
2015 International APL Problem Solving Competition – Phase I

 Phase I Tips

• We have provided you with several test cases for each problem to help you validate your solution.
• We recommend that you build your solution using dfns. A dfn (direct function) is one or more APL

statements enclosed in braces {}. The left hand argument, if any, is represented in a dfn by ⍺, while the
right hand argument is represented by ⍵.
Example:
 'Hello' {⍺,'-',⍵,'!'} 'world'
Hello-world!
A dfn terminates on the first statement that is not an assignment. If that statement produces a result, the
dfn returns that value as its result.
Example:
 'left' { ⍵ ⋄ ⍺ } 'right'
right
For more information on dfns, use the online help included with Dyalog or see page 152 in
http://www.dyalog.com/MasteringDyalogAPL/MasteringDyalogAPL.pdf.

• The symbol ⍝ is the APL comment symbol. In some of the examples below, comments are provided to give
more information.

• Some of the problem test cases use "boxed display" to make the structure of the returned results clearer.
Boxing is enabled by default on www.TryAPL.org and can be enabled in Dyalog version 14.0 and later using
the user command:
]box on
Without boxed display enabled:
 ⍳¨⍳4
1 1 2 1 2 3 1 2 3 4
With boxed display enabled:
 ⍳¨⍳4
┌─┬───┬─────┬───────┐
│1│1 2│1 2 3│1 2 3 4│
└─┴───┴─────┴───────┘

Phase I Problems

Sample Problem - I'd like to buy a vowel
Write a dfn to count the number of vowels in a character vector.

When passed the character vector 'APL Is Cool', your solution should return:
4

Below are 2 sample solutions. Both produce the correct answer, however the first solution would be ranked
higher by the competition judging committee as it demonstrates better use of array oriented programming.

 {+/⍵∊'AEIOUaeiou'}'APL Is Cool' ⍝ better solution
4
 {(+/⍵='A')+(+/⍵='E')+(+/⍵='I')+(+/⍵='O')+(+/⍵='U')+(+/⍵='a')+
(+/⍵='e')+(+/⍵='I')+(+/⍵='o')+(+/⍵='u')}'APL Is Cool' ⍝ lesser solution
4

http://www.dyalog.com/MasteringDyalogAPL/MasteringDyalogAPL.pdf
http://www.tryapl.org/

Problem 1 – Statistics - Mean
Write a dfn that takes a numeric array as its right argument and returns the mean (average) of the array.

Test cases:

 {your_solution} 1 2 3 4 5 6
3.5

 {your_solution} ⍬ ⍝ the average of an empty vector is 0
0

 {your_solution} 17 ⍝ your solution should work with a scalar argument
17

Problem 2 – Statistics - Median
Write a dfn that takes a numeric array as its right argument and returns the median of the array. The median is
the number separating the higher half of the vector from the lower half. The median can be found by arranging
all the observations from lowest value to highest value and picking the middle one. If there is an even number
of observations, then there is no single middle value; the median is then usually defined to be the mean of the
two middle values.

Test cases:

 {your_solution} 1 2 3 4 5 6 7 8 9
5

 {your_solution} 1 8 2 7 3 6 4 5
4.5

 {your_solution} ⍬
0

 {your_solution} 7
7

Problem 3 – Statistics - Mode
Write a dfn that takes a numeric vector or scalar as its right argument and returns the mode (that is, the most
common value) of the array. If more than one number occurs the greatest number of times, return all such
numbers.

Test cases:

 {your_solution} 2 1 4 3 2 5 1 2
2

 {your_solution} ⍬ ⍝ should return an empty vector

 {your_solution} 1 2 3 4 1 2
1 2

Problem 4 – Just Meshing Around
Write a dfn that takes vectors as its left and right arguments and returns them "meshed" into a single vector
formed by alternately taking successive elements from each argument. The arguments do not have to be the
same length.

Test cases:

 'MENS' {your_solution} 'EKES'
MEEKNESS

 'Dyalog' {your_solution} 'APL'
DAaPlLog

 'APL' {your_solution} 'Dyalog'
ADPyLalog

 1 3 5 7 {your_solution} 2 4 6 8 ⍝ should work with numeric vectors
1 2 3 4 5 6 7 8

 '' {your_solution} 'Hello' ⍝ either or both arguments could be empty
Hello

Problem 5 – You're Unique, Just Like Everyone Else
Write a dfn that takes a vector as its right argument and returns elements that occur only once in the vector.

Test cases:

 {your_solution} 1 2 3 4 5
1 2 3 4 5

 {your_solution} 1 2 3 4 5 4 3 2 1
5

 {your_solution} 'hello world'
he wrd

Problem 6 – Shorter Ones to the Front
Write a dfn that takes a vector of vectors as its right argument and returns it sorted by the length of each
element. Note: an element of the vector can be scalar or an empty vector.

Test cases:

 {your_solution} 'one' 'two' 'three' 'four' 'five' 'six'
┌───┬───┬───┬────┬────┬─────┐
│one│two│six│four│five│three│
└───┴───┴───┴────┴────┴─────┘

 {your_solution} (2 4 3) (4 5) 1 (7 3)
┌─┬───┬───┬─────┐
│1│4 5│7 3│2 4 3│
└─┴───┴───┴─────┘

 {your_solution} ⍬ ⍝ should return an empty vector

 {your_solution} 'one' 2 'three' '' 'four' (5 6 7 8)
┌┬─┬───┬────┬───────┬─────┐
││2│one│four│5 6 7 8│three│
└┴─┴───┴────┴───────┴─────┘

Problem 7 – 3s and 5s
Write a dfn that takes a numeric vector and returns all elements that are divisible by 3 or 5.

Test cases:

 {your_solution} 1 2 3 4 5 6 7 8 9 10
3 5 6 9 10

 {your_solution} ⍬ ⍝ should return an empty vector

Problem 8 – Separating Out the Negative
Write a dfn that takes a numeric vector and returns a two element vector whose first element contains the
values less than 0 (zero) in the vector and the second element contains all values greater than or equal to 0.

Test cases:

 {your_solution} 0 1 ¯2 3 ¯4 ¯5 6 7 8 ¯9 10
┌───────────┬──────────────┐
│¯2 ¯4 ¯5 ¯9│0 1 3 6 7 8 10│
└───────────┴──────────────┘

 {your_solution} 1 2 3 4 5
┌┬─────────┐
││1 2 3 4 5│
└┴─────────┘

 {your_solution} ⍬ ⍝ should return a vector of two empty vectors
┌┬┐
│││
└┴┘

Problem 9 – Delimited Text
It's common to encounter delimited text – for example, comma- separated values in a file.

Write a dfn that takes a character vector as its right argument and one or more characters as its left argument,
where those characters are delimiters in the right argument. The dfn should return the delimited text as a
vector of vectors.

Test cases:

 ',' {your_solution} 'comma,delimited,values'
┌─────┬─────────┬──────┐
│comma│delimited│values│
└─────┴─────────┴──────┘

 ' ' {your_solution} 'break up words'
┌─────┬──┬─────┐
│break│up│words│
└─────┴──┴─────┘

 ',' {your_solution} ','
┌┬┐
│││
└┴┘

Problem 10 – Order Total / Dot Product
Suppose you have a numeric vector that is the list of prices for a set of retail products. You also have a numeric
vector that is the number ordered of each product. Write a dfn that takes as its right argument a vector of
prices and as its left argument a numeric vector that indicates the number ordered and returns the total cost
for the order.

In case you hadn't realized it, this is an application the dot product.
The dot product of two vectors A = [A1, A2, ..., An] and B = [B1, B2, ..., Bn] is defined as

𝐴𝐴 ∙ 𝐵𝐵 = �𝐴𝐴𝑖𝑖𝐵𝐵𝑖𝑖

𝑛𝑛

𝑖𝑖=1

= 𝐴𝐴1𝐵𝐵1 + 𝐴𝐴2𝐵𝐵2 + ∙∙∙ + 𝐴𝐴𝑛𝑛𝐵𝐵𝑛𝑛

Test cases:

 5 0 2 {your_solution} 2.99 4.99 1.99
18.93

 0 0 0 {your_solution} 2.99 4.99 1.99
0

