
2013 International APL Problem Solving Competition - Phase I

Phase I Tips

We have provided you with several test cases for each problem to help you validate your solution.

We recommend that you build your solution using dfns. A dfn (direct function) is one or more APL

statements enclosed in braces {}.

The left hand argument, if any, is represented in a dfn by ⍺, while the right hand argument is

represented by ⍵.

Example:

 'Hello' {⍺,'-',⍵,'!'} 'world'

Hello-world!

The result of a dfn is the value of the first result producing statement.

Example:

 'left' { ⍵ ⋄ ⍺ } 'right'
right

For more information on dfns you can refer to page 152 in Mastering Dyalog or use the online help

included with Dyalog APL.

The symbol ⍝ is the APL comment symbol. In some of the examples below, comments are provided

to give more information.

Phase I Problems:

Sample Problem - I'd like to buy a vowel

Write a dfn to count the number of vowels in a character vector.

When passed the character vector 'APL Is Cool', your solution should return:

4

Below are 2 sample solutions. Both produce the correct answer, however the first solution would be

ranked higher by the competition judging committee as it demonstrates better use of array oriented

programming.

 {+/⍵∊'AEIOUaeiou'}'APL Is Cool' ⍝ better solution
4

 {(+/⍵='A’)+(+/⍵='E’)+(+/⍵='I’)+(+/⍵='O’)+(+/⍵='U’)+(+/⍵='a’)
+(+/⍵='e’)+(+/⍵='i’)+(+/⍵='o’)+(+/⍵='u’)}'APL Is Cool' ⍝ lesser
solution
4

Problem 1 - Seems a bit odd to me

Write a dfn to produce a vector of the first n odd numbers.

Test cases:

 {your_solution} 10
1 3 5 7 9 11 13 15 17 19

 {your_solution} 1
1

 {your_solution} 0 ⍝ this should return an empty vector

Problem 2 - Making the grade

Write a dfn which returns the percent (from 0 to 100) of passing (65 or higher) grades in a vector of

grades.

Test cases:

 {your_solution} 25 90 100 64 65
60

 {your_solution} 50
0

 {your_solution} 80 90 100
100

 {your_solution} ⍳0 ⍝ all grades in an empty vector are passing
100

Problem 3 - What's in a word

Write a dfn which returns the number of words character vector.

For simplicity's sake, you can consider the space character ' ' to be the only word separator.

Test cases:

 {your_solution} 'Testing one, two, three'
4

 {your_solution} '' ⍝ empty vector has no words

0

 {your_solution} ' this vector has extra blanks ' ⍝ just
counting the blanks won't work
5

Problem 4 - Keeping things in balance

Write an APL dfn which returns a 1 if the opening and closing parentheses in a character vector are

balanced, or a zero otherwise.

Test cases:

 {your_solution} '((2×3)+4)'
1

 {your_solution} ''
1

 {your_solution} 'hello world!'
1

 {your_solution} ')(2×3)+4('
0

 {your_solution} '(()'
0

 {your_solution} ')'
0

Problem 5 - Identity crisis

An identity matrix is a square matrix (table) of 0 with 1's in the main diagonal.

Write an APL dfn which produces an n×n identity matrix.

Test cases:

 {your_solution} 5
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

 {your_solution} 1 ⍝ should return a 1×1 matrix
1

 {your_solution} 0 ⍝ should return a 0×0 matrix

Problem 6 - Home on the range

Write a dfn which returns the magnitude of the range (i.e. the difference between the lowest and

highest values) of a numeric array.

Test cases:

 {your_solution} 19 ¯3 7.6 22
25

 {your_solution} 101 ⍝ should work with a scalar argument
0

 {your_solution} 2 3⍴10 20 30 40 50 60 ⍝ should work with
arrays of any number of dimensions
50

 {your_solution} ⍳0 ⍝ including empty arrays
0

Problem 7 - Float your boat

Write a dfn which selects the floating point (non-integer) numbers from a numeric vector.

Test cases:

 {your_solution} 14.2 9 ¯3 3.1 0 ¯1.1
14.2 3.1 ¯1.1

 {your_solution} 1 3 5 ⍝ should return an empty vector

 {your_solution} 3.1415
3.1415

Problem 8 - Go forth and multiply

Write a dfn which produces a multiplication table.

Test cases:

 {your_solution} 5
1 2 3 4 5
2 4 6 8 10
3 6 9 12 15

4 8 12 16 20
5 10 15 20 25

 {your_solution} 1 ⍝ should return a 1×1 matrix
1

 {your_solution} 0 ⍝ should return a 0×0 matrix

Problem 9 - It's a moving experience

Write a dfn which produces n month moving averages for a year's worth of data.

Test cases:

 sales←200 300 2700 3400 100 2000 400 2100 3500 3000 4700 4300

 2 {your_solution} sales ⍝ produces 2 month moving averages
250 1500 3050 1750 1050 1200 1250 2800 3250 3850 4500

 10 {your_solution} sales ⍝ 10 month moving average
1770 2220 2620

 1 {your_solution} sales ⍝ 1 month moving average is the same
as sales
200 300 2700 3400 100 2000 400 2100 3500 3000 4700 4300

Problem 10 - Solution salvation

Many people have taken some sort of algebra class where you are presented with a set of linear

equations like:

3x + 2y = 13

x - y = 1

The answer in this case is x=3 and y=2

Write a dfn which solves this type of problem. Hint: this is the easiest of all of the problems

presented here.

The left argument is a vector of the values for the equations and the right argument is a matrix of

the coefficients.

Test cases:

 13 1 {your_solution} 2 2⍴3 2 1 ¯1
3 2

 2 6 4 {your_solution} 3 3⍴4 1 3 2 2 2 6 3 1
¯1 3 1

