
Dyalog at 25
A special supplement to Vector

Dyalog at 25: A special supplement to Vector

Published September 2008
Copyright © 2008 Dyalog Ltd

Dyalog at 25

Table of Contents
First Quarter 1
How we got here 3

Dyadic Systems 5
Dyalog (Europe) Ltd 10
Writing the interpreter 12
Going to the show 17
Ports on call 19
The disappearing future 26
Living with Lynwood 29
On the road again 38
Dyalog’s new face 40
The ducks 44
Sixty four bits 45
Parting company 45
The coming of the consortium 48

The Administrator’s Tale 51
Versions 55
Next Quarter 57
Technical Overview, 1981 59
Dyadic Systems Prospectus, 1976 65

iii

Dyalog at 25

iv

Dyalog at 25

First Quarter
Gitte Christensen
gc@dyalog.com

At the APL83 conference in Washington DC, Dyalog APL Version 1.0 was
presented to an unsuspecting audience for the first time: the first second-generation
APL interpreter, implemented on Unix – the operating system for the next gener-
ation of computers. Dyalog APL was clearly ideally positioned for the emerging
markets of the future!

As the story you are about to read will show, the future arrived at its own pace,
and it twisted and turned unpredictably, as the future always does. But although
many of the initial assumptionswhich drove the decision to start the project turned
out to be… er… optimistic, Dyalog APL and the team behind it persevered. They
‘hung in there’ and, after 25 years, Dyalog heads the pack of APL vendors as the
leading brand.Not because the teamhad been able to predict the future accurately,
but because of their dedication and ability to adapt the product as the future
evolved.

We are very fortunate – not only with respect to getting the story ‘straight’ – that
we still have the original implementers amongst us, and good relations with those
who had to leave the company to pursue other challenges. The story of Dyalog
APL and “Howwe got here” has been assembled and narrated by Stephen Taylor,
based on interviews with current and previous employees of Dyadic Systems,
Lynwood, the ‘new’ Dyadic Systems, and now Dyalog Ltd. It is a story about a
product, the people who created it, and the environment in which it happened –
not unlike Hans Christian Andersen’s “The Ugly Duckling”. We hope you will
enjoy reading it!

1

Dyalog at 25

2

Dyalog at 25

How we got here
Stephen Taylor
sjt@dyalog.com

It all seems so long ago now. But only 30 years ago you could walk into any office
in the countrywithout seeing a single personal computer.No screens, no keyboards,
no laptops, no printers. They simply didn’t exist.

On your desktop: a phone, in- and out-trays, a stapler, a pencil and a small dish
of paperclips. Perhaps a desk calculator. Somewhere nearby, the sound of an IBM
Selectric typewriter. The smell of ashtrays.

No one sent email. There were no web sites to consult. No word processors on
which to write memos or press releases; typists worked from dictation tapes,
shorthand notes or longhand drafts.

And for managers, immersed in a world of sales and expenses, budget and actual,
no spreadsheets. Just paper, pencils and erasers.

Keyboardswere the province of typists, and typistswere clericalworkers.Managers
could not type, and would not wish to be seen typing even if they could type.

A computer needed its own room, with false floors and ceilings for its cables, and
dedicated air conditioning and fire-control systems. A computer was as delicate
as an auto-immune disease patient sealed in a bubble, and almost as precious.
Programs arrived on cards and tapes, the results were stamped on special green-
striped paper by rattling line printers and carried away in boxes.

Personal computing began before personal computers. Such was the hunger.
Managers whose budgets could stand the substantial fees had teletype computer
terminals installed. The time-sharingmainframes they connected to ran programs
for financial planning and management, budgeting, scientific analyses – a wide
range of software applications.

Some managers even started to use the keyboard themselves.

Time-sharing serviceswere barely personal computing. You could use the installed
software, often flexible and powerful for its purpose. But if you wanted anything
it didn’t do, you needed a programmer. Time-sharing services stayed busy custom-
ising their packages to the needs of new customers.

A manager who wanted computer help in thinking through numerical scenarios
neededhelp fromaprogrammer – or he needed to become one. Personal computing

3

Dyalog at 25

was available before personal computers: if you had a time-sharing service and
couldwrite your ownprograms. FORTRANwaswidely available for programming
and BASIC was popular. But APL was something else.

APL was an accelerator for personal computing, because it demanded much less
from the programmer. Relative to its rivals, it required less attention to how
numbers and characters got shuffled around, and left more attention free to focus
on the core problem logic. Domain experts could get useful programs from a
reasonable investment of time; professional programmers could work faster than
in other languages.

In the mid- to late-70s programming was the scarce resource in the time-sharing
business. There seemed no limit to how much expensive CPU time could be sold
if customers could only get the software they needed. For time-sharing bureaus
such as I.P. Sharp Associates and Atkins, APL accelerated the sale of connect time.

Writing custom software could be profitable, but bureaus would often discount
orwaive the one-time consulting fees to secure the recurring time-sharing revenue.
Rapiddevelopment inAPL saved (often unbillable) programming time andbrought
forward the time-sharing cash flows. Better, customers who learned the language
then generated time-sharing revenues as they wrote their own programs.

The bureaus loved APL: it cut costs and accelerated sales. The customers loved
APL: they could see results faster, and some of them could work the controls
themselves. It was huge fun to be an APL programmer, working this magic. We
were the genial wizards of the new technology. It seemed too good to last.

The PCs arrive

It was. PCs changed the economics of the business.

Many of these cash-cow time-sharing applicationswere quitemodest, andmigrated
promptly even to the first, primitive PCs. Even the simple early spreadsheet Vis-
iCalc was a better environment for unskilled users and simple tasks than APL.
And because spreadsheets handled the simple back-of-an-envelope applications
so smoothly, and PCs were a modest capital cost, customers took the time to work

4

Dyalog at 25

out how tomove theirmore complex applications aswell. At one London computer
show, a place where people usually came to look and poke, a line formed at the
Apple booth. Visitors queued to hand over £100 each for a copy of VisiCalc and
another £1,000 for an Apple II on which to run it.

The time-sharing revenues started to dry up.

This was where Dyadic Systems Ltd found itself in 1981. IBM produced its first
PC, the 5150 in August that year, seen by business IT as legitimising what many
had supposed an unreliable, maverick technology. It would be another year before
Scientific Time Sharing Corporation produced STSC APL*Plus/PC, and half a
decade before it released STSC APL*Plus/386, the environment to which many
mainframe APL applications migrated.

Dyadic Systems
Dyadic Systems had been formed in 1976 by a breakaway group ofAPL consultants
from Atkins Computing, a time-sharing bureau: David Crossley, Phil Goacher,
TedHare, John Stembridge, andGeoff Streeter. Theywere joined shortly afterwards
by Pauline Brand.

They had all been involved in a new APL section for Atkins within the adminis-
trative fief of Phil Goacher. Ted Hare headed the sales team, with special respons-
ibility forAPL growth. Crossley’s background in operational research had evolved
into broader software development, mostly in FORTRAN. He had come across
I.P. Sharp’s APL in 1970 while working for Bell Northern Research, the research
arm of Bell Canada. He was inspired with an instant and life-long enthusiasm for
the language. In 1973 this knowledge had qualified him as sufficiently expert to
head the new APL section at Atkins – he had, after all, read the book. John Stem-
bridge was a founding member of that group. Pauline Brand was an early recruit,
and Geoff Streeter transferred to the section early on.

Two other notable people from that environmentwere destined to playmajor roles
in this story. John Scholes was a ‘back room’ developer in systems support, who
provided regular enhancements to the Sigma APL processor, and Peter Donnelly
was a client with W.H. Smith.

The APL section at Atkins had grown rapidly. Its main competition came from
I.P. SharpAssociates, but it was a growthmarket, with plenty of work to go round.

5

Dyalog at 25

Dyadic Systems Ltd corporate brochure

6

Dyalog at 25

[David Crossley] The Seventies proved the golden age for time-sharing
services. APL fitted naturally into this delivery mechanism. Driven by
powerful mainframe computers (powerful, that is, by the standard of the
day) and delivered via teletype terminals of evolving sophistication, APL
gave user departments the tools to develop their own applications to their
own requirements, albeit withwilling assistance from consulting groups.
Bear in mind that at this juncture, computing was just emerging from
data entry via paper tape and punched cards and output via line-printers.
Programming required batch compilation, with a limit of one or two
compilations per day being commonplace – one typo meant effectively a
day lost. Thus the advent of time sharing alongwith the interactive devel-
opment framework of APL was truly liberating.

From the outset Dyadic Systems provided independent design and development
services unaffiliated with any specific vendor. The steadily growing group of
analysts gained a broad collective experience over numerous flavours of APL.
While the emphasis remainedwith SHARPAPL, APL*PLUS and SigmaAPL, they
also worked with APLs from IBM, DEC, Honeywell, Burroughs and others. There
was alsowork in other languages. A single project at Rank Xerox kept RayCannon,
David Crossley and Pete Donnelly writing FORTRAN on a PDP11 for three years.
All but two in the company (Hare in sales and Goacher in administration) worked
full-time in fee-earning activities.

[DC] I had the role of technical director. While our assignments were
dispersed geographically within the UK, we made a point of holding
monthly get-togethers. Apart from their valuable social role, wewere also
kept up to date on company performance and events. But, equally import-
ant, we focused on the technical aspects of work in progress, theoretical
ideas and design principles. This dissemination of information would
serve us well when the time came to develop our own version of the lan-
guage.

The company had grown to about 15 analysts by the early Eighties. But the tide
was ebbing from the time-sharing business, and washing out the demand for
consulting aswell. IBMwas promotingVSAPL as its primary personal anddepart-
mental computing platform, alongwithADRS andADS; thiswas a potential source
of further demand for consulting. Or there was the nascent market for personal
computers.

[DC] The early Apple computers, aided by the incredibly successful im-
plementation of VisiCalc had taken the business community by storm.
The IBM PC escalated that momentum.

7

Dyalog at 25

European APL Systems Development Market (from company prospectus)

8

Dyalog at 25

In principle, Dyadic, with no time-sharing business tomanage, could simply switch
horses and write APL programs for PCs. But there were few PCs with APL about.

[DC] One was the rather quirkyMCMmicro, whose APL interpreter was
in firmware. It had an idiosyncratic reverse implementation of the scan
operator and limited the size of arrays to 255 elements along each axis. It
provided the facilities to generate a GUI interface, at least in providing
form-based input and output. But it was slow.

More substantial APLs had been implemented for the IBM 5110 and for the Mo-
torola 68000 chip, available as Wicat computers. Even Bill Gates contemplated
writing one.

[Gitte Christensen] Because the IBM 5110 had BASIC andAPL, he’d done
the BASIC and they’d sold about 50,000 copies of it. Now he wanted to
do the APL. He looked at it and went to talk to Ian Sharp [of I.P. Sharp
Associates] about a reduced APL – how little one could get away with.
Then, apparently, Bill Gates decided the APL he contemplated was not
commercially viable.

The abstract concepts of APL mobilised the power of large computers without re-
quiring its users towrite close-to-the-machine code. That is, they could thinkmore
about their problem and less about how themachine operated. But the tinymicro-
computers, while offering immediate responses, required exactly that close-to-the-
machine programming to get useful performance.

[DC]With time sharing, processing power had not been amajor problem.
The problem was one of response time from dial-up modems through
slow and often noisy telephone lines. However, the number-crunching
capabilities of the central host computermeant that seriously large applic-
ations could be tackled. The move towards micros more or less reversed
these characteristics. This development did not favour the large array-
handling capabilities of APL interpreters. APL really needed more
powerful processors.

Pauline Brand’s sister, Dr Pamela Geisler, was then head of Zilog UK. She wanted
an APL for the Z8000, since the Swedish Ministry of Defence, in a call for tenders
from Unix suppliers, had listed APL as a software requirement.

[DC] During the Seventies, the most popular chip in micros was the 8-bit
Zilog Z80, popularised by Digital Research’s capable CP/M operating
system. Their 16-bit Z8000 chip was newly available though its niche was
orientedmore towardsmini- rather than themicrocomputers, supporting
a small network of so-called ‘dumb’ terminals. Moreover, Zilog had em-

9

Dyalog at 25

braced the Unix culture, which was the ‘next big thing’ in distributed
computing. With the support on offer from Zilog to provide us with a
dedicated Z8000 minicomputer and generous development facilities, we
thought that this was the way forward.

Dyalog (Europe) Ltd
For this project, David Crossley, Phil Goacher and Ted Hare registered a new
company in 1981.

The new APL interpreter would require programming time and a development
machine. They planned to fund the programming with a government grant. The
machinewould be provided byZilog,whomademicrocomputers. Operating from
Phil Goacher’s spare bedroom in Epsom, the new company blended both names:
Dyalog (Europe) Ltd. From the press release;

A new company has been set up to develop an APL processor for the
about-to-be-announced new series of Zilog micro computers based on
the 16-bit technology. This company is DYALOG (EUROPE) LIMITED,
the name Dyalog being a hybrid derived from Dyadic and Zilog.

We have negotiated an agreement with Zilog whereby we will develop
the processor whilst Zilog will provide technical support, priority access
to their developmentmachine (Z-LAB 800 System, pronouncedZEELAB!)
and a preferential marketing arrangement.

The success of the project is underwritten by our coup in securing John
Scholes to lead the development, supported by Geoff Streeter. John is
already known to many of us. His achievements in the world of APL are
impressive, having been responsible for the installation and support, not
to say improvement, of the XeroxAPLprocessorwhen hewaswithAtkins
Computing. Subsequently he was one of the senior implementers of APL
for the ICL 2900 series. In addition to supporting APL and actually devel-
oping processors, John has also spent a not insignificant part of his career
at the sharp end, supporting APL users and writing application systems.
It is unlikely that there are many implementers of APL for micros with
his pedigree for the task.

David Crossley will coordinate the technical aspects of the project, now
in the design phase, with particular emphasis on the marketing aspects
of the product – playing devil’s advocate if you like.

10

Dyalog at 25

Ted will front the marketing effort working closely with Zilog, and will
also be concerned with the direct sales and sales support in our role as
dealers.

Phil will be concernedmainlywith the general administration and finance
and also documentation.

Dyalog’s business plan was summarised in an admirably concise “Marketing
Strategy” paper.

Our plan is to develop a low-price:

• Industry-standardAPL interpreter (Sharp look-alike butmore compre-
hensive)

• Running on an industry-standard 16-bit chip (Z8000)

• Under an industry-standard operating system (UNIX)

‘Industry-standard’ was a popular term in those days, marking hope more than
reality, and often used as code for ‘Unix’, which was then neither standard nor
even common in industry. Software was often limited to machines from a single
manufacturer, and manufacturers worked hard to attract applications that would
help sell their machines.

The marketing strategy continued:

[The plan has] the aim of expanding considerably the existingAPLmarket
for small machines and making it easier for Zilog dealers, including
ourselves, to capture a significant proportion of this increased market.
The initial target machine is the Zilog Z8000 system using ZEUS (derivat-
ive of UNIX), but versions of the interpreter for non-Zilog Z8000 systems,
INTEL and MOTOROLA running under UNIX could subsequently be
developed.

Marketing will begin in earnest from next January when advantage will
be taken of the increasing press interest in APL to release details of the
interpreter and its planned availability. This will be followed by promo-
tional activities aimed specifically at the existing APL community, eg
presentations/seminars to North American and European user groups
and to specific clients of Zilog and ourselves, participation at APL82 and
APL83, directmail and promotional press advertising (usually in conjunc-
tion with Zilog’s own ‘brand’ advertisements.) Selling to existing users
will be handled byZilog (either directly or through dealers) and ourselves.
Selling to the vast newmarket of potential APL users in Europe andNorth

11

Dyalog at 25

America will be left predominantly to Zilog’s existing network of dealers
whowill be encouraged by very attractivemark-ups (100%), presentations
at dealer conferences, participation at key exhibitions, and by promotional
advertising.

How longwould it take to write an interpreter from scratch? Not that long, appar-
ently. Marketing was to start three months later, and they planned to have some-
thing to show at APL82 within nine months.

It is important to understand that Dyalog is a development company and
not a sales organisation and its activities in this field will be confined to
promotionalmarketingwith Zilog. Initiallywe shall be selling equipment
through Dyadic Systems and Systemcraft, however, this type of work is
very different from our normal business and may benefit from the form-
ation of a separate organisation next year which would recover its heavy
sales costs through hardware and software dealer discounts. Direct selling
costs therefore have formed no part of the financial model of this devel-
opment project.

The financial model, showing the returns expected from the project, started with
sales projected in agreement with Zilog. The plan was to sell about a thousand
copies over seven years, three-quarters of these through Zilog and its dealers. Zilog
dealers would pay £1,000 a copy in 1981 prices and might sell on at twice that.
Dyalog (Europe)was planning to sell amillion poundsworth of interpreter licences.

The companywas formed and the twoprogrammers startedwriting the interpreter.

[DC]We set up a new company, Dyalog Limited, composed fromDYAdic
Systems andZiLOG. (The associationwith dialogue – or dialog in American
English – had a certain serendipity to it.) Geoff Streeter expressed a strong
interest in becoming involved, and so joined John as co-developer. I made
up the development team in the role of technical adviser regarding the
user functionality of the product, project coordination, and later the pro-
duction of the user manual, of which I wrote a major portion over a two-
week period in hospital. (There was not much else to do there.)

Writing the interpreter
There can’t have been that much to do back in the office, apart from writing the
interpreter. That was done from their homes and in Zilog’s offices in Maidenhead.

[John Scholes] David Crossleymanaged and documented the project and
Geoff and I coded it. If there was a problem, Geoff and I would just slug
it out between us really. If therewas a strategic decision, wewould discuss

12

Dyalog at 25

it with David. And, to be honest, a lot came down to people’s taste. The
correct way of doing it, of course, is to research all the journals – but we
didn’t have the time. Geoff and I had a lot of interest in APL, and we had
some historical conference proceedings. But we didn’t have access to the
current information onwhatwas going on.Wehad nothing but experience
and a fairly large amount of historical information.

It was a hot spot. (Maybe we should whitewash this to show we did it after
consideration.) But actually there was a lot of subjective “Yeah, we will do
it this way”. Which is why it took Geoff and me only fourteen months to
implement a second-generationAPL from scratch. (A previous interpreter
I had worked on had taken 28-man-months to bring to the same state.)
What we achieved is actually impossible; you can’t do it that fast, but we
did. And sometimes I probably made decisions without knowing I was
making them.

We just went in and did it. We didn’t have committees or the Internet,
we just got on with it.

Zilog wanted the interpreter written in PLZ/SYS, which would have restricted it
to Zilog machines. Scholes and Streeter chose C.

[DC]What turned out to be a prescient decisionwas the choice of C, quite
natural under the Unix operating system, as the coding language for the
interpreter. Its portability proved itself in porting to other Unix platforms,
but much more importantly in the later conversion to the Microsoft
Windows platform, whose underlying development language is the
C++/C# descendant of C.

The plan called for writing, not a primitive APL like the MCM machine’s, but a
full-strength second-generation APL comparable to the languages provided by
market leaders like I.P. Sharp. There were many choices to be made about what
to include. But the big choice, that could not be deferred, was between the two
competing schemes for nested arrays.

[Geoff Streeter] One of the early decisionswe facedwaswhether to handle
nested arrays at all! I think John Scholes was opposed, I was in favour,
and David Crossley made the casting vote in favour. Following this, we
had to choose between floating and grounded arrays.

Two schemes had been devised and explored for nesting arrays. The elements of
‘flat’ arrays could have no shape themselves. They had to be ‘scalars’: individual
numbers or characters. Nested arrays removed this restriction. An element of an
array could be another array; and so on, to unlimited depth.

13

Dyalog at 25

Bernard Beyda and colleagues from CISI marvel at a 2nd-generation APL, Unix Europe
Expo, Paris, c.1984

The trick to making this work was a new function called enclose. It turned an array
into a scalar, as if wrapping cling film around it. A corresponding disclose function
removed the wrapping, revealing the shape of its content.

The difference between the two schemes turns onwhat happenswhen you enclose
a scalar, such as a single number. In the ‘grounded’ scheme, it gets cling-filmed.
In the ‘floating’ scheme it does not.

Language designers had different intuitions about how to do it. Experimental im-
plementations were built and explored for both schemes, and were found to have
subtle and profound differences. Each scheme had advantages the other did not.

Researchers tried valiantly to reconcile the two schemes within a single, more
general scheme. These attempts failed. Systems written using a floating scheme
could not be mapped to a grounded scheme, and vice versa. To migrate an applic-
ation between floating and grounded array systemswould require extensive repro-
gramming. The APL world was about to divide. Dyalog had to take one side and
reject the other.

[DC] Itwould incorporate the nested-array extensions based on Trenchard
More’s proposals. These were later released as APL2 under the iconic

14

Dyalog at 25

leadership of JimBrown, but had also been released as Bob Smith’sNested
Array Research System (NARS) at STSC for assessment by the APL com-
munity.

These public-domain extensions were widely discussed in papers
presented at various SIGAPL conferences. I.P. Sharp under Kenneth
Iverson’s tutelage had proposed (and they later implemented) an altern-
ative approach to enclosed arrays, as they preferred to call them, that had
a different fundamental basis. (More’s proposal decreed an enclosed
simple scalar to be identical to that simple scalar, whereas with Iverson’s
the enclosure creates a deeper structure.) Whatever the theoretical argu-
ments, I think we made a pragmatic choice. The elegant extension of
strand notation in More’s proposal simplifies coding, despite the incon-
sistency that one cannot have a single-element strand. We adopted the
IBM/STSC route.

Another innovation, included in NARS but oddly not incorporated later
by STSC in their first official release, would be user-defined operators. I
think the concept of operators as distinct from functionswas hazy tomany
APLers at the time. Indeed, some variants of APL referred to functions
as operators, as is still common in other programming languages. Of
course, operators had beenwith us from the beginning in the form of scan,
reduce, inner-product and outer-product. The ability to define one’s own
operators helped to make the distinction clear, as well as extending the
power of the language.

Future versions came to incorporate innovative extensions such as
namespaces, threads, dynamic functions andoperators, andobject-oriented
extensions for .Net compatibility. But at the start wewere careful to avoid
controversial changes to the language. We introduced the zilde symbol ⍬
to represent an empty numeric vector, thus avoiding extra parentheses
when writing a strand. Four new primitive operators were added: mon-
adic and dyadic each to process enclosed arrays; compose to ‘glue’ functions
together; and commute to reverse the arguments of the derived function,
aiding readability by reducing the need for parentheses.We extended the
definition of some functions; for example, grade up and grade down to in-
corporate the useful features already found in SHARP APL.

We trawled through the various system constants, variable and functions
found in other versions of APL, and reduced the list to a manageable
subset, though of course retaining those regarded as standard. We also
added a few of our own based on a wish list drawn from our collective
experience.

15

Dyalog at 25

A little background to the⎕SHADOW system function,which allowsdynam-
ic localisation of names, might be of interest. Geoff and I had collaborated
in the development of an application-management system called Program-
System, which was presented in a paper at APL79 in Rochester, NY.
Contemporaries will remember the small workspaces that were available
at the time. The system analysed objects needed to perform tasks that
would be defined in theworkspace through small cover functions, dubbed
‘overlays’, expunged on completion. We hit on the idea of localising the
object names in the cover function. Dynamic localisation struck us as a
neater idea.

[GS] Really! I thought the driving force was to be able to avoid the sort
of system-management code that used names like ∆∆⍙⍙ in an attempt not
to clash with the names of things being managed. ⎕SHADOW allows you
to evaluate the names in your environment and pick non-clashing ones.
The ProgramSystem code didn’t really need it. It used additional)SI
depth instead.

[DC] Starting with a clean sheet has its advantages when a completely
new concept is incorporated into the language. Support for nested arrays
was just that. John and Geoff designed an elegant ‘tupple’ method to
identify and track the various data types, including distinct numeric data
types for numeric data to reduce storage space, and a new pointer data
type to handle nested items. Core memory was not generously available
as nowadays, so an early decisionwas to incorporate a virtual design that
would allow workspaces larger than physical memory, using disk-
swapping techniques. The design trade-off between processing cost and
frequency of workspace compaction resulted in a useful solution: a
workspace-full condition would trigger a compaction that might resolve
the situation of itself; alternatively, issuing the ⎕WA system functionwould
force a workspace compaction under program control.

In contrast to the broad brushstrokes of the single-page marketing strategy, the
Technical Overview of the project ran to five closely-typed pages, starting with a
description of the target machine, and proceeding briskly to a long shopping list
of features and design choices. The technical work had clearly received a good
deal of thought.

The description of the target machine will raise a rueful nostalgia from older
readers, and pity and amazement from the young:

The new series of micro computers just released by Zilog are based on
the Z8000 16-bit chip. Sixteen-bit technology provides a quantum leap in

16

Dyalog at 25

processing capabilities compared with the 8-bit micro processors. The
ZLAB-8000 processor, a development machine which is being commer-
cially marketed as System 8000, is provided in its standard formwith 512
K-bytes of real memory and a 24 M-byte Winchester disk unit. Its cycle
drive is 12 MHz (compared with 4 MHz for the MCZ2 8-bit micropro-
cessor). However, the most significant benefit from APL’s viewpoint is
the great increase in memory. The Z8010 memory management chip, in-
corporated in the new series, is capable of managing many mega-bytes
of real memory.

The ZLAB-8000, and its equivalent marketed product, is a multi-user,
multi-tasking processor. It operates under ZEUS, Zilog’s derivative of the
widely-acclaimedUNIXoperating system, developed byBell Laboratories.
Numerous programming languages are supported, including the imple-
menter’s C-language, of which more later. It performs in essence as a
time-sharing machine. An authority on the subject has suggested that its
performance is likely to be better than a Sigma 9!

Unfortunately, the ‘authority on the subject’ was substituting enthusiasm for ac-
curacy.

Going to the show
[DC] Our schedule was to have a working interpreter within twelve
months, with the objective of presenting Dyalog APL to the world at the
APL83 conference inWashingtonDC.Wemonitored progress and revised
our estimates at monthly intervals, or sometimes on an ad-hoc basis. We
met our objective and presented our product atWashington inApril 1983,
completewith usermanuals, on a number ofUnix platforms kindly loaned
by the manufacturers.

One rather large and heavy minicomputer arrived rather the worse for
wear, having been dropped by the delivery people! Our sponsors were
not amused – and neither were we.

Not all the scheduled features were complete, but certainly the essential
features – and a great deal more beside – were achieved.

[JS] Pete used to organise the conference booths, I think. I spent most of
the time at APL83 behind a curtain coding, because we had problems
with the compactor. It’s surprising Pete still has any hair left, with the
organising and borrowing of machines, making sure it all arrived and
had Unix on it. It was horrific.

17

Dyalog at 25

[Pete Donnelly] AtAPL83 Iwas astonished at howmany companieswere
there exhibiting. It was huge. There were thirty or forty APL businesses
with stands there. I also remember the salesman from Gould saying it
was the smallest exhibition he’d ever seen in his life, andwonderingwhat
was he doing there.

The stars of the show were STSC and The Computer Company. Phil van
Cleeve must have had 30-40 different 68000 machines running APL on
his stand. They had hordes of people typing on their machines all day. It
really was quite impressive. MicroAPL had a typically showy stand. We
were ignored by everyone, except the guys from STSC, and I spent almost
my entire time on the stand demonstrating to them.

One of the 4-5 non-STSC people who visited the stand was Jim Goff, who
actually ended up buying a copy of Dyalog APL. I think he bought the
second licence.

And nested arrays: that was a disaster. A lot of people said they would
not buy it, because it had nested arrays. One of my sales points was: you
don’t have to use the damned things if you don’t want to.

They didn’t really come out until later. They were much discussed at
APL84, among the 5-6 people at the top of the tree, but theAPL food chain
didn’t really know anything about them.

[GC] When I was taught IT back in 83-84 they showed us relational data-
base theory, but it wasn’t called that at all, it was some kind of data-
modelling thing. IBM worked on these nested arrays to be prepared for
the DB2 release, to have some way of handling that data once their data-
base came out. And no one understood why on earth you wanted nested
arrays until they had to deal with data from relational databases. And
then it all became obvious, because it was so useful for that.

A major technical milestone had been reached and the product, or at least a
working prototype, had been demonstrated. There were still serious technical
challenges tomeet. For example, the interpreter, running on amillion-dollar Gould
mini, was outperformed by STSC’s new APL*PLUS on a mere IBM PC.

Dyalog had ignored the IBM PC in its original plans.

[PD] At that time we didn’t know what was going on outside our closed
little world. I’d never seen an IBM PC until we went to APL83.

[GS] We didn’t take any notice of the early PC, because the addressing
was horrible; whereas STSC went for it. We didn’t take any notice of it

18

Dyalog at 25

until the 80386 chip was launched in 1986. We were a Unix company for
a long time.

[PD] They didn’t knowwhat we had to sell. No one knewwhat Unixwas.
It was a bit like saying, we’re a purple APL; it didn’t mean anything to
anyone at the time. Soweweren’t offering anything anyonewas interested
in.

We just didn’t have anything in the product that people were asking for
then. I don’t think I sold in the first two years more than three or four li-
cences. Those kind of numbers: it certainly didn’t get to ten.

Ports on call
Dyadic only ever sold one APL licence through Zilog, to an unknown user in
Denmark in 1983. What had happened to the joint sales plan?

[JS] I think Zilogwas hoping for a hugemarket share in the 16-bit market.
That’s right, there were the minicomputers, and everyone with a mate
and a garage set themselves up as aUnixmachinemanufacturer and built
a Unix machine and sold it. It is possibly not an exaggeration to say there
were hundreds of Unix machines – dozens of Unix machines, anyway.
That was the way to go. People buying these machines typically asked:
has it got FORTRAN, and COBOL, and increasingly the question was:
has it got APL? The manufacturers just wanted a tick in that box. They
didn’t care what it looked like, they just wanted a tick in the box. And
Zilog wanted a tick in the APL box. I think that’s how we were involved,
how we were attracted to Zilog.

[GS] Zilog fell by the wayside because it was 16-bit. So it had 64KiB seg-
ments, and separate segments for code and data. TheMotorola 68000 chip
had 8MiB of address space. The various machines built on AMD bit-slice
technology were all 32-bit. The only 16-bit machine that succeeded was
the IBM PC on the Intel 80286 chip. But I think that succeeded because it
was sold by IBM, rather than because of any merits of the 286.

So we did all this, and then I think the Z8000 fell by the wayside, for
commercial reasons. They didn’t compete well with Sun, I suppose.

19

Dyalog at 25

The leading APL for UNIX systems

[JS] That one person who wanted a Zilog machine with APL was an easy
sale. But from Dyadic Systems’ point of view we were trying to sell them
APL – what’s that? – running on a Unix operating system – what’s that?

20

Dyalog at 25

– on a Zilog computer – what’s a Zilog? So to get new business for Dyadic
was a three-stage sell. We only had it available on Zilog, and if our pro-
spect didn’t have a Zilog machine there was some resistance to getting
one.

[PD] I was trying to sell what we had. The pressure to do ports came
pretty much immediately and we did that for probably 2-3 years before
getting down to product improvement.

Unable to sell the interpreter into themainstreamAPLmarket, Dyalog found itself
talking to other Unix manufacturers who also wanted a ‘tick in the APL box’. This
was a subsistence business, since each port led generally only to the sale that had
prompted it, and only rarely to further sales on the same platform.

[JS] So one of the first things we did was port it to other machines. Fortu-
nately we had written it in C, so we could do that. The C compilers in
those days were very buggy, and we ported the product – a dozen, two
dozen, three dozen – times, onto different Unix platforms. And the work
was dreadful because the compilers weren’t working well for the first
five years of porting. We never found a C compiler that worked properly
and didn’t have any bugs in it. So porting was trying to code around it
really aswe didn’t have access to all the compilers. Our code is still littered
with workarounds – although Geoff and I have been taking a lot of it out
over the last decade. But the code still contains statements such as: if it’s
PERQ, do it this way; if it’s MASCOMP, do it that way, and so on. There
is awhole archaeology in there if you start digging.Our survival depended
on our ability to port.

And that is what Geoff and I did. It was horrible work. One of my
memories is being locked in a basement in Paris with a Honeywell Bull.
The correct description is: a nasty cellar, with a nasty piece of software
on a nasty machine until we got it done. There was a lot of that. It was
quite stressful work. I think they promised us this was the last port you’ll
ever have to do, after this you’ll be able to do some development. That
was a low point.

[GS] At least the food was good. And I got arrested going into France.
Dave Gordon and I were both going to Honeywell in Paris to do a port.
We both took reel-to-reel tapes with the source on it, and floppy disks to
put the releases on. Dave flew to Paris and had no problems at all. I took
mymotor cycle across on a ferry and was going to ride down to Paris. As
I came out at Cherbourg, the customs guy stopped me and demanded to
see inside my panniers. Inside was this tape, and some floppies. He said,
what’s this, and cartedme off to the police station. Of course, by this time,

21

Dyalog at 25

Dave had actually arrived in Paris, so the data I had on the tape was
worthless, because he had a tapewith the same contents. The big problem
I had with the customs guys was that I had a box of floppy disks, which
were worth about forty quid, in those days, and the reel-to-reel tape was
worth four quid. And they could not believe that that could possibly be
the case. Anyway, they let me go eventually, and I rode down to Paris.

Scholes discovers alternatives to coffee

Thatwas the only time I ever got arrested. I never got arrested on political
demos. Dave Crossley used to say that was how he remembered how
APL rotateworks – from my politics: a left shift is a positive shift.

[JS]How long did a port take?Well, it took as long as it took.What should
happen, theoretically, is that you turn up with your C code; install it on

22

Dyalog at 25

the machine; you type make; it spends however many hours it needs to
compile everything; you put it on a disk and you ship it. Butwhat actually
happens is that the compiler breaks, so you have to find the problem,
using low-level machine code for debugging. Geoff is much better at
solving compiler bugs than I am. Effectively, we weren’t debugging our
software, we were debugging the system software.

We couldn’t afford to own a SunMicrosystemsmachine, or aMASCOMP,
or a DEC, or a Gould and so on; so we had to go and beg. But normally
it was quite a good deal. You know: we’d say, you probably want an APL
on your machine, because people are probably asking if you’ve got it. So
no money changed hands. They gave us the facilities to go and port.

[PD] Actually, I tried very hard (but not always successfully) to get them
to pay us!

[JS] The third port we did was the Gould 3000, long since dead. We got
someway into the project and realised ourmemorymanagerwasn’t going
to work on that, because the Gould insisted that floating-point values
were 8-byte-aligned, otherwise it gave a hardware interrupt and croaked.
Our memory management was just 4-byte-word-aligned. On the Zilog
we’d decided it would be 2 byte-aligned words, because that’s what the
Zilog did, 16 bits, and if you had a floating-point number, that was just
a bunch of bitswhich it loaded (in its own sweet time) into its FP emulator,
so the alignment wasn’t a problem. So the memory manager was word-
aligned; when we moved to a 32-bit machine, that was 4-byte-word-
aligned. But the Gould insisted that all floating-point numbers were on
8-byte boundaries. That was a bugger. That was a hard one to fix.

[PD] This was entirely my fault. I was desperate to win a benchmark and
at the time the Gould was the fastest Unix box on the market. This might
have been the port where the normal mechanism to detect the end of a
pipe (EOF) didn’t work, so Geoff ended the message sent to or from an
AP with the string reteerts ffoeg.

[JS] I always had it in mind to phone Dyadic support one April Fool’s
Day,with a heavymid-European accent, claiming to beMrReteerts Ffoeg.
“I hev problemvisAPs onGould 3000; ven sendmyname across interface,
AP hengs…”

So the Gould took – I don’t know how long the Gould port took; it could
have beenmonths. Typically theywere –Geoffmay have a different view,
but probably – they would be a month. People would say: Have you got
it on so-and-so? And Geoff and I used to mutter in the background and

23

Dyalog at 25

suggest that we say if you want it, charge them twenty grand a port. But,
as I said, every two men and a dog with a garage used to invent a Unix
machine and someonewould come along and say, can you port yourAPL
to it; if you port APL to this machine we’ll buy it. We’d spend a couple
of months porting to it, they’d go out of business, and we’d cross it off
and carry on.

Pete has a wonderful poster – there’s a photograph somewhere – of one
of our booths at one of the exhibitions. It says, DyalogAPL is nowavailable
on – machine after machine – and none of these machines exist anymore.
They came and went. Near the top was a ‘Bleasdale’, named after the
company’s founder, Eddie Bleasdale.

SunMiniframeFortuneAmdahl

TorchNCR TowerGouldAT & T

UniqxPerkin-ElmerHP9000Bleasdale

VaxPyramidICL PerqCadmus

ZilogRidgeMASCOMPDiab DS90

[GS] On that list of machines is the ICL Perq, which was a rebranded
‘Three Rivers Perq’. It may not exist any more, but it was the forerunner
of the Apple Mac. I remember being stunned at the interface, complete
with a tablet and ‘puck’. These days, think Wacom for that sort of tool.
The Perq was strange because pointers to ‘words’ were 4 bytes but
pointers to characters were 6 bytes. That caused some fun.

The Gould port was not a long port. It was, however, a stressful one. The
only serious problem was the alignment-of-doubles issue. Still, solving
that paid enormous dividends later, when every RISC chip turned out to
have the same constraint. Intel 686 (Ppro) and later also ran faster with
doubles aligned on 64-bit boundaries.

24

Dyalog at 25

Loughborough 1983: Twenty flavours of Unix

25

Dyalog at 25

The disappearing future
The future on which the Dyadic directors had staked the company was taking too
long to arrive. There was a market for APL on a minicomputer, but the working
prototype demonstrated at APL83 on a million-dollar Gould mini had yet to beat
STSC’s APL*PLUS on an IBM PC.

[PD] At that stage Dyalog APL was almost unsaleable. Our primary
platform, the Zilog, was a total commercial disaster. Our most hopeful
platform was the DEC VAX which, in its Unix format, had cornered the
educational market. However, most university computer departments
regarded APL as some kind of devil worship.

An early view had been taken that what mattered were subjective response times
and that absolute benchmark timings were irrelevant. That theory had been tested
to destruction.

[PD] A couple of Dyalog APL for VAX licences were sold but customer
reaction was very poor. I remember trying to explain to an irate customer
at the University of Colorado why Dyalog APL on their top-of-the-range
VAX performed at half the speed of APL*PLUS on a bottom-of-the-range
PC. I seem to remember sendingGeoff over to Colorado to fix bugs,make
it faster, and generally placate them. I think that Geoff learned to ski at
Lynwood’s expense. In those days there were as many bugs caused by
faulty C compilers as there were caused by faulty programming, and re-
liability was also a major bug-bear.

However, speed (or rather, lack of it) was our fundamental problem and
it would take years of redevelopment to resolve this issue. Dyalog APL
had, necessarily perhaps, been designedwithin the constraints of a 16-bit
architecture and optimised for space rather than for speed. In producing
aworking second-generationAPL in only fourman-years,many shortcuts
had been taken. I think I rememberGeoff tellingme he hadwritten dyadic
iota in a day. I definitely remember constant complaints that our imple-
mentation of dyadic iota was desperately slow!

[GS] Most of the complaints about slow dyadic iota were from people
who habitually packed characters into double-precision variables to get
over the lack of nested arrays elsewhere. (I still get complaints about dy-
adic iota.)

A broad market for Unix minicomputers was still years away. Revenues from the
consulting core of the company continued to shrink.

26

Dyalog at 25

[DC] The directors of Dyadic Systems had taken a calculated risk in de-
veloping Dyalog APL. In 1981, the consultancy business remained profit-
able, althoughwe foresaw an uncertain future. The first phase of develop-
ment, culminating in its debut at APL83, was scheduled to take a year,
which we felt could be financed from Dyadic resources. Zilog provided
equipment and facilities. So our first-year commitment would essentially
be three salaries plus relatively small additional expenditures.

Thereafter we expected the salaries for two full-time developers to contin-
ue, but sales and marketing expenditures would start then. We applied
and received approval for a substantial government grant for new devel-
opment in technology that could be extended to support a portion of
promotional costs on successful product completion. In order to obtain
approval, we presented our financial case, which included examination
of our audited accounts by the grant administrators.

Dyalog APL made its debut at the APL83 conference. However, our fin-
ances had gone pear-shaped. We were hit by a double whammy.

Firstly, we were due to receive grant payments in monthly instalments.
We had been led to expect instalments to beginwithin three to sixmonths
of application, subject to approval. Although approval was given early
on, the bureaucratic process was alive and well, or not so well, from our
point of view. Instalments started some 15 months after application, or
to put it another way, some three months after completion of the primary
development phase, and the debut at APL83. In retrospect, we over-relied
on this funding,which should have fully covered our first year’s develop-
ment costs. The gap was covered by Dyadic Systems.

Unfortunately, by early 1982 APL consultancy work had dwindled more
quickly than we had anticipated, an experience we shared with others in
this business. Revenueswere not strong enough to carry the development
process.We directorswere probably too slow to take decisive action. After
all, that would mean redundancies. We were a very close-knit group,
which had already seen steady increase in size over six yearswith, I think,
just two departures. We delayed until the summer, but could not avoid
four redundancies, a painful experience for which I feel much regret. A
bond of trustwas broken, and shortly after, twomore consultants resigned.

Although the grant instalments started in 1983, it was by then clear that
the consultancy business was not itself sustainable in its current form. It
could provide a core of competence for the support of Dyalog APL, now
a saleable product. But that would require new finance.

27

Dyalog at 25

Customer demand

[JS] So we came back from Washington, and did the portings, but the
company could not sell enough of the product to replace the disappearing
consulting revenues. At some point Lynwood Scientific stepped in and

28

Dyalog at 25

made an offer for the company. And really, they just wanted Unix expert-
ise; they wanted Geoff and me, I suppose.

At this point I had to go without pay for a while: I was a contractor, I
wasn’t employed. I forget what I was called. And I was a creditor – is that
theword? They owedmemoney: Dyadic Systems owedme threemonths
of bills. I had a big mortgage, wife and children. You know: it was bad
news.

[GS] After we’d been in Farnborough for a bit, they decided they were
running out of money and they were going to pull the plug on the com-
pany, and we worked, for about three months or so, on no salaries.

Living with Lynwood
In 1983 many people outside the APL world saw Unix as ‘the next big thing’.
Among them was Lynwood, a manufacturer of intelligent terminals, with a well-
established niche in the British defence market. The LynwoodAlpha terminal was
a classic, despite a slight tendency to self-immolation, and Lynwood hadmade an
APL version of it. Donnelly hadwritten a graphics package (inMIPSAPL for Prime
Computer) that exploited the graphics capabilities of the Lynwood terminal. (Dy-
adic was at that time the UK distributor for MIPS APL.)

The Lynwood Alpha terminal

29

Dyalog at 25

[PD] Lynwood bought the Dyadic companies in 1983. One of the condi-
tions of the salewas that all of the employeeswho had purchased ‘royalty
options’ in Dyalog APL waived these royalties.

In the heady days of Dyalog’s formation, certificates of future royalty entitlements
were granted. Some have survived. (See next page.)

[PD] The company was then run as a wholly-owned subsidiary of Lyn-
wood Scientific and I was appointed ‘Operations Manager’. We retained
a single consultancy contract (with Commercial Union), who paid for the
services of Martin Tann, John Stembridge and Ray Cannon as APL con-
tractors. After a few months, John left to start up his own business, Ray
went free-lance but stayed at CU, andMartin joined theAPLdevelopment
team. Soon our revenue from consultancy joined our revenue fromDyalog
APL at level zero. After three months, Lynwood’s chief accountant (the
aptly double-barrelled Bill Coutts-Donald) tried to close us down, but for
some reason Lynwood’sMDHector Brown decided stubbornly to contin-
ue.

Lynwood fancied Dyadic’s Unix expertise, centred on Scholes and Streeter, for
developing its ever-smarter terminals. But the pair could not be budged from the
APL interpreter, continuing to port it to machine after machine.

[GS] I think theywanted our programming expertise, more than anything
else. But we were all too committed to APL.

[JS] Lynwood effectively took over on the understanding that Geoff and
I would sign on for twelve months. They paid everybody’s back salary.
But it was a tough time. Everyone else – also Geoff – was an employee. I
had come in late on the deal as a contractor with the Unix expertise. And
for the rest, their Unix expertise was whatever they had picked up in the
office. Pete became a Unix expert as well. The company as a whole had
absorbed the Unix philosophy.

30

Dyalog at 25

Certificate of royalty entitlement

31

Dyalog at 25

So the three directors left the company, leaving Geoff, Pete, Ray Cannon,
Pauline Brand and myself. Who else? A couple of people were there as
well, but I didn’t really know themwell. The way the body shop worked,
people lived at home and worked at the client’s site; we didn’t really see
them in the office very much. At that point we had an office over a
butcher’s shop in Farnborough. Paulinewas there, and lived locally. There
was a secretary, Leslie Gould, who was the nerve centre of the company.
So in the officewere Geoff, Pete and I. Effectively what Lynwood didwas
buy a company and chop the head off – the three directors – and then
everyone else got to stay. And they chose Pete to head the operation. Ray
Cannonwas there, and a guy calledMartin Tann,whose name still appears
in the code: he invented a really nice trickwith the component file system.

Lynwoodwas in the terminalmarket. Peoplewere puttingmore andmore
intelligence into their terminals. And they were shaping up to be another
companymaking a Unix machine. So they wanted to convert one of their
terminals, their posh Lynwood J5 ‘goes bang in the night’ terminal, into
a Unixmachine. But they had limited on-site Unix expertise. So their idea
was to buy a company with Unix expertise and set them to work making
a Unix for these terminals.

And actually they got it wrong, because they didn’t know what they’d
actually bought was crazy APL bigots, who were more devoted to APL
than Unix. They tried for a long time to split us and make us forget APL,
re-educate us into the Unix way. I think they got Martin Tann. But the
rest of us, because we were like a family business, we were such a tight
unit, we didn’t want to play, effectively. They started us off as a separate
profit centre within Lynwood with a view to cherry-picking the best re-
sources so that we would fizzle. But we were such a tight little unit, we
didn’t do that.

[GS] There was also Dave Gordon, and Lynwood did persuade him to
move across to their Unix development. The other thing about the Lyn-
wood Alpha was that it was built around a Zilog Z8000 chip. John and I
knew Z8000 assembler because, whilst we had written in C, all of our
debugging was done at the assembler level. We didn’t have any source-
level debuggers.

Undeflected by Lynwood’s intentions for the “crazy APL bigots”, Scholes and
Streeter got on with extending the interpreter.

[PD] Despite the problems, revenues from Dyalog began to creep slowly
in from unlikely sources. CISI, a large French company, had committed
(to the French government) to implement a system (LIBRA) for the admin-

32

Dyalog at 25

istration of French libraries, written in APL, to be deployed on French
computers running Unix. Dyalog APL was their one-and-only hope of
delivery and CISI became our French distributor. Our biggest sale was of
30 copies of Dyalog APL for the ‘Fortune’ (an American Unix box which
had been re-badged as a French machine) to the French Ministry of Cul-
ture. They bought the licences only to spend a budget that would other-
wise have been cut the following year, and the diskettes and manuals
were securely locked away in a safe and never used. There were no cus-
tomer complaints.

The requirement to deploy on French computers gave us the opportunity
to charge for porting. Some of John and Geoff’s most unpleasant
memories of Paris were actually milestones in my attempts to find ways
to pay our salaries. CISI also got Dyalog APL into the EEC in Brussels
and Luxembourg. However, Dyadic continued to operate at a substantial
loss.

Our first major breakthrough was when Pauline Brand and I managed to
persuade SimCorp to adoptDyalogAPL forUnix to deploy their portfolio
management systems. SimCorp subsequently developed a special product
for British building societies, who had just been deregulated and were
setting up their own dealing operations. The deployment of the SimCorp
application onDyalogAPL forUnix also led tomore porting opportunities,
as some of the building societies had sole-supplier contracts with their
hardware partners (e.g. Unisys). Despite the pain and anguish suffered
by John, Geoff, and others, porting was fast becoming a major source of
income.

In the six years from 1984 to 1990, we effectively completed the develop-
ment of Dyalog APL as a viable product, with attention paid to what
customers wanted.

Of course, we didn’t agree on anything. A good example: not having the
(APL*PLUS)WPUT andWGET functionswas amajor disadvantage, because,
by then, that was the way you built APL applications. So all I wanted
them to do was copy that. But trying to get John to copy someone else’s
design is impossible. So he designed ⎕SM as a counter to that, to shut me
up. I think it’s a bit of a brilliant design – myself – but it didn’t actually
help that much, because what people wanted was WPUT and WGET, so
they wouldn’t have to rewrite their code. They didn’t want better.

By the late 1980s the product was competitive in terms of speed with
other APL systems, and had a decent end-user full-screen interface. IBM

33

Dyalog at 25

announcedDyalogAPL as aVendor-Logo product for the IBMRT (which
later became the RS/6000) and we developed a 32-bit version for the IBM
PC. The companywas still losingmoney, but the losseswere diminishing.

Version 3:Michael Berry & Ian Sharp on the stand at APL86; in the foreground, a Lynwood
Alpha

On 26 September 1985 they released Version 3, with performance improvements,
a component filing system, rectangular display of nested arrays, a full-screen session
manager and virtual workspaces. Here is an extract from the announcement.

RECTANGULAR DISPLAY

Dyalog APL now supports a 'rectangular' display of
nested arrays.

'ABC' (2 2⍴⍳4)
ABC 1 2
3 4

This makes it very easy to produce reports with
row and column headings.

34

Dyalog at 25

SALES
200 1500 51200
150 1000 4900
225 900 21500

PRODUCTS←'Cakes' 'Biscuits' 'Buns'

DAYS←'Monday' 'Tuesday' 'Wednesday'

DAYS,SALES
Monday 200 1500 51200
Tuesday 150 1000 4900
Wednesday 225 900 21500

(' ',PRODUCTS)⍪DAYS,SALES
Cakes Biscuits Buns

Monday 200 1500 51200
Tuesday 150 1000 4900
Wednesday 225 900 21500

Note, the above expression is equivalent to:

⊃' ' PRODUCTS,.⍪DAYS SALES

Then one of the ports struck oil.

[JS] We did a port to the IBM 6150 RISC machine – which was strange,
because IBM had their own APL – but they didn’t have an APL for their
new minicomputer. And it seemed easier for them to get us to port ours
than for them to port theirs, which is very strange. I suppose that’s big-
company politics.

Whenever wemade a sale, we had to sell a machine and sell Unix as well.
And that’s how Pauline got us into the IBM business, selling APL in IBM
RISC machines. Eventually she made a huge business: the APL dropped
away and she was flogging a million pounds worth of IBM kit.

Pete was running that, and it gradually split into the RS/6000 side that
Pauline ran and the APL side. I think Lynwood was getting impatient
with us, and we reckoned we could buy ourselves out from underneath
again.

35

Dyalog at 25

World of suits: selling the IBM RT

[PD] We started selling hardware; initially the Altos and then the IBM
RT. Lynwood even hired us a full-time hardware salesman, although he
left after only a year, in which he actually sold nothing.

Soon after our salesman left, BritishAirways issued an invitation to tender
to supply four IBM RTs. As the systems were going to run applications
written in Dyalog APL, Dyadic was included in the tender. Consistent
with BA’s policy at the time, the winner of the bid would effectively be-
come the sole supplier of IBMUnix systems to BA. However, neither IBM
nor BA took the bid particularly seriously, expecting BA to continue to
use IBMoperating systems and IBM-compatiblemainframes, so the tender
was comparatively low-key. To everyone’s amazement, including our
own, Pauline and I won the contract for Dyadic. At the time only Pauline
and I saw the value of this contract, which would go on to generate rev-
enues for Dyadic in excess of £25m before the hardware business was
sold in 2002.

In fact, Lynwood had itself been acquired by this time, and it’s questionable
whether its new owner, Hunting, shared its ambitions for the Dyadic team.

36

Dyalog at 25

[PD] At this point (around 1987-8) Lynwood became part of the Hunting
Group and Dyadic became a very small minnow in a very large pond.
We continued almost unnoticed.

We never made enough money there to pay even one person’s salary, let
alone everyone’s, but we made enough money to persuade Lynwood
there was something in it.

The CISI thing kept us going 2-3 years, and then SimCorp came along
with its application for UK building societies. I met Frede Hansen at a
conference. He said, “That’s very interesting. If you’re still here in some
years time, we might do business.” He said that to me at the APL84 con-
ference, at the APL85 conference and I think at the APL86 conference. He
basically hung around for about four years until he was confident we
were still there. I think the fact that we were owned by Lynwood made
a big difference, because we had a sizeable company around us.

[Morten Kromberg] I’ve never understood that argument. Actually, the
reverse is true.

[PD] They wrote an application for UK building societies, which every
single building society then bought. They all seemed towant it on different
computers. They were uninterested in howmuch they paid for it, andwe
made as much money out of being paid to port it as we did out of selling
licences. So thatwas the first bit of real business, based on genuine require-
ments being met by our software. The SimCorp application had no user
interface; it ran as a batch job. They just wanted an APL that could do
sums.

In 1989, quite out of the blue, Manugistics approached us and indicated
an interest in buying the company from Lynwood. I visited Manugustics
in Washington and had discussions with Pat Buteaux (head of the
APL*PLUS business) and the president, Bill Gibson. Manugistics sub-
sequentlymade an offer to Lynwoodwhichwas initially accepted subject
to the approval of the Dyadic staff. I had reported back that although I
was impressed by the APL team at Manugistics, I was disappointed to
find Bill Gibson seemed to be uncertain regarding the future for APL.
Pauline, John and I said No. (I must admit that I was marginally and
wrongly in favour.) However, we now knew not only that Lynwood was
willing to sell Dyadic but that we could (just!) afford the price. With help
fromColinMathissen at Sheen Stickland, Pauline, John and I put together
a business plan, obtained finance from the Royal Bank of Scotland, and
bought Dyadic from Lynwood in March 1990.

37

Dyalog at 25

On the road again
Dyadic Systems Ltd was incorporated on 8 May 1990.

[JS] Pete, Pauline and I put our houses on the line and borrowed – a
staggering amount of money for us, but in retrospect it wasn’t that much.
And actually it was a really stupid decision, because wewere putting our
houses up as collateral to buy a business that had consistently returned
losses. It had never made any money, despite our best efforts. We were
just drainingmoney. Sowe became joint partners in this, equal sharehold-
ers.

We extricated ourselves from Lynwood, moved out of Alton and set up
in Basingstoke. Andy Shiers was a user of Dyalog APL, and he was re-
cruited while we were under Lynwood’s umbrella. He moved with us to
the new Dyadic Systems. We rented accommodation [at Riverside View]
because we were fairly sure we wouldn’t last a year. We were desperate
not to take on any 25-year leases. We thought, we’ll see what happens. If
we last twelve months, we’ll be doing well.

[PD] In our first month, we sold a licence to National and Provincial
Building Society to run the SimCorp application for £32k; our biggest sale
ever, and one that would cover our overheads for three months. I was
despatched toNewYork (hitherto, Lynwood’s cost controls had prevented
travelling without a fully-costed justification) and came back with sub-
stantial initial orders for Dyalog APL/X on Sun from Morgan Stanley,
Merrill Lynch, and Salomon Brothers. These companies had made a sub-
stantial commitment toUnix (mainly on Sunworkstations) and harboured
highly-skilled and important cells of APL developers within their organ-
isations. Coming typically from mainframe-based SHARP APL, these
developers all took to Dyalog APL/X (and the ⎕SM user-interface) like
ducks to water. I also made personal contact with Security APL who had
quietly developed a widely-used financial application on the back of a
couple of 8-user licences on an IBM RS/6000.

At the same time, we began a cooperation with George Kunzle, a domain
expert in financial planning, to convert his FREGI application from the
IBM mainframe onto Dyalog APL for the PC, a project that would grow
into the hugely successful KPS (Kunzle Planning System) under the dir-
ection of Guy Haddleton and Morten Kromberg. (KPS later became the
AdaytumPlanning System, thenCognos Planning, and, ironically, is now
back where it started after the acquisition of Cognos by IBM. Ed.) Guy
initially wanted Dyadic to become his ‘software factory’ and I eventually
only got him off my back by telling him to “go and talk to Morten”. In a

38

Dyalog at 25

sense, this was one of the least-sensible financial decisions I have ever
made, but one that probably savedDyadic fromdisaster. It is still a puzzle
to me how we managed to make so little money (if any) out of KPS. I
imagine Guy laughed all the way to the bank.

[JS]What was keeping the business afloat at that point? Fear, I think. And
the APL business. At the time we moved to Basingstoke we were very
much an APL shop, and the RISC business was still just a sideline. We
had done enough ports on enoughmachines that we were able to get just
enough orders through to pay the salaries. And every timewe had a faxed
order come through, we’d jump up in the air and wave our hands about.

Celebrating in style

Otherwise Geoff and I still sat side by side every day, typing, as if nothing
had happened. Andy Shiers was a user of Dyalog APL, and he was re-
cruited while we were under Lynwood’s umbrella. He moved with us to
the new Dyadic Systems.

We bet our houses on a business we didn’t think would last a year. Why
would we do that? I don’t know. No, I do know, really. It was – what else
do you do? It was a strange decision. Lynwoodwas going nowhere. From
my personal point of view, I’d got a huge psychological investment in
this product and it was either take it or leave it. It was like poker: you
pitch your money in or you’re out of the game, mate. What poker players
call, ‘moving all in’. It was that.

Didwe have perhaps a deep-down fundamental belief thiswas something
which was going to create a sustainable business? No, absolutely not. I

39

Dyalog at 25

still am a techie, born and bred. If you slice me through you’ll find techi-
ness there, rather than business. I was intellectually committed. I don’t
do reality very well. So an intellectual idea was enough.

And I had been involved, remember, with a series of software projects
that had looked great and turned out to fizzle. I had no control over, and
to be fair, no interest in, the commercial realities. I was interested in the
algorithms, and how you could do fast divide-by-something; and to a
certain extent that’s still there. My trust was in: here we are, the guy in
the suit’s buying in, so I’m buying in.

So, for me, it was an enterprise driven by passion. Some people give all
their money away in the pursuit of something they believe in; it was that
sort of a thing, like playing the violin. It was an intellectual passion; I’m
not a businessman. I’ve had the good fortune to be associatedwith people
who have been business people.

[GS] I’m always an optimist. When we were Dyadic, people would say:
if Geoff gets worried, we should have been out years ago! So, no, I don’t
worry about such things.

[PD] Meanwhile, Pauline Brand took on the growing role of managing
the British Airways hardware contract and of developing new customers
whichwould include BAA,House of Fraser, and other household names.
By 1992 she was working full-time on the hardware side and had aban-
doned nearly all technical linkswithDyalogAPL. She tookwith herAndy
Shiers, the ultimate ‘black team’ member with an innate ability to crash
any software product in ten keystrokes or fewer.

Dyalog’s new face
[PD] In 1991we decided to develop a version of DyalogAPL forWindows
and to recruit a new APL programmer. We had the most profound good
fortune to find John Daintree, who is simply a genius. John Scholes, Pau-
line and I can still remember the interview in which he dazzled us by
showing us programs that he had written.

At that stage, the hardware business was developing nicely, but the APL
side was a bit in the doldrums. The instant John joined us, the company
gained a new lease of life. We took the difficult but (as it transpired) wise
decision to put our character-based⎕SM interface to one side and to replace
it with a genuine graphical user interface (⎕WC). Apart from JohnDaintree,
none of us had any significant experience with graphical user interfaces,
although as the author of a minority-interest Motif Auxiliary Processor

40

Dyalog at 25

for Dyalog APL, I had a little more than the others. John Scholes was
spending part of his time overseeingGraemeRobertson on amajor project
at NottinghamUniversity, so I foundmyself working with JD on the ⎕WC
user interface. My role was only a minor one, but gave me a great deal of
personal satisfaction and pleasure. I wanted our interface to be capable
of providing Visual Basic (Mark 1) facilities and I developed WDESIGN
in parallel with JD’s work on the interpreter to test both the design and
the implementation of the ⎕WC interface. Everything that is wrong with
WDESIGN – diverging from the interpreter, needing source-code man-
agement, best for static forms – is entirely my fault.

John Daintree and the native GUI

[John Daintree] I joined at about Version 6, in the autumn of 1991. They
had this thing called ⎕SM for screenmanagement, and theywanted away
into theWindowsGUI. So the first thing I didwas the ⎕WC stuff. That was
what I ended up doing for the first 14 years of the 18 I’ve been here. And
that quickly established me as the GUI guy, which meant I went on to do
session menus, and the various tools that have popped up.

Then I turned out to be the Win32 guy, which meant I had to do the OLE
stuff.

41

Dyalog at 25

[PD] In 1992 we invited the representatives from Cocking & Drury to see
whatwewere developing, and I can still remember the look of shock and,
I thought, fear in their faces. They knew (but at the time, we didn’t) that
we had stolen a huge march on our main competitors, Manugistics.

We announced Dyalog APL forWindows at APL92 in St Petersburg. Our
product forum was, without doubt, our most successful ever and later
that year Mobil decided to adopt Dyalog APL instead of APL*PLUS for
Windows. (Our very first product forum at APL84 in Helsinki had attrac-
ted an audience of two, of whom I was one.)

Suddenly, Dyalog APL licences were flying out of the door. The only
downside being that we could see that our decision to offer a free run-
time would mean that licence sales would eventually begin to dry up
once every APL*PLUS user had converted to Dyalog.

However, we began to make long-term support contracts with our larger
customers. SimCorp decided to use Dyalog APL for Windows as the
platform for the SimCorp Dimension product and entered into a royalty
agreement with us. Following APL98 in Rome, we negotiated a contract
with APL Italiana, who were adopting Dyalog APL for Windows as the
platform for their financial-planning application SOFIA. In the United
States, CheckFree Corporation, who had purchased the Security APL
applications andwere taking them to ever-growingmarkets, entered into
amajor support contractwithDyadic. These three agreements, alongwith
others, provided the foundations for the long-term financial stability of
the Dyalog APL business.

Meanwhile, Pauline was taking the IBM RS/6000 side to even greater
heights and had a substantial and talented team of her own. At one stage,
Dyadic was one of the top ten IBM Unix resellers and in the late 1990s
our annual turnover reached a staggering £10m. This was great news for
the directors and employees, who all shared in the fruits of Pauline’s huge
success. However, the scale of the IBM reseller business in comparison
with theAPL side caused conflictswithin the company, and the enterprise
as a whole became harder and harder to manage. I found it difficult to
do justice to either side of the business, let alone both, and the commercial
aspect of the APL business became somewhat neglected. Fortunately,
John Scholes never allowed himself to be diverted from the ‘true and en-
lightened path’ and the technical development continued apace.

42

Dyalog at 25

Taking the show on the road: San Antonio, Texas

The guys were getting a lot of pressure fromme to release a new version
every year. In those days a new version generated revenue: it was as
simple as that. We had brainstorming sessions: what can we put in this
to make it interesting. We listened to users to find out what they wanted;
but if you ask a thousand users, you get a thousand different requests.
That was what was driving the development.

I spent a lot of time on the road, seeing customers. I probably went to
New York every two months. New customers came from projects to port
applications frommainframes to PCs. Ourmain competition in that came
from Manugistics.

But overall we focused on developing the product and the customers
looked after themselves. The commercial opportunities in the hardware
business meant I didn’t spend much time trying to develop the APL
business. And I wasn’t a commercial guy. I wasn’t chosen for the job; I
fell into it. John does the honour of saying there’s a bit of a geek in me. I
think that’s a bit of an understatement.

43

Dyalog at 25

Pete Donnelly with Dyalog .Net

The APL conferences were the focus of our efforts, and APL97 in Toronto
was very successful for us. Steve Jaffe of Mobil gave a presentation on
why Mobil chose Dyalog and why it was the bee’s knees. I gave a
presentation, and someone came up to me afterwards and said, “You’re
the most boring speaker I’ve ever heard in my life, but the product’s so
good.”

The ducks
[PD] With the DOS 386 version, we did an interface to a product called
CGI. I had to give a presentation to the British APL Association. I knew
nothing whatsoever about graphics, so I bought a book on the GKS
graphical kernel system. Page one had the coordinates for a duck, so all
I did was copy them and use them for a presentation featuring a duck. I
then used that ad nauseam: for example, to demonstrate OLE and multi-
threading. And we reached a point where people were complaining if
there were no ducks.

Karen or Briony decided to adopt a duck at the Wildfowl Trust, and we
got a letter from it. It became a running joke, not that funny, but familiar.
And then we gave out little blue rubber ducks at a conference.

44

Dyalog at 25

Sixty four bits
[GS] Back in 1993 we got a DECAlpha, a new 64-bit Unix box andwe did
a hack port to it.Wewent through the code and replaced all the unsigneds
by long unsigneds, and things like that: grepped our way through and
hacked it, and produced quite a nice 64-bit APL. And that languished,
because we couldn’t bring the code back into the main stream. And there
are still people using it. Apparently there’s a mobile-phone database in
Holland that’s been running on that APL since 1993.

Just a couple of years ago, just before Morten took over, I said, I’m fed up
with never doing another 64-bit port, and Iwent out and bought a second-
hand Sun UltraSPARC, a 64-bit Unix box. I sent an email round the com-
pany that said, I’ve bought this box. I don’t know how I’m going to
manage the time, but I’m going to do the port. At which point Pete rang
around the customers and asked if theywere interested in a 64-bit version.
He got about sixty grand of finance, but for the Windows 64-bit version,
so the company then went out and bought a Windows 64-bit box and we
did theWindows 64-bit version fairly quickly. And the two hundred quid
I’d spent buying the Sun got me and Daintree a large bonus that year.
One of the best £200 investments I’ve ever made.

Parting company
[JS] Now the IBM business grew and became very successful. My take on
this was that by then the APL side was a steady business, and it was
bringing in steady income, and you could actually draw graphs and pre-
dict it. And the IBMbusinesswas all or nothing. Oneweek Paulinewould
sell a million quid’s worth of kit, and then the next week British Airways
would say, oops, they’ve put the price of air fuel up tuppence, cancel all
projects. So the way it seemed to work from my point of view was that
the APL business was insurance: it paid the rent, it paid the salaries. And
then the IBM business was the cherry on the cake, which was great. But
it grew and grew and grew until therewasmore cherry than cake coming
in. The APL business had become a distraction from the main business
of Dyadic Systems Ltd, which was selling high-priced IBM kit.

The geeks amongst us, what we all really wanted to do was to ignore all
this and carry on typing. If you’re not a geek, you won’t understand this,
that you’ll sit and type and wrestle with an idea while the building’s on
fire.

45

Dyalog at 25

Not typing: finding polite answers to customer questions

It didn’t seem possible in the long run to reconcile these two business
ideas. One of the conflicts was Pete’s time. Commercially Pete should
have been going where the money was. He was the business guy. So his
head was in the IBM side of the business, but his heart was with APL.
He’d brought it up, it was his baby. There’s a bit of geekiness in Pete. And
there was conflict about that. It was always, why don’t we ditch APL,
because it’s just using all these resources? And if you compared the
number of people involved to the profit it was making, at some point in
the game, it was not a good thing.

Effectively, the company split into two divisions, just naturally: Pauline’s
side and Pete’s side. That’s theway people perceived it. And Paulinewent
on to greater and greater things, and employed people we didn’t really
know. So it effectively became two businesses.

Then, at some point, it became appropriate to separate those. We were
all getting long in the tooth and we wanted out. I think that’s it. We were
deciding what an exit strategy would be. We had this huge two- cylinder
beast, andwe didn’t know how to ride it.We couldn’t see ourselves doing
it whenwewere seventy years old. But it was unsaleable as it was, because

46

Dyalog at 25

no one could understand what the business was. So the only way to do
it was to split it formally and try and sell the two bits.

Thatwas quite painful emotionally: a lot of grief and tears. Sowe procras-
tinated a lot, but eventually we decided we wanted to do that. And of
course, when you sell the business, they take hostages. So when we sold
the IBM side they wanted Pauline signed up. I mean, without her, there
was no business. She did everything; she was the force.

[GS] IBM came along and said, you’re too small for us. You’ve got to
merge with somebody else. And it broke Pauline’s heart.

[JS] There was a bit of a competition: who wants the name? We both
wanted it, but themoneywon out. Pauline’s customerswere big corporate
entities and they didn’t like their suppliers changing names. Commercially
it would have done her more damage to change names than us. Plus,
people never did understand the difference between “Dyadic” and “Dy-
alog” anyway. They were confused about it.

So we split the business and the IBM side was Dyadic Systems Ltd, and
the APL side was Dyalog Ltd. And then we sold Dyadic Systems Ltd to
Syan.

[PD] In 2002, the IBM re-seller business became even more cut-throat.
Dyadic had always offered a really high-quality service and always scored
very highly in IBM’s customer surveys. As margins were squeezed , it
became increasingly difficult to maintain this level of service. Also, John
and I were growing old and (speaking for myself) tired. I in particular
lacked the will to continue indefinitely. To ensure the long-term security
of all our employees, we decided to sell Dyadic Systems Limited (the IBM
reseller business) to Syan and to transfer the APL business to a new
company called Dyalog Limited.

Dyalog Ltd was incorporated on 23 January 2003. The business had been making
them a comfortable living for a while, and they had long ago repaid the loans on
their houses. But they had never separated theAPL income from the IBM-machine
income. It all went into the same pot. They didn’t knowwhether the APL business
was making money or losing it.

[JS] So again, for a second time,we had no ideawhether theAPL business
would sustain us. After we’d separated the companies the APL business
was on its own and we didn’t really know whether it would survive. We
thought it was making enough money to stay alive. But again we went

47

Dyalog at 25

into a sort of defensive position of short-term rental of offices, the smallest
office we could get, just in case we suddenly went belly-up.

And then it became apparent that APL was OK, it was making steady
money. So I think in retrospect, all the time we had been in Basingstoke,
the APL had been providing a steady income, butwe had never been able
to tell. And themachine sales were providing the bonuses and the cream.

[PD] We had a lot of arguments over whether APL was making money,
because at this stage it was impossible to tell. I had always been of the
view that it was profitable, although marginal. John didn’t know. Our
accountant was of the opposite opinion and I think Pauline shared his
view. It wasn’t until after we split and moved to Basingstoke that I could
show that we were actually doing rather well. The hardware business
had huge overheads that dwarfed the APL business: we just couldn’t see
the woods for the trees.

[GS] When the company split, I stopped wearing a suit to work. When
we were IBM resellers I had to wear a suit to work. It didn’t have to be
blue, but it had to be dark or grey –we had a dress code.Whenwe became
Dyalog, we became scruffy.

The coming of the consortium
[JS] The next bigmovewaswhen the consortium came together. Thatwas
negotiated at the conference in Florida. I think what happened was that
Pete and I were looking for an exit strategy. I certainly didn’t have the
energy to put out, for example, a big Version 12 Unicode release.

[PD] To allow the three of us to retire gracefully, we agreed to try to find
a new management team to take over Dyalog from John and myself.

[JS] But again, being geeks… Perhaps, what we should have done, what
a businessman,what amafiosowould have done, is to hold our customers
up to ransom and say, we’re out. Give us a million quid or your APL ain’t
gonna work anymore. We did not do that. Partly, I suppose, because we
were frightened; we were playing with the big boys. And partly, because
we had a – again, if you’re not a geek you won’t understand this – a life’s
work in a product that we had an emotional and psychological commit-
ment to.

What we thought was, if we sold it to one large customer, they would
butcher it. We saw that happen with another APL. They sold it to one of
their customers. And the users would come along saying we want this,

48

Dyalog at 25

that or the other primitive function that will do something for their busi-
ness; never mind if it suits the language or not. So what we decided to do
was, we’d try to sell it to a consortium of our users that would have the
interest of the product and the language as a whole, as an independent
entity. That was a clear decision. We could have blackmailed everybody
and run off like bandits. But we chose not to do that.

One of the obvious possibilities, that we rejected, was to sell it to the
people working in the company. We were now so few, we could see the
technical but not the business skills to carry the company into the future.
Which was a shame, if there had been another buyer from within, if it
had been a bigger company, that might have been better. But it wasn’t a
possibility.

So,we looked around.Among the peoplewe knowat theAPL conferences,
who do we think could make a go of managing this? We thought of that
first. And we thought of Gitte and Morten. And I’m not sure now
whetherwe thought of the consortium, or they thought of the consortium.

[PD] In 2005, I was delighted to hand over the reins to Morten and Gitte,
backed by SimCorp andAPL Italiana. I am evenmore pleased and proud
to see that the company has gone from strength to strength inmy absence.

49

Dyalog at 25

50

Dyalog at 25

The Administrator’s Tale
Karen Shaw

Karen Shaw worked at Dyadic fromMay 1992 to March 2003. She joined
as their ‘Girl Friday’ and worked on administration, so she tends to have
facts like that at her fingertips. Ed.

I had left mywork atWiggins Teape in 1989, whenmy first child was due. In 1992,
with Jo now three years old, I was looking for a suitable job. From the firstmeeting,
I felt I hit it off with Pete and Pauline, and was drawn by the ‘family feel’ of the
little company. While other firms were offering better money, I was experienced
enough to value the attitudes I found at Dyadic.

There were six in the company when I started: Pete, Pauline, John Scholes, Geoff
Streeter, Andy Shiers and John Daintree, who had started the previous autumn. I
was looking after some of their simplest needs, such as tea, coffee and stationery
as well as invoicing customers and shipping APL.

It was a sharp immersion into the world of geeks. I had an IBM PC for my work,
but no standard software. Previously I had used Lotus for office applications; at
Dyadic I used the Unix vi text editor and home-grownword-processing software
Pete hadwritten.Without the graphical user interfaceswe now all take for granted,
I marked up plain text to indicate where I needed bold type, and so on.

One ofmy first projectswas to organise theDyadic stand at APL92 in St Petersburg.
Everything required paperwork:Aeroflot tickets, andpermission to bring hardware
to Russia and take it away afterwards, certificates of origin. Taking hardware to
Russiawas hard enough; getting it home afterwardswasmuchmore difficult. And
this equipment was heavy. I still have the Russian dolls they brought back for me
as souvenirs.

Nobody was working at Dyadic simply for a living. Everybody cared about what
they were doing, and why they were doing it, and about shipping a product that
was right.

We handled shipping and dispatch of new releases from the conference room,
with sheets of labels and key stickers, manuals, release notes and 3½" floppies.
Andy would find bugs right up to shipping date, demanding that all the floppies
be updated. Distributorswere constantly on the phone clamouring for their copies.
Everyone pitched in to ship a release, getting the packages ready and counting
down to when the parcel carriers were due to arrive.

51

Dyalog at 25

Unpacking at a conference

The developers’ enthusiasmwas infectious, andwe allworked late hours on pizza,
packing for releases and conferences. Though the operation got slicker over time
as the administration improved, right up to when Dyadic and Dyalog split, the
‘IBM folk’ were still involved in shipping. Andy Shiers is still involvedwithDyalog
at CheckFree. We tried to celebrate every profitable month with a company lunch.

We had other fun: Christmas trips to France in three cars: dinner in Le Touquet,
an adventure. We all wanted to be “a bit different” and it was a bond between us.
I always felt involved and the company had a low turnover of staff.

We were a right motley assortment. To work there you had to have that passion
and want to be involved. My husband and John Daintree are still best mates and
all the Dyadic team still keep in touch. It couldn’t just stop at the door. It never
did.

Somany times Iwas laughing and thinking, “only in this company…”Themusical
socks Pete found in his son’s drawer and wore to work, only to find during a
meeting with the accountant and the pensions company that they began playing
when he crossed his legs and he had no idea how to turn them off. John Scholes
‘dead fish’ tie, that Pauline, not a tall woman, found herself face-to-fish with,
screamed, and nearly deafened the office. The dinosaur-feet slippers JD liked to
wear in the office…

52

Dyalog at 25

I hate work to be a burden. My advice is: Be happy, change happens: embrace it,
don’t fight it. Be happy every day. I don’t think I could now do a job I hated.

Office sock competition: spot the human

As the hardware side of the business grew, I came to work more closely with
Pauline, focusing on processes and customer service. After splitting from Dyalog,
Dyadicwas bought by Syan,which has in turn been absorbed byACS in theUnited
States. I nowmanage a team of five people, supporting sales of around £15m each
year.

FromDyadic I learned the importance of caring about people.We’re just all human
beings.

No one at the company ever had to go on a course to learn that.

53

Dyalog at 25

54

Dyalog at 25

Versions
Full nested arrays; line orientated; APs; files using ⎕FF19821

Nested-array display, full-screen session2

⎕DM; component file in one file19853-4

Component-file reorganisation5

⎕SM5.2

Windowed function editor6.1

X Windows; 64-bit version for DEC Alpha19936.2

DOS version6.3

16-bit Windows (Win 3.1); ⎕NA; native files; ⎕DR; Shared
variables; DDE

7.1

32-bit Windows (Win NT); TCP/IP; OLE automation;
dynamic functions; :Trap

19988.1

Multi-threading;:Hold;:With; GIF&PNG;ActiveXCon-
trol; Calendar; ToolControl; TabControl; Splitter; CoolBar;
N-wise reduce; scalar primitives with axis

19998.2

Namespace and GUI object ‘refs’; dot syntax for GUI &
OLEobjects;Windows 2000GUI (ComboEX etc); docking

20009.0

.NET support2002.Net

Idiom recognition; retained hash tables; autocompletion;
Pocket APL

200310.0

Tokens for thread synchronisation; 64-bit component
files; Value Tips; more Grid enhancements; extended
function-header syntax; thread debugger

200410.1

ObjectOrientation; 64-bit version; tighter .Net integration;
squad; power; LCM & GCD; Simple APL Library Tookit
(SALT)

200611.0

Unicode; journalling component files; integrated graphics
and reporting tools; Conga; APL Language Bar; more
SALT

2007/812.0.1

Secure Sockets; Web Service Framework; enterprise ap-
plications; multi-processor support; ‘Installability and
Scalability’

2008-912.0.3 – 12.1

55

Dyalog at 25

56

Dyalog at 25

Next Quarter
Gitte Christensen
gc@dyalog.com

What will the next 25 years bring us? Will Dyalog finally emerge as a beautiful
Swan, to be adored and admired by the rest of the world?

We believe that the most important lesson to be learned from the amazing story
of the first 25 years is; if you have a good idea and you stick to it (even when your
friends tell you that you are crazy), you may be on the path to creating something
wonderful.

At the core of Dyalog is Ken Iverson’s brilliant idea of a consistent notation for
teachingmathematics and describing complex systems. (He used it to specify how
early IBM computers worked). Unlike most programming languages, Iverson’s
notation was designed for human beings to communicate complex ideas to each
other.With the arrival ofAPL interpreters implemented on computers, APL became
an ideal language for human beings to communicate complex ideas to a computer,
telling the computer what to do and leaving it to the computer to figure out how
to do it.

APL is such a powerful concept that it is one of the longest-lived ideas in the
computer industry; it has been around for more than 40 years now.

Pretty much everything else has changed. The computers are smaller and much
more powerful. Most software is no longer custom-built, as it was to begin with.
Applications are built on top of databases using toolkits with different capabilities,
and vast repositories of code snippets and components are available to the pro-
grammer. The programmer – because most other languages and development tools
still require programmers to translate ideas other people have had.

Herein lies one of the biggest challenges in most software-development projects
– the communication of an idea born within a specific context, business or other,
to a programmer who generally inhabits a completely different context.

Many methodologies have been developed to deal with communication issues in
large software projects, but many projects still fail because in the end – at the mo-
ment of truth – the application does not do what it was intended to do. The pro-
grammer may be able to prove that it does adhere to some interpretation of a
specification document that was signed (in blood) by the users, but due to a lack

57

Dyalog at 25

of contextual knowledge from the domain where the ideas were born, the inter-
pretation is incomplete – or simply wrong.

This is where APL has its greatest strength! It is a language suitable for communic-
ation between human beings and for direct communication of ideas from a human
to the computer.WithAPL, the personwith the original idea can be the programmer
– or at least closely involved in the development of his or her ideas. The expressed
specification is executable and the result immediately verifiable. This way of
working is not necessarily suitable for all types of projects, but despite half a century
of software engineering, the communication of really complex ideas to computers
is still in its infancy. If anything, APL is still ahead of its time.

The challenge for an APL implementer is to provide an environment for the lan-
guagewhich allowsbothproblem-oriented specialists andmore technically-oriented
assistants to access the environment and to deploy applications built with APL in
the same manner as ‘real programmers’ do with more conventional tools. It is a
constant struggle to integrate APL on new computing platforms in a way which
does not require a degree in computer science to wield – but at the same time does
not feel unnecessarily alien to someone who is a specialist in programming. We
must fight a never-ending battle to judge the relevance of emerging technologies
and evaluatewhere the users are heading years fromnow, realising that our ability
to predict the future is not likely to be any better than it was in the first 25 years.

This is the battle we intend to keep fighting – and to answer the question posed
at the beginning: will Dyalog finally emerge as a Swan? We think this is unlikely
– it will probably continue to be a Duck.

58

Dyalog at 25

Technical Overview, 1981

59

Dyalog at 25

60

Dyalog at 25

61

Dyalog at 25

62

Dyalog at 25

63

Dyalog at 25

64

Dyalog at 25

Dyadic Systems Prospectus, 1976

65

Dyalog at 25

66

Dyalog at 25

67

Dyalog at 25

68

Dyalog at 25

69

Dyalog at 25

70

Dyalog at 25

71

Dyalog at 25

72

Dyalog at 25

73

Dyalog at 25

74

Dyalog at 25

	Dyalog at 25
	Table of Contents
	First Quarter
	How we got here
	Dyadic Systems
	Dyalog (Europe) Ltd
	Writing the interpreter
	Going to the show
	Ports on call
	The disappearing future
	Living with Lynwood
	On the road again
	Dyalog’s new face
	The ducks
	Sixty four bits
	Parting company
	The coming of the consortium

	The Administrator’s Tale
	Versions
	Next Quarter
	Technical Overview, 1981
	Dyadic Systems Prospectus, 1976

