
Dyalog 2010 Programming Contest

You've decided that it is time to have a home of your own, but you can't decide whether to
buy or rent. Renting is easier to understand, but over time you suspect that owning your
home might be a better deal. You are lucky enough to have parents who have offered to
lend you SOME of the money at a favourable rate, and might be more forgiving of late
payments – but you’d still like to explore the problem space in a little more depth. You
decide to build a model in APL.

Prizes in this year's contest will be awarded for the best overall solutions to the six
programming tasks described in the following. In addition, prizes will be awarded for the
three best presentations of data arising from working on the problems – without regard to
how well the main programming tasks were solved.

The financial model is based upon 12 input parameters:

Parameter Name Description Example Value

PRICE Home purchase price 150,000

COSTS One-time closing costs 5,000

TERM Term of loan (months) 360

BANKAMT Amount borrowed from bank 75,000

BANKRATE .. at annual mortgage rate (%) 10

DADAMT Amount borrowed from parents 30,000

DADRATE .. at annual mortgage rate (%) 5

INFL Annual inflation rate (%) 1.5

TAXRATE Marginal income tax rate (%) 25

PROPRATE Annual property tax rate (%) 1.75

SAVRATE Savings/investment rate (%) 3

INITRENT Initial monthly apartment rent 600

The parameters used in the example should not be taken as predictions of economic
conditions in any country - they were simply selected to give an interesting looking curve
which ended with buying becoming being more advantageous at the end of the loan
term. The output of the model is 15 monthly "time series". In the above example, there
would be 360 months of output, the first three months of which are:

 Series Name Variable Name 1st Month 2nd Month 3rd Month

1. After Month I 1 2 3

2. Bank Interest BANKINT 625.00 624.72 624.44

3. Bank Repayment BANKPRN 33.18 33.46 33.73

4. Bank Loan Balance BANKBAL 74,966.82 74,933.37 74,899.63

5. Parent Interest DADINT 125.00 124.85 124.70

6. Parent Repayment DADPRN 36.05 36.20 36.35

7. Parent Loan Balance DADBAL 29,963.95 29,927.76 29,891.41

8. Mortgage Tax Savings TAXSAVE 156.25 156.18 156.11

9. Property Taxes PROPTAX 0.00 0.00 0.00

10. Value of Home HOMEVAL 150,186.22 150,372.68 150,559.36

11. Savings While Owning SAVEOWN -662.98 -1,327.26 -1,992.87

12. Home Cashout Value HOMECASH 44,592.47 44,184.29 43,775.46

13. Rent Payment MORENT 600.00 600.00 600.00

14. Savings While Renting SAVRENT 49,493.75 48,986.55 48,478.40

15. Advantage of Buying ADVAN -4,901.28 -4,802.26 -4,702.94

Formulae

The mathematical formulae used to compute these values are described in this section.

The bank loan is amortized though equal payments over the entire term, using the following
formulae:

 BANKMR = Bank monthly mortgage rate
 = BANKRATE/12

 BANKPMT = Bank monthly payment
 = BANKAMT x BANKMR/(1-(1+BANKMR)^-TERM)

 BANKBAL[0] = Initial bank loan balance
 = BANKAMT

 BANKINT[I] = Bank mortgage interest in month I
 = BANKBAL[I-1] x MORATE

 BANKPRN[I] = Bank principal repaid in month I
 = BANKPMT - BANKINT[I]

 BANKBAL[I] = Bank loan balance after month I
 = BANKBAL[I-1] - BANKPRN[I]

Formulae for the following five items are parallel to the above formulas:

 DADMR = Parent monthly mortgage rate
 DADPMT = Parent monthly payment
 DADBAL = Parent loan balance
 DADINT = Parent mortgage interest
 DADPRN = Parent principal repaid

The remaining values are computed as follows:

 HOMEVAL[0] = Initial value of home

 HOMEVAL[I] = Value of home after month I
 = HOMEVAL[I-1] x ((1+INFL)^(1/12))
 (Home value appreciates at inflation rate)

 PROPTAX[I] = Property taxes paid during month I
 = HOMEVAL[I-6] x PROPRATE/2
 (for months 6, 18, 30, 42,...)
 = HOMEVAL[I-12] x PROPRATE/2
 (for months 12, 24, 36, 48,...)
 (Property taxes are computed annually and
 paid semiannually)

 TAXSAVE[I] = Mortgage tax savings during month I
 = BANKINT[I] x TAXRATE
 (Interest portion of bank mortgage payments are
 tax-deductible; payments to parents are not)

 SAVEOWN[0] = Initial savings while owning
 = 0

 SAVEOWN[I] = Savings while owning, through month I
 = (SAVEOWN[I-1] x (SAVRATE/12) x (1-TAXRATE))+
 TAXSAVE[I] - (PROPTAX[I] + BANKPMT + DADPMT)

 HOMECASH[I] = Home cashout value, after month I
 = HOMEVAL[I] + SAVEOWN[I] -
 (BANKBAL[I] + DADBAL[I])

 MORENT[0] = Initial monthly rent payment
 = INITRENT

 MORENT[I] = Monthly rent payment
 = MORENT[I-1] x (1+INFL)
 (for months 13, 25, 37, 49,...)
 = MORENT[I-1]
 (for all other months)
 (Rent increases once a year, at inflation rate)

 SAVERENT[0] = Initial savings while renting
 = (PRICE + COSTS) - (BANKAMT + DADAMT)
 (This amount is saved by not buying)

 SAVERENT[I] = Savings while renting, through month I
 = (SAVERENT[I-1] x (SAVRATE/12) x (1-TAXRATE))
 - MORENT

 ADVAN[I] = Advantage (disadvantage) of buying
 = HOMECASH[I] - SAVERENT[I]

The BuyRentCase XML format

A complete "Buy or Rent Case" can be represented as an XML file containing both the input
paramaters and the resulting timeseries. A complete BuyRentCase file contains both a
BuyRentParams element containing a set of input parameters and an element called
BuyRentResults with the results (example of a complete xml file listing). One of the first
tasks will be to read input parameters from such a file, which might look like this (if it only
contains input parameters and no results):

<BuyRentCase>
 <BuyRentParams HomePrice="150000" ClosingCosts="5000" LoanTerm="360"
 BankAmount="75000" BankRate="10" DadAmount="30000" DadRate="5"
 Inflation="1.5" MarginalTax="25" PropertyTax="1.75" SavingsRate="3"
 InitialRent="600" />
</BuyRentCase>

http://www.dyalog.com/uploads/files/student_competition/2010_BuyRentCase.xml

Graph showing the Advantage of Buying over 360 months.

Your Task

You need to solve as many of the following tasks - 1 to 6 - as possible. To win one of the
three main prizes you must solve all of the tasks. It is only necessary to solve two tasks -
freely selected from those described on this page and those posed in the Rosetta Challenge,
in order to participate in the draw for consolation prizes.

1. Input Processing

Write an APL function called GetBuyRentParams which processes XML representing a
BuyRentCase and extracts the input parameters. The function should take a character vector
containing XML as the right argument, and return a 12-element numeric vector containing
the twelve input parameters to the model, in the same order as the table in the
introduction.

Hint: The task does not require you to read text files containing XML, but if you would like to
store your input data in files, we suggest that you take a look at the workspace FILES
(included with Dyalog APL) for tools to read and write files.

2. Base Model Calculation

Write an APL function called BuyOrRent, which takes a twelve-element numeric vector of
input parameters (which might have been produced by GetBuyRentParams) as a right
argument, and returns a nested vector with two elements. The first element of the result
should be a two-element numeric vector containing the monthly payment amounts to the
Bank and Parents, respectively. The second element should be a matrix with one row per
month, and 15 columns – one for each of the output timeseries (in the example, the shape
of this part of the result should be 360 by 15).

3. Aggregation Function

Write a function named AggregateSeries, which aggregates the timeseries contained in
each column of an input matrix. The right argument should be a matrix (like the second
element of the result of BuyOrRent). The left argument should be a 2-element vector,
where the first element is the number of input periods to be aggregated into each row of
output, and the second element is a character vector with one element for each input
column, specifying the aggregation function to be used, using one of the following
characters: S (sum), A (average), M (maximum), F (first), L (last).

If “mat” is a 4 by 4 matrix containing the integers 1 through 16:

 mat
 1 2 3 4
 5 6 7 8
 9 10 11 12
13 14 15 16

then the expression:

 2 'SAMF' AggregateSeries mat

should produce the result:

 6 4 7 4
22 12 15 12

4. Goal Seeking

Write an APL function SeekBuyRentParam, which takes as its right argument a vector of 12
BuyRentParams, where one of the parameters has been replaced by the character '?'. As a
left argument, the function will receive a desired value for the "Advantage of Buying" at the
end of the loan term. The function should find and return a value for the missing parameter
which produces the desired advantage, to within one unit of our currency. If the function is
not able to find a suitable value, it should signal a DOMAIN ERROR. For example, if we look
at the example problem and would like to know what the initial rent needs to be in order for
buying and renting to be exactly equal in terms of the final outcome (Advantage of Buying =
0), we should be able to use this function as follows:

 0 SeekBuyRentParam 150000 5000 360 75000 10 30000 5 1.5 25 1.75 3 '?'

573.2682766

In other words, if the initial rent is lowered to 573, then buying and renting are equally
advantageous.

5. Variable Interest

You have agreed with your parents that the interest rate on that loan will remain fixed – and
we won’t try to compute a net present value of the obligations (dog walking, grandchild

sitting, lawn mowing, snow clearing, and so forth, depending on your climate) that are
attached to this loan.

However, the bank offers you the option of a variable interest loan, based on the official
rate which is fixed by the central bank, each quarter. At the beginning of each year, your
bank will adjust the interest on variable-interest loans to the rate which the central bank has
set for the quarter which is just starting. It will re-compute your monthly payments using
the standard amortization formula, using the new interest rate and the number of months
remaining.

The steering committee in the central bank consists of a bunch of old role players, who have
agreed to pursue a fiscal policy based on rolling a single six-sided die. They adjust the
interest rate using the number that they get by subtracting 3.5 from the number of pips and
dividing by 10, with the limitation that the interest rate cannot go below zero.

Write a function VariableRisk, which accepts a set of BuyRentParams on the right
(representing the fixed-interest base scenario), and on the left a two-element vector
containing the initial interest rate for the variable-interest loan and the number of
simulations to run. By running simulations, the function should return a vector of five
probabilities (as numbers between 0 and 1), showing the probability that the variable-
interest loan will be 1) more than 50,000 more favourable, 2) more than 25,000 but no
more than 50,000 more favourable, 3) within 25,000 of the fixed loan, 4) more than 25,000
but no more than 50,000 less favourable, 5) more than 50,000 less favourable than the fixed
loan. For example (the following result is not necessarily the "right" answer):

 9 10000 VariableRisk 150000 5000 360 75000 10 30000 5 1.5 25 1.75 3

600

0.1219 0.5192 0.3582 0.0007 0

6. Optimised VariableRisk Function

Write a version of the VariableRisk function, called VariableRiskFast, which will be judged
on how fast it runs on the following problem:

 8.5 10000 VariableRiskFast 150000 5000 360 75000 10 30000 5 1.5 25 1.75 3 600

The only criteria used to judge your solution to this task will be the execution speed of the
function on the above problem. No subjective criteria will be applied.

Restrictions

The solutions may not make use of any "external" tools or utility libraries not provided as
part of a standard Dyalog APL installation.

Submitting Solutions

Solutions should either be submitted as a single UTF-8 file representing a Dyalog namespace

containing your solutions - or a single Dyalog workspace containing that namespace. You

may use any APL system to generate the code, so long as your submittion is loadable using

Dyalog version 12.1.

Judging Criteria

With the exception of the final task, which will be measured exactly, the correct submissions
will be evaluated by a panel of judges with considerable experience in the development of
APL-based solutions. The criteria used to evaluate your submission include, but are not
limited to:

 Did you solve the problem and get correct results?
 Clarity and structure of your solution. How well documented and organized is your

solution? Can you pick up the code produced 6 months from now and still
understand what it does?

 Use of APL. Does your solution use array-oriented processing where
applicable? Solutions that look like C# translated into APL will receive less credit.

 Efficiency of your solution. How fast is your solution? With the exception of the final
problem, you should not sacrifice clarity for speed.

The judges' determinations are final and cannot be contested under any circumstances

Presentation Prizes

In order to help visualize the results of the functions that you produce as solutions to the
Programming Contest, we have prepared a Web Page which will call many of the functions
described above. This solution has been built using the MildServer, which is a simple web
server written entirely in Dyalog APL (in other words, you do not need to be running
Apache, IIS or any other web server in order to use it). You can download and install the
MildServer from the APL Wiki, see http://aplwiki.com/MildServer.

Once the MildServer is installed, all you need to do to integrate your solutions with it is to
copy the file Contest2010sample.dyalog (which you can download from the page containing
sample submissions) to the "Demo" folder of your MildServer installation, and then replace
the empty shell functions that it contains with any solutions that you have coded, in order
to get the web page to display computed values. The functions that need to be replaced are
those which follow the comment which reads:

--- Overwrite the following functions with your own solutions ---

If you have correctly installed the MildServer and the sample page, and direct your web
browser to the address http://localhost:8080/Contest2010, you should see a page similar to
the following (you will need to select one or two data items in order to get a graph):

http://aplwiki.com/MildServer
http://www.dyalog.com/contest_2010/samplesubmissions.html
http://localhost:8080/Contest2010

To enter the competition for the Best Presentation, you need to submit code which presents
any of the data that you encountered while solving (or merely investigating) the other tasks.
The judges will select the three best presentations based on how well they feel each
presentation illuminates some aspect of the problem space described in the tasks –
WITHOUT regard to what the code which produces it looks like, how efficient it is, or (within
reason) how correct the presented data is.

The preferred form of solution is a MildServer page (which could be derived from the
sample). At Dyalog’s discretion, selected MildServer solutions will be displayed on Dyalog’s
web server after the closing date for submissions (credit will be given to the authors).

Alternatively, you may add a niladic APL function called Presentation to your submitted
namespace. This function should produce some kind of visual presentation when executed.
The MildServer example uses a charting tool called SharpPlot, which is included with Dyalog
APL, but requires the Microsoft.Net framework. You may use any presentation tool that you
wish, but you may not use code written in any language other than Dyalog APL to generate
the presentation. For example, if you use Microsoft Excel, you must perform ALL the
automation required to produce the presentation from APL; you may not use scripts
internal to Excel. If you use a tool which is not readily available to the judges, you are less
likely to win, but if you include screen shots, we will attempt to judge your solution based
on these and a reading of your code.

Rosetta Challenge

The Rosetta Code page at http://www.rosettacode.org contains solutions to 400
programming tasks, implemented in a wide variety of programming languages. Currently,
only a few of the tasks have APL solutions. We have selected five tasks which look as if they
might be fun to work on:

 Animate a pendulum
 Knapsack problem
 Happy numbers
 Hofstadter-Conway $10,000 sequence
 Monty Hall problem

For each task, there is a prize for the best solution.

The five Rosetta Challenge tasks are completely independent of the main Dyalog
Programming Contest: you do not need to submit solutions to the main contest tasks in
order to participate in the Rosetta Challenge.

Your Task

For each of the following Rosetta Code tasks, you must write an APL function which works
as described in the following task descriptions. It is only necessary to solve two tasks - freely

http://www.sharpplot.com/
http://www.rosettacode.org/
http://rosettacode.org/wiki/Animate_a_pendulum
http://rosettacode.org/wiki/Knapsack_problem/0-1
http://rosettacode.org/wiki/Happy_numbers
http://rosettacode.org/wiki/Hofstadter-Conway_$10,000_sequence
http://rosettacode.org/wiki/Monty_Hall_problem

selected from those described on this page and those posed in Dyalog 2010 Programming
Contest in order to participate in the draw for consolation prizes.

1. Animate a Pendulum

The task is introduced on the page http://rosettacode.org/wiki/Animate_a_pendulum. You
must write an APL function called AnimatePendulum, which takes as its right argument a
vector of six numbers:

 [1] Time interval in seconds between successive "frames"
 [2] Starting angle in degrees (rotating clockwise from vertical)
 [3] Length of pendulum in metres
 [4] Gravitational constant in m/s^2
 [5] Initial velocity in m/s
 [6] Number of seconds to run the simulation (0=no limit)

The function should produce an animated graphical representation of a swinging pendulum,
in some form of window, using ANY technique available from Dyalog APL (anything from
"ASCII art" via native Dyalog GUI to XAML/WPF is acceptable).

In addition, the function should return a vector containing the angle of rotation for the first
50 "frames", in order to allow automated verification.

2. Knapsack Problem

Write an APL function called Knapsack, which takes a left argument which is a maximum
weight, and a right argument which is a matrix with three columns containing item names,
weights (in the same units as the left argument) and values (in other words, data
corresponding to the table at the top of the page
http://rosettacode.org/wiki/Knapsack_problem/0-1). The function should return a vector of
item names (selected from the first column), for those items which should be selected to go
in the knapsack.

3. Happy Numbers

Write an APL function called HappyNumbers, which returns a vector containing the first 8
happy numbers. See http://rosettacode.org/wiki/Happy_numbers for more details.

4. Hofstadter-Conway $10,000 Sequence

Write an APL function named HC10k, which returns a 20-element vector containing maxima
of a(n)/n between successive powers of two up to 2^20, as described on the page
http://rosettacode.org/wiki/Hofstadter-Conway_$10,000_sequence.

5. Monty Hall Problem

http://rosettacode.org/wiki/Animate_a_pendulum
http://rosettacode.org/wiki/Knapsack_problem/0-1
http://rosettacode.org/wiki/Happy_numbers
http://rosettacode.org/wiki/Hofstadter-Conway_$10,000_sequence

Write an APL function MontyHallSim, which takes as its right argument the number of
simulations to run, and returns a 2-element vector containing the probability of winning if
you "stay", and the probability of winning if you "switch". You can find a description of the
Monty Hall problem at http://rosettacode.org/wiki/Monty_Hall_problem.

http://rosettacode.org/wiki/Monty_Hall_problem

