
Page 1 of 12

2012 International APL Programming Contest
Sponsored by: Fiserv (USA), SimCorp (Denmark), APL Italiana (Italy), and Dyalog (UK)

Welcome!

Thank you for your interest in participating in this year’s contest! This is the fourth International APL

Programming contest and consists of 4 problems. Each problem has 2 or more tasks. We've tried to select

problems that are challenging, diverse, and hopefully fun as well.

Problem 1 has 5 tasks and explores the world of Texas Hold'em Poker first by using APL to evaluate poker hands

and then calculate winning percentages.

Problem 2 has 3 tasks involving Roman numerals and includes building a user defined operator.

Problem 3 adds an APL twist to the classic problem of manipulating the digits 1-9 to produce a desired result.

Problem 4 involves solving the Japanese puzzle "Nurikabe". Nurikabe is one of the scores of games and logic

puzzles from Japanese publisher Nikoli Co. Ltd.

How To Submit Your Entry

You may use any APL system to develop your solution. Whatever APL system you use, you must supply your

solution in the form of an APL script file named Contest2012.dyalog which must be able to be loaded and

executed from Dyalog APL.

 If you choose to use Dyalog APL for Windows for the contest...

1. You may download the Contest2012.dws workspace from the contest webpage. The workspace

contains 5 namespaces named Problem1 through Problem5 each of which contains any required

data for its problem as well as stub functions that you can use to start coding your solutions. You can

use the supplied stub functions, or code your own as long as you use the names and syntax as

described in the task descriptions.

2. Make sure you save the workspace to save your work. Use the)save system command to save your

workspace.

3. When you’re satisfied with your solutions, run the function #.SubmitMe. Enter the requested

information and click the Save button. This will create an APL script file named

Contest2012.dyalog in the directory you specify.

Page 2 of 12

 If you chose to develop your solutions using an APL system other than Dyalog APL...

1. You must still submit your solutions in an APL script file named Contest2012.dyalog

2. Dyalog has made available a template Contest2012.dyalog file for you to download from the

contest webpage.

i. Enter the pertinent information, your name, email, etc. in the appropriate places in the script

file.

ii. You may modify the stub functions and/or provide your own code as necessary to implement

your solutions provided that your solutions conform to the name and syntax descriptions

found for each problem. Additional functions that you supply as a part of your solution may

be named however you choose.

iii. Do not change the namespace structure of the file.

 The Contest2011.dws workspace and Contest2011.dyalog template file contain stub functions for each

of the tasks described in the contest. The stub functions are written as traditional APL functions. If you prefer

to implement your solution using dfns (dynamic functions), you are welcome to do so!

 Email the Contest2012.dyalog file to Contest2012@dyalog.com

Other Information

 Questions about the contest can be sent to Contest2012@dyalog.com

 If necessary, updated information regarding the contest, e.g. problem clarifications or corrections, will be

posted on the contest website. Therefore it is recommended that you check the website periodically.

Good luck!

Screen Shot of the GUI for #.SubmitMe

mailto:Contest2012@dyalog.com
mailto:Contest2012@dyalog.com

Page 3 of 12

Problem 1 – Hold'em Up!
Background

Over the last 10 or so years, the movie "Rounders", the World Poker Tour, and the World Series of Poker have

contributed to the dramactic increase in the popularity of the poker game known as Texas Hold'em. Either that,

or the fact that top prizes in poker tournaments can reach over a million dollars/euros . Problem 1 has 5 tasks

related to Texas Hold'em. If you are not familiar with Texas Hold'em specifically, or poker in general, we've

included some basic information following the task descriptions.

Task 1 – A Value Judgment

Your first task is to write a function named HandValue which will take a character vector right argument which

represents a poker hand and will return an integer representing the value of the hand. Better hands should have

higher values. The right argument should be in the form 'RS RS RS RS RS' where R is the rank of the card and S is

the suit as follows:

 Suits are any of 'SHDC' for Spades, Hearts, Diamonds, and Clubs respectively.

 Ranks are any of 'AKQJT' for Ace, King, Queen, Jack, Ten (10), and '98765432'

 Hands should be case insensitive such that 'QD', 'qD', 'qd', and 'Qd' all represent the Queen of Diamonds.

 Spaces separating the cards are allowed so that 'QCQD9H7D2C' and 'QC QD 9H 7D 2C' are considered to

be equivalent.

Sample syntax: value ← HandValue 'QC QD 9H 7D 2C'

How you calculate the value for a hand is up to you, but the judges will look more favorably on efficent, array

oriented solutions.

Task 2 – Nothing But The Best

The next task is to determine the best 5 card poker hand from the 7 cards represented by a player's 2 hole cards

and the 5 community cards. Write a function, BestHand which takes as its left argument a character vector

representing the community cards and a character vector representing a player's hole cards as its right argument

and returns the best 5 card poker hand that can be made from the 7 cards.

Example:

 best ← 'QS 8H 7S QH AC' BestHand 'AD 7C'
 best
AD AC QS QH 8H

Task 3 – Showdown

Write a function named Showdown that takes as its left argument a character vector representing the community

cards and as its right argument a vector of character vectors representing the players' hole cards. Showdown

should return a 2 column matrix with as many rows as the number of hands in the right argument. Column 1

contains a character vector representing the best 5 card hand for each player. Column 2 contains a numerical

Page 4 of 12

ranking for that hand relative to the other hands. Note – hands that tie in value should receive the same rank.

Column 3 contains the number of the player's hole cards that were used to make the best poker hand.

Example:

 'QS 8H 7S QH AC' Showdown 'AD 7C' 'AS 4D' 'QD 8S' '3S 2H'
AD AC QS QH 8H 2 1
AS AC QS QH 8H 2 1
QD QS QH 8S 8H 1 2
QS QH AC 8H 7S 3 0

Task 4 – Am I Nuts?

The "nuts" are the player's hole cards that will make the best possible poker hand based on the community cards

that are currently shown.

 For example, after the flop, with community cards of:

 AS 5C 4D

 The nuts would be a 2 and a 3 of any suit, making a straight.

 Of course, when the next community card is shown, the nuts may change. Suppose another 4 is shown.

 AS 5C 4D 4H

 Now, the nuts would be 4S and 4C making 4 of a kind.

Write a function named Nuts which takes as its right argument a character vector representing the shown

community cards and returns a vector of character vectors representing the nuts. If the suit of a card does not

matter, use * for the suit. It's possible that there may only be one card, or none, that will make the nuts.

 Nuts 'AS 5C 4D'
2* 3*
 Nuts 'AS 5C 4D 4H'
4S 4C
 Nuts 'AS KS QS TS'
JS
 Nuts 'AS KS QD JH TC' ⍝ empty vector is returned

Task 5 – What are the Odds?

Write a function named Odds that takes as its left argument a character vector representing the shown

community cards and as its right argument a vector of character vectors representing the players' hole cards. The

result of Odds is a numeric vector of length (1 + the number of players) containing values between 0 and 1. The

first value is the percent probability of a tie between all players and the remaining values are the percent

probability that the corresponding hand will win. The sum of the result should equal 1.

Example:

Note - numbers have been rounded to 4 decimal places for this example, you should not round your results

 ⎕←r ← 'TD AC JH' Odds 'QS 6S' '5H 5C' 'TS 5D'
0.0133 0.3101 0.0399 0.6367
 +/r
1

Page 5 of 12

The example shows a 1.33% probabilty of a tie between all three hands, a 31.01% 3.99% and 63.67% winning

probabilities for each corresponding hand.

Basic Texas Hold'em Play

Play begins with each player being dealt two cards face down. (As in most poker games, the deck is a standard

52-card deck containing no jokers.) These cards are the player's hole cards. These are the only cards each player

will receive individually, and they will only (possibly) be revealed at the showdown.

The hand begins with a "pre-flop" betting round. We won't go into the details of betting as they are not pertinent

to the problem. After the pre-flop betting round, assuming there remain at least two players taking part in the

hand, the dealer deals a flop, three face-up community cards. The flop is followed by a second betting round. After

the flop betting round ends, a single community card (called the turn) is dealt, followed by a third betting round. A

final single community card (called the river) is then dealt, followed by a fourth betting round and the showdown,

if necessary.

If a player bets and all other players fold, then the remaining player is awarded the pot and is not required to

show his hole cards. If two or more players remain after the final betting round, a showdown occurs. On the

showdown, each player plays the best poker hand they can make from the seven cards comprising his two hole

cards and the five community cards. A player may use both of his own two hole cards, only one, or none at all, to

form his final five-card hand. If the five community cards form the player's best hand, then the player is said to

be playing the board and can only hope to split the pot, because each other player can also use the same five

cards to construct the same hand.

If the best hand is shared by more than one player, then the pot is split equally among them. It is common for

players to have closely valued, but not identically ranked hands. Nevertheless, one must be careful in determining

the best hand; if the hand involves fewer than five cards, (such as two pair or three of a kind), then kickers are

used to settle ties (see the example below). Note that the card's numerical rank is of sole importance; suit

values are irrelevant in Hold'em.

Hand 1

Hand 2

In the above example, Hand 2 beats Hand 1 because although they each have a pair of Queens, Hand 2 has a

higher kicker (J♢ versus 9♡)

Page 6 of 12

Ranks of Poker Hands From High to Low

Hand Type Description Example(s)

Straight Flush 5 cards in consecutive rank all of the same suit. An Ace-high
straight flush is called a "Royal Flush" and is the highest possible
hand. Aces may be treated as high or low. If more than one player
has a straight flush, the highest ranking hand wins.

AD KD QD JD TD
5C 4C 3C 2C AC

Four of a Kind 4 cards of the same rank. If more than one player has 4 of a kind,
the player with highest ranking set of 4 wins.

7S 7H 7D 7C 9S

Full House 3 of one rank and 2 of another. If more than one player has a full
house, the player with the highest ranking set of 3 wins.

TH TD TC KS KD

Flush All 5 cards of the same suit. If more than one player has a flush, the
player with the highest rank dissimilar card wins (see example).

KD QD TD 6D 4D beats
KS QS 8S 7S 6D

Straight 5 cards of consecutive rank of more than one suit. Aces may be
treated as high or low. If more than one person has a straight, the
player with the highest ranking straight win.

AS KD QS JH TC
5D 4D 3S 2C AH

Three of a Kind 3 cards of the same rank and 2 cards of unequal rank. If more than
one player has 3 of a kind, the player with the higher ranking set of
3 wins.

9S 9H 9C AD JS

Two Pair 2 cards of one rank and 2 cards of a different rank. If more than
one player has two pair, the player with the highest ranking pair
wins. If two players both have the same rank pairs, the rank of the
fifth card (the kicker) determines the winner.

QH QD 7D 7C AS

One Pair 2 cards of one rank. If two or more players have one pair, the
player with the highest ranking pair wins. If two players have the
same rank pair, the player with the higher rank dissimilar kicker
wins.

6D 6C KS QD 7H

High Card If no player has one of the hand types listed above, the ranks of the
cards from high to low are compared and the player with the
highest ranking hand wins.

JH 9D 5C 4S 2D

Page 7 of 12

Problem 2 – When in Rome...
Background

Roman numerals, as used today, are based on seven symbols:

Symbol Value

I 1

V 5

X 10

L 50

C 100

D 500

M 1,000

Numbers are formed by combining symbols together and adding the values. For example, MMVI is 1000 + 1000 +

5 + 1 = 2006. Generally, symbols are placed in order of value, starting with the largest values. When smaller values

precede larger values, the smaller values are subtracted from the larger values, and the result is added to the

total. For example MCMXLIV = 1000 + (1000 − 100) + (50 − 10) + (5 − 1) = 1944.

There has never been a universally accepted set of rules for Roman numerals. Because of this lack of

standardization, there may be multiple ways of representing the same number in Roman numerals. Despite the

lack of standardization, an additional set of rules has been frequently applied for the last few hundred years.

 The symbols "I", "X", "C", and "M" can be repeated three times in succession, but no more. (They may

appear four times if the third and fourth are separated by a smaller value, such as XXXIX.) "D", "L", and

"V" can never be repeated.

 "I" can be subtracted from "V" and "X" only. "X" can be subtracted from "L" and "C" only. "C" can be

subtracted from "D" and "M" only. "V", "L", and "D" can never be subtracted.

 Only one small-value symbol may be subtracted from any large-value symbol.

 A number written in Arabic numerals can be broken into digits. For example, 1903 is composed of 1, 9, 0,

and 3. To write the Roman numeral, each of the non-zero digits should be treated separately. In the

above example, 1,000 = M, 900 = CM, and 3 = III. Therefore, 1903 = MCMIII.

Using this additional set of rules, there is only one possible Roman numeral for any given number.

In addition, for this problem, we will add the following rules.

 0 (zero) should be represented by an empty character vector.
 Negative numbers should be preceded by an APL high minus (¯)
 Non-integers should be rounded up (.5 and above rounds up).

 Larger numbers simply have a number of leading M's. e.g. 5005 is represented at "MMMMMV".

Page 8 of 12

Task 1 – ... Do as the Romans Do

Write a function named AtoR that converts an array of Arabic numbers to its Roman equivalent based on the

rules above. Each Roman number should be a scalar and the shape of the result should be the same as the shape

of the right argument.

 AtoR 1903
 MCMIII

 v ← 49 1999 0 ¯7 4.3
 AtoR v
 XLIX MCMXCIX ¯VII IV

]display AtoR v ⍝]display is a user command to display structure
┌→───┐
│ ┌────────┐ ┌───────────┐ ┌─────┐ ┌────────┐ ┌──────┐ │
│ │ ┌→───┐ │ │ ┌→──────┐ │ │ ┌⊖┐ │ │ ┌→───┐ │ │ ┌→─┐ │ │
│ │ │XLIX│ │ │ │MCMXCIX│ │ │ │ │ │ │ │¯VII│ │ │ │IV│ │ │
│ │ └────┘ │ │ └───────┘ │ │ └─┘ │ │ └────┘ │ │ └──┘ │ │
│ └∊───────┘ └∊──────────┘ └∊────┘ └∊───────┘ └∊─────┘ │
└∊───┘

]display ⍴¨ AtoR v ⍝ show that each element of the result is a scalar
┌→────────────────────┐
│ ┌⊖┐ ┌⊖┐ ┌⊖┐ ┌⊖┐ ┌⊖┐ │
│ │0│ │0│ │0│ │0│ │0│ │
│ └~┘ └~┘ └~┘ └~┘ └~┘ │
└∊────────────────────┘

 (⍴¨v)≡⍴¨ AtoR v ⍝ verify that result shape is identical to argument

Task 2 – And Back Again

Write a function named RtoA that converts an array of Roman numerals into Arabic. As with AtoR, the shape of

the result should match the shape of the argument, except that a single Roman number need not be enclosed as a

scalar.

 RtoA AtoR v
49 1999 0 ¯7 4

 RtoA 'MCMLXI'
1961
 ⍴⍴RtoA 'MCMLXI' ⍝ verify the result is a scalar (rank 0)
0

Task 3 – Smooth Operator

One of the neat features of APL is its use of operators, functions that take other functions (or data) as arguments

and return derived functions as their result. For instance, there's the outer product operator (∘.) which takes a

function and applies it to all combinations of the left and right arguments.

Page 9 of 12

 2 3 4 ∘.× 2 4 6 8
4 8 12 16
6 12 18 24
8 16 24 32

Similarly, the reduction operator "reduces" the rank of an array by applying its function between elements along
an axis of the data.

 table←2 4⍴8?100 ⍝ make a 2 row, 4 column matrix of 8 numbers between 1 and 100

 table
14 76 46 54
22 5 68 94

 +/[2]table ⍝ row sums - the second dimension (columns) gets "reduced"
190 189

 +/table ⍝ if no axis is specified, reduction is performed on the last dimension
190 189

 +/[1]table ⍝ column sums – reduction along the first dimension (rows)
36 81 114 148

 +⌿table ⍝ ⌿ indicates reduction on the first dimension
36 81 114 148

 ⌈/table ⍝ row maximum - reduction can take any function appropriate
 for the domain of the data
76 94

 ⌊/table ⍝ row minimum
14 5

In addition to APL's built-in operators, you can write user defined operators! So, as you've probably guessed,
your task is to write a user defined operator named Roman to perform Roman math.

 'III'+Roman'II'
 V

 ⍳Roman'X'
 I II III IV V VI VII VIII IX X

 +/Roman⍳Roman'X'
 LV

Don't worry about "mixed" data types. We don't expect this to work...

 'II' 'III'⍴Roman ⍳6

But the following should...

 'II' 'III'⍴Roman ⍳Roman'VI'
 I II III
 IV V VI

 'II' 'III' {⍺⍴⍳⍵}Roman 'VI'
 I II III
 IV V VI

Page 10 of 12

Problem 3 – Digital Fun
Background

There have been many recreational puzzles that make use of the digits 123456789. Some have involved inserting

mathematical signs between the digits in order such that the resulting expression equals a particular number, 100

for instance. 100 = 1+2+3+4+5+6+7+(8x9). This problem adds an APL twist.

In the Problem3 namespace, we have provided you with a function named Problem3, a sample of which is below.

 ∇ r←Problem3
[1] r←100⍴0
[2] r[1]←123456789
[3] r[2]←123456789
...
[101] r[100]←123456789
 ∇

Your task is to edit each line by inserting any APL symbols other than 0-9 before, between, or after the digits

123456789 and to the right of the assignment arrow (←) to make the Nth element of result r equal N.

Your goal is to do this with the fewest possible characters. For example, the first result element can be

accomplished with the insertion of a single character.

r[1]←×123456789 or
r[1]←1⌊23456789

When complete Problem3≡⍳100 should return a 1.

The judges will use ⍴⊃,/⎕NR 'Problem3' to determine the size of your code, so this is one case where we don't

want you to comment your code!

Page 11 of 12

Problem 4 – Nurikabe
Nikoli (にこり, nikori) Co., Ltd. is a Japanese publisher that specializes in games and, especially, logic

puzzles. Nikoli is also the nickname of a quarterly magazine (whose full name is Puzzle Communication Nikoli)

issued by the company.1 While Sudoku may be the best known puzzle from Nikoli, they have published scores of

other fascinating games. One of these is Nurikabe, a description of which may be found at

http://www.nikoli.com/en/puzzles/nurikabe/.

The nurikabe (ぬりかべ) is a Yōkai, or spirit, from Japanese folklore. It manifests as a wall that impedes or

misdirects walking travelers at night. Trying to go around is futile as it extends itself forever. Knocking on the

lower part of the wall makes it disappear.2

For the purposes of this problem, a Nurikabe puzzle can be represented as an integer matrix with 0 (zero) in

empty cells. For instance, the sample puzzle found at http://www.nikoli.com/en/puzzles/nurikabe/rule.html,

would be represented by:

 7 7⍴0 3 0 0 0 1,(8/0),2 0 0 1,(11/0),1 0 0 2,(4/0),2,(4/0),1 0 0 0 1 0 6
0 3 0 0 0 1 0
0 0 0 0 0 0 0
2 0 0 1 0 0 0
0 0 0 0 0 0 0
0 1 0 0 2 0 0
0 0 2 0 0 0 0
1 0 0 0 1 0 6

A solved puzzle is represented in the same manner except that there is a ¯1 in the place of any filled in square.

The solution to the sample puzzle above

would be represented as:

1
 Source: Wikipedia

http://www.nikoli.com/en/puzzles/nurikabe/
http://www.nikoli.com/en/puzzles/nurikabe/rule.html

Page 12 of 12

¯1 3 0 0 ¯1 1 ¯1
¯1 ¯1 ¯1 ¯1 ¯1 ¯1 ¯1
 2 0 ¯1 1 ¯1 0 0
¯1 ¯1 ¯1 ¯1 ¯1 ¯1 0
¯1 1 ¯1 0 2 ¯1 0
¯1 ¯1 2 ¯1 ¯1 ¯1 0
 1 ¯1 0 ¯1 1 ¯1 6

Task 1 – Seeking Validation

Your first task is to write a function named Valid which takes as its right argument an integer matrix

representing a possible Nurikabe puzzle solution and returns a 1 if the argument is a valid Nurikabe solution and 0

otherwise.

If passed the solution matrix shown above Valid should return a 1.

Other simple examples include:

 Valid 1 1⍴1
1
 Valid 2 2⍴¯1 ¯1 ¯1 1
1
 Valid 2 2⍴¯1 ¯1 2 0
1
 Valid 2 2⍴1 ¯1 ¯1 1
0

Task 2 – Solved!

Your final task for this year's contest is to write a function named Nurikabe which takes as its right argument an

integer matrix representing a Nurikabe puzzle as described above and returns as its result an integer matrix

representing the solution to the puzzle, also as described above. The judges will test your solution with several

different Nurikabe puzzles.

 p←7 7⍴0 3 0 0 0 1,(8/0),2 0 0 1,(11/0),1 0 0 2,(4/0),2,(4/0),1 0 0 0 1 0 6
 Nurikabe p
¯1 3 0 0 ¯1 1 ¯1
¯1 ¯1 ¯1 ¯1 ¯1 ¯1 ¯1
 2 0 ¯1 1 ¯1 0 0
¯1 ¯1 ¯1 ¯1 ¯1 ¯1 0
¯1 1 ¯1 0 2 ¯1 0
¯1 ¯1 2 ¯1 ¯1 ¯1 0
 1 ¯1 0 ¯1 1 ¯1 6

 Valid Nurikabe p
1

