
Direct Functions in Dyalog APL

John Scholes – Dyalog Ltd.

john@dyalog.com

A Direct Function (dfn) is a new function definition style, which bridges the gap between named

function expressions such as and APL’s traditional ‘header’ style definition.

Simple Expressions

The simplest form of dfn is: {expr} where expr is an APL expression containing s and s

representing the left and right argument of the function respectively. For example:

A dfn can be used in any function context ...

... and of course, assigned a name:

Dfns are ambivalent. Their right (and if present, left) arguments are evaluated irrespective of whether

these are subsequently referenced within the function body.

Guards

A guard is a boolean-single valued expression followed by . A simple expression can be preceded

by a guard, and any number of guarded expressions can occur separated by s.

Guards are evaluated in turn (left to right) until one of them yields a 1. Its corresponding expr is then

evaluated as the result of the dfn. A guard is equivalent to an If-Then-Else or Switch-Case construct.

A final simple expr can be thought of as a default case:

The s can be replaced with newlines. For readability, extra null phrases can be

included. The parity example above becomes:

Named dfns can be reviewed using the system editor: or , and note how you can

comment them in the normal way using .

The following example interprets a dice throw:

Local Definition

The final piece of dfn syntax is the local definition. An expression whose principal function is a simple

or vector assignment, introduces a name that is local to the dfn. The name is localised dynamically as

the assignment is executed. As we shall see later, this mechanism can be used to define local nested

dfns.

A nuance: the special syntax expr is executed only if the dfn is called with no left argument. This is

equivalent to, but neater than: in a conventionally defined

function.

Recursion

Dfns use recursion in place of iteration. Reference to the current function can of course use the

function’s name explicitly. However because we allow unnamed dfns, we need a special symbol to

represent self-reference. does the job.

 has a further small advantage in that a recursive function can be renamed without having to locate

and change explicit self references within the function body.

These examples show that dfns contain a minimum of syntactic baggage - allowing the underlying

algorithms to ‘shine through’. For example, compare the example above with the equivalent

coding using:

Control structures Traditional Branching

A happy consequence of reducing syntax is that the interpreter has less work to do. Dfns typically

out-perform their conventionally defined counterparts.

Tail Calls

In the previous examples, the recursive calls marked () are said to be tail calls or tail-recursive calls

whereas those marked () are not. A function call is a tail call if its result is passed back unchanged to

its own calling environment.

Tail calls can be implemented in the interpreter by re-entering the current instance of the function,

rather than creating a new one. This delivers a substantial performance benefit, both in terms of

execution time and workspace used.

It is often possible to turn a ‘stack-call’ into a tail call by accumulating the result on the way into, rather

than on the way out of, the recursion. In general, this technique employs an auxiliary function that

takes an accumulating argument. APL's infix syntax is particularly suited to this technique as we can

use the left argument exclusively to accumulate result-so-far, and the right argument to specify work

outstanding. Evaluation consists of moving work from the incoming right argument into the left

argument of the next recursive call. Note that in these and following examples, migration level is

set to 3. In particular, means first.

We can simplify the coding by expressing the auxiliary function as a dyadic case of the outer monadic

function:

It's easy to check if a call is a tail call by tracing it. Tail calls appear to re-use the current trace window,

whereas stack-calls pop up a new one.

D-Ops: Direct Operators

The operator equivalent of a dfn refers to its left and right operand using and respectively.

A dop is distinguished from a dfn by the presence of either of these symbols anywhere in the definition.

A dop containing only s is monadic, whereas one that contains at least one , is dyadic. The

Dyalog system editor distinguishes these cases and colours braces that surround an operator

accordingly.

For recursive dops, there are two kinds of self reference: refers to the current derived function, that

is, the operator bound with its operand(s). When the operands are functions, this is the most frequently

used form of self reference. However, if the operands are arrays, we often need a recursive reference to

the operator itself and then we would use: .

Re-writing to take its function as right operand and its count as left operand requires that the

recursion refer to the operator () rather than its derived function:

Example: Pythagorean triples

The following sequence shows an example of combining Direct Functions and Operators in an attempt

to find Pythagorean triples: ...

So far, so good, but we have some duplicates: For example, is just double .

We can use an operator to combine the tests:

Better, but we still have some duplicates:

And finally, as promised, triples:

A larger example

 uses nested local dfns to split an APL expression into its constituent tokens. Note that all calls

on the inner functions: , , and the unnamed dfn in each token case, are tail calls. In fact, the

only stack calls are those on function: , and the unnamed function: , within the ‘Char

literal’ case.

Summary

The syntax of a dfn/ dop is shown in the railway diagram:

: Definition local to the dfn using simple or vector assignment.

: Expression which evaluates to a Boolean single.

: Arbitrary APL expression.

Following special characters are substituted:

 : Function Left Argument.

 : Function Right Argument.

 : Function (and Derived Function) self reference.

 : Operator Left Operand.

 : Operator Right Operand.

 : Operator self reference.

Phrases are evaluated in turn until an unguarded EXPR, or one whose guard evaluates to 1, is

encountered. The corresponding EXPR is then evaluated as the result of the dfn.

Conclusion

Dfns give us the opportunity to combine the power of expression of APL with an alternative and in

some circumstances, more convenient functional framework.

They encourage (but don't compel), the programming of ‘pure’ functions. There is evidence to suggest

that coding in such a style produces more reliable software.

Dfns provide true local functions. They encourage the use of sub-functions that may otherwise be

avoided owing to a (perceived) degradation in performance or code readability. For example, it is often

tempting to replace a call on a small function applied under each (¨) by embedding the code directly in

the calling line and peppering it with s or s.

Using dfns in this situation improves both speed and readability. For example:

To coin a phrase: “Dfns provide a new Lo-Cal wrapper for our familiar APL expressions.”

Implementation Status

These ideas were first presented in the Dyadic Vendor Forum at APL96 where they appeared to meet

with general approval. Dfns were introduced with APL/W version 8.1 release 1 in early 1997. Coding

examples such as those included in this article show that they have a reasonably wide application and

measurements of their performance have been particularly pleasing

