
How to Write Computer Programs

John Scholes – Dyalog Ltd

john@dyalog.com

“After all, animals is only human, innit?” – Ali G.

Apology
I apologise to those of you who already know how to write computer programs;
please skip to the next article. Anyone who has any doubts might find something of
interest in what follows. First, indulge me by listening to a parable:

A Parable
Identical twins Isambard and Deuteronomus (Izzy and Dewy to their friends – see
note [1]) were separated at birth and both grew up to become APL programmers. By a
strange twist of fate, for the last year or so, they have independently been
experimenting with D, a functional subset of Dyalog APL; because they have heard
that it is “cool”.

On the face of it, the code they produce is very similar, but closer examination of how
they produce it, reveals some profound differences.

Dewy frowns and mutters while he codes, whereas Izzy seems to fizz slightly while
maintaining a Zen-like tranquillity.

When faced with an unfamiliar and complex APL expression, Dewy tackles it from
the right, while Izzy tends to start from the left. Sometimes Dewy even writes APL
expressions right to left by backing up and prefixing extra bits.

Dewy uses temporal words when thinking about programming: “First do this, then do
that …”. Izzy doesn’t.

Dewy says: “ gets one”, while Izzy says: “ is one” and Dewy refers to as a
variable, while Izzy calls it a definition. Dewy sees assignment as working right-to-
left: a value is put into a named pigeonhole, whereas Izzy sees a name indicating an
existing value to its right (see note [7]). Izzy sometimes wonders why APL uses a left,
rather than a right-pointing arrow for assignment.

Dewy sees the statement: as assigning two instances of the number 3 to
variables and , whereas Izzy considers that both names indicate the same “Platonic
constant in the sky” (see note [8]). The same goes for assignments such as and
even: .

Dewy comments code with injunctions: “”, while Izzy tends
to use descriptive noun phrases: “”.

mailto:john@dyalog.com

Dewy calls the first four primitive functions “plus, minus, times and divide”, whereas
Izzy says “sum, difference, product, and quotient”.

Dewy wonders how to simulate for and while loops in D, while it never occurs to
Izzy to think about this. (When control structures were introduced, their great uncle
Gottlieb (Go-ey) used to wonder how to simulate branch arrows. He still maintains
that control structures are thinly disguised branches and when, for example, he looks
at an :If :EndIf structure, he sees through it to the underlying go-to).

Dewy finds the flowchart an indispensable tool of thought; Izzy doesn’t.

In general, Dewy finds programming a difficult (though rewarding) experience, while
Izzy wonders what all the fuss is about.

Dewy finds that, more often than not, his programs run a little quicker than those of
Izzy, but that they are buggier, so he spends more time fixing them.

Although raised in separate homes, their upbringing was remarkably similar, except
for a single life-changing experience. One day, at a formative age, while Izzy was
exploring the attic, he found a piece of framed embroidery, which proclaimed:

Describe the result
 in terms of the arguments,
using only the present tense

 of the verb “to be”.

Picked out in smaller stitches around the border, was the additional rubric:

You may use
 conditional if clauses and

supplementary where clauses
to define terms.

And

Only when you have a complete description,
should you transliterate it into code.

End of Parable
(The characters in this story are fictional. Any resemblance to person or persons living
or deceased is purely coincidental.)

So what?
D, a subset of Dyalog APL is a modest attempt to provide a back end for is-y
programming. It is hard to do anything in D, but easy to define what anything is.

A surprisingly large number of problems are amenable to is-y programming, as is a
surprisingly large proportion of the components of an otherwise do-y program.

Perhaps also surprising: is-y programs have no need of:
- Loops
- Partial assignment .. or ..
- Modified assignment: .. (or ..)
- Variables (which change, as opposed to definitions, which do not).

Is-y programs have no “moving parts” in the same sense that this program for the
mean item of a vector has no moving parts:

“The mean is the quotient of the sum and the number of items.”

Eh?
Do-y and Is-y programming are also known as procedural and declarative
programming respectively. Declarative languages and in particular functional
languages are generally accepted to be easier to program and produce more stable
code, than procedural ones.

But you have to treat them right.

Some of us are old enough to remember the disappointment of people who translated
Basic programs into APL on the understanding that something magic would occur to
make them easier to understand and go a lot faster. Not so. To reap APL’s benefits,
you have to think arrays before, rather than after designing your code.

An Example
Many years ago, before there were control structures (and by the look of it, lower-case
function names), I wrote a program to generate random maze puzzles:

Ü‡ÑÑÅÑÑÑÑÑÅÑÑÑÅÑÅÑÑÑÉ
í í í í í í
í ÜÑÖÑÑÑÉ ÆÑÑ í ÀÑÑ í
í í í í í í
í í í í í í ÑÑÑÑÉ ÜÑø
í í í í í í í í
í ÑÑØ í í í í ÑÑÄÑø í
í í í í í
ÆÑÑ ÜÑØ ÑÑÑÑÄÑÉ ÑÑØ í
í í í í
ÀÑÑÑÄÑÑÑÑÑÑÑÑÑÄÑÑÑÑ‡Ø

As a Christmas gift to the dfns@dyalog.com email group, I translated into D.
This was not a trivial task, as the original code had a fairly spaghetti-like branching
structure. Only after I had finished the translation, did it occur to me to wonder what
the program would look like had I (like Izzy) thought about the problem in a
declarative way, in the first place.

Let’s contrast the two approaches to this problem:

: procedural approach
- Initialise an -sized grid of cells.
- Starting from opposite corners of the grid, alternately extend a random path by

breaking down cell walls, until the paths collide. The resulting path, corner-to-
corner, is the solution path of the maze.

- Starting from each unvisited cell, extend a random path until it collides with a
path other than itself.

- When extending a random path, if all cells adjacent to the active (foremost)
cell belong to the path being extended, choose a cell at random from those in
the path and continue extending from this point.

: declarative approach
An maze is the fill of a solution for an initial grid. Where:

An grid is an -sized grid of cells.
A solution through a grid is

If the half-paths collide, then the grid.
Otherwise, the solution of the extension of each half-path.

The fill of a solution is:
If there are no unvisited cells, then the solution.
Otherwise, the fill of the extension of a path that is an unvisited cell.

The extension of a path is:
If the active cell has an adjacent cell that is not within the path,

then the path extended with a random selection from such cells.
Otherwise, the random extension of the path with a randomly chosen

active cell.

mailto:dfns@dyalog.com

Another Example
The Tower of Hanoi problem may be stated and solved in both a procedural and
declarative fashion:

Disks of decreasing sizes are placed on one of three spikes A, B and C, as shown:

ŒŒŒ
ŒŒŒŒŒ
ŒŒŒŒŒŒŒ
ŒŒŒŒŒŒŒŒŒ
ŒŒŒŒŒŒŒŒŒŒŒ
ŒŒŒŒŒŒŒŒŒŒŒŒŒ
ŒŒŒŒŒŒŒŒŒŒŒŒŒŒŒ
ŒŒŒŒŒŒŒŒŒŒŒŒŒŒŒŒŒ

Procedural statement and solution of the problem
How do you move all of the disks, one at a time, from spike A to spike B, while
avoiding placing a larger disk above a smaller one?

If n is greater than 0:
Move n-1 disks from spike i to spare spike k, then
move disk n from i to j, then
move n-1 disks from spare spike k to spike j.

>
2Œ''''

4
Œ•,'',,'…',
6
7

Declarative statement and solution of the problem
What is the sequence of moves that transfers disks, one at a time from spike A to
spike B, while avoiding placing a larger disk above a smaller one?

If n is 0, then the null sequence.
Otherwise, the concatenation of:

The sequence for moving n-1 disks from spike i to spare spike k,
The sequence for moving disk n from spike i to spike j, and
The sequence for moving n-1 disks from spare spike k to spike j.

''
''
q‡
‡•,'',,'…',
qb‡
†q,,qb

The Mathematicians’ Con Trick
Simple declarative statements, such as the solutions above, sound too good to be true.
They remind us of an elegant mathematical proof that was a long time in the finding
and then stated very simply. Of course the mathematician who discovered the proof
didn’t do so in its final neat form; it would have been refined over time from an
initially much messier version. So it is with the statement of the result in terms of its
arguments. We can work with this statement, refining it over and over until we are
satisfied that it is robust, simple and sufficiently general for our needs. At various
points, we may commit this statement to code for testing purposes. When we find
problems that cause us to amend the code, we should first correct the description
accordingly, as the statement will form a powerful piece of system documentation for
our program, when we later forget how it works.

Full Circle
When we become proficient in describing the result in terms of the argument, using
only the present tense of the verb to be, we could experiment with writing the
description in a different language (French, Latin, Esperanto, …) before transliterating
it into code. At some point, we might even find that a declarative programming
language (such as appropriately commented D) is suitable for our needs.

What’s the Catch?
One significant downside of is-y programs is that in general they run slower than
corresponding do-y programs. For example, an indexed assignment is significantly
quicker than a function to mesh together the parts of two arrays to form a third.
However, because APL interpreter mongers tend to keep an eye on the way we code,
the more we use such language constructs, the faster they tend to become.

Notes

[1] Dewy pronounces his name Do-y, rather than Due-y. American readers, for whom
do and due sound the same, will have the same take on this statement as with “you say
tomato and I say tomato”.

[2] On a personal note: I was brought up firmly in the do-y school of programming. I
find it extremely hard to change and when the going gets tough, I slip back into the
old ways. It may be too late for me, but younger minds may be able to make the
switch.

[3] The functional programming community has spent the last couple of decades
inventing languages in which all programming is conducted in the is-y style. As an
example, they even propose implementing operating systems this way. APL is a
forerunner of the functional programming movement and many of its exponents
started life as APLers.

[4] You might review the above parable as a sort of “teen magazine personality test”
to see how is-y or do-y you are. Invent your own scoring system.

[5] Exercise: Old habits die hard. You will not believe the advantages of is-y
programming unless you take the time to try it one time “for real”. Rewrite your
favourite function from scratch using is-y techniques.

[6] See Alan Perlis’ Aphorisms: www.cs.yale.edu/homes/perlis-alan/ quotes.htm .

[7] At a baby-naming ceremony, such as a christening, we (with the possible
exception of some folk in the pop music industry) usually think of assigning the name
to the baby, rather than the baby to the name.

[8] Another school of thought holds that this stuff is ref-counted. The number 3 will
remain in existence as long as someone, somewhere in the world, bears it in mind.
This is why it is important to teach our children to count.

[9] “Yes, but computers do things don’t they?” Well yes, but a lot of what they do is
maths, and maths doesn’t do anything, it just is.

http://www.cs.yale.edu/homes/perlis-alan/

Appendix 1 - A note on the conditional construct
Although they often use the same keyword: if, conditional execution differs between
procedural and declarative languages.

Both constructs tend to have three working parts: the test; the true part; and the
false part. For example:

if test
then true
else false
fi

In both cases, test is an expression that evaluates to a Boolean scalar but the
similarity stops there:

In a procedural language: both true and false, together with the construct as a
whole are non-result-returning (void) do-y statements; in a declarative language, all
three are result-returning expressions and in a strongly typed language, all three must
be of the same type.

In natural language terms, the procedural true and false are clauses: “If it’s
raining, put on a coat, otherwise (else) wear a jacket”; in a declarative language, they
are noun phrases: “I would like: if you have milk, then tea, otherwise coffee”.

In a procedural language, the else false part of the construct may be omitted: “if
it’s raining, put on a coat”; in a declarative language such an omission would render
the sentence incomplete: “I would like: if you have milk, then tea” (“Else what?”).

The C language has distinct procedural and declarative conditionals:

if (test) true; else false; // procedural.

(test ? true : false) // declarative.

Classical APL may use indexing or pick as a declarative conditional, although as the
language is strict, both sides of the condition are evaluated and then one is discarded:

Œ

In D, the declarative conditional is implement by the guard:

(*) Strictly speaking, a declarative conditional could omit the else clause if the type
of the conditional were (void). However, the market for void-returning clauses is
fairly slim: given that there are no side effects, it is hard to imagine the purpose of
such a clause.

Appendix 2

A short note on the Declarative Programming Style
Declarative Programming, of which Functional Programming is a subset, of which
pure D is a sub- subset, differs from the more traditional Procedural Programming
style in that, in the latter we are obliged to provide a procedure for the construction of
a result, whereas in the former, we merely declare what the result is to be. APL was
one of the first languages to show that the declarative style is feasible and was sited as
such in John Backus' seminal paper [Backus 1978].

An example of the declarative style is the APL "program" for the arithmetic mean of a
numeric vector:

qb.

Notice that the function comments form a single sentence of the form: subject, copula,
predicate. The "body" of the function is a noun phrase. Contrast this with the
comments for a primitive procedural language:

FRS,,H
2xb,H
…‡,w
4byxH
xH
6…bkx.
7q...

Notice that the way we read procedural programs, tends to be rife with temporal
words: first do this, then do that; repeat so-and-so until such-and-such; variable
what's-its-name becomes something-or-other; ···.

The temporal sense of the code is further reinforced by the use of ‘destructive’ verbs
such as zero, set, increment and decrement. You might think this a little unfair and
that we could have commented the first couple of lines with: "Total is 0; index is the
number of items …”, but we would then be forced to contradict this, for example in
line[5] by trying to say: "index is one less than index.", which is clearly nonsense.

Declarative programs, on the other hand, have no sense of the passage of time;
everything just is.

Not that any of this is in itself a bad thing, but such words are indicative of the
program's having state. The beauty of a program without state is that, as there are no
“moving parts”, little can go wrong.

A similar point is made about the background of the little Min language (see
www.dyalog.com/dfnsdws/min_index.htm). With its roots in Church's
Lambda Calculus [Church 1941], Min uses the terms successor and predecessor in
preference to: increment and decrement. Min's primitive function + is equivalent to
D’s :

"Incidentally, using the terms successor and predecessor as opposed to
increment and decrement stems from having a denotational rather than
operational view of a function. In other words, a function is seen as denoting
the mapping between the sets that comprise its domain and range, rather than
as a prescription for the operation that converts one into the other. To take a
specific example: Min's + doesn't increment its argument; it leaves it alone and
denotes its successor as result. Given this view, words from the subset of
nouns that can be used as determiners (first of, reverse of, ···), seem more
appropriate than transitive verbs as names for functions. Specifically, sum,
difference, product and quotient would appear preferable to: add, subtract,
multiply and divide".

It is important not to misunderstand all this emphasis on language. Our choice of
words in describing a process is often indicative or symptomatic, of our internal
mental model. However, being careful to use the “right” words, does not of itself,
improve the model: Curbing the symptoms doesn’t cure the disease, although there is
some evidence that rationalised behaviour is gradually incorporated. Avoiding sexist,
racist, ageist ... language does not automatically qualify me as being free of that
particular -ism, but it's a good start.

A first step might be to read APL expressions, and write APL expressions that can be
read, from left to right. Again taking as an example: the
declarative left-to-right reading of the code is in the end simpler than the procedural
right-to-left reading: “Take the shape of the vector and divide it into the sum of the
items”.

Notice that the declarative version of isn't compromised by splitting it up a little
with local definitions (strictly speaking, not “local variables” as nothing varies).

L<>
<>b
qw".

A reasonable definition of a dynamic function in this context is “an expression of
and preceded by 0 or more local definitions”. Given this, it is sometimes helpful to
read the code backwards, bottom to top: “The arithmetic mean of a vector is the
quotient of and , where is the number and is the sum of the items”.
In fact, because there are no side-effects in such a definition, it doesn't really matter in
which order the expressions are evaluated, so long as all referenced values are
available at the time of the evaluation. In the early 1970's there were a number of
rather sensationalist statements in the computer press, along the lines of: “Researchers
are designing programming languages in which you can shuffle the source card deck”.

http://www.dyalog.com/dfnsdws/min_index.htm

References:
Backus, J., 1978. "Can Programming Be Liberated from the Von Neumann Style? A
functional Style and Its Algebra of Programs". Comms of the ACM 21, No. 8, pp 613-
641 (1978).

Church, A., 1941. The Calculi of Lambda Conversion. Princeton University Press.

http://www.dyalog.com/dfnsdws/min_index.htm

Acknowledgements
Thanks are due to:
John Daintree for pointing out that declarative (is-y) ifs must have an else.
Stephen Taylor for suggesting that APL might have chosen the right arrow for
assignment.
Maria Wells for overhearing note [9].

Revisions
This note was first published at the Dyalog APL conference in Naples Beach, Florida
in November 2004 and revised in April 2005.

http://www.dyalog.com/dfnsdws/min_index.htm

