
2019

APL Problem Solving Competition Phase I
The following shows what a typical Phase I problem description looks like. It also presents
some possible solutions of varying quality, and explains how to provide your own
solution. Content that doesn't appear in regular Phase I problems is formatted like this
paragraph.

Each problem begins with a task description, followed by a hint suggesting one or more
APL primitives. These may be helpful in solving the problem, but you are under no
obligation to use them. Clicking on a primitive in the hint will open the Dyalog
documentation page for the suggested primitive.

After the hint is a section of example cases which, among others, are included in the
automated tests. Use these as a basis for implementing your solution.

Sample: Counting Vowels
Write an APL function to count the number of vowels (A, E, I, O, U) in an array
consisting of uppercase letters (A–Z).

 Hint: The membership function ∊ could be helpful for this problem.

Examples
 (fn) 'COOLAPL'
3
 (fn) '' ⍝ empty argument
0
 (fn) 'NVWLSHR' ⍝ no vowels here
0

Below are three sample solutions. All three produce the correct answer, but the first two
functions would be ranked higher by the competition judging committee. This is because
the first two demonstrate better use of array-oriented programming.
 ({+/⍵∊'AEIOU'}) 'COOLAPL' ⍝ good dfn
3
 (+/∊∘'AEIOU') 'COOLAPL' ⍝ good tacit function
3
 ⍝ suboptimal dfn:
 {(+/⍵='A')+(+/⍵='E')+(+/⍵='I')+(+/⍵='O')+(+/⍵='U')} 'COOLAPL'
3

http://help.dyalog.com/latest/Content/Language/Primitive%20Functions/Membership.htm

Phase I Problem Set

1: Chunky Monkey
Write a function that, given a scalar or vector as the right argument and a positive (>0)
integer chunk size n as the left argument, breaks the array's items up into chunks of size
n. If the number of elements in the array is not evenly divisible by n, then the last chunk
will have fewer than n elements.

 Hint: The partitioned enclose function ⊂ could be helpful for this problem.

Examples
 3 (fn) ⍳9 ⍝]Box on is used to display the result
┌─────┬─────┬─────┐
│1 2 3│4 5 6│7 8 9│
└─────┴─────┴─────┘

 3 (fn) ⍳11
┌─────┬─────┬─────┬─────┐
│1 2 3│4 5 6│7 8 9│10 11│
└─────┴─────┴─────┴─────┘

 10 (fn) 'Dyalog'
┌──────┐
│Dyalog│
└──────┘

 2 (fn) 'The' 'cat' 'in' 'the' 'hat' 'sat' 'pat'
┌─────────┬────────┬─────────┬─────┐
│┌───┬───┐│┌──┬───┐│┌───┬───┐│┌───┐│
││The│cat│││in│the│││hat│sat│││pat││
│└───┴───┘│└──┴───┘│└───┴───┘│└───┘│
└─────────┴────────┴─────────┴─────┘

 5 (fn) '' ⍝ result is 0-element vector of text vectors

 4 (fn) 5
┌─┐
│5│
└─┘

http://help.dyalog.com/latest/Content/Language/Primitive%20Functions/Partitioned%20Enclose.htm

2: Making the Grade

Examples
 (fn) 0 64 65 69 70 79 80 89 90 100
FFDDCCBBAA

 (fn) ⍬ ⍝ returns an empty vector

 (fn) 2 3⍴71 82 81 82 84 59
CBB
BBF

Score Range Letter Grade
0–64 F
65–69 D
70–79 C
80–89 B
90–100 A

Write a function that, given an array of integer test
scores in the inclusive range 0–100, returns an
identically-shaped array of the corresponding letter
grades according to the table to the left.

 Hint: You may want to investigate the interval
index function ⍸.

http://help.dyalog.com/latest/Content/Language/Primitive%20Functions/Interval%20Index.htm

3: Grade Distribution
The school's administrative department wants to publish some simple statistics. Given a
non-empty character vector of single-letter grades, produce a 3-column, 5-row,
alphabetically-sorted matrix of each grade, the number of occurrences of that grade, and
the percentage (rounded to 1 decimal position) of the total number of occurrences of
that grade. The table should have a row for each grade even if there are no occurrences
of a grade. Note: due to rounding the last column might not total 100%.

 Hint: The key operator ⌸ could be useful for this problem.

Examples
 (fn) 9 3 8 4 7/'DABFC'
A 3 9.7
B 8 25.8
C 7 22.6
D 9 29
F 4 12.9

 (fn) 20⍴'ABC'
A 7 35
B 7 35
C 6 30
D 0 0
F 0 0

 (fn) ,'B'
A 0 0
B 1 100
C 0 0
D 0 0
F 0 0

http://help.dyalog.com/latest/Content/Language/Primitive%20Operators/Key.htm

4: Knight Moves

Examples
 (fn) 5 4 ⍝]Box on is used to display the result
┌───┬───┬───┬───┬───┬───┬───┬───┐
│3 3│3 5│4 2│4 6│6 2│6 6│7 3│7 5│
└───┴───┴───┴───┴───┴───┴───┴───┘

 (fn) 1 1
┌───┬───┐
│2 3│3 2│
└───┴───┘

1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8

2 1 2 2 2 3 2 4 2 5 2 6 2 7 2 8

3 1 3 2 3 3 3 4 3 5 3 6 3 7 3 8

4 1 4 2 4 3 4 4 4 5 4 6 4 7 4 8

5 1 5 2 5 3 5 4 5 5 5 6 5 7 5 8

6 1 6 2 6 3 6 4 6 5 6 6 6 7 6 8

7 1 7 2 7 3 7 4 7 5 7 6 7 7 7 8

8 1 8 2 8 3 8 4 8 5 8 6 8 7 8 8

Consider a chess board as an 8×8 matrix with
square (1 1) in the upper left corner and
square (8 8) in the lower right corner. For
those not familiar with the game a chess, the
knight, generally depicted as a horse (), can
move 2 spaces right or left and then 1 space up
or down, or 2 spaces up or down and then 1
space right or left. This means that a knight
on square (5 4) can move to any of the
 indicated squares.

Given a 2-element vector representing the
current square for a knight, return a vector of 2-

element vectors representing (in any order) all the squares that the knight can move
to.

 Hint: The outer product operator ∘. could be useful for generating the
coordinates.

http://help.dyalog.com/latest/Content/Language/Primitive%20Operators/Outer%20Product.htm

5: Doubling Up
Given a word or a list of words, return a Boolean vector where 1 indicates a word with
one or more consecutive duplicated, case-sensitive, letters. Each word will have at least
one letter and will consist entirely of either uppercase (A-Z) or lowercase (a-z) letters.
Words consisting of a single letter can be scalars.

 Hint: The nest function ⊆ could be useful.

Examples
 (fn) 'I' 'feed' 'the' 'bookkeeper'
0 1 0 1

 (fn) 'I'
0

 (fn) 'feed'
1

 (fn) 'MY' 'LLAMAS' 'HAVE' 'BEEN' 'GOOD'
0 1 0 1 1

http://help.dyalog.com/latest/Content/Language/Primitive%20Functions/Nest.htm

6: Telephone Names

1
ABC

2
DEF

3
GHI

4
JKL

5
MNO

6
PQRS

7
TUV

8
WXYZ

9

* 0 #

Some telephone keypads have letters of the alphabet embossed on
their keytops. Some people like to remember phone numbers by
converting them to an alphanumeric form using one of the letters on
the corresponding key. For example, in the keypad shown,
'ALSMITH' would correspond to the number 257-6484 and
'1DYALOGBEST' would correspond to 1-392-564-2378.

Write an APL function that takes a character vector right argument
that consists of digits and uppercase letters and returns an integer vector of the
corresponding digits on the keypad.

 Hint: Your solution might make use of the membership function ∊ .

Examples
 (fn) 'IAMYY4U'
4 2 6 9 9 4 8

 (fn) '' ⍝ should return an empty vector

 (fn) 'UR2CUTE'
8 7 2 2 8 8 3

http://help.dyalog.com/latest/Content/Language/Primitive%20Functions/Membership.htm

7: In the Center of It All
Given a right argument of a list of words (or possibly a single word) and a left argument
of a width, return a character matrix that has width columns and one row per word, with
each word is centered within the row. If width is smaller than the length of a word,
truncate the word from the right. If there are an odd number of spaces to center within,
leave the extra space on the right.

 Hint: The mix ↑ and rotate ⌽ functions will probably be useful here.

Examples
 10 (fn) 'APL' 'Problem' 'Solving' 'Competition'
 APL
 Problem
 Solving
Competitio

 3 (fn) 0⍴⊂'' ⍝ result should be 0-row, 3-column matrix

http://help.dyalog.com/latest/Content/Language/Primitive%20Functions/Mix.htm
http://help.dyalog.com/latest/Content/Language/Primitive%20Functions/Rotate.htm

8: Going the Distance

Examples
 (fn) (1 ¯1)(1 3) ⍝ from A to B and back to A
8

 (fn) (1 1)(1 2)(2 2)(2 1) ⍝ from A to B to C to D to A
4

 (fn) 5 5 ⍝ staying where we are
0

 (fn) (1 1)(3 3) ⍝ there and back again
5.656854249

¯2

¯1

1

2

3

¯2 ¯1 1 2

A←(¯1.5 ¯1.5)

B←(1.5 2.5)

C←(1.5 ¯1.5)

Given a vector of (X Y) points, or a single X Y point,
determine the total distance covered when travelling in
a straight line from the first point to the next one, and
so on until the last point, then returning directly back
to the start.

For example, given the points (A B C) ←
(¯1.5 ¯1.5) (1.5 2.5) (1.5 ¯1.5), the distance
A to B is 5, B to C is 4 and C back to A is 3, for a total
of 12.

 Hint: The rotate ⌽ and power * functions might be
useful.

http://help.dyalog.com/latest/Content/Language/Primitive%20Functions/Rotate.htm
http://help.dyalog.com/latest/Content/Language/Primitive%20Functions/Power.htm

9: Area Code à la Gauss
Gauss's area formula, also known as the shoelace formula, is an algorithm to calculate the
area of a simple polygon (a polygon that does not intersect itself). It's called the shoelace
formula because of a common method using matrices to evaluate it.

For example, the area of the triangle described by the vertices (2 4)(3 ¯8)(1 2) can
be calculated by “walking around” the perimeter back to the first vertex, then drawing
diagonals between the columns as shown below. The pattern created by the intersecting
diagonals resembles shoelaces, hence the name “shoelace formula”.

 Hint: You may want to investigate the rotate first ⊖ function.

First place the vertices in order above each other: 2 4
3 ¯8
1 2
2 4

Sum the products of the numbers connected by the diagonal lines going
down and to the right:

 (2×¯8)+(3×2)+(1×4)
¯6

2 4
3 ¯8
1 2
2 4

Next sum the products of the numbers connected by the diagonal lines
going down and to the left:

 (4×3)+(¯8×1)+(2×2)
8

2 4
3 ¯8
1 2
2 4

Finally, halve the absolute value of the difference between the two sums:

 0.5 × | ¯6 - 8
7

2
3
1
2

Given a vector of (X Y) points, or a single X Y point, return a number indicating the
area circumscribed by the points.

Examples
 (fn) (2 4)(3 ¯8)(1 2)
7

 (fn) (1 1) ⍝ a point has no area
0

 (fn) (1 1)(2 2) ⍝ neither does a line
0

│
│

│

│
│

│
││
4

││
¯8

││

2
4

https://en.wikipedia.org/wiki/Shoelace_formula
http://help.dyalog.com/latest/Content/Language/Primitive%20Functions/Rotate%20First.htm

10: Odds & Evens
Given a vector of words, separate the words into two vectors – one containing all the
words that have an odd number of letters and the other containing all the words that
have an even number of letters.

 Hint: You may want to look into the dyadic form of the key operator ⌸.

Examples
 (fn) 'the' 'plan' 'is' 'great' ⍝]box on is used to display the
result
┌───────────┬─────────┐
│┌───┬─────┐│┌────┬──┐│
││the│great│││plan│is││
│└───┴─────┘│└────┴──┘│
└───────────┴─────────┘

 (fn) 'all' 'odd' ⍝ note the empty 2nd element of the result
┌─────────┬┐
│┌───┬───┐││
││all│odd│││
│└───┴───┘││
└─────────┴┘

 (fn) 'only' 'even' 'here' ⍝ note the empty 1st element of the result
┌┬────────────────┐
││┌────┬────┬────┐│
│││only│even│here││
││└────┴────┴────┘│
└┴────────────────┘

http://help.dyalog.com/latest/Content/Language/Primitive%20Operators/Key.htm

