions
	Spe-2 ⎕SAVE
	Spe-3)CONTINUE Save & Continue
	Spe-4 ⎕OR
	Spe-5 ⎕VFI Verify and Fix Input
	Spe-5.1 - Monadic Usage
	Spe-5.2 - Dyadic Usage

	Spe-6 ⎕RTL Response Time Limit
	Spe-7 ⎕MONITOR Execution Monitoring
	Spe-8 System Variables vs. System Functions

	Event Handling
	1 - Diagnostic Tools
	2 - Event Trapping
	2.1 Event Numbers / Event Messages
	2.2 :Trap / :Else / :EndTrap
	2.3 ⎕TRAP
	2.3.1 - Definition
	2.3.2 - Event Processing
	2.3.3 - Syntax Considerations
	2.3.4 - More about Action Code "N"
	2.3.5 - Get Context
	2.3.6 - First Example
	2.3.7 - Example of a Derived Error
	2.3.8 - Third Example

	2.4 Beware of These Errors
	2.4.1 - Endless Trap Loops
	2.4.2 - Incorrect Branching

	2.5 Neutralise the Traps

	3 - Event Simulation
	3.1 ⎕SIGNAL Example

	File Processing
	1 - Component Files
	1.1 First Steps
	1.1.1 - General Ideas
	1.1.2 - Create, Fill, Read, and Close
	1.1.3 - Tie, Fill, Replace, and Close

	1.2 Utility Functions
	1.2.1 - Component Information
	1.2.2 - Drop Components
	1.2.3 - File Compaction
	1.2.4 - Component Files Library
	1.2.5 - Rename a Component File
	1.2.6 - Delete a Component File
	1.2.7 - File System Status

	1.3 Shared Files
	1.3.1 - The User Identity
	1.3.2 - Shared Tie
	1.3.3 - Access Control Definition
	1.3.4 - Access Control Activation
	1.3.5 - Example of Simultaneous Access
	1.3.6 - Access Conflict

	1.4 How to Queue File Operations
	1.4.1 - Use the Hold Queue
	1.4.2 - Hold Termination
	1.4.3 - A Hold is Not a Lock
	1.4.4 - Recommendations

	2 - Data Representation
	2.1 Representation of Values
	2.1.1 - Representation of Numbers
	2.1.2 - Query Data Representation
	2.1.3 - Change Data Representation

	2.2 Representation of Variables
	2.2.1 - Internal Structure
	2.2.2 - Component Files
	2.2.3 - Native Files

	3 - Native Files
	3.1 Similarities and Differences
	3.2 Basic Operations
	3.2.1 - Tie an Existing File
	3.2.3 - Append and Replace
	3.2.4 - Remove Separators
	3.2.5 - Create a File, Fill It with Numbers, and Close It
	3.2.6 - Miscellaneous
	3.2.7 - Reading From or Writing To Text Files

	4 - External Variables
	Spe-1 Component Files
	Spe-1.1 - Loading a Workspace with Files Tied
	Spe-1.2 - Universal Rights
	Spe-1.3 - Dangerous Rights
	Spe-1.4 - Rights By Default
	Spe-1.5 - Pass Numbers
	Spe-1.6 - Buffering Considerations
	Spe-1.7 – File Properties

	Spe-2 Native Files
	Spe-2.1 - Internal Representation
	Spe-2.2 - Character Conversions
	Spe-2.3 - Access Control on a Native File
	Spe-2.4 - Lock Access to a File

	Namespaces
	1 - Simple Namespaces
	1.1 Introduction
	1.1.1 - Definitions
	1.1.2 - Create an Empty Namespace
	1.1.3 - Namespaces without a Name?
	1.1.4 - Copying Objects to a Namespace
	1.1.5 - Change Space
	1.1.6 - Return To the Root

	1.2 Use the Contents of a Namespace
	1.2.1 - Using Full Names
	1.2.2 - Performing Operations inside a Namespace
	1.2.3 - Change Space
	1.2.4 - Using a Search Path

	2 - More about References
	2.1 Namespace References
	2.1.1 - Introduction
	2.1.2 - Distributed Prefix or Suffix
	2.1.3 - Control Structure :With

	2.2 Display Form

	3 - Arrays of Refs
	3.1 Create an Array
	3.2 Indexing Arrays of Refs

	4 - The Session Namespace
	Spe - 1 The Dot as a Syntactic Element
	Spe - 2 State Indicators
	Spe - 3 Evaluation of Statements
	Spe-3.2 - Distribution Rules

	Spe - 4 The Dyalog Workspace Explorer
	Spe - 5 Control of Exported Functions
	Spe - 6 Retrieving a Namespace Source

	Graphical User Interface
	1 - Guidelines
	1.1 Terminology and Options
	1.1.1 - GUI Objects
	1.1.2 - Properties
	1.1.3 - Four Basic Functions
	1.1.4 - Coordinate Systems

	1.2 Create a Simple Dialog Box
	1.2.1 - Create and Modify an Object
	1.2.2 - A Simplified Notation
	1.2.3 - When Keywords are Mandatory
	1.2.4 - Buttons and Groups
	1.2.5 - Let Us Simplify Further

	1.3 Get Information
	1.4 Changing Properties
	1.5 Make It Work
	1.5.1 - Some Experiments
	1.5.2 - The Windows Event Queue

	2 - Call-Back Functions
	2.1 Discovery
	2.1.1 - Theory
	2.1.2 - Specific Actions
	2.1.3 - Example
	2.1.4 - Some Improvements
	2.1.5 - The Result of ⎕DQ

	2.2 The Arguments of a Call-Back Function
	2.2.1 - The Right Argument
	2.2.2 - The Left Argument
	2.2.3 - Some Experiments

	2.3 The Result of a Call-Back Function
	2.3.2 - Processing the Result
	2.3.3 - Example

	2.4 Improve It
	2.4.1 - Improve the Field Management
	2.4.2 - More about Edit Fields
	2.4.3 - Passwords

	2.5 Tracing Call-Back Functions

	3 - Selection Tools
	3.1 List
	3.2 Combo

	4 - Colours, Fonts, and Root
	4.1 Colours
	4.2 Fonts
	4.2.1 - Font Characteristics
	4.2.2 - Using the Font Object

	4.3 Properties of the Root Object
	4.3.1 - The Coordinate System
	4.3.2 - Screen Characteristics
	4.3.3 - Available Printers
	4.3.4 - Available Fonts
	4.3.5 - Cursor Shape
	4.3.6 - APL Version

	5 - Improve Your User Interface
	5.1 Default Keys
	5.2 Enqueuing Events and Using Methods
	5.2.1 - Event Simulation
	5.2.2 - Dyadic Use
	5.2.3 - Methods

	5.3 Activating Objects
	5.4 Form Appearance

	6 - Menus
	7 - The Grid Object
	7.1 Geometry & Titles
	7.1.1 - Controlling the Geometry
	7.1.2 - Defining Titles

	7.2 Cell Types
	7.2.1 - Cell Appearance
	7.2.2 - Input Fields
	7.2.3 - Combo and Check Fields
	7.2.4 - Show Input; The Final Version

	7.3 Interaction with a Grid
	7.3.1 - Events
	7.3.2 - Actions

	7.4 Example
	7.4.1 - The Main Program
	7.4.2 - The Selection Call-Back Function
	7.4.3 - The Result Display
	7.4.4 - The Functions

	7.5 Multi-Level Titles
	7.5.1 - Hierarchy of Titles
	7.5.2 - A Tree of Row Titles

	7.6 Some Additional Properties

	8 - Using Printers
	8.1 The Printer Object
	8.1.1 - Creation, Orientation, and Coordinate System
	8.1.2 - Unnamed Child Objects
	8.1.3 - Simple Graphic Shapes
	8.1.4 - Write Some Text
	8.1.5 - Character Size

	8.2 Printer Management
	8.2.1 - Using Methods
	8.2.2 - Method NewPage
	8.2.3 - Method Print
	8.2.4 - Method RTFPrintSetup
	8.2.5 - Method Abort
	8.2.6 - Method Setup
	8.2.7 - Method GetTextSize
	8.2.8 - Selecting a Printer

	9 - And Also …
	Spe-1 Lists of Properties, Methods, Events
	Spe-1.1 - Properties
	Spe-1.2 - Methods
	Spe-1.3 - Events

	Spe-2 Different Syntaxes
	Spe-2.2 - Events

	Spe-3 Using Classes

	Interfaces
	1 - Introduction
	2 - OLE Interface with Excel
	2.1 Introduction
	2.2 Create, Fill, and Save a Workbook
	2.2.1 - Initiate the Communication
	2.2.2 - Create a Workbook
	2.2.3 - Collection of Objects
	2.2.4 - Fill a Sheet, Save, and Quit

	2.3 Open and Process a Workbook
	2.3.1 - Initiate the Communication
	2.3.2 - Read the Workbook Contents
	2.3.3 - Modify the Presentation

	2.4 A Simple Example

	3 - Name Association
	3.1 Introduction
	3.1.2 - Commented Example:

	3.2 Detailed Syntax
	3.2.1 - DLL Description
	3.2.2 - Function Syntax

	3.3 See How It Works
	3.3.1 - Example 1
	3.3.2 - Example 2

	SALT
	1 - Introduction
	1.1 Why a Source Code Management System?
	1.1.1 - Maintenance of Vital Big Applications
	1.1.2 - Main Characteristics
	1.1.3 - Script Files

	1.2 Using Script Files
	1.2.1 - Loading a Script into the Session
	1.2.2 - Generic Names
	1.2.3 - Source Directory
	1.2.4 - "Target" and "Disperse"
	1.2.5 - Source Code

	1.3 Updating a Script From the APL Session

	2 - Version Management
	2.1 Creating and Using Versions
	2.1.1 - Starting the Process
	2.1.2 - Automatic Version Recognition
	2.1.3 - Reloading an Old Version

	2.2 File Management
	2.2.2 - Modifiers; Full Lists
	2.2.3 - Exploring Directories and Files
	2.2.4 - Removing Old Versions

	2.3 Comparing Scripts

	3 - Settings

	Publishing Tools
	1 - NewLeaf
	1.1 Getting Started
	1.1.1 - What You Need
	1.1.2 - A Quick Introduction

	1.2 Frames and Text
	1.2.1 - Main Concepts
	1.2.2 - Filling Frames with Text
	1.2.3 - Some Experiments

	1.3 Fonts
	1.3.1 - Font Definitions
	1.3.2 - Using Fonts
	1.3.3 - Add New Fonts

	1.4 Tables
	1.4.1 - Default Presentation
	1.4.2 - Controlled Presentation
	1.4.3 - Define Styles and Formats

	1.5 The Page Designer
	1.5.1 - The Contents of a Page
	1.5.2 - Page Description
	1.5.3 - Exploring the Designer
	1.5.4 - Create a Page
	1.5.5 - Using The Page
	1.5.6 - Add a Logo
	1.5.7 - Using Multiple Pages

	1.6 More Tools, Better Quality
	1.6.1 - HTML Tags
	1.6.2 - Insert a RainPro Chart
	1.6.3 - Widow / Orphan Control
	1.6.4 - Page Break
	1.6.5 - Placeholders
	1.6.6 - Produce PDF Output

	2 - RainPro
	2.1 Getting started
	2.1.1 - What You Need
	2.1.2 - The Same Family
	2.1.3 - Important Remark

	2.2 Multiple Bar Chart
	2.2.1 - Basic Approach
	2.2.2 - Some General Improvements
	2.2.3 - The Final Touch

	2.3 Scattered Points
	2.3.1 - Basic Approach
	2.3.2 - Advanced Features

	2.4 Min-Max Vertical Lines
	2.4.1 - First Draft
	2.4.2 - Moving Averages

	2.5 Polar Representations
	2.6 Multiple Charts
	2.7 There is Much More To Explore!

	Chapter X: Solutions
	Chapter B
	Chapter C
	Chapter D
	Chapter G
	Chapter I
	Chapter J
	Chapter K

	Appendices
	Appendix 1 : Scalar Functions
	Appendix 2 : Invoking the Editor
	Appendix 3 : Selective Assignment
	Appendix 4 : Dyalog APL Operators
	Appendix 5 : Identity Items
	Appendix 6 : Event Numbers
	Appendix 7 : System Variables and Functions
	Appendix 8 : System Commands
	Appendix 9 : Symbolic Index

	INDEX

