
Why APL is a language
worth knowing

by Rodrigo Girão Serrão

FnConf 2022

About me

Rodrigo Girão Serrão

Formal education: maths

Coding in:
• Python for 9 years

• APL for 2 years

Training/teaching:
• APL (Dyalog Ltd.)
• Python, maths, etc (mathspp.com)

Why APL is a language
worth knowing

Disclaimer
Mileage may vary!

What is APL?

What is APL?

• Programming language
• (was “just” a mathematical notation)

• Array-oriented

• Concise

• Quirky symbols: ⍋ ⍥ ⌺ ⌹ ⍴ ⌿

What is APL?

15 + 16
31

15 - 14
1

What is APL?

15 + 16
31

15 - 14
1

⍳6
0 1 2 3 4 5

What is APL?

15 + 16
31

15 - 14
1

⍳6
0 1 2 3 4 5

What is APL?

15 + 16
31

15 - 14
1

⍳6
0 1 2 3 4 5

What is APL?

15 + 16
31

15 - 14
1

⍳6
0 1 2 3 4 5

What is APL?

10 – 5 – 2
??

What is APL?

(10 – 5) – 2
3

What is APL?

(10 – 5) – 2
3

10 – 5 – 2
7

What is APL?

(10 – 5) – 2
3

10 – (5 – 2)
7

What is APL?

(10 – 5) – 2
3

10 – (5 – 2)
7

10 – 5 – 2
7

Scalar functions

⍳6
0 1 2 3 4 5

Scalar functions

⍳6
0 1 2 3 4 5

⍳6

⍳6

⍳6
0 1 2 3 4 5

1+⍳6
1 2 3 4 5 6

Scalar functions

⍳6
0 1 2 3 4 5

1+⍳6
1 2 3 4 5 6

2×⍳6
0 2 4 6 8 10

Scalar functions

Scalar functions

• Scalars make up all arrays

• Scalar functions act on scalars

• Good for processing all data at once

10 + 0 1 2 3 4 5
10 11 12 13 14 15

Scalar functions

10 + 0 1 2 3 4 5
10 11 12 13 14 15

Scalar functions

10 + 0 1 2 3 4 5
10 11 12 13 14 15

0 1 2 3 4 5 + 10
10 11 12 13 14 15

Scalar functions

10 + 0 1 2 3 4 5
10 11 12 13 14 15

0 1 2 3 4 5 + 10
10 11 12 13 14 15

100 0 1 × 2 3 4
200 0 4

Scalar functions

Power *

1 2 3*2
1 4 9

Scalar functions

Power *

1 2 3*2
1 4 9

2*⍳6
1 2 4 8 16 32

Scalar functions

Residue |

10|1 12 123 1234
1 2 3 4

Scalar functions

Residue |

10|1 12 123 1234
1 2 3 4

2|⍳5
0 1 0 1 0

List comprehensions

List comprehensions

Square integers from 0 to 9:

List comprehensions

Square integers from 0 to 9:
>>> squares = []

List comprehensions

Square integers from 0 to 9:
>>> squares = []
>>> for num in range(10):

List comprehensions

Square integers from 0 to 9:
>>> squares = []
>>> for num in range(10):
... squares.append(num ** 2)

List comprehensions

Square integers from 0 to 9:
>>> squares = []
>>> for num in range(10):
... squares.append(num ** 2)
>>> squares
[0, 1, 4, 9, 16, 25, 36, 49, 64, 81]

List comprehensions

Square integers from 0 to 9:
>>> squares = []
>>> for num in range(10):
... squares.append(num ** 2)

List comprehensions

Square integers from 0 to 9:
1. Create empty result list

>>> for num in range(10):
... squares.append(num ** 2)

List comprehensions

Square integers from 0 to 9:
1. Create empty result list

2. Go over existing list

... squares.append(num ** 2)

List comprehensions

Square integers from 0 to 9:
1. Create empty result list

2. Go over existing list

3. Add modified value to result

List comprehensions

Square integers from 0 to 9:
squares = []
for num in range(10):

squares.append(num ** 2)

List comprehensions

Square integers from 0 to 9:
squares = [num ** 2 for num in range(10)]

List comprehensions

⍝ Square integers from 0 to 9:

List comprehensions

⍝ Square integers from 0 to 9:
⍳10

List comprehensions

⍝ Square integers from 0 to 9:
(⍳10)*2

0 1 4 9 16 25 36 49 64 81

List comprehensions

>>> num = 42
>>> num % 10
2

List comprehensions

>>> numbers = [42, 73, 0, 16, 10]
>>> num % 10
2

List comprehensions

>>> numbers = [42, 73, 0, 16, 10]
>>> [num % 10 for num in numbers]
[2, 3, 0, 6, 0]

List comprehensions

number ← 42
10|number

2

List comprehensions

numbers ← 42 73 0 16 10
10|number

2

List comprehensions

numbers ← 42 73 0 16 10
10|numbers

2 3 0 6 0

List comprehensions

10|number 10|numbers

num % 10 [num % 10 for num in numbers]

List comprehensions

To write:

• Focus on transformation wanted

• Fill in the syntax

Why bother?

• Data transformation is highlighted

Boolean values

Boolean values

• Python, Haskell, ...
• True, False

• Java, JavaScript, ...
• true, false

Boolean values

3 > 2
1 ⍝ “true”

Boolean values

3 > 2
1 ⍝ “true”

2 > 3
0 ⍝ “false”

Boolean values

Maybe weird at first..?

Actually very convenient!

if statements:
• If condition is true, run
• If condition is false, don't run

Fine-grained control over arrays?
• Use maths

Data-driven
conditionals

Data-driven conditionals

if statements: “Should we do X?”

vs

DDC: “How should we do X?”

Data-driven conditionals

Car rental:

• $40/day base price

• + extra fees:
• $200 if age ≥ 25
• $500 if age ≤ 24

Data-driven conditionals

def rental_cost(days, age):
price = 40 * days

Data-driven conditionals

def rental_cost(days, age):
price = 40 * days
if age >= 25:

Data-driven conditionals

def rental_cost(days, age):
price = 40 * days
if age >= 25:

price += 200
else:

price += 500

Data-driven conditionals

def rental_cost(days, age):
price = 40 * days
if age >= 25:

price += 200
else:

price += 500
return price

Data-driven conditionals

def rental_cost(days, age):
base = 40 * days
fees = 200 if age >= 25 else 500
return base + fees

Data-driven conditionals

(40×days)+200+300×age≤24

Data-driven conditionals

age ← 56
(40×days)+200+300×age≤24

Data-driven conditionals

age ← 56
(40×days)+200+300×0

Data-driven conditionals

age ← 56
(40×days)+200+0

Data-driven conditionals

age ← 56
(40×days)+200

Data-driven conditionals

age ← 23
(40×days)+200+300×age≤24

Data-driven conditionals

age ← 23
(40×days)+200+300×1

Data-driven conditionals

age ← 23
(40×days)+200+300

Data-driven conditionals

age ← 23
(40×days)+500

Data-driven conditionals

(40×days)+200+300×age≤24

Data-driven conditionals

Car rental:

• $40/day base price

• + extra fees:
• $200 if age ≥ 25
• $500 if age ≤ 24

Data-driven conditionals

Car rental:

• $40/day base price

• $200 extra fees

• $300 possible surcharge (age ≤ 24)

Data-driven conditionals

age ← 33
days ← 40
price ← (40×days)+200+300×age≤24
price

1800

Data-driven conditionals

age ← 33 22 45 73
days ← 40 40 18 6
price ← (40×days)+200+300×age≤24
price

1800 2100 920 440

Data-driven conditionals

age ← 33 22 45 73
days ← 40 40 18 6
price ← (40×days)+200+300×age≤24
price

1800 2100 920 440
+⌿price

5260

Data-driven conditionals

age = [33, 22, 45, 73]
days = [40, 40, 18, 6]
prices = []

Data-driven conditionals

age = [33, 22, 45, 73]
days = [40, 40, 18, 6]
prices = []
for a, d in zip(age, days):

Data-driven conditionals

age = [33, 22, 45, 73]
days = [40, 40, 18, 6]
prices = []
for a, d in zip(age, days):

base = 40 * d
fees = 200 if a >= 25 else 500

Data-driven conditionals

age = [33, 22, 45, 73]
days = [40, 40, 18, 6]
prices = []
for a, d in zip(age, days):

base = 40 * d
fees = 200 if a >= 25 else 500
prices.append(base + fees)

total = sum(prices)

Data-driven conditionals

age = [33, 22, 45, 73]
days = [40, 40, 18, 6]
netted = sum(

40 * d + 200 + 300 * (a <= 24)
for a, d in zip(age, days)

)

Data-driven conditionals

age = [33, 22, 45, 73]
days = [40, 40, 18, 6]
netted = sum(

40 * d + 200 + 300 * (a <= 24)
(40×days)+200+300 × age≤24
for a, d in zip(age, days)

)

Filtering list
comprehensions

Filtering list comprehensions

Square integers:
>>> nums = [42, 73, 0, 16, 10]
>>> [n ** 2 for n in nums]
[1764, 5329, 0, 256, 100]

Filtering list comprehensions

Square even integers:
>>> nums = [42, 73, 0, 16, 10]
>>> [n ** 2 for n in nums if n % 2 == 0]
[1764, 0, 256, 100]

Filtering list comprehensions

1 0 1 1 1 / 42 73 0 16 10
42 0 16 10

Filtering list comprehensions

1 0 1 1 1 / 42 73 0 16 10
42 0 16 10

numbers ← 42 73 0 16 10
0=2|numbers

1 0 1 1 1

Filtering list comprehensions

1 0 1 1 1 / 42 73 0 16 10
42 0 16 10

numbers ← 42 73 0 16 10
0=2|numbers

1 0 1 1 1

(0=2|numbers)/numbers
42 0 16 10

Filtering list comprehensions

(0=2|numbers)/numbers
42 0 16 10

(0=2|numbers)/numbers
42 0 16 10

Filtering list comprehensions

(0=2|numbers)/numbers
42 0 16 10

((0=2|numbers)/numbers)*2
1764 0 256 100

Filtering list comprehensions

List comprehensions with filters:

1. Filter

2. Transform

Counting over a
predicate

Counting over a predicate

⍝ How many 5s in here?
nums ← 5 3 7 6 4 1 9 2 5 6

Counting over a predicate

⍝ How many 5s in here?
nums ← 5 3 7 6 4 1 9 2 5 6
5=nums

1 0 0 0 0 0 0 0 1 0
5=nums

Counting over a predicate

⍝ How many 5s in here?
nums ← 5 3 7 6 4 1 9 2 5 6
5=nums

1 0 0 0 0 0 0 0 1 0

+⌿5=nums
2

Counting over a predicate

How many 5s in here?
nums = [5, 3, 7, 6, 4, 1, 9, 2, 5, 6]

Counting over a predicate

How many 5s in here?
nums = [5, 3, 7, 6, 4, 1, 9, 2, 5, 6]
count = 0
for num in nums:

Counting over a predicate

How many 5s in here?
nums = [5, 3, 7, 6, 4, 1, 9, 2, 5, 6]
count = 0
for num in nums:

if num == 5:

Counting over a predicate

How many 5s in here?
nums = [5, 3, 7, 6, 4, 1, 9, 2, 5, 6]
count = 0
for num in nums:

if num == 5:
count += 1

Counting over a predicate

How many 5s in here?
nums = [5, 3, 7, 6, 4, 1, 9, 2, 5, 6]
count = 0
for num in nums:

count += (num == 5)

Counting over a predicate

How many 5s in here?
nums = [5, 3, 7, 6, 4, 1, 9, 2, 5, 6]
count = sum(num == 5 for num in nums)

Counting over a predicate

How many 5s in here?
nums = [5, 3, 7, 6, 4, 1, 9, 2, 5, 6]
count = sum(num == 5 for num in nums)

+⌿ nums = 5

Counting over a predicate

How many values satisfy the predicate?
sum(pred(value) for value in values)

Recap

Recap

• Scalar functions

• Maths instead of branching
• (data-driven conditionals)

• Compressing vs filtering in list comprehensions

• Counting idiom

References

“Why APL is a language worth knowing”,
https://mathspp.com/blog/why-apl-is-a-language-worth-knowing

https://mathspp.com/blog/why-apl-is-a-language-worth-knowing

/mathspp/talks

rodrigo@dyalog.com
name

site

email

company

