
Page 1 of 21

2017 APL Problem Solving Competition – Phase 2 Problem Descriptions

Overview

This year's Phase 2 problems are divided into three sets, representing three categories – Healthcare, Maths and
Statistics, and Computational Geometry. Each problem set has one or more problems consisting of one or more
tasks.

To be considered for the grand prize, you must solve all the problems and tasks in any single category. You are
encouraged to complete as many categories as possible. The judging committee will consider the level of effort
put forth as one of the criteria for prize selection. For instance, if two submissions for a category are of
comparable quality, but one of the submissions includes a second category, the judging committee may take that
into consideration for tie-breaking.

Good Luck and Happy Problem Solving!

Note:
Some of the examples are displayed using the user command setting]boxing on to more clearly depict
the structure of the displayed data.

 ('Dyalog' 'APL')(4 4⍴⍳16) 5
 Dyalog APL 1 2 3 4 5
 5 6 7 8
 9 10 11 12
 13 14 15 16

]boxing on
Was OFF

 ('Dyalog' 'APL')(4 4⍴⍳16) 5
┌────────────┬───────────┬─┐
│┌──────┬───┐│ 1 2 3 4│5│
││Dyalog│APL││ 5 6 7 8│ │
│└──────┴───┘│ 9 10 11 12│ │
│ │13 14 15 16│ │
└────────────┴───────────┴─┘

Page 2 of 21

Description of the Contest2017 Template Files

Two template files are available for download from the contest website. Which file you use depends on how you
choose to implement your problem solutions.

If you use Dyalog APL, you should use the template workspace Contest2017.DWS

The Contest2017 workspace contains:
• Three namespaces, one for each of the problem categories. Each namespace contains:

o stubs for all of the functions described in the problem descriptions. The function stubs are
implemented as traditional APL functions (tradfns) but any type of function is acceptable.

o any sample data elements mentioned in the problem descriptions.

Any sub-functions that you develop as a part of your solution should be co-located in the category
namespace.

The namespaces are:

o #.hlth – for the healthcare problem set
o #.math – for the maths and statistics problem set
o #.geom– for the computational geometry problem set

• #.SubmitMe – a function used to package your solution for submission.

Make sure you save your work using the)SAVE system command!

Once you have developed and are ready to submit your solutions, run the #.SubmitMe function, enter the
requested information and click the Save button. #.SubmitMe will create a file called Contest2017.dyalog which
will contain any code or data you placed in the #.hlth, #.math, and #.geom namespaces. You will then need to
upload the Contest2017.dyalog file using the contest website.

If you use some other APL system, you can use the template script file Contest2017.dyalog

This file contains the correct structure for submission. You can populate it with your code, but do not change the
namespace structure. Once you have developed your solution, edit the variable definitions as indicated at the top
of the file and upload the file using the contest website. If you use some other APL system to develop your
application, it will still need to execute under Dyalog APL, so your solution can only use APL features that are
common between your APL system and Dyalog.

Page 3 of 21

Healthcare Problem Set

The Healthcare problem set contains 1 problem with 4 tasks.
To be considered for a prize in this category, you must complete all 4 tasks.

Problem 1 – Drug Program Modelling

Task 1 – Write a function named Projection to model this patient population

Background:
In a group of disease sufferers, 120,000 people are being treated for a particular strain of the disease.

• On average, 2.5% of the total treated patient population will go into remission (that is, they will no longer
require treatment) each month after treatment.

• On average, a further 3.25% will die each year from the disease or due to complications resulting from it.

The treatment for this disease consists of three drugs A, B and C. Patients start on drug A and move through B and
on to C depending on their response (or lack of it).

At time zero (T0) the group has 70,000 patients taking drug A, 30,000 taking drug B and 20,000 taking drug C;
consider remission and death rates to be identical for all 3 drugs.

Projection has the following syntax:

 (sa sb sc rem dec) ← years Projection a b c
 The right argument consists of:
 a, b, and c – the number of patients currently taking drugs A, B, and C respectively
 The left argument consists of:
 years – the number of years to run the projection
 The result represents the population at the end of the projection and consists of:
 sa, sb and sc – the number of surviving disease sufferers taking drugs A, B and C respectively
 rem – the number of patients in remission
 dec – the number of deceased patients

Page 4 of 21

Task 2 – Write a function named Projection2 to model the patient population and drug progression

Background:
Each month, 1,000 to 3,000 new occurrences are identified. For the purpose of this problem, you can assume a
uniform (random) distribution. The side effects of each drug in the progression are increasingly severe, resulting
in patients dropping out of the program.

For new patients:

• 80% are given drug A, meaning 20% of new patients are not given any drug therapy.
• For drug A, 70% of patients respond well and stay on it until they enter remission or die. 30% move on to

drug B after 2 months.
• For drug B, 10% of the patients drop out of the treatment program immediately. Of the remaining 90%,

60% of patients respond well and stay on it until they enter remission or die and 40% move on to drug C
after 3 months.

• For drug C, 20% of the patients drop out of the treatment program immediately. The remaining 80% stay
until they enter remission or die.

Projection2 has the following syntax:

 (sa sb sc rem dec drop not) ← years Projection2 a b c
 The right argument consists of:
 a, b, and c – the number of patients currently taking drugs A, B, and C respectively
 The left argument consists of:
 years – the number of years to run the projection
 The result represents the population at the end of the projection and consists of:
 sa, sb and sc – the number of surviving disease sufferers taking drugs A, B and C respectively
 rem – the number of patients in remission
 dec – the number of deceased patients
 drop – the number of patients who have dropped out
 not – the number of people in the group who are not being treated

Page 5 of 21

Task 3 – Write a function named Projection3 to model the patient populations in each country

Background:
The study is extended to include other countries as shown in the table. Broadly speaking, the responsiveness of
patients to their respective drugs is the same for each country. You can assume that there are 1,000 to 3,000 new
occurrences each month, per country, also uniformly distributed.

 T0 group patients
 Drug A Drug B Drug C
England 70,000 30,000 20,000
France 65,000 32,000 12,000
Germany 40,000 19,000 10,000
Spain 93,000 31,000 26,000
Italy 55,000 35,000 18,000

Projection3 has the following syntax:

 results ← years Projection3 drugs
 The right argument is a 3-column matrix with one row per country and columns being:
 [;1] – the number of patients currently taking drug A
 [;2] – the number of patients currently taking drug B
 [;3] – the number of patients currently taking drug C
 The left argument is:
 years – the number of years to run the projection
 The result is a 7-column matrix with one row per country columns being:
 [;1] – the number of surviving patients taking drug A
 [;2] – the number of surviving patients taking drug B
 [;3] – the number of surviving patients taking drug C
 [;4] – the number of surviving patients in remission
 [;5] – the number of deceased patients
 [;6] – the number of patients who have dropped out
 [;7] – the number of people who are not being treated

Page 6 of 21

Task 4 – Write a function named DrugD to model the effect of the drop-out rate for DrugD

Background:
It has been found that the original disease progression data was inaccurate.

• Drug B is effective in 35% of patients, not 60%.
• Drug C is effective in 40% of patients.
• Patients who are not managed (patients who either never started the program or who dropped out) have

a death rate of 11%.

A new drug, drug D, is due to be introduced. It will be used in patients who are not responsive to drug C after 3
months of treatment. The death rate for patients treated with drug D is 1% and it has a remission rate of 5%.
However, the side effects of drug D are more serious and, as a result, it is expected that a percentage will drop out
of this treatment per month.

Update the model to reflect the new data and introduce drug D.

DrugD has the following syntax:

 (sa sb sc sd rem dec drop not) ← dropRate DrugD a b c
 The right argument consists of:
 a, b, and c – the number of patients currently taking drugs A, B, and C respectively
 The left argument consists of:
 dropRate – the monthly drop-out rate for patients taking drug D
 The result represents the population at the end of the projection and consists of:
 sa, sb, sc and sd – the number of surviving disease sufferers taking drugs A, B, C and D respectively
 rem – the number of patients in remission
 dec – the number of deceased patients
 drop – the number of patients who have dropped out
 not – the number of people in the group who are not treated

Page 7 of 21

Maths and Statistics Problem Set

The Maths and Statistics problem set contains 3 problems with total of 7 tasks.
To be considered for a prize in this category, you must complete all 7 tasks.

Problem 1 – What's the Significance?

Significant figures of a number are digits that carry meaning contributing to its measurement resolution. For the
purposes of this problem, the rules for identifying significant figures are:

• All non-zero digits are significant.
• All zeros between the first and last significant digits are significant.
• If a number has neither decimal point, nor non-zero digits, then one zero, if any is present, is significant.
• All other leading zeros (those to the left of the leftmost significant digit) are not significant.
• In a number without a decimal point, trailing zeros (those to the right of the rightmost significant digit)

are not significant.
• In a number with a decimal point, trailing zeros (those to the right of the decimal point or rightmost

significant digit) are significant.

Task 1 – Write a function named SigFig that will determine the number of significant figures

SigFig has the following syntax:

 r ← SigFig num

The right argument consists of:
 num – a number, but may be given as a character scalar or vector, because APL will remove leading zeros
 and trailing zeros to the right of a decimal point. For example, APL treats 100.00 as 100. You need not
 consider them numbers using scientific notation (e.g. 1.234E56) or complex numbers (e.g. 1.2J3.4).
The result is the number of significant figures in num

Examples:

 SigFig ''
0
 SigFig 0
1
 SigFig 4500
2
 SigFig '700.'
3
 SigFig 1023
4
 SigFig '0.00000'
5
 SigFig '6700.00'
6

Page 8 of 21

Task 2 – Write a function named SRound which returns the next higher s-round number

Now let's call a number s-round if it has s or fewer significant digits.
A number that is s-round is also (s+n)-round for n>0.
For example, 12000, 1.2, and 100 are 2-round; 100 is also 1-round.

SRound has the following syntax:

 r ← s SRound num

The right argument consists of:
 num - a single number
The left argument consists of:
 s - a single positive integer which represents the maximum number of significant digits
The result is the first s-round number greater than or equal to num

Examples:

 1 SRound 12345
20000

 2 SRound 100
100

 2 SRound 101
110

 3 SRound 0.314159
0.315

Page 9 of 21

Problem 2 – Outlying in a Field

Background:

An outlier is an observation that lies an abnormal distance from other values in a random sample from a
population.

There are many ways to define “abnormal distance” but for this problem we will be using the interquartile range
(IQR) to measure whether or not a point in a dataset is an outlier. There are two common ways to compute
quartiles when the data set has an odd number of elements, inclusive and exclusive, which dictate whether the
middle value of the data set is included or excluded when determining the medians of the lower and upper
portions of the data set. For the purposes of this problem, we will use the exclusive method:

1. Sort the data set.
2. Use the median to divide the ordered data set into two halves.

• If there are an odd number of elements in the original ordered data set, do not include the
median (the central value in the ordered list) in either half.

• If there are an even number of elements in the original ordered data set, split this data set exactly
in half.

http://www.statisticshowto.com/probability-and-statistics/interquartile-range/

Page 10 of 21

3. The lower quartile value is the median of the lower half of the data. The upper quartile value is the
median of the upper half of the data.

The interquartile range (IQR) is the difference between the upper and lower quartiles.

Task 1 – Write a function IQR which finds the interquartile range of a vector of numbers

IQR has the following syntax:

 r ← IQR vec

The right argument consists of vec - a numeric vector of at least 2 elements.
The result is a single number representing the vector's interquartile range

 Examples:

 IQR 5 1 3 2 4
3
 IQR 20 15
5

Page 11 of 21

Finding Outliers

For the purposes of this task we will define two severities of outliers: mild and extreme. An extreme outlier is a
value that is either greater than Q3+(3×IQR) or less than Q1-(3×IQR). A mild outlier is one that is either
Q3+(1.5×IQR) or less than Q1-(1.5×IQR) and is not an extreme outlier.

Task 2 – Write a function Outliers that identifies outliers in a vector of numbers

Outliers has the following syntax:

 r ← Outliers vec

The right argument consists of:
 vec – a numeric vector of at least 2 elements
The result r is a numeric vector of the same length as vec where r[i] is:
 ¯1 if vec[i] is an extreme outlier
 1 if vec[i] is a mild outlier
 0 otherwise

Example:

 Outliers 0 2 3 100 4 5 6
1 0 0 ¯1 0 0 0

Page 12 of 21

Problem 3 – Clustering

 Background:

Cluster analysis or clustering is the tasks of creating grouping within a dataset where each element in a group can
be said to be more similar to the other elements in its group than those of other groups. Clustering has many
useful applications in a variety of fields such as statistical data analysis, machine learning and pattern recognition,
just to mention a few.

There is a range of clustering methods. One popular methodology, centroid-based clustering, uses a central vector
to define each cluster. k-Mean clustering, another centroid-based clustering method, is a process whereby centers
for each cluster are established and the data objects are assigned to the nearest of the k cluster centres such that
the squared distances from the cluster centres are minimized.

First some definitions:

Euclidian Distance - The Euclidian Distance between two points A and B where 𝐴𝐴 = (𝑎𝑎1,𝑎𝑎2, … ,𝑎𝑎𝑛𝑛) and
𝐵𝐵 = (𝑏𝑏1,𝑏𝑏2, … , 𝑏𝑏𝑛𝑛) is:

= ��(𝑎𝑎𝑖𝑖 − 𝑏𝑏𝑖𝑖)2
𝑛𝑛

𝑖𝑖=1

Cluster Mean - The cluster mean is the average of the points in the cluster. For example, if you have the cluster:
{(1,1) (2,2) (3,2)} then the cluster mean is the point (2,1.66)

Page 13 of 21

When defining clusters using the k-Means method, the first step is to find an initial partition. This is done by
selecting k points at random where k is the number of clusters you are trying to find. Next find the Euclidian
distance from each from the k initial points to every other point in the dataset and as first pass at defining clusters
on the data, group each point with the point from the initial partition that it is closest to (closest means has the
smallest Euclidean distance).

The data is now clustered but there is no guarantee that all the points are in the right cluster. Calculate the cluster
means and compare the Euclidean distance of each point with each of the cluster means. If it turns out that a
point is closer to another cluster mean than the cluster it was assigned in the first pass, reassign the point to the
cluster with the closer cluster mean. Let the iterative reallocation continue until no more reallocations occur
(although note that there are cases where there is no exact solution hence it is advisable to put a reasonable limit
on the number of iterations attempted).

Task 1 – Write a function dist to compute the Euclidian distance between 2 points.

dist has the following syntax:

 r ← a dist b

The left and right arguments are each single coodinates in n-space.
The result a scalar number representing the Euclidian distance between the coordinates.

Example:
 1 1 dist 3 4 ⍝ distance in 2-space
5
 4 3 2 1 dist 5 6 7 8 ⍝ should work in any n-space
9.16515139
 ⍬ dist ⍬ ⍝ even no space
0

Page 14 of 21

Task 2 – Write a function cMean to compute the cluster mean of a set of coordinates.

cMean has the following syntax:

 r ← cMean coords

The right argument is a vector of coordinates in n-space
The result is a single n-space coordinate representing the cluster mean

Example:

 coords ← (1 1) (1.5 2) (3 4) (5 7) (3.5 5) (4.5 5) (3.5 4.5)

 cMean coords
3.142857143 4.071428571

 cMean 1 3 5 7 9 ⍝ 5 coordinates in 1-space
5

 cMean ,⊂1 3 5 7 9 ⍝ 1 coordinate in 5-space
1 3 5 7 9

Task 3 – Write a function Cluster to compute cluster membership for a set of coordinates

Cluster has the following syntax:

 r ← k Cluster coords

The right argument "coords" is a vector of coordinates in n-space.
The left argument "k" which is a single integer representing the number of clusters
The result is an integer vector where each element [n] represents the cluster number for coords[n]

Example:

 coords ← (1 1) (1.5 2) (3 4) (5 7) (3.5 5) (4.5 5) (3.5 4.5)
 k←2

 k Cluster coords
1 1 2 2 2 2 2

Page 15 of 21

Computational Geometry Problem Set

The Computational Geometry problem set contains 3 problems with a total of 6 tasks.
To be considered for a prize in this category, you must complete all 6 tasks.

Problem 1 – Please Wait at the Intersection

Backgound:
One technique to determine if two line segments intersect is to use orientation. For more information on the use
of orientation, see http://www.geeksforgeeks.org/check-if-two-given-line-segments-intersect/.

Task 1 – Write a function Intersects to determine if two line segments intersect

Intersects has the following syntax:

 r ← seg1 Interects seg2

The right and left arguments are each a vector of 2 coordinates denoting the endpoints of a line segment
The result is a Boolean scalar where 1 indicates the line segments intersect and 0 indicates that they do not

Examples:

 (0 0)(2 0) Intersects (1 1)(2 2)
0

 (1 1)(5 5) Intersects (5 1)(1 5)
1

 (0 0)(3 3) Intersects (3 3)(5 5)
1

http://www.geeksforgeeks.org/check-if-two-given-line-segments-intersect/

Page 16 of 21

In or Out?
It's possible to determine whether a point is within the boundaries of a polygon by extending a horizontal line
from the point to another point beyond the boundaries of the polygon and then counting the number of
intersections with the polygon's edges. If the number of intersections is odd, the point lies within the polygon and
if the number of intersections is even, the point does not lie within the polygon.

Task 2 - Write a function isInside to determine if a point lies within a polygon.

isInside has the following syntax:

 r ← point isInside nodes

The right argument nodes is a vector of node coordinates for the polygon drawn in either a clockwise or
counterclockwise manner.
The left argument point is a 2-element vector of the (x,y) coordinates for the point to be tested.
The result r is a Boolean scalar where 1 indicates the point lies within the polygon, and 0 that it does not.

Examples:

 coords ← (1 5)(3 3)(5 5)(3 1)

 3 2 IsInside coords
1

 3 4 IsInside coords
0

Page 17 of 21

Problem 2 – The Convex Hull: How to Put a Cow in a Box

Background:

Imagine metal pins nailed into a wooden board, scattered about like points on the Cartesian Plane. Now imagine
stretching an elastic band until it is large enough to encircle all the pins on the board, and letting it go. The elastic
band will shrink and snap round the outer most nails. The outer segments of the elastic band form the convex hull
of the set of pins.

In more mathematical terms, the convex hull of a given set of points in the plane is the unique convex polygon
whose vertices are points from the set and contains all points in the set. In other words, the convex hull of a set of
points is the smallest convex sub-set containing the set.

The convex hull is one of the first problems that was studied in computational geometry. In fact, convex hull is
used in different applications such as collision detection in 3D games and Geographical Information Systems and
Robotics.

A discussion of algorithms to compute the convex hull of a set of points can be found at
https://en.wikipedia.org/wiki/Convex_hull_algorithms#Algorithms.

https://en.wikipedia.org/wiki/Convex_hull_algorithms#Algorithms

Page 18 of 21

Task 1 – Write a function ConvexHull to compute the convex hull of a set of points.

ConvexHull has the following syntax:

 r ← ConvexHull points

The right argument points is a vector of (x,y) pairs, in random order.
The result r is a vector of ordered (either clockwise or counterclockwise) points which define the convex hull for
the point set.

Examples:

 points ← (1 1)(2 2)(3 3)(1 3)

 CovexHull points
┌───┬───┬───┐
│1 1│3 3│1 3│
└───┴───┴───┘

Page 19 of 21

Problem 3 – AND it is a Rectangle! OR is it…

Background:

Boolean operations on polygons are often used in computer graphics and pop up in things like CAD and EDA
software. The concepts of Boolean operation on polygons have ties to set operations in set theory: an AND of two
polygons is equivalent to the intersection between two sets, similarly an OR of polygons is equivalent to the union
of sets.

The difference between a set understanding and an understanding grounded in computational geometry are in
the approach. Sets exist at a high level of abstraction and often contain infinite elements and an infinite list will
certainly raise some hardware concerns!

A way around this (at least for simple polygons) is to define a polygon not by the points it encompasses but rather
by its vertices (or corners). Simple polygons have a finite number of vertices, and when the corners are listed in a
consistent manner a simple polygon can be unambiguously defined.

For example, the below hexagon can be described by picking a point and then listing the corners that follow if
traveling in a clockwise fashion from corner to corner: (-b,c),(b,c),(a,0),(b,-c),(-b,-c),(-a,0)

This can be represented in Dyalog as an enclosed array such:

 hexagon←((-b) c) (b c) (a 0) (b (-c)) (-b c) (-a 0)

Having a way to describe polygons allows us to perform computations on them.

Page 20 of 21

Task 1 – Write a function PolyOR that performs an OR operation on two polygons.

PolyOR has the following syntax:

 r ← poly1 PolyOR poly2

The left and right arguments poly1 and poly2 are each a vector of points, ordered clockwise, that define one
polygon each.
The result r is a vector of clockwise ordered points of the new polygon created by performing an OR operation
on the polygons represented by poly1 and poly2.

Example:

 poly1 ← (0 0)(0 2)(2 2)(2 0)

 poly2 ← (1 1)(1 3)(3 3)(3 1)

 poly1 PolyOR poly2
┌───┬───┬───┬───┬───┬───┬───┬───┐
│0 0│0 2│1 2│1 3│3 3│3 1│2 1│2 0│
└───┴───┴───┴───┴───┴───┴───┴───┘

Page 21 of 21

Task 2 – Write a function PolyAND that performs an AND operation on two polygons.

PolyAND has the following syntax:

 r ← poly1 PolyAND poly2

The left and right arguments poly1 and poly2 are each a vector of points, ordered clockwise, that define one
polygon each.
The result r is a vector of clockwise ordered points of the new polygon created by performing an AND operation
on the polygons represented by poly1 and poly2.

Example:

 poly1 ← (0 0)(0 2)(2 2)(2 0)

 poly2 ← (1 1)(1 3)(3 3)(3 1)

 poly1 PolyAND poly2
┌───┬───┬───┬───┐
│1 1│1 2│2 2│2 1│
└───┴───┴───┴───┘

Task 3 – Write a function PolyNOT that performs a difference (NOT) operation on two polygons.

PolyNOT has the following syntax:

 r ← poly1 PolyNOT poly2

The left and right arguments poly1 and poly2 are each a vector of points, ordered clockwise, that define one
polygon each.
The result is r is a vector of clockwise ordered points of the new polygon created by removing the part of the
polygon defined by poly1 which is covered by the polygon defined by poly2.
Note that, as opposed to PolyOR and PolyAND, this function is not commutative.

Example:

 poly1 ← (0 0)(0 2)(2 2)(2 0)

 poly2 ← (1 1)(1 3)(3 3)(3 1)

 poly1 PolyNOT poly2
┌───┬───┬───┬───┬───┬───┐
│0 0│0 2│1 2│1 1│2 1│2 0│
└───┴───┴───┴───┴───┴───┘

	2017 APL Problem Solving Competition – Phase 2 Problem Descriptions
	Overview
	Description of the Contest2017 Template Files
	If you use Dyalog APL, you should use the template workspace Contest2017.DWS
	If you use some other APL system, you can use the template script file Contest2017.dyalog

	Healthcare Problem Set
	Problem 1 – Drug Program Modelling
	Task 1 – Write a function named Projection to model this patient population
	Background:
	Projection has the following syntax:
	Task 2 – Write a function named Projection2 to model the patient population and drug progression
	Background:
	Task 3 – Write a function named Projection3 to model the patient populations in each country
	Background:
	Task 4 – Write a function named DrugD to model the effect of the drop-out rate for DrugD
	Background:

	Maths and Statistics Problem Set
	Problem 1 – What's the Significance?
	Task 1 – Write a function named SigFig that will determine the number of significant figures
	Task 2 – Write a function named SRound which returns the next higher s-round number

	Problem 2 – Outlying in a Field
	Background:
	Task 1 – Write a function IQR which finds the interquartile range of a vector of numbers
	Finding Outliers
	Task 2 – Write a function Outliers that identifies outliers in a vector of numbers

	Problem 3 – Clustering
	Task 1 – Write a function dist to compute the Euclidian distance between 2 points.
	Task 2 – Write a function cMean to compute the cluster mean of a set of coordinates.
	Task 3 – Write a function Cluster to compute cluster membership for a set of coordinates

	Computational Geometry Problem Set
	Problem 1 – Please Wait at the Intersection
	Backgound:
	Task 1 – Write a function Intersects to determine if two line segments intersect
	Intersects has the following syntax:
	r ← seg1 Interects seg2
	In or Out?
	Task 2 - Write a function isInside to determine if a point lies within a polygon.
	isInside has the following syntax:
	r ← point isInside nodes

	Problem 2 – The Convex Hull: How to Put a Cow in a Box
	Task 1 – Write a function ConvexHull to compute the convex hull of a set of points.

	Problem 3 – AND it is a Rectangle! OR is it…
	Task 1 – Write a function PolyOR that performs an OR operation on two polygons.
	Task 2 – Write a function PolyAND that performs an AND operation on two polygons.
	Task 3 – Write a function PolyNOT that performs a difference (NOT) operation on two polygons.

