
FinnAPL @ Suomenlinna, April 18th 2023

Highlights of v19.0

Morten Kromberg

Highlights of Dyalog v19.0 – May 20231

Highlights of Dyalog v19.0 – May 20232

Geoff has Retired (!)
 With John Scholes, Geoff Streeter implemented

Dyalog APL v1.0 in 1981-1983

 We hope to welcome him back for a retrospective
talk at Dyalog'24

Highlights of Dyalog v19.0 – May 20233

Geoff has Retired (!)
 With John Scholes, Geoff Streeter implemented

Dyalog APL v1.0 in 1981-1983

 We hope to welcome him back for a retrospective
talk at Dyalog'24

Highlights of Dyalog v19.0 – May 20234

Current Head
Count ~25 FTE

(from 5 in 2004)

 Admin person (UK)
 Started April 1st

 Developer / Tool Builder / Evangelist (UK)
 Started May 1st

 Full Time Tester (UK or India)
 We have a candidate who is being evaluated

 1 for the IT Department (UK)
 "Before end of 2023"

Recuiting in 2023

Highlights of Dyalog v19.0 – May 20235

Dyalog … The Next Generation

Aaron (ACE) Adam (AE) Rich (AE) Josh (A) Stine (D) Karta (C)

Silas (C) Peter (C) Jesus (E) Jada (D) Stefan (AE)

Legend:

A = APLer
C = C developer
D = Admin
E = Doc/Evangelism

Highlights of Dyalog v19.0 – May 20236

 Structural Operations on Scalars

Highlights of Version 19.0

Highlights of Dyalog v19.0 – May 20237

Highlights of Dyalog v19.0 – May 20238

Highlights of Dyalog v19.0 – May 20239

Highlights of Dyalog v19.0 – May 202310

 Installing & Managing Your System
 Keyboarding

 Multiple session files

 Health Monitor [demo]

 Building Production Systems
 Timeouts

 Token range reservation [demo]

 WS FULL handling [demo]

 NCOPY/NMOVE callbacks

 Developer Productivity / IDE
 Source "as typed" by default [demo]

 Multi-line input on by default [demo]

 HTMLRenderer updates

 Link 4.0: Crawler, Support for text data

 Namespace Improvements

 Platform Support / Distribution
 64-bit ARM support

 .NET 6/7/8 (6 by default)

 Bound executables on all platforms

Highlights of Version 19.0

Highlights of Dyalog v19.0 – May 202311

Issues:

 Dyalog IME does not work with Windows Universal Windows Platform applications

 New users report that "ctrl" is undesirable as the APL key

Immediate Solutions (v19.0):

 AutoHotkey / Downloadable keyboards for Windows which offer alternative "APL" keys
(Alt, AltGr, etc). Thanks to Kimmo Linna!

 Backtick-style keyboards for all platforms

Longer Term:

 A new IME which offers a similar experience across
supported platforms and works in and out of the IDEs
(this will take a bit longer)

Keyboarding (Mostly for New Users)
Installing &

Managing

Highlights of Dyalog v19.0 – May 202312

Earlier versions (default behaviour):

 All APL sessions read the same log
file at startup, and update the same
file at shutdown

 The last session to be closed
overwrites the log file

 In rare circumstances, multiple
starting or stopping APL interpreters
crash due to conflicts reading or
writing the log file

Version 19.0 default:

 Each APL session locks its log file

 Subsequent sessions will generate a
new file name (e.g. default-2.dlf)

 If you regularly open several
simultaneous sessions, they will
have separate logs

 NB: In all versions, you can set the
file name using LOGFILE=

Multiple session log files
Installing &

Managing

Version 19.0 log files are JSON log files

Highlights of Dyalog v19.0 – May 202313

Experimental TCP-based monitor:

 Regular updates on (for example) :

 CPU consumption

 Memory statistics

 Are any threads suspended?

)SI stack and Error information

 Notification on

 untrapped error

 ws compaction

 Exact execution location if "breadcrumbs" enabled

 Information about whether a RIDE connection is possible

Health Monitor
Installing &

Managing

Highlights of Dyalog v19.0 – May 202314

["Facts",
{"Facts": [{

"ID": 2, "Name": "AccountInformation",
"Value": {
"ComputeTime": 438,
"ConnectTime": 46973,
"KeyingTime": 0,
"UserIdentification": 0

}},{
"ID": 3, "Name": "Workspace",
"Value": {
"Allocation": 33882064,
"AllocationHWM": 33882064,
"Available": 2144207480,
"Compactions": 2,
"FreePockets": 186682,
"GarbageCollections": 0,
"GarbagePockets": 0,
"Sediment": 2120,
"Used": 3276168,
"UsedPockets": 23209,
"WSID": "CLEAR WS"

}},{
"ID": 6, "Name": "ThreadCount",
"Value": {
"Suspended": 1,
"Total": 2

}}
],
"Interval": 5000,
"UID": "1 1"
}]

["PollFacts",{"Facts":["AccountInformation","Workspace","ThreadCount"],"Interval":5000,"UID":"1 1"}]

Health Monitor Example

Highlights of Dyalog v19.0 – May 202315

 ⎕FHOLD now takes a left argument which is a timeout in
milliseconds.

 1006 TIMEOUT is signalled if the lock cannot be acquired

 ⎕SIGNAL allows signalling of 1006 TIMEOUT, which was
mis-classified as an interrupt (which it is not)

Timeouts and Interrupts
Production

Systems

Highlights of Dyalog v19.0 – May 202316

 Independent components which use ⎕TGET/⎕TPUT for
synchonisation can interfere with each other if they use
the same token ranges.

 A new system function ⎕TALLOC allocates token ranges,
allowing applications to avoid interference.

 ⎕TALLOC returns a single integer, granting the right to
use floating-point token ids in the range < n , n+1 >

 NB NOT INCLUSIVE – the integers can continue to be used by old style
non-collaborating components

 Demo will hopefully clarify the design…

Token Range Reservation
Production

Systems

Highlights of Dyalog v19.0 – May 202317

 If a WS FULL leaves VERY little free space, the interpreter
and IDE can malfunction
 For example, a runaway recursion can leave only a few kilobytes of

free workspace
 Error trapping may not be possible (system might just stop)

 Version 19.0 allocates 1% of MAXWS as a buffer which is
released on WS FULL
 Allows WS FULL traps to be safely processed

 (the reservation size is configurable)
 After successful trap handling, space is re-acquired

WS FULL Handling
Production

Systems

Highlights of Dyalog v19.0 – May 202318

 A 'ProgressCallback' variant allows you give the user a progress update

dest (⎕NCOPY ⍠ 'ProgressCallback' ('callbackfn' [larg])) src

 callbackfn will be called with a right argument of (Function Event Info)
 Function is '⎕NCOPY' or '⎕NMOVE'.
 Event is one of Start | Scan | Progress | Done
 Info is a namespace, containing

 Progress: A number between 0 and Limit
 Limit: The maximum value of Progress (nb could change)
 Last: A vector of file names processed since the last call.
 Options: See next Page

⎕NCOPY / ⎕NMOVE Callbacks Production
Systems

Highlights of Dyalog v19.0 – May 202319

The callback function can set the following Options:

 ScanFirst (default: 1): Should code do a "scan pass" before moving/copying
any files (gives "correct" Limit value).

 Delay (default: 0): ms to wait before the callback will be called again.

 Skip (default: 0): Specifies a number of files to process before the next call.

 LastFileCount (default: 1): How many of the latest filenames will be stored
in the Last field.

The result of callbackfn should be 1 if processing should
continue, else 0 (signals 1003 interrupt).

⎕NCOPY / ⎕NMOVE Callbacks Production
Systems

Highlights of Dyalog v19.0 – May 202320

 "as typed": Preserve white space, numerical constants
(well, everything) exactly as typed by the user.

 For several releases, Dyalog APL has preserved source "as
typed" if a function or operator was created using⎕FIX

 Typically by Link, with source kept in a file outside the workspace

2 ⎕FIX 'file://myapp/foo.aplf'

 From version 19.0, the default is to preserve source "as
typed" within the workspace for all fns and ops

Source "as typed" by default
Productivity

& IDE

Highlights of Dyalog v19.0 – May 202321

From version 19.0, the default is to preserve source "as typed"
within the workspace for all fns and ops
 Also applies to fns/ops with source in an external file

 Allows recovery of source from saved wss with active Links

 AutoFormat is ignored in this mode
 Configurable: can be turned off if workspace is

precious and you have a LOT of code
 An I-Beam will discard all source held in the

workspace, for example when distributing workspaces

Source "as typed" by default
Productivity

& IDE

Highlights of Dyalog v19.0 – May 202322

 ⎕ATX provides access to both canonical and verbatim sources:

Source "as typed"
Productivity

& IDE

2 ⎕FIX'R←DUP X' 'R← X X'

↑60 ⎕ATX 'DUP'
R←DUP X
R← X X

⎕CR 'DUP' ⍝ "Canonical Representation"
R←DUP X
R←X X

(↑61 ⎕ATX 'DUP')≡⎕CR 'DUP'
1

Highlights of Dyalog v19.0 – May 202323

 Multi-line input, which has been an experimental feature
for a couple of releases, will be enabled by default

 Allows entering multi-line dfns and control structures
directly in the session

]demo c:\demos\2023\multiline

Multi-line input on by Default
Productivity

& IDE

Highlights of Dyalog v19.0 – May 202324

 Most important: Find a way to easily upgrade the
Chromium Embedded Framework
 In the medium term, turn the HTMLRenderer into an

Open Source project to allow community participation

 Enhancements in v19.0
 Support Multiple windows that take turns being modal

 Hide title bar, add Handle property, a few more fixes …

HTMLRenderer updates
Productivity

& IDE

Highlights of Dyalog v19.0 – May 202325

Link 4.0 will be available with v19.0. Highlights include:

 A "Crawler" which will regularly compare the workspace
and source files and detect differences
 Will detect changes made using)COPY, assignment, ⎕FX, etc

 Alternative to the DotNet based "File System Watcher"

 Support for simple text vectors, vectors of text vectors,
and character matrices in simple text files (not ".apla")

 The Cider project manager and the Tatin package
manager will be bundled with v19.0

 More Dyalog-produced packages *will* appear

Source Code Management
Productivity

& IDE

Highlights of Dyalog v19.0 – May 202326

Link 4.0 will be available with v19.0. Highlights include:

 A "Crawler" which will regularly compare the workspace
and source files and detect differences
 Will detect changes made using)COPY, assignment, ⎕FX, etc

 Alternative to the DotNet based "File System Watcher"

 Support for simple text vectors, vectors of text vectors,
and character matrices in simple text files (not ".apla")

 The Cider project manager and the Tatin package
manager will be bundled with v19.0

 More Dyalog-produced packages *will* appear

Source Code Management
Productivity

& IDE

Link
(source)

Cider
(projects)

Tatin
(packages)

Highlights of Dyalog v19.0 – May 202327

(… many more of Kai's packages skipped …)

Highlights of Dyalog v19.0 – May 202328

 Be more tolerant of errors when fixing namespace scripts

 Do not inject references to all sibling namespaces in a nested namespace
script

 (continue to do this for classes)

 When JSON creates namespaces, provide an option to not create a
namespace hierarchy:

data←(¯1 ⎕JSON ⊃⎕NGET 'somefile.json').Data.Records

 Drawback: ## does not work within a namespace structure w/no hierarchy

Namespace Improvements
Productivity

& IDE

Highlights of Dyalog v19.0 – May 202329

64-bit ARM chips are appearing in
places that Dyalog should support:

 M1 & M2 Macs

 Raspberry Pi – 64 Bit

 Amazon Web Services "Graviton"

Arm64

ARM64

Platforms &
Distribution

Highlights of Dyalog v19.0 – May 202330

Highlights of Dyalog v19.0 – May 202331

As .NET celebrates 20 years of existence, Microsoft is pushing
everyone to move from proprietary Microsoft.Net Framework to the
new open source, cross-platform .NET.

Dyalog v18.0 added a bridge to .NET 3, to complement the 20 year
old bridge to the .NET framework.

[Microsoft].NET

Name Platforms Version Numbers
Microsoft.NET Framework Windows 1 2 4

.NET (previously ".NET Core") Windows Linux macOS 3 5 6 7 8

Highlights of Dyalog v19.0 – May 202332

 Add support for .NET 6, 7, 8 …
 Tested with 6 (and 4 – aka ".NET Framework")
 We will test with and support 8 when it is officially

released late 2023
 Export APL code as .NET assemblies

 (v18 .NET bridge can only *USE* .NET classes)
 Will allow embedding APL code in .NET frameworks like

ASP.NET Core, etc
 Support for named arguments to .NET methods
 Various other tweaks not yet finalised

v19.0 .NET Bridge

.NET 6 is the current
Long Term Support
version of .NET

Platforms &
Distribution

Highlights of Dyalog v19.0 – May 202333

A bound executable is a file which combines an interpreter
and a workspace into a single .exe file

 "Always" been available under Windows

 In v19.0, definitely also available for Linux

 Maybe also MacOS (we just hired a Mac expert)

 In the longer term, we will look at encrypting and
signing application code

Bound Executables
Platforms &
Distribution

Highlights of Dyalog v19.0 – May 202334

 Installing & Managing Your System
 Keyboarding

 Multiple session files

 Health Monitor [demo]

 Building Production Systems
 Timeouts

 Token range reservation [demo]

 WS FULL handling [demo]

 NCOPY/NMOVE callbacks

 Developer Productivity / IDE
 Source "as typed" by default [demo]

 Multi-line input on by default [demo]

 HTMLRenderer updates

 Link 4.0: Crawler, Support for text data

 Namespace Improvements

 Platform Support / Distribution
 64-bit ARM support

 .NET 6/7/8 (6 by default)

 Bound executables on all platforms

Highlights of Version 19.0

Highlights of Dyalog v19.0 – May 202335

1. WS FULL handling

2. Token Allocation

3. Health Monitor

4. Multiline Input & JSON Log Files

5. Source as Typed by Default

Demos

FinnAPL @ Suomenlinna, April 18th 2023

Highlights of v19.0

Morten Kromberg

	Slide 0: Highlights of v19.0
	Slide 1
	Slide 2: Geoff has Retired (!)
	Slide 3: Geoff has Retired (!)
	Slide 4: Recuiting in 2023
	Slide 5: Dyalog … The Next Generation
	Slide 6: Highlights of Version 19.0
	Slide 7
	Slide 8
	Slide 9
	Slide 10: Highlights of Version 19.0
	Slide 11: Keyboarding (Mostly for New Users)
	Slide 12: Multiple session log files
	Slide 13: Health Monitor
	Slide 14
	Slide 15: Timeouts and Interrupts
	Slide 16: Token Range Reservation
	Slide 17: WS FULL Handling
	Slide 18: ⎕NCOPY / ⎕NMOVE Callbacks
	Slide 19: ⎕NCOPY / ⎕NMOVE Callbacks
	Slide 20: Source "as typed" by default
	Slide 21: Source "as typed" by default
	Slide 22: Source "as typed"
	Slide 23: Multi-line input on by Default
	Slide 24: HTMLRenderer updates
	Slide 25: Source Code Management
	Slide 26: Source Code Management
	Slide 27
	Slide 28: Namespace Improvements
	Slide 29: Arm64
	Slide 30
	Slide 31: [Microsoft].NET
	Slide 32: v19.0 .NET Bridge
	Slide 33: Bound Executables
	Slide 34: Highlights of Version 19.0
	Slide 35: Demos
	Slide 36: Highlights of v19.0

