APLX Language Manual

Version 5.0

Copyright © 1985-2009 MicroAPL Ltd. All rights reserved worldwide.

APLX, APL.68000 and MicroAPL are trademarks of MicroAPL Ltd. All other trademarks
acknowledged.

APLX is a proprietary product of MicroAPL Ltd, and its use is subject to the license agreement in
force. Unauthorized copying or use of APLX is illegal.

MicroAPL Ltd makes no warranties in respect of the suitability of APLX for any particular purpose,
and accepts no liability for any loss arising out of the use of APLX or arising from the information
contained in this manual.

MicroAPL welcomes your comments and suggestions.

Please visit our website: http://www.microapl.co.uk/apl

Version 5.0 June 2009

APLX Language Manual

Section 1: APL Fundamentals
The Workspace
Data
Array type & prototype
Display of arrays
Vector Notation
Primitive Functions
Primitive Operators
AXxis Operator
Formatting
Names
Specification (Assignment)
Multiple specification
Selective specification
Binding strengths
Bracket indexing
User-defined Functions
User-defined Operators
Classes and Objects
Mixins
Branching and labels
Control Structures
System commands

System Functions and Variables

System Methods

System Classes

Files and Databases
Section 2: APL Primitives

+ Conjugate

+ Add

- Negate

- Subtract

x Sign of

x Multiply

+ Reciprocal

+ Divide

[Ceiling

[Greater of

L Floor

L Lesser of

| Absolute value

| Residue

1 Index generator

1 Index of

? Roll

Contents

13
15
19
21
25
27
28
37
41
42
44
45
46
47
51
53
55
59
61
71
75
77
83
84
85
86
87
89
91
91
92
92
93
93
94
94
95
96
96
98
99
99
100
100
101

APLX Language Manual 6

? Deal 102
* Exponential 102
* To the power of 103
e Natural log 103
e Log to the base 104
o Pi times 104
o Circular and Hyperbolic functions 105
I Factorial 106
I Binomial 106
B Matrix inverse 107
B Matrix divide 108
< Less than 109
< Less than or equal 109
= Equal 110
> Greater than or equal 111
> Greater than 112
Not equal 112
= Depth 113
= Match 113
£ Not Match 114
€ Enlist 115
€ Membership 116
€ Find 117
u Unique 118
u Union 118
n Intersection 119
~ Not 120
~ Without 120
v Or 121
A And 121
v Nor 122
A Nand 122
p Shape of 123
p Reshape 123
, Ravel 125
, Catenate, Laminate 127
- 1st axis catenate 129
¢ Reverse 129
¢ Rotate 130
e 1st axis rotate 130
§ Transpose 131
T First 132
T Take 133
1 Drop 135
c Enclose 136
c Partition (with axis) 137
> Disclose 139
> Pick 141
0 Index 142
A Grade up 143

vy Grade down 146

APLX Language Manual 7

T Encode 149
1 Decode 150
o Picture format 151
% Format 154
% Format by specification 154
% Format by example 156
¢ Execute 160
4 Stop 161
4 Left 161
+ Pass 162
+ Right 162
0 Evaluated input 163
0 Output with newline 163
0 Character input 164
0 Bare output 164
Reduction 165
1st axis reduction 167
\ Scan 168
X\ 1st axis scan 169
Compression, Replication 169
1st axis Compress, Replicate 171
\ Expand 172
X\ 1st axis expand 173
. Inner product 173
o . Quter product 175
" Each 176
[1 Axis 177
8 Zilde 180
o Statement Separator 180
v Line Editor 181
¥ Lock 183
Section 3: Errors 185
Overview of error handling and the State Indicator 187
Error trapping using : Try. . :EndTry 192
Error Trapping (OEA, OEC) 194
Error Trapping (OERX) 196
Error Codes (OET) 199
Error Codes (OLER) 200
Error Messages 201
Section 4: Component File Systems 205
M based File System 207
M File read 211
B File write 214
i File hold 215
@ File drop 217
OF xxx Component File System 219
Section 5: Native File Functions 223
APLX Native File Support 225

Native File System Functions 227

APLX Language Manual 8

Section 6: System Commands 229
) CLASSES (first (last)) 231
)CLEAR (wssize) 231
)CONTINUE 232
)COPY (lib) name (:pass) (name(s) 232
) CS (number) 234
JDIGITS number 234
)DISPLAY name 235
)DROP (lib) name (:pass) 235
JEDIT (type) name 236
)ERASE name(s) 237
)FNS (first (last)) 238
) GROUP name(s) 239
) GRP name(s) 239
) GRPS (first (last)) 239
JHOST (command) 240
) IN (lib) filename (name(s)) 241
)LIB (lib) 242
)LOAD (lib) name (:pass) 243
JNMS (first (last)) 246
) OPS (first (last)) 247
)OFF 247
JORIGIN (number) 247
) OUT (lib) filename (name(s)) 248
)PCOPY (lib) name (:pass) name(s) 250
)REPARENT class parent 250
JRESET (number) 251
) SAVE (lib) (name (:pass)) 251
)SCOPY (lib) name (:pass) (name(s)) 252
) SDROP (lib) name (:pass) 252
)SI (number) 252
)SIC (number) 253
)SICL (number) 253
)SINL 254
)SIS (number) 254
)SIV (number) or) SINL (number) 255
)SLOAD (lib) name (:pass) 255
)SPCOPY (lib) name (name(s)) 255
) SSAVE (lib) (name (:pass)) 256
)SWSID (lib) name (:pass) 256
)SYMBOLS (number) 256
) TABS (number) 257
)TIME 257
)VARS (first (last)) 258
JWIDTH (number) 258
)WSID (lib) (name (:pass)) 259
) XLOAD (lib) (name (:pass)) 260

Section 7: System Functions & Variables 261
OA Alphabet, Upper Case 263
Oa Alphabet, Lower Case 263

OAF Atomic Function 263

APLX Language Manual 9

OAI Account Information 264
OAT Object Attributes 264
OAV Atomic Vector 266
OB Backspace 266
OBOX Vector to/from Matrix 266
OC Control Characters 268
OCALL Call external static method 268
OCC Console Control 269
OCHART Draw Chart of Data 272
OCL Current Line 275
OCLASS Class hierarchy for object or class 275
OCLASSES References to user-defined and external classes 276
OCONF Configure APL 276
OCR Canonical Representation 277
OCS Compatibility Setting 279
OCT Comparison Tolerance 280
0D Digits 282
ODBR Delimited Blank Removal 282
ODISPLAY Display Array Structure 282
ODL Delay 286
ODR Data Representation 286
OEA Execute Alternate 290
OEC Execute Controlled 291
OEDIT Edit fn/op/var 292
OEM Error Matrix 292
OERM Error Message Vector 293
OERS Error signalling 293
OERX Error trapping 295
OES Error simulate 295
OET Error Type 297
OEV Event Record 297
OEVA Event Arguments 298
OEVAL Evaluate external expression 299
OEVN Event Name 300
OEVT Event Target 300
OEX Expunge 300
OEXPORT Export APL array to file in specified format 301
OF APPEND Append component to file 305
OF C Format Control 306
OF CREATE Create a new component file 306
OF CSIZE Read component size information 308
OFDELETE Delete component from a file 309
OFDROP Drop components from start or end of file 309
OF DUP Duplicate component file, reclaiming wasted space 310
OFERASE Erase component file 310
OF ERROR Return operating-system error 311
OFHOLD Hold/Release component files for exclusive access 311
OF I Convert formatted input 312
OFLIB Return names of component files in directory 313
OFMT Formatting Function 313

OFNAMES Return names of currently-tied files 319

APLX Language Manual 10

OFNUMS Return tie numbers in use 319
OFRDAC Read component-file access matrix 320
OFRDCI Read component information 320
OFRDFI Read file information 321
OFREAD Read component from a file 321
OFRENAME Rename component file 322
OFREPLACE Replace existing component 322
OFRESIZE Set maximum file size 323
OFSIZE Read file-size and component-range information 323
OFSTAC Set component-file access matrix 324
OFSTIE Open (tie) an existing file for shared use 325
OF TIE Open (tie) an existing file for exclusive use 326
OFUNTIE Untie component file(s) 327
OFWRITE Append, replace or insert component 328
OF X Fix function/operator/class 330
OHC Hard Copy 331
OGETCLASS Get reference to named class 332
OHOST Command to Host 333
OT Idle Character 334
OIC Insert into Class 335
OID ID Number 337
OIMPORT Import data from file in specified format 337
OINSTANCES Instances of a Class or Descendants 340
O0I0 Index Origin 340
OL Linefeed Character 341
OLC Line Counter 341
OLE Last Exception 341
OLER Line Error Report 343
OLIB Return names of files in directory 343
OLX Latent Expression 344
OM Months 344
OMC Missing Character 345
OMOUNT Allocate Libraries 345
ON Null Character 347
ONA Define External Function 347
ONAPPEND Append data to a native file 357
ONC Name Classification 357
ONCREATE Create a new native file and tie it 358
ONERASE Erase a native file 359
ONERROR Return an error message describing the last file error 360
ONEW Create new instance of class 360
ONL Name List 365
ONLOCK Lock/Unlock a file or a segment of a file 366
ONNAMES Return file names of all tied files 368
ONNUMS Return tie numbers of all tied files 368
ONREAD Read data from a native file 368
ONRENAME Change the name of a native file 371
ONREPLACE Replace data in a native file 372
ONRESIZE Alter the size of a native file 372
ONSIZE Return file size information 373

ONTIE Open an existing file and associate it with a tie number 373

APLX Language Manual 11

ONTYPE Get/Set the file type/creator for a MacOS file 374
ONULL Return reference to null object 375
ONUNTIE Untie native file(s) 375
ONWRITE Write data to a native file 375
OOV Overlay 377
OPFKEY Set up Function keys 378
OPP Print Precision 379
OPR Prompt Replacement 380
OPROFILE Performance Profiling 380
OPW Print Width 383
OR Carriage Return 384
ORECLASS Change class of objects 384
OREPARENT Change parent of user-defined class 385
ORL Random Link 386
OSETUP Set up external environment 386
Net 386
Java 388
Ruby 389
OST State Indicator 391
OSQL Interface to External Database 391
0SS String Search/Replace 409
Using modifier flags to specify how the search should be carried out 415
Technical considerations 417
OSTOP Stop List 418
OSVC Shared Variable Control 418
OSVO Shared Variable Offer 419
OSVQ Shared Variable Query 420
OSVR Shared Variable Retract 420
OSYMB Symbol Table Used/Total Count 420
OT Tab Character 421
OTC and OTCxx Terminal Control Characters 421
OTF Transfer Form 421
OTHIS Reference to current object 423
OTIME Time/Date Text 423
OTR Translate Text to/from External 424
OTS Timestamp 424
OTT Terminal Type 424
OTRACE Trace 425
OUCS Convert text to/from Unicode 425
OUL User Load 426
OVI Verify formatted input 426
OW Weekdays 427
OWA Workspace Available 427
OWARG Argument to event callback function 427
OWE Wait for Event 428
OWI Windowing Interface 429
OWSELF Object Name 431
OWSSIZE Size of Workspace 432

OXML Convert to/from XML 432

APLX Language Manual 12

Section 8: System Methods 441
OBASE Base (parent) class 443
OCHILDREN Child classes 444
OCLASSNAME Name of class 445
OCLASSREF Reference to object's class 445
OCLONE Create copies of object 446
ODESC Describe public members 449
ODF Set display form 451
ODS Display summary of object 452
OHANDLE Handle to object 454
OMEMBERS Details of class members 454
OMIXIN Mix another class into object 455
OMIXINS Return list of mixins 456
ONL Names of public members 457
OOID Object ID 459
OPARENT Base (parent) class 459
OREF Force reference result 460
OSTATE Property names and values 461
OUNMIX Remove mixins from object 462
OVAL Force value result 463

Section 9: Interfacing to other languages 465
Overview of interfacing to other languages 467
Using External Classes 469
Interfacing to .Net 475
Interfacing to Java 483
Interfacing to Ruby 486
Interfacing to the R statistical language 490
Custom interfaces 500
Auxiliary Processors 501

Section 10: Performance Profiling 511
Performance Profiling 513

Appendix: APLX Character Set and Unicode Mapping 518

APLX Character set 519

APLX Language Manual

Section 1: APL Fundamentals

13

APLX Language Manual 15

The Workspace

The workspace is a fundamental concept in APL. It enables you to develop a project as a series of
small pieces of program logic. These are organized into functions, operators and classes, as described
below. (For brevity, we sometimes use the term ‘function’ in this discussion to refer to all three of
these). All of these co-exist in the workspace and are instantly available for inspection, amendment,
and execution - or for use on another project.

Data of all shapes and sizes (stored in variables) can inhabit the same workspace as the functions, and
Is also instantly available, which greatly facilitates testing. And, of course, the entire collection can be
saved on to disk by a single command or menu option.

Functions, operators, and classes can quickly be constructed, tested, strung together in various
combinations, and amended or discarded. Most importantly, it is very easy in APL to create test data
(including large arrays), for trying out your functions as you develop them. Unlike many traditional
programming environments, you do not need to compile and run an entire application just to test a
small change you have made - you can test and experiment with individual functions in your
workspace. This makes the workspace an ideal prototyping area for 'agile development’, and helps
explain why APL is sometimes referred to as a 'tool of thought'.

Functions, Operators, Classes

In APL, the term function is used for a basic program module. Functions can either be built-in to the
APL interpreter (for example, the + function which does addition), or defined by the user as a series of
lines of APL code. Functions can take 0, 1 or 2 arguments. For example, when used for addition +
takes two arguments (a left argument and a right argument). The arguments to functions are always
data (APL arrays). Functions usually act on whole arrays without need for explicit program loops.

An operator is like a function in that it takes data arguments, but it also takes either one or two
operands which can themselves be functions. One of the commonly-used built-in operators is Each
(). This takes any function as an operand, and applies it to each element of the supplied data
arguments. Just as you can define your own functions as a series of lines of APL code, you can also
define your own operators.

A class is a collection of functions and possibly operators (together known as methods), together with
data (placed in named properties of the class). A class acts as a template from which you can create
objects (instances of classes), each of which can have its own copy of the class data, but which shares
the methods with all other instances of the class. A class can be used to encapsulate the behavior of a
specific part of your application.

Workspace size

The workspace size is stated on the screen when you start an APL session. Depending on the
workspace size, it is either expressed in 'KB' 'MB' or 'GB', where:

APLX Language Manual 16

e One 'GB' represents a Gigabyte, approximately a thousand million bytes
o One 'MB' represents a Megabyte, approximately a million bytes
o One 'KB'represents a Kilobyte, approximately a thousand bytes, and

e One byte is (again approximately) the amount of computer memory used to store a single
character.

During the session you can find out how much space is free by using the system function OwA, which
stands for Workspace Available.

The maximum size of the workspace depends on how much memory (RAM) you have on your
system, and the amount of disk space reserved for virtual memory.

Managing the workspace

There are system commands for enquiring about the workspace and doing operations that affect it
internally. The most useful of these are mentioned below under the heading 'Internal workspace
commands'. (Note that, to distinguish them from names in your program, the names of system
commands start with a right parenthesis.)

There are also system commands for copying the current workspace to disk, reloading it into memory
and doing other similar operations. These are mentioned below under the heading 'External workspace
commands'. You can either type these commands directly, or (on most versions of APLX) use the File
menu to load and save workspaces.

Internal workspace commands

At the start of a session, you're given an empty workspace which has the name CLEAR WS. At any time
you can return to this state by issuing the system command)CLEAR. Any variables or functions you
have set up in the workspace are wiped out by this command, so if you want to keep them, you should
first save the workspace on to a disk.

You can get a list of the variable names in the workspace by using the) VARS command. The command
)FNS produces the equivalent list of user-defined functions, and the command)0PS gives the list of
user-defined operators. The command)CLASSES lists the classes you have defined.

If you don't want to clear the entire workspace, you can get rid of individual items by using the
command)ERASE followed by the name(s) of the items(s) you want to remove.

APLX Language Manual 17

External workspace commands

Note: In practice, you will often use menus to load and save workspaces, rather than typing the system
commands described below. For example, rather than typing)LOAD, you can use the File menu to
open a dialog which allows you to select the workspace you want to load.

A collection of workspaces on a disk, or other storage medium, is a library. (It corresponds to a
directory or folder in the host operating system). Unless you change the library number associated
with each device, the device listed first when you type OMOUNT ' ' (see below under 'System
Functions') is Library 0, the next one is Library 1, and so on up to Library 9. (In most versions of
APLX, you can set up these libraries using the Preferences item of the Tools or APLX menu). Most of
the commands in this section can include the number (0, 1 or whatever) to indicate which library the
command applies to. If no library number is given, APL assumes that library 0 is intended.

Library 10 is a special case. It contains the utility workspaces and examples supplied as part of the
APLX installation.

The use of library numbers is a convenience which helps you organize your workspaces on disk, and
saves you from having to enter long path names when referring to them. But if you prefer, you can
enter the full path name to a workspace when you load and save it (or use the File menu).

To find out the names of the workspaces which you have already stored in library 0, use the command
JLIB. To list the workspaces supplied with APLX, use:)LIB 10.

You can save the current workspace by simply issuing the command:) SAVE. Everything in the
workspace is copied on to the disk and the saved workspace is given the same name as the workspace
in memory. If you want the saved version to have a different name, you specify the (new) name
immediately after the)SAVE (e.g.) SAVE NEWNAME).

The)LOAD command followed by the name of a workspace brings the named workspace back into
memory. The workspace already in memory is overwritten.

If you want to bring specific functions or variables into memory, but don't want to overwrite the
workspace already there, you can use the)COPY command.

You can get rid of a workspace on a disk by using the)DROP command.

System variables

What goes on in the workspace is conditioned to some extent by the current settings of system
variables. These are built-in variables, whose names begin with '0".

Some system variables you may occasionally want to enquire about or (in some cases) alter are:

e OWA Workspace available: the number of bytes available for use in the workspace.

APLX Language Manual 18

e OPP Print precision: the number of digits displayed in numeric output. The default setting is
10.

e OPW Print width: the number of characters to the line. On most systems, the default setting is
80 (or the size of the visible window).

e [OLX Latent Expression: the expression or user-defined function in this variable is executed
when the workspace is loaded. You might, for example, write a function which set things up
for you when you started a session and assign its name to OLX. Unless you assign a value to
OLx, it's empty.

You can find out the value of a system variable by typing its name. For example, to see the setting of
OPP, the variable which determines how many digits are displayed in numeric output, you would type:

OPP
10

You can reset the value of most system variables by using the symbol « . For example, to change OPP
from its normal value of 10, to a value of 6, you would type:

OPP « 6

System functions

We've been discussing system variables. System functions can also affect your working environment.
The system function OMOUNT, for example, is used to associate operating-system directories with the
library identifiers you use in your programs.

Other system functions duplicate tasks performed by system commands. For example, the system
function ONL which stands for name list, can be used to produce a list of variables, functions,
operators, or classes, and the system function DEX can be used to expunge individual APL objects.
Similar jobs are done by the system commands)VARS)FNS)OPS)CLASSES, and)ERASE.

The difference between system functions and system commands is that system functions are designed
for use in user-defined functions, and behave like other functions in that they return results which can
be used in APL statements. System commands, on the other hand, are primarily designed for direct
execution and can only be included in a user-defined function if quoted as the text argument to the
function ¢ (execute - a function which causes the expression quoted to be executed.)

There are many System Functions and Variables available in APLX. They have other purposes besides
control of the workspace; for example they are used for reading and writing files, and for accessing
databases, and for doing string-searches using regular expressions.

APLX Language Manual 19

Data

A data item is composed of numbers, characters, or references to objects. It can be a constant or a
variable:

231 (constant)
NUM (variable)

System variables are a special class of variable. Their names start with a 0. Normally their initial
values are set by the system, eg:

OPP

Data in APL is arranged in arrays. An array is a collection of data with a number of dimensions (rank)
and a number of elements in each dimension (shape). Some or all of the elements may themselves be
arrays, making the array a nested array with a third property, depth.

The commonest ranks of array are given special names:

Rank Name Dimensions
0 Scalar None (one element only)
1 Vector 1 (elements)
2 Matrix 2 (rows and columns)
3 3 (planes, rows and columns)
4 4 (blocks,planes,rows and columns)

Arrays of up to 63 dimensions are allowed in APLX.

The 'depth’ of an array is a measure of the degree of nesting in the array. A simple (non-nested) scalar
will have a depth of 0 and an array whose elements are all scalars (character or numeric) is known as a
'simple’ array and has a depth of 1. In a nested array, the depth of the array is defined as the depth of
the deepest element. The following table shows the way in which the depth of an array may be
calculated:

Depth Description
0 Simple scalar
1 Simple array
2 Deepest element in the array is of depth 1
3 Deepest element in the array is of depth 2

S5 -

Deepest element in the array is of depth n-1

Character Data

Anything enclosed between either single or double quotes is treated as character data (you must use
the same type of quote mark to end the string as you use to begin it). This includes the digits, 0 to 9,
and any of the symbols on the keyboard. It also includes the invisible character, space. If you have

APLX Language Manual

20

used single quotes to delimit the string, then to include a single quote itself in the character data, type

it where it is required, followed immediately by another single quote. (Similarly for double quotes).
Alternatively, if you use single-quotes to delimit a string, you can place double-quotes directly in the

string without doubling them up, and vice-versa. The single- or double-quote characters used to
surround character data are not displayed by APLX.

ABC -+

11

DON'T

DON'T

'TIS TR

'TIS T

DOMAIN

YES NO

YES NO
YES NO

ALF«'ABC -+= 123'
ALF
= 123

pALF

A<'DON''T WALK'
A
WALK

A<"DON'T WALK"
A
WALK

Be '"''TIS TRUE
B
UE

Be "'TIS TRUE "
B
RUE

NUMe'501"
NUM+10
ERROR

TABLE<3 6p"YES NO"

(The characters 1in quotes are put in ALF)
(When displayed, the quotes are dropped)

(p 1is used to ask the size of ALF.
It contains 11 characters including spaces)

(' entered as "'
Only one 1is displayed)
(Alternative using double-quotes.

The result 1is the same)

(' as the first character of a text string)

(Alternative using double-quotes)

(Digits included in character data are
characters rather than numbers and
can't be used in arithmetic)

(Character data can be formed into
matrices. The six characters YES NO
are formed into a matrix of 3 rows and
6 columns)

APLX Language Manual 21

Array type & prototype

Any array has a 'type' which is zero for numeric elements and the blank character for character
elements. The type of the first element in an array is known as the 'prototype’ of the array. The
prototype of an array is used in two important areas. Firstly, the prototype of an array is used to
determine the structure of an empty array formed from that array. Secondly, the prototype of an array
is used as a 'fill' element by those APL functions that can generate extra elements (for example 1t
'take").

You can see the structure of an array, including its type and prototype, using the ODISPLAY system
function (or the)DISPLAY system command). In desktop editions of APLX, you can also invoke a
Display Window to show array structure, using the pop-up menu which appears when you right-click
(or, under MacQS, click-and-hold) over a variable name. See the description of the ODISPLAY system
function for details of how the structure is shown.

Empty arrays

An empty array is one in which at least one of the dimensions is zero. For example, an empty vector is
a vector of length 0. An array with four rows and zero columns is an empty matrix; it has shape (4 by
0), but does not contain any data elements.

A empty vector can most simply be made by one of the expressions shown below. Note that the 'type'
of the resultant empty vector can be be numeric or character.

ODISPLAY 10 ODISPLAY '
. 9. .9,
[0] [
empty numeric vector empty character vector

The alternative expression 0p is often used, and may again create either a numeric or character empty
vector when used with the appropriate argument. (Higher dimensional empty arrays may be made by
expressions of the form 0 2p. . and so on - see the entry for p 'reshape’).

ODISPLAY 0p676 ODISPLAY Op'PETER'

X OO0

empty numeric vector empty character vector

An empty numeric vector can also be created using ¢ (Zilde), a primitive constant, which is equivalent
to 10 or 0p0.

Xef
pX

X=0p0

APLX Language Manual 22

ODISPLAY & A Empty numeric vector

B

~

Prototypes of nested arrays

More complex empty arrays result when a nested array is used to generate the empty array. In each
case, it is the prototype’ (derived from the first element of the original array) that dictates the type and
structure of the resultant empty array.

ODISPLAY 'ABC' (13) ODISPLAY O0p'ABC' (13)
B e e O————==
| o e | | o |
| 1ABCI |1 2 3] | 1
| LI | 'mm ! | | LI, | I
IE _______________ ' IE ______ '

The original array (on the left) is a two element nested array whose first element is itself a character
vector. The resultant empty vector (the expression on the right) is an empty vector which is itself a
nested array with the prototype a length 3 character vector.

ODISPLAY (2 2pi14) 'ABC' ODISPLAY 0p(2 2pi14) 'ABC'
e Siininininia bbbl . B ittt .
| e - | [s——=. |
| ¢ 1 2] [ABC| | | L 00l |
[| 3 4] '—---" | | 1 00| |
| '~ | | '~
1 E ______________ 1 1] E _______ 1

Similar considerations apply above, except that the type of the first element of the original array is
numeric, or even, as below, when the first element is mixed.

ODISPLAY (2 2p 1 'K' 2 'J') (14) ODISPLAY 0p(2 2p 1 'K' 2 'J') (14)
B e e . e——————==
[o=, s-——-—- o [o=, |
[V1K 1123 4] | | L 0 [
[1 23] '"~—-——- " [10 [
['4=--= I | ===
IE ___________________ 1 lE ________ 1

The prototype concept can be used to display the ‘type’ of an array. In the example below, the array is
first enclosed (<) to form a scalar and an empty vector made from the scalar (0p) . Finally the t
(‘first’) function removes the additional level of nesting introduced.

ODISPLAY VAR

s9)
N
[
N
~

APLX Language Manual

ODISPLAY 1T0pcVAR

I

I I : I
1ol | lool o ||
I I I
| ' '

The prototype as a fill element

23

Certain functions require the addition of 'fill' elements to arrays, for example the functions 1t (‘take’), \
(‘'expand") and / (‘replicate’). These function can add extra elements to an existing array; the prototype

is used to determine the type and shape of the extra elements.

The fill element depends on the type of the array being extended, as follows:

Type of array Fill Element
Numeric Zero
Character Space

Nested or mixed
by spaces

Object or Class The NULL object

Reference

511 2 3 (fill element for simple numeric 1is 0)
12300

ODISPLAY 51 '"ABC' (fill element for simple character array
R aal is blank)
|[ABC |

ODISPLAY VAR (nested array - vector of length 2)
T — .
[s o=
| | .>---- S ittty | [ABC| |
[TV 1A | 5. I ===
[11 B2 | |1 2] 7 11 I
R i BT || I
|| '€m=mmmmmm e " I
| 'e=mmmmmm ' I
) E ___________________________________ L}

ODISPLAY 31VAR (prototype used as trailing fill element)
R
I L > L et e |
[| .s-——- LI mm—mmm— - | [|ABC| | .»>----. S=——mm——m--- [
[141 A] | .- |1 '-=—-" 110 N I
[11 B2 | [|12] 7 || || ol | 100} o | I |
R BT || [i BT Il
|| '€mmmmmmmmme- " I B o
R ' B it "

Prototype or first element, with numbers replaced by zeroes and characters

APLX Language Manual

ODISPLAY ~31TVAR

O e e
| >==== b et
lvo | | .»--. |
1ol [lool o |
| |+____| | L ' |

| ' '

(prototype used as leading fill element)

E S e ettt A St |
| .o——-- Smm——m————-- | [ABC| |
V1A | .- I ===
[1 B2 | I1 2] 7 1 |
| tmemmt | e | |
| e eant ' |
|€ ________________________] |

24

APLX Language Manual 25

Display of arrays

Display of simple, numeric arrays

By default, numeric data is displayed with a space between each successive element of a vector (or
dimension in an array). Arrays are displayed in such a way that their structure should be apparent.
Vectors are displayed as a line of data. Matrices are displayed with each row of the matrix on
successive lines of the screen or printer. For arrays of higher rank, the display is by means of
successive matrices. Successive planes are separated by one blank line, successive blocks by two
blank lines and so on.

An empty vector displays as one blank line. Empty arrays of rank 2 or more are not displayed.

Display of simple, character arrays

These are displayed without spaces between elements on the row; other rules are the same as those for
simple numeric arrays.

Display of simple, mixed arrays

The rules described above apply to simple arrays which are all character or all numeric. Simple, mixed
arrays make use of the rule that a column which contains a number is always separated from adjacent
columns by at least one blank.

MAT (Simple, mixed array, note columns are
A B 45 C separated by spaces)
D 999 F 1000

2 4p'ABCDEFGH' (Simple character array - columns not
ABCD separated)

EFGH

Display of a class or object reference

By default, APLX displays an object reference as the unqualified class name contained in square
brackets. Class references are displayed as the class name in curly braces:

)CLASSES
Queue A User-defined APL class
Queue
{Queue} a Default display of class reference
QUEUE23<0ONEW Queue
QUEUE23 a Default display of APL object reference
[Queue]

You can change the default display for an object by using the ODF system method.

APLX Language Manual 26

Display of nested arrays

The display of any nested array is preceded by a leading blank so that nested arrays will be indented
one space. It is also followed by a trailing blank.

15 (Simple vector)
12345

(v3) (v2) (Nested vector +indented by one space)
123 12

The other rules for the display of nested arrays are:

At least one blank between columns with numbers

e No separation between columns with scalar characters
e Numbers right justified on the decimal point

« Character vectors (containing only scalars) left justified
e Columns with text and numbers right justified

o Other nested items displayed with leading and trailing blank for each level of nesting.
For example:

2 3p'ABC' 100027 'NAME' 3 'DAT' 27
ABC 100027 NAME
3 DAT 27
3 2p'JOHN" "SMITH' 'ARTHUR' 'JONES' 'WILFRED' 'HART'
JOHN SMITH
ARTHUR JONES
WILFRED HART

APLX Language Manual 27

Vector Notation

If an expression contains one or more arrays, then the resultant vector will contain elements which are
those arrays. The way in which this type of expression is constructed is known as 'vector notation'.
Parentheses or quote characters are used to delimit arrays in vector notation. Alternatively, the
expression may contain variable names.

'"ABC' 'DEF' (Two three element character vectors make
ABC DEF a two element nested vector)

(1 2 3) 'DEF' (Three element numeric and three element
1 2 3 DEF character vector make a two element nested
vector)
pl 2 3 'DEF' (Three numeric scalars and a three element
4 character vector make a four element vector)
p(1 2 3) 'DEF' (The parentheses force the three numbers
2 to be treated as the first element of the
two element result)
pl 2 3 'D'" 'E'" 'F' (Each character is now treated as a scalar
6 giving a 6 element mixed result)
(1 2) (34)) 23 (First element of the vector 1is itself
4 2 3 a nested vector - two two element numer-iic
vectors. The ODISPLAY function clarifies:)
ODISPLAY ((1 2)(3 4))2 3

(
12 3

[. I

| | .>--. o= | 2 3

[| 1121 I3 4] | |

I |

| 'e-mmmmmmm - ‘ I

IE ___________________________ L}
Xe2 2pr4 (Two row, two column numerdic matrix)
Y« 'HELLO' (Five element character vector)
Xy (Variables entered in vector form)

12 HELLO

3 4
pX Y (Shape 2)

APLX Language Manual 28

Primitive Functions

Built-in APL functions (or 'primitive’ functions) are denoted by symbols (such as + - + x).

Primitive functions can be either monadic (which means they take a single right argument), or dyadic
(in which case they take an argument on the left and an argument on the right). The same symbol may
have both monadic and dyadic forms.

Execution order

A line of APL may consist of several functions, and arguments. All primitive and user-defined
functions have the same precedence, and simply act on the data on the right. Thus, expressions are
evaluated from right to left, and the result of one function becomes the (right) argument of the next
function. See the section on Binding strengths for more details.

Scalar and Mixed functions

APL's primitive (i.e. built-in) functions fall into two classes, Scalar and Mixed functions. Scalar
functions are defined on scalar arguments, and extend to arrays of any rank on an element-by-element
basis. Mixed functions are defined on arrays, and may yield results which are different in shape or
rank from their arguments. Most of the arithmetic primitives (such as addition, multiplication,
logarithm) are scalar functions.

If one of the arguments to a dyadic function is a scalar, the scalar is applied to each element of the
other argument (a property known as scalar extension). The other important property of scalar
functions is that they are pervasive, that is they apply at all levels of nesting. Monadic scalar functions
are applied independently to every simple scalar in their argument, and the result retains the structure
of the argument. Dyadic scalar functions are applied independently to corresponding pairs of simple
scalars in the other argument. If one of the arguments is a scalar, it will be applied to all simple
elements of the other argument. For example:

2345+7282910

9 11 13 15
23 +7 8 9 10
30 31 32 33

(1 23) (22p4567) (78) + (10 11 12) (2 2p11 22 33 44) (60 70)
11 13 15 15 27 67 78
39 51
(1 23) (22p4567) (78) +1
2 34 56 89
78

Note that you can use the Each operator () to apply a non-scalar function to each element of an array.

APLX Language Manual 29

Numbers or text

Some functions work on numbers only. The arithmetic functions are in this category. You will get a
message saying you've made a DOMAIN ERROR if you try to use any of the arithmetic operators on text
data.

Some functions work on either. The p function, for example, can be used (with one argument) to find
how many characters are in a text item, or how many numbers are in a numeric item. Its two-argument
form (which you've seen used to shape data into a specified number of rows and columns) also works
on either numbers or characters.

The logical functions (logical A, v and the rest of that family) work on a subset of the number domain.
They recognise two states only, true or false as represented by the numbers 1 and o. If any other
numbers or characters are submitted to them, a DOMAIN ERROR results.

Arithmetic functions

Function Monadic form Dyadic form
+ Identity (Conjugate) (Scalar function) Add (Scalar function)
- Negate (Scalar function) Subtract (Scalar function)
x Sign of (Scalar function) Multiply (Scalar function)
+ Reciprocal (Scalar function) Divide (Scalar function)
r Ceiling (Scalar function) Greater of (Scalar function)
L Floor (Scalar function) Lesser of (Scalar function)
I Absolute value (Scalar function) Residue (remainder) of division (Scalar function)

(Note: the - minus sign represents the negate and subtract functions, the ~ sign is used to identify
negative numbers.)

Examples of arithmetic functions

A vector of numbers is multiplied by a single number.

A vector of numbers is divided by a single number:

37811 + 3
1 2.333333333 2.666666667 3.666666667

A vector of numbers is divided by a single number. The results are rounded up to the next whole
number and are then displayed:

37811 =3
1334

APLX Language Manual 30

The same operation as the last example, except that 0.5 is subtracted from each number before it's
rounded up in order to give ‘true’ rounding:

[70.5 + 37 8 11 =3
1234

Two vectors containing some negative values are added. x is applied to the resulting vector to
establish the sign of each number. The final result is a vector in which each positive number is
represented by a 1, each negative number by a ~1 and each zero by a o.

x12 "1 375 +2 76 45

The remainder of dividing 17 into 23 is displayed:

17 | 23
6

The remainders of two division operations are compared and the smaller of the two is displayed as
final result:

(317) L4111
1

Algebraic functions

Function Monadic form Dyadic form
! Index generator (see Comparative functions)
” Roll (Random number) (Scalar Random deal
function)
* 'e" to power (Scalar function) Power (Scalar function)

® Natural Logarithm (Scalar function) |Log to the base (Scalar function)

Circular & Hyperbolic functions (Sine, cosine, etc)

o pi times (Scalar function) (Scalar function)

Factorial or Gamma function (Scalar
function)

B Matrix inversion Matrix division

Binomial (Scalar function)

Examples of algebraic functions

The numbers 1 to 10 are put in a variable called X.

X « 110
12345678910

3 random numbers between 1 and 10, with no repetitions.

3710
2 83

APLX Language Manual

The logarithm to the base 2 of 2 4 8.

2 2438
123

The number of combinations of 2 items which can be made from a population of 4 items.

6

Comparative functions

Function Dyadic form only
< Less than (Scalar function)
< Less than or equal (Scalar function)
= Equal (Scalar function)
> Greater than or equal (Scalar function)
> Greater than (Scalar function)
Not equal (Scalar function)

= Match

F1 Not Match

€ Membership
! Index of

€ Find

Examples of comparative functions

Are two given numbers equal? (1 = yes 0 = no)

10 5

0
12 = 12
1

Are the corresponding characters in two strings equal?

"ABC' = 'CBA'
010

Is the first number greater than the second?

10 > 5
1

Is each number in the first vector less than the corresponding number in the second vector?

396<999
101

APLX Language Manual

Is the number on the left in the vector on the right?

12 € 6 12 24
1

Is the character on the left in the string on the right?

'B'" € 'ABCDE'
1

Which numbers in a matrix are negative? (The contents of TABLE are shown first so that you can see
what's going on.)

TABLE
12 54 1
3 90 23
16 "9 2
TABLE < 0

o o
= O o
o O o

Find the number on the right in the vector on the left and show its position.

13 7 9 019
3

Are two matrices exact matches?

(2 2p14) = (2 2pr4)
1

Find the pattern 'CAT' within the characters 'THATCAT'

"CAT ' € 'THATCAT '
0000100

Logical functions

Function Monadic form Dyadic form
~ Not (Scalar function) See Selection functions
v Or (Scalar function)
A And (Scalar function)
¥ Nor (Scalar function)
A Nand (Scalar function)

Examples of logical functions

Logical NOT:

~1110001
0001110

APLX Language Manual

The same data submitted to various logical functions:

1vo
1

1 A0
0

1~0
0

1 A0
1

Each element in one vector is compared () with the corresponding element in another.

101A001
001

Two expressions are evaluated. If both are true (i.e. both return a value of 1) then the whole statement

Is true (i.e. returns a value of 1):

(5>4) A1 <3
1

Manipulative and selection functions

Function Monadic form
p Shape of
= Depth of an array
, Ravel (Convert array to vector)
€ Enlist (Make into simple vector)
~ See logical functions
u Unique

¢ Reverse elements
R Transpose

1 First

l

c Enclose an array
> Disclose an array

4 Stop (replace argument with empty)

F Pass (argument unchanged)

Examples of manipulative functions

An enquiry about the size of a character string:

Dyadic form

Reshape

(see comparative functions)

Catenate (join) data items

(see comparative functions)

Without (Removes elements from a vector)
Union

Intersection

Rotate elements

Transpose as specified

Take from an array

Drop from an array

Partition (Creates an array of vectors)
Pick items from an array

Index an array

Left (pass left argument)

Right (pass right argument)

p "ARLINGTON A.J, 22 BOND RD SPE 32E'

APLX Language Manual

33

A three-row four-column matrix is formed from the numbers 1 to 12 and is assigned to DOZEN:

DOZEN « 3 4 p 1 12
DOZEN

2 3 4

6 7 8

0

1
5
9 11 12

1

The matrix DOZEN is ravelled into a vector:

,DOZEN
1234567891011 12

The matrix DOZEN is first converted to vector form and is then catenated (joined) with the vector
13 14 15):

(,DOZEN), 13 14 15
DOZEN
12345678910 11 12 13 14 15

The matrix DOZEN is re-formed from the original data in reverse order:

+DOZEN « 3 4p¢,DOZEN
12 11 10 9
8 7 65
4 3 21

Numbers are removed from a vector:

123456~246
135

First 3 characters are selected from a vector:

3 T"AWFULLY'
AWF

Data array enclosed into a nested scalar, with an empty shape:

c999 34
999 34
pc999 34

empty

Index the third item from a vector:

3012345

APLX Language Manual 35

Sorting and coding functions

Function Monadic form Dyadic form
A Ascending sorted indices, default sort order Ascending sorted indices, specified sort order
¢ Descending sorted indices, default sort Descending sorted indices, specified sort
order order
T Encode (Convert to a new number system)
1 Decode (Convert back to units)

Examples of sorting and coding functions

To put a vector of numbers into ascending order:

LIST « 200 54 13 9 55 100 14 82
ALIST

43725861
LIST[4 37258 6 1)

9 13 14 54 55 82 100 200

To sort the same vector as in example 1 with less typing:

LISTLALIST]
9 13 14 54 55 82 100 200

To find how certain symbols rank in the collating order (i.e. the order in which APL holds characters
internally):

SYMBS « 'B\#(/'

ORDER « ASYMBS

SYMBS[ORDER]
B2/ (\

To convert the hex number 21 to its decimal equivalent:

16 16 1 2 1
33

Formatting functions

Function Monadic form Dyadic form
7 Format Format by specification, Format by example
o Picture format

Examples of formatting functions

To display each number in a vector in a 6-character field with two decimal places:

6 2 5 60.333333 19 2 52.78
60.33 19.00 2.00 52.78

APLX Language Manual 36

To display each number in a vector preceded by a dollar sign and with up to three leading zeroes
suppressed:

'$$7,2Z9' « 3899 66 2
$3,899 $66 $2

Miscellaneous functions and other symbols

Function
O Accept numbers from keyboard or Output with newline
u| Accept characters from keyboard or Bare output
3 Statement separator
A Comment
Execute an APL expression
o Empty numeric vector (Zilde)

APLX Language Manual 37

Primitive Operators

An ‘operator' modifies the behaviour of a primitive or user-defined function. It has an operand or
operands that are primitive, derived or user-defined functions or data. The result of using an operator
is known as a derived function which can then be applied monadically or dyadically to data or
alternatively it may be, in turn, used as an argument to another operator. Operators can themselves be
monadic or dyadic. Monadic operators will be placed to the right of their operands:

+/ (Monadic / operator)
p" (Monadic ™ operator)
+.x (Dyadic . operator)

Operators form a powerful extension to the repertoire of the language. They can be used to specify the
way in which a function or functions are to be applied to data - they allow a function to be applied
repeatedly and cumulatively over all the elements of a vector, matrix or multidimensional array.

The primitive operators available are:

Operator Name

/ Reduce or Compress
\ Scan or Expand

. Inner Product

. Outer Product

- Each

[] AXis

Reduce and scan

When used with functions as their operand, slash and backslash are known as reduce and scan.
Reduce and scan apply a single function to all the elements of an argument. For example, to add up a
vector of arguments, you can either type:

22 + 93 + 4.6 + 10 + 3.3
132.9

or alternatively:

+/22 93 4.6 10 3.3
132.9

The / operator in the last example had the effect of inserting a plus sign between all the elements in
the vector to its right.

The \ operator is similar except that it works cumulatively on the data, and gives all the intermediate
results. So:

APLX Language Manual 38

+\22 93 4.6 10 3.3
22 115 119.6 129.6 132.9

from the results of:

22 (22+93) (115+4.6) (119.6+10) (129.6+3.3)

Compress and Expand

When used with one or more numbers as their operand, slash and backslash carry out operations
known as compress and expand.

Compress can be used to select all or part of an object, according to the value of the numbers forming
its operand. For example, to select some characters from a vector:

101101/ '"ABCDEF'
ACDF

Conversely, expand will insert fill data into objects:

TAB « 2 3p16
TAB

2 3

5 6

N

1010 1\[2]TAB
10203
40506
Columns are inserted in positions indicated by the 0s. (Note also the use of the axis operator).

Outer and inner products

The product operators allow APL functions to be applied between all the elements in one argument
and all the elements in another.

This is an important extension because previously functions have only applied to corresponding
elements as in this example:

123+456
579

The outer product gives the result of applying the function to all combinations of the elements in the
two arguments. For example, to find the outer product of the two arguments used in the last example:

123 -°-.+456

~N o o1
(o < B0 N i)
© 00

The first row is the result of adding the first element on the left to every element on the right, the
second row is the result of adding the second element in the left to every element on the right and so
on till all combinations are exhausted.

APLX Language Manual 39

This example works out a matrix of powers:

1234-°.x12314

1 1 1 1
2 4 8 16
3 927 81
4 16 64 256

as can be seen more clearly if we lay it out like this:

11 1 2 3 4
2l 2 4 6 8
3| 3 9 27 81
4] 4 16 64 256

(Since the outer product involves operations between all elements, rather than just between
corresponding elements, it's not necessary for the arguments to conform in shape or size.)

The inner product allows two functions to be applied to the arguments. The operations take place
between the last dimension of the left argument and the first dimension of the right argument, hence
‘inner’ product since the two inner dimensions are used.

In the case of matrices, first each row of the left argument is applied to each column of the right
argument using the rightmost function of the inner product, then the leftmost function is applied to the
result, in a reduction (/) operation.

Given that you can use a combination of any two suitable functions, there are many possible inner
products. These can perform a variety of useful operations. Some of the more common uses are:

« locating incidences of given character strings within textual data
« evaluation of polynomials
e matrix multiplication

e product of powers

Each

As its name implies, the each operator will apply a function to each element of an array.

So, to find the lengths of an array of vectors

p"(1 2 3) (12) (123 45)
325

As with other operators, each can be used for user-defined functions. Here we use an ‘average'
function on an array of vectors.

APLX Language Manual

AVERAGE 1 2 3
2

AVERAGE = (1 2 3) (4 5 6) (10 100 1000)
25 370

40

APLX Language Manual 41

Axis Operator

A number of primitive functions and operators can be applied to a particular axis (or dimension) of an
array. The [1 brackets are used to indicate the axis being specified.

The highest dimension of a data item is considered to be the first dimension and the lowest dimension
the last . Thus the first dimension of a matrix is the rows and the last dimension is the columns. In the
case of a three-dimensional object, the first dimension is the planes followed by the rows and columns.

Axis numbers are governed by the Index Origin, 0I0, and in Index Origin 1, (the default), the first
dimension is represented by [1], the second by [2] and so on. In Index Origin O the first dimension
would be [0], the second [1] and so on. The number used to represent the axis is always a whole
number, except for the ravel and laminate functions.

The primitive functions and operators which will accept an axis operator include the dyadic forms of
the primitive scalar functions :

+ - x| [L *eo0o! AV AW¥ << =2>#

and some primitive mixed functions :

Ravel/Catenate/Laminate (note first axis variant)
Reverse/Rotate (note first axis variant)
Enclose/Partition

Disclose

Take

Drop

Index

=Se->U N e -

as well as the operators:

/ # Compress/Replicate (note first axis variant)
/ # Reduce (note first axis variant)
\ X Scan (note first axis variant)
\ X Expand (note first axis variant)

See the reference section entry for Axis ([1) for more details, as well as the reference entries for
individual mixed functions and operators listed above.

APLX Language Manual 42

Formatting

The default way in which APL displays results may not always suit your requirements. Obviously you
can do a certain amount by using functions like size to reshape data, or catenate to join data items, but
for many applications you may want much more sophisticated facilities. You may, for example, want
to insert currency signs and spaces in numeric output, or produce a neatly formatted financial report,
or specify precisely the format in which numbers are displayed.

APLX has a variety of functions for formatting data, providing flexibility as well as compatibility with
a number of other APL interpreters.

Formatting functions

There are three functions in APLX which all convert the format of data from numbers to characters,
and allow you to specify how the converted numeric data should be laid out.

The functions are:
o The s primitive (Format, Format by specification, Format by example)
e The o primitive (Picture format)

e The OFMT system function.

Each function lets you specify how many character positions a number should occupy when it is
displayed, and how many of these positions are available for decimal places. The number of characters
and number of decimal places are specified in the left argument:

6 2 5 1341.82921
341.83

(Note that since the number had to be truncated to fit the character positions allowed, it was first
rounded to make the truncated representation as accurate as possible.)

Picture format («) and Format by Specification (s with a character left argument) allow you to use
editing characters to define a 'picture’ of how data should look when it is displayed. The picture is the
left argument and the data the right.

The following example shows the values in a 4-row 2-column matrix called TAB. It then shows the o
function applied to this matrix and its effect on TAB:

TAB
1096.2 T416.556
296.974 1085.238
7811.188 844.074
"745.416 153.468

APLX Language Manual 43

'$$2,279.99 DR ' & TAB
$1,096.20 $416.56 DR
$296.97 $1,085.24
$811.19 DR $844.07
$745.42 DR $153.47

OFMT takes the process a stage further, allowing a variety of picture phrases, qualifiers and decorators
to be supplied as the format specification.

'B K2 G< ZZ9 DOLLARS AND 99 CENTS>' OFMT 8.23 12.86 0 2.52
8 DOLLARS AND 23 CENTS
12 DOLLARS AND 86 CENTS

2 DOLLARS AND 52 CENTS

APLX Language Manual 44

Names

The following rules apply to user-assigned symbols, i.e. the names of variables, functions, operators,
classes and labels in APLX.

The first character of the name must be one of the alphabetic characters A-z or a-z, or one of the
characters a or a. Subsequent characters can also include digits 0-9, underbar _ and high minus .

Names consist of up to 30 characters (longer names will be truncated).

The following are all valid names in APLX:

DATA X X1 FIRST_VALUE A alLl ErrorCode model mode restart a999 Itemal

Case is significant in names, SO DATA Data and data are three distinct names.

There are no reserved names in APL. System-assigned names are distinct from user-assigned names
because they start with a Quad 0 symbol.

APLX Language Manual

Specification (Assignment)

45

The symbol « associates the data on its right with the name specified on its left. The named data is
known as a variable. The name associated with it is the variable name. Subsequent references to the
variable name automatically refer to the data associated with that name. This operation is known as

specification or assignment.

NUMe 24

DESCRN«"'ITEM 241A"

PRICES« 2.34 9.30 12 60.38
DATA<1 'A'" 2 'D'

(scalar 24 is assigned to NUM)

(simple character vector)

(numeric vector 1is assigned to PRICES)
(mixed vector assigned to DATA)

When entering character data, care must be exercised if the quote character is to be included in the
data. As stated above, adjacent quote marks are evaluated as indicating the quote character in the data.
A vector containing only characters can be entered in one of two ways - the characters can either be
entered within one set of quote marks or the characters must be separated by spaces. See also the

section on Vector Notation.

ALF@!AI IBI lcl le

ALF
ABCD
ALF<«'"ABCD'
ALF
ABCD
ALF«'A''B"'C"'"'D"’
ALF
A'B'C'D

(data is a set of characters)

(alternative method of entry)

(no space between characters)

The right argument to « can be any APL expression that generates a result:

CO0ST«110-67

(The result of evaluating an
expression is assigned to
COST)

(right to left execution ensures

COST

43
PROFIT«(PRICE«COSTx1.2)-C0ST«100
PROFIT

20

that the value assigned to
COST dis used in the expression
inside parentheses.)

Variables which are either scalars or vectors can be entered directly, as shown above. Matrices or
higher dimensional arrays must be established or entered via functions (see for example p, 'reshape’).

TAB<2 3p16

(The numbers 1 - 6 are arranged as 2
rows of 3 columns and are assigned
to TAB)

APLX Language Manual 46

Multiple specification

It is possible to make multiple simultaneous assignments by enclosing a list of variable names in
parentheses on the left of an assignment arrow.

(ABC)el 23

A
1

B
2

C
3

A scalar to the right of the assignment arrow will be assigned to every item on the left. This is known
as 'scalar extension'.

(A B C)eb
A
5
B
5
C
5
(A B C)e '"HI' 'THERE' 'FOLKS'
pA (A assigned 'HI' and so on)
2
(A B C)ec'HI' 'THERE' 'FOLKS'
pA (A, B and C assigned the enclosed vector
3 to the right of the assignment arrow)
Caution:

Do not omit the parentheses if you are trying to do multiple specification, as in:

A B Ceb

This expression will assign the value 5 to C and then attempt to evaluate the resultant expression. See
also the discussion of binding strengths.

APLX Language Manual a7

Selective specification

A number of APL functions can be used to select elements or portions of an array. These selection
operations can also be used as specifications when enclosed in parentheses and used as the left
argument to the assignment symbol. The array being selected must appear as the rightmost name
within the parentheses. The following functions can be used to make the selection, either singly or in
combinations.

Monadice *, ¢ § o
Dyadict i opéxel

and the functions \ (‘expand’) and / (‘compress’, 'replicate’).

Bracket indexing can also be used as the left argument to the assignment arrow although in this case it
IS not necessary to enclose the indexing expression in parentheses.

Some examples will illustrate.

First, bracket indexing:

TAB<2 3p16 (Simple matrix)
TAB[2;1]<8 (Row 2 column 1 assigned the value 8)

Nearly all the selection functions listed above operate on the outermost structure of a nested array. The
shape of the right argument to the assignment arrow must either match that of the selected elements or
be a scalar in which case scalar extension applies.

VECe15
(3TVEC)«"ABC' (First three elements become 'ABC')
VEC
ABC 4 5
(3TVEC)«"'A" (A scalar right argument 1is extended to
VEC all items specified)
AAA 4 5
MAT«3 4p'ABCDEFGHIJKL' (Simple character matrix)
(,MAT)«"'NEW DATAHERE' (Ravel used for selection, so vector

MAT used as right argument to «)
NEW
DATA
HERE
(('A'=,MAT)/ ,MAT)e"'*" (Combination of compression and ravel
MAT used for selection)
NEW
DxT*
HERE
(,2 2TMAT)<'O000" (Combination of t and , used for
MAT selection)
oow
OoT =

HERE

APLX Language Manual 48

1 2
5 6
9

TABLE<3 4p112
TABLE

3 4

7 8

10 11 12

100
100

(1 01 0/TABLE)«3 2p100 (Compression used for selection)
TABLE

2 100 4
6 100 8

100 10 100 12

10 20

5 43

DATA«113

Xe10 20 30 (Other APL functions may be used within
((pX)TDATA) X the parentheses - here p 1is used to supply
DATA the left argument to 1)

304567 89 10 11 12 13

Yer110

Xe3

((2+X)1Y)edp1X+2 (Left argument to t includes the + function)
Y

2167 8910

The function enlist (e) removes all nesting from an array. When used with selective specification, it
can be used to replace elements at the deepest level of nesting, whilst retaining the array’s structure .

NEST«(2 2p14) 'TEXT' (3 1p13)

NEST
12 TEXT 1
3 4 2
3
(eNEST) <0 (Entire array set to 0, but original
NEST structure retained)
00 0000 0
00 0
0
(60eNEST)«999 (Single element at bottom of nested array
NEST array altered)
00 0 999 0 0 0
00 0
0
(70eNEST) «c'TEXT' (Further nesting introduced)
NEST
00 0 999 TEXT O 0
00 0
0

The function first (1), selects the whole array which is the first element in an array. If first is used
purely to select the first array within a nested array, then the array which is the right argument to the
assignment arrow will replace the selected array.

ABC

AOC

(T™NEST)<«"'ABC' (First element of NEST 1is a matrix of
NEST shape 2 by 2. This 1is replaced by
0 999 TEXT O 0 a length 3 vector)

0

0
(20TNEST)<'0O" (One element within the first element of
NEST NEST is replaced)
0 999 TEXT O 0

o o

APLX Language Manual

Pick (=) will select an entire array at an arbitrary depth in a nested array, and will also replace that
entire array by the right argument to the specification symbol.

2 2oNEST
999
(2 2oNEST)«110 (New array placed in 2 2> of NEST)
NEST
AOC 0 123456789 10 TEXT O 0
0
0
(2oNEST)«'DATA'" (Nested vector at element 2 replaced by
NEST length 4 vector)
AOC DATA 0
0
0
(3 (2 1)>NEST)«1000 (Row 2 column 1 of element 3
NEST specified)
AOC DATA 0
1000
0

There are some exceptions and restrictions to the rules for selective specification:
- User-defined functions and operators cannot be used within selective specification
- Execute (&) is not allowed within selective specification

- System functions are allowed within selective specification with the exception of those which use
execute (OEA and OEC)

- The selection expression must select elements from the variable and not insert fill items (as, for
example, can be done by expand and replicate).

- No arithmetic operations can be carried out on the array being specified or on the elements selected
- Assignments are not allowed within the parentheses used for selective specification.
- Selective and multiple specification operations cannot be mixed.

Thus, if
X3 4 5

then the following expressions are not allowed:

(AVERAGE X)<6 (Use of user-defined function)
((e'1+2")1X)<"ABC' (Use of execute)

((Ye2)IX)e'A" (Assignment within the selection expression)
((24X) Y Z)<'ABC' (Mixture of multiple and selective

specifications)

49

APLX Language Manual

(107X)«r10 (Fill items inserted by the selection
expression)

As stated above, arithmetic may not be carried out on the elements of an array that are selected:

Xe1b

(2+11X) 5
DOMAIN ERROR
(2+11X) <5

A

but other expressions within the specification parentheses may use arithmetic operations, even on
another instance of the name being specified:

((2+11X)1X)«100
X
100 100 100 4 5

50

APLX Language Manual 51

Binding strengths

In simple terms, APL evaluates expressions right-to-left, that is to say the result of the rightmost
function is evaluated, and becomes the right argument of the next function. There are no ‘precedence
rules' to remember; all primitive and user-defined functions have the same precedence. For example:

5p3.2x12:4
9.6 9.6 9.6 9.6 9.6

In this example, the division 12+4 is evaluated first. The result of this expression becomes the right
argument of the multiply, which returns the scalar result 9. 6. This in turn becomes the right argument
of the reshape (p) function.

The right to left function execution rule needs to be modified to cope with more complex expressions,
for example nested vectors or certain expressions containing operators. The 'binding strength’ defines
how certain symbols 'bind’ for evaluation. The order of binding strengths is shown below, in
descending order. (Note that binding strengths can be altered by the 0cs and)cs (‘compatibility
setting’) commands.)

Binding Bound items

Brackets [] Brackets to object to the left
Specification « left |« to object on its left

Right Operand Dyadic operator to its right operand
Vector Array to array

Left Operand Operator to its left operand

Left Argument Function to left argument

Right Argument Function to right argument
Specification « right « to object on its right

Parentheses can override the binding strength hierarchy. Some examples include:

A< 'DEF" (Set up variables A B)
Be'XYZ'
AB
DEF XYZ
A B[2] (L] has higher binding than vector so the
DEF Y result includes the second element of B)
(A B)[2] (Parentheses force selection of B)
XYZ
A Be3 (¢ has stronger binding than vector)
DEF 3
(A B)e«3 (Parentheses alter binding)
A
3
B

APLX Language Manual 52

123+4586 (Vector has stronger binding than function)
579

12 (3+4) 5 6 (Parentheses alter binding)
12756

1 0 1/"ABC' (Vector has stronger binding than left
AC operand, so left operand is 1 0 1)

+/[212 2pr4 (Axis brackets have stronger binding than
37 operator to operands, so /[2] operator

is formed

Finally, the relative binding strengths of left and right operands can be used to predict the result of
expressions with multiple operators. +.x .- is evaluated as (+.x).-and not as +. (x.-) since the x
binds first as right operand to the first . (‘inner product’) operator.

APLX Language Manual 53

Bracket indexing

Bracket indexing can be used to select elements from an array, for example one or more elements from
a vector, or individual rows or columns of a matrix.

The index or indices are enclosed in square brackets, each dimension being separated by a semicolon.
If no number is used for a particular dimension, then all the elements in that dimension are selected.
APL allows index references to start either at 0 or 1. The index origin (which is controlled by 010 or
JORIGIN) determines whether index positions start from 1 or 0. In the examples below, and generally
throughout this manual, the default convention of index origin 1 is used.

LIST<12 24 36 48

LIST[2] (Selects the second item in LIST)
24

LISTL[1]+LIST[4] (Adds the first and fourth ditems in LIST)
60

ALF«'ABCDEFGHI JKLMNOPQRSTUVWXYZ'

ALF[26 1 13 2 9 1] (Selects the letters 1in ZAMBIA
ZAMBIA from the contents of ALF)

TABLE (TABLE consists of 2 rows and 4 columns)
10 20 30 40
50 60 70 80

TABLE[1;4] (Selects the item in row 1, column 4)
40

TABLE[1;1 2 3 4]+TABLE[2;1 2 3 4]
60 80 100 120 (Adds the 4 columns 1in row 1 to the
4 columns in row 2)

TABLE[1;]+TABLE[2;] (Shorthand way of doing the same
60 80 100 120 operation as 1in the last example)

In general, the indices may be of any shape or rank, so long as each of their elements correspond to
valid elements within the array being indexed. The shape of the result of an indexing operation is
generated by the shape of the index arrays. Thus

pTABLE[A;B] (Where A and B are arrays)

is identical to

(pA),pB

This has the important consequence, that if all the indexing arrays are in fact scalars, the result is also
a scalar. Similarly, any axis of an array indexed by a scalar generates a result in which that axis does
not exist.

ALF[2 2p14] (ALF 1indexed by a matrix)
AB (Result 1is a matrix)
CD

APLX Language Manual 54

pTABLE[1;1 2 3 4] (Rows indexed by a scalar, result is
4 a vector)

pTABLE[,1;1 2 3 4] (Rows indexed by a vector, result is
14 a matrix)

pTABLE[1 1p1;1 2 3 4] (Rows indexed by a matrix,
114 result is a three dimensional array

The 1 ("index") function

An alternative to bracket indexing is the 0 (‘index’) function, which is discussed fully in the reference
section. The index specification is given as the left argument to the 0 function and is equivalent to
bracket indexing in that

ROW COL 0 MATRIX

and

MATRIX[ROW;COL]

are equivalent. Although arguably less readable than bracket indexing, the index function has the
advantage that it is syntactically consistent with other APL primitive functions, and can thus be used
with operators such as Each.

APLX Language Manual 55

User-defined Functions

User-defined functions are the equivalent of subroutines or functions in other programming languages.
They associate a series of lines of APL code with a name chosen by the programmer.

When a function is evaluated, it performs some action on data known as an ‘argument’. Functions may
have no arguments, one argument, or two arguments. These three types of functions are often referred
to as follows:

0 arguments Niladic
1 argument Monadic Argument on right
2 arguments Dyadic Arguments on left and right

If you defined a function called. say, sb which found the standard deviation of a set of numbers, you
could write it so that it expected the data as its right-hand argument. You would then call sD in exactly
the same way as a primitive function such as T:

X « SD 23 89 56 12 99 2 16 92

A function may or may not return a result.

You specify the number of arguments the function is to have, and the name of the result field (if there
is one) when you define the function header of the function you are about to write.

Header line for user-defined functions

In addition to the names used for the left and right arguments and result (if applicable) which will all
be 'local’, the header line may also be used to localize other variables (and system variables), as well as
function names. Whilst the function or operator is running, these local variables 'shadow' global
variables of the same name, that is they will exclude from use a global object of the same name.
System commands continue to reference the global objects. Local variables (and functions) are
however themselves global to functions called within their function or operator.

The general format for a function header is:

Re A FUNCTION B;VAR1;VAR2
or
A FUNCTION B;VAR1;VAR2

depending on whether or not a result is returned. R, the result, A, the left argument, B, the right
argument are all optional. Local names, if any, are listed after the function name and arguments,
separated from them and each other by semi-colons (;), VAR1 and VAR2 above. Comments may also
appear at the end of the header line, following a a (‘comment’) symbol.

APLX Language Manual 56

Editing functions

In most versions of APLX, there are two ways to create or edit a function.

The most commonly used way is to use an on-screen editor, which allows you to edit the function
text very easily in an editor window. The editor is either invoked through the application's Edit menu,
or with the)EDIT system command (or the DEDIT system function), e.g.

JEDIT FUNK

For backward compatibility with old APL systems, APLX also supports a primitive line-at-a-time
editor called the Del (or Line) Editor. To enter definition mode and create a new function you type v
(Del) followed by the function name. If you type nothing else, you are defining a function that will
take no arguments:

vFUNK

For clarity, we will list functions here as though they were entered using the Del editor, where a v
character is used to mark the start and end of the function listing. If you are using the on-screen editor,
you do not type the v characters or the line numbers.

The function header

The first line of a function is called the function header. This example is the header for a function
called FUNK:

vFUNK

If you want the function you are defining to have arguments you must put them in the header by
typing a suitable function header:

vSD X

The above header specifies that sD will take one argument. Here is what sb might look like when you
had defined it:

vSD X
[1] SUM « +/X
[2] AV « SUM=pX
[3] DIFF « AV-X
[4] SQDIFF « DIFF=*2
[5] SQAV « (+/SQDIFF)=pSQDIFF
[6] RESULT « SQAV*0.5
\4

It's quite unimportant what the statements in the function are doing. The point to notice is that they use
the variable X named in the function header. When SD is run, the numbers typed as its right-hand
argument will be put into X and will be the data to the statements that use X in the function. So if you

type:

SD 12 45 20 68 92 108

APLX Language Manual 57

those numbers are put in X. Even if you type the name of a variable instead of the numbers themselves,
the numbers in the variable will be put into X.

The function header for a dyadic (two-argument) function would be defined on the same lines:

vX CALC Y

When you subsequently use CALC you can supply two arguments:

147 CALC 0 92 3

When CALC is run the left argument will be put into X and the right argument into Y.

If you want the result of a function to be put into a specified variable, you can arrange that in the
function header too:

vZ « X CALC Y

In practice, most APL functions return a result, which can then be used in expressions for further
calculations, or stored in variables.

Defining z to be the result of X CALC Y allows the outcome of CALC to be either assigned to a variable,
or passed as a right argument to another (possibly user-defined) function, or simply displayed, by not
making any assignment. The variable z acts as a kind of surrogate for the final result during execution
of CALC.

Local and global variables

Variable names quoted in the header of a function are local. They exist only while the function is
running and it doesn't matter if they duplicate the names of other variables in the workspace.

The other variables - those used in the body of a function but not quoted in the header, or those created
in calculator mode - are called global variables.

In the SD example above, X was named in the header so X is a local variable. If another X already exists
in the workspace, there will be no problem. When sbD is called, the X local to sb will be set up and will
be the one used. The other X will take second place till the function has been executed - and of course,
its value won't be affected by anything done to the local X. The process whereby a local name
overrides a global name is known as 'shadowing'.

It is obviously convenient to use local variables in a function. It means that if you decide to make use
of a function written some time before, you do not have to worry about the variable names it uses
duplicating names already in the workspace.

But to go back to the sD example. Only X is quoted in the header, so only X is local. It uses a number
of other variables, including one called suM. If you already had a variable called suM in the workspace,
running SD would change its value.

APLX Language Manual 58

You can 'localize’ any variable used in a function by putting a semicolon at the end of the function
header and typing the variable name after it:

vSD X;SUM

You may wonder what happens if functions that call each other use duplicate local variable names.
You can think of the functions as forming a stack with the one currently running at the top, the one
that called it next down, and so on. A reference to a local variable name applies to the variable used by
the function currently at the top of the stack.

Comments in functions
If you want to include comments in a function, simply enter them, preceded by a comment a symbol.

VR « AV X
[1] a This function finds the average of some numbers
[2] R « (+/X)+pX A The numbers are in X

v

There are two comments in the example above. Note that the one on line 2 doesn't start at the
beginning of a line.

Locked functions

It is possible to lock a function. A locked function can only be run. You can not edit it or list the
statements it consists of. To lock a function, edit it in the Del editor but type a » rather than a v to enter
or leave function definition mode.

A locked function cannot be unlocked.

Localized functions

Local functions cannot be edited by the standard v editor, and the v editor will always refer to a global
function of the same name (if it exists). OCR may be used to examine local functions.

Ambivalent functions

All dyadic functions may be used monadically. If used monadically, the left argument is undefined
(i.e. has a Name Classification, ONC of 0). This type of function is known as an ambivalent or nomadic
function, and will usually start by testing for the existence of the left argument.

vR<A NOMADIC B

[1] :If 0=ONC 'A’ A DOES A EXIST?
[2] Ae5 a NO, SO WE HAVE BEEN USED MONADICALLY
[3] :EndIf

etc.

APLX Language Manual 59

User-defined Operators

An ‘operator' modifies the behaviour of a primitive or user-defined function. It has an operand or
operands that are primitive, derived or user-defined functions or data. The result of using an operator
is known as a derived function which can then be applied monadically or dyadically to data or
alternatively it may be, in turn, used as an argument to another operator.

As well as the primitive (built-in) operators, user-defined operators are permitted. These are created an
edited in the same way as user-defined functions (using the v editor, or)EDIT), but are distinguished
from functions by the format of the header, line 0.

Header line for user-defined operators

The format for an operator header follows one of the following forms, where Lo=Left operand,
RO=Right operand, A=Left argument, B=Right argument:

R<(LO OPERATOR) B (Monadic operator with one argument)
> Re<A (LO OPERATOR) B (Monadic operator with two arguments)
o R«(LO OPERATOR RO) B (Dyadic operator with one argument)
o Re<A (LO OPERATOR RO) B (Dyadic operator with two arguments)

User-defined operators need not return explicit results.

Example

This simple monadic operator with two arguments commuTE reverses the arguments of a function. In
this example, ¥~ represents the function (the left operand) which will be combined with the operator to
make a derived function, . represents the left argument supplied to the derived function, and r
represents the right argument supplied to the derived function:

vZe<L (FN COMMUTE) R
[1] ~a Operator which reverses the arguments to a dyadic function
[2] ZeRFNL

v

100 + 3
33.33333333
100 + COMMUTE 3 A Equivalent to 3 + 100
0.03
100 p COMMUTE 3 A Equivalent to 3 p 100
100 100 100
100 ODR COMMUTE 1 A Equivalent to 1 ODR 100
00000000O000O00OO0OO0OOOOOOOOOOOOO1I1O0O0O1O00

APLX Language Manual 60

Using data as operands

The left and/or right operands to a user-defined operator do not have to be functions; they can
alternatively be arrays. The effect is to substitute the supplied array for in expression which references
the operand:

'"FRUIT' ('OLD' COMMUTE) 'HELLO'
HELLO OLD FRUIT

APLX Language Manual 61

Classes and Objects

Overview of Classes and Objects

As well as traditional APL functions and operators, APLX adds object-oriented programming facilities
to the core APL language. These facilities are broadly similar to those implemented in other object-
oriented programming languages (such as C++, C#, Java, or Ruby), but with the difference that APL's
array-programming approach applies to classes and objects in the same way as it applies to ordinary
data.

The fundamental building block for object-oriented programming in APLX Version 4 is the class. For
example, in a commercial invoicing application, a given class might represent the attributes and
behavior of an Invoice, and another class might represent a CreditNote. In an application concerned
with geometry, a class might represent a Sphere, or a Rectangle, or a Polygon. A class contains
definitions both for program logic (functions and operators, known collectively as the methods of the
class), and for data (named variables associated with the class, known as properties). The term
members is used to describe both the properties and methods of a class.

In most cases, when you come to use a class, you need to create an instance of that class, also known
as an object. Whereas the class represents an abstraction of (say) an Invoice, or a Sphere, or a
Rectangle, an object represents a particular invoice, sphere or rectangle. Typically, you may have
many instances of a given class, each containing independent copies of data (properties), but all
supporting the same program logic (methods).

Inheritance

When you define a class, you can specify that it inherits from another class. The new class is said to
be the child, and the class it inherits from is the parent or base class. Inheritance means that (unless
you explicitly change their definition), all of the properties and methods defined in the parent class are
also available in the child class. This works for further levels of inheritance as well, so that methods
and properties can be inherited from the immediate parent, or from the parent's parent, and so on. The
terms derived classes or descendants are sometimes used to denote the children of a class, and the
children's children, and so on. Similarly, the term ancestors of a class is used to denote the parent,
parent's parent, and so on.

For example, you might have a class Shape, representing an abstract geometric shape. This might have
properties called 'X"'and "Y' giving the center point of the shape, and methods called 'Move' and 'Area’.

A Circle class might inherit from Shape, introducing further properties such as ‘radius'. Equally, a
class Polygon might also inherit from Shape, and further classes Triangle and Square inherit from
Polygon. All of the classes Circle, Polygon, Triangle and Square are derived from Shape. Because of
the way inheritance works, they would all include the properties X and Y, and the methods Move and
Area.

APLX Language Manual 62

When a class inherits from another, you can specify that the definition of a given method of the parent
(or the initial value of a property) is different in the child class. In our example, you would need to
supply a different definition of the Area method for a Circle and a Square. This is known as overriding
the method.

For classes defined in APLX, all methods can be overridden, and all methods are virtual, that is to say
if method A in a base class calls another method B, and the second method B is overridden in a child
class, then running method A in the child class will cause the overridden version of B to be called, not
the version of B defined in the parent.

APLX uses an inheritance model known as single inheritance. This means that a child class can be
derived from only one parent (which may itself derive from another class, and so on). However,
APLX also allows you to 'mix-in' one or more other classes (including external classes, such as those
written in .Net or Java) into your objects at runtime. This is a very flexible feature which can be used
in much the same way as multiple inheritance is used in some other languages. See the section on
Mixins for more details.

User-defined, System and External classes

APLX supports the following types of class:

o User-defined classes, written in APL (also known as ‘Internal’ or just 'APL' classes)

o System classes, which are built-in to the APLX interpreter in the same way as System
functions. System classes are currently used mainly for user-interface programming, and
replace the older OWI syntax.

o External classes, written in other languages, such as Java or C#.

Object References and Class References

When you create an object, i.e. an instance of a class (using the system function ONEW as described
below), the explicit result that is returned is not the object itself, but a reference to the object. This
reference is held internally as just a number, an index into a table of objects which APLX maintains in
the workspace. If you assign the reference to another variable, the object itself is not copied; instead,
you have two references to the same object.

Of course, because APLX is an array language, you can have arrays of object references, and you can
embed object references in nested arrays along with other data. For example, you might have an array
containing references to hundreds of Rectangle objects.

You can also have a reference to a Class. This makes it possible for general functions to act on classes
without knowing in advance which class applies.

Creating objects (instances of classes)

The system function ONEW is the principal means by which you create an object, i.e. an instance of a
class. The class can be either written in APL (an internal or user-defined class), or a built-in System
class, or a class written in an external environment such as .Net, Java or Ruby (an external class). ONEW

APLX Language Manual 63

creates a new instance of the class, runs any constructor defined for the class, and returns a reference
to the new object as its explicit result.

The class is specified as the right argument (or first element of the right argument). It can be specified
either as a class reference, or as a class name (i.e. a character vector). Any parameters to be passed to
the constructor of the class (the method which is run automatically when a class is created) follow the
class name or reference.

If you specify the class by name, you also need to identify in the left argument the environment where
the class exists, unless it is internal.

Creating instances of internal (user-defined) classes

Normally, you create an instance of a user-defined class by passing the class reference directly as the
right argument (or first element of the right argument). For example, if you have a class called Invoice,
you can create an instance of it by entering:

I<ONEW Invoice

What is really happening here is that the symbol Invoice refers to the class definition, and when it is
used in this way, it returns a reference to the class.

Note that you can also pass the class name rather than a class reference. The following are alternative
ways of creating an instance of a user-defined class:

I<ONEW 'Invoice'
I<'apl' ONEW 'Invoice'

Passing arguments to the constructor

A constructor is a special method of a class, which is run automatically when the class is created using
ONEW, and is used to initialize the class. For APL classes, the constructor is a method whose name is
the same as the name of the class. It should be a function which takes a right argument, and does not
return a result. (It can be a method which takes no argument, if you are sure that no parameters will
ever be passed to it via ONEW). Any arguments to the constructor can be provided as extra elements on
the right argument of ONEW. When the constructor is run, these extra elements are passed as the right
argument to the constructor. If there are no extra elements, an empty vector is passed as the right
argument to the constructor.

For example, suppose the class Invoice looks like this:

Invoice {
TimeStamp
Account
InvNumber
{Seriale0}

vinvoice B

A Constructor for class Invoice. B is the account number
Accounte<B

TimeStamp<0OTS

APLX Language Manual 64

SerialeSerial+l
InvNumbere«Serial
v

)

This is a class which has a constructor and four properties. One of the properties (Serial) is a class-
wide property, which means it has only a single value shared between all instances of the class. When
a new instance of this class is created, the constructor will be run. It will store the account number
(passed as an argument to ONEW) in the property Account, and store the current time stamp in the
property TimeStamp. It will then increment the class-wide property Serial (common to all instances of
this class), and store the result in the property InvNumber. (To see the properties, we use the system
method ODS which summarizes the property values):

S<[ONEW Invoice 23533
S.0ODS
Account=23533, TimeStamp=2007 10 11 15 47 34 848, InvNumber=1l
T<ONEW Invoice 67544
T.0DS
Account=67544, TimeStamp=2007 10 11 15 48 11 773, InvNumber=2

Default display of a class or object reference

When you call the ONEW system function to create an object (an instance of a class), the explicit result
is a reference to that object. The question therefore arises: what happens if you display such an object
reference?

By default, APLX displays an object reference as the unqualified class name contained in square
brackets. Class references are displayed as the class name in curly braces:

) CLASSES
Queue A User-defined APL class
Queue
{Queue} a Default display of class reference
QUEUE23<0ONEW Queue
QUEUE23 A Default display of APL object reference
[Queue]

However, if the APL programmer wishes to override the default display form of an object, this can
easily be done by using the ODF system method (see the section on system methods below):

QUEUE23.0DF 'Checkout Queue23'

QUEUE23
Checkout Queue23

Object references and object lifetimes

When you use ONEW to create a new object, that object persists until there are no more references to it
in the workspace. It is then deleted immediately, if it is an internal or system object. If it is an external
object, such as an instance of a .Net class, the fact that there are no more references to it in the APL
workspace means that it available for deletion by the external environment (unless the external
environment itself has further references to the same object). However, in typical external
environments such as .Net, Java and Ruby, the actual deletion of the object may not occur until later.

APLX Language Manual 65

Consider this sequence, where we create an instance of a class called Philosopher which has a property
Name:

A<ONEW Philosopher
A.Namee<'Aristotle'

At this point, we have created a new instance of the class, and we have a single reference to it, in the
variable A. We now copy the reference (not the object itself) to a variable B:

BeA
B.Name
Aristotle

We now have two references to the same object. So if we change a property of the object, the change
is visible through either reference - they refer to the same thing:

B.Name«'Socrates'
A .Name
Socrates

Now we erase one of the references:

JERASE A

We still have a second reference to the object. The object will persist until we delete the last reference
to it:

B.Name
Socrates
JERASE B

At this point, there are no more references to the object left in the workspace, and the object itself is
deleted.

It follows from this that, if you use ONEW to create an object, and do not assign the result to a variable,
it will immediately be deleted again. In this example, we create an instance of the class Philosopher.
The explicit result of ONEW is a temporary workspace entry (of type object reference), which is
displayed using the default display format for objects, and then deleted. At that point the object itself
is also deleted, as there are no references left:

ONEW Philosopher
[Philosopher]

The Null object

As its name implies, the Null object is a special case of an object, which has no properties and no
methods of its own (although System methods may apply to it). A reference to the Null object displays
in the special form:

[NULL OBJECT]

A reference to the Null object can arise for a number of different reasons:

APLX Language Manual 66

If you have an array of object references, the prototype of the array is a reference to the Null
object. For example:

° VEC<ONEW “"Rectangle Sphere Triangle

. VEC

. [Rectangle] [Sphere] [Trianglel]

. 113LVEC
[NULL OBJECT]

« An external call may return a Null object, for example if you are looping through a linked list
of objects and reach the last one.

e An APLX System method may return a Null object, for example if you ask for the parent class
of a top-level class:

. Point.OPARENT
[NULL OBJECT]

e Your application code can deliberately set an object reference to Null (by calling ONULL), for
example to indicate that it has not yet been initialized.

e APLX may be forced to set an object reference to Null, because it is no longer valid. For
example, this will happen if you) save a workspace which contains a reference to an external
object (e.g. a Java or .NET object). On re-loading the workspace at a later date, the object
reference is no longer valid since the external object no longer exists.

Types of Property

When you define a class, you specify the names of the properties of that class, which can be used to
hold data associated with the class. You can optionally specify a default value for the property, that is
the value which the property will have in a newly-created instance of the class. You can also specify
that the property is read-only, which means it is not possible to assign a new value to it.

Most properties are instance properties, which means that each instance of the class has a separate
copy of the property (for example, the X and Y position of a Shape). Occasionally, however, it is
useful to define a class-wide property (known in some other languages as a static or shared property).
This is a property where there is a single copy of the data, shared between all instances. This is useful
for cases such as keeping a unique incrementing serial number (the next invoice number, for example).

Combining these concepts, you have the following main types of property:

A read-write instance property, with a default value specified in the class definition

A read-write instance property, with no default value specified in the class definition
A read-write class-wide property, with a default value specified in the class definition
A read-write class-wide property, with no default value specified in the class definition

A read-only class-wide property, with a default value specified in the class definition

APLX Language Manual 67

You can also in principle have a read-only property with no initial value, but this is not very useful!
You can also have a read-only instance property, but this is indistinguishable from a read-only class-
wide property because you can't assign a different value to it in different instances.

Implementation note: APLX uses a ‘create-on-write' approach when you assign to an instance
property. This means that, if you have never changed the value of a property for a particular instance
since the instance was first created, the value which is returned when you read the property is the
default value stored in the class definition. It follows that, if you change the class definition so that the
property has a different default value, the change will immediately be reflected in all instances of the
class, unless the property has been modified for that instance.

Name scope, and Public versus Private members

The members of a class (i.e its properties and methods) can be either public or private. Public
members can be accessed from outside the class, whereas private members can only be accessed from
within methods defined in the class (or from desk calculator mode, if a method has been interrupted
because of an error or interrupt and the method is on the) st stack). Private members can also be
accessed by methods defined in a child (derived) class. If you are familiar with other object-oriented
languages such as C++ or Visual Basic, this means that private methods in APLX correspond to
‘protected’ methods in those languages.

If you want to access a public member of an object from outside the class (i.e. not within a method of
the class), then you use dot notation to refer to it. This takes the form ObjectReference.MemberName.
For example, suppose you have a variable myrect which is a reference to an object of class
Rectangle. YoU could call the Mmove method and access the x and v properties for that object as
follows:

myrect.X<45
myrect.Y«78
myrect.Move 17 6
myrect.X

62
myrect.Y

84

Within the methods of the class itself, you do not normally need to use dot notation. This is because
the search order for symbols encountered when executing a method is as follows:

1. First, APLX looks to see if the symbol refers to a member defined in the class of the object.

2. If not, it looks to see if the member is defined in the parent class (if any), iterating through each
of the ancestors in turn.

3. Ifitis not found in any of the ancestors, it then looks in the local variables of the method.

4. Finally, it looks in the global symbol table.

Thus, a simple implementation of the Move method above (defined in the Shape class from which
Rectangle derives) might be something like this:

APLX Language Manual 68

v Move B
[1] A Move shape by amount B specified as change to X, Y
[2] (X Y)e(X,Y)+B

v

Constructors

As we saw earlier, a constructor is a special type of method, which is run automatically when an
instance of a class is created using ONEW. It can be used to initialize the object, optionally using
parameters passed to ONEW. For example, you might use this mechanism to specify the initial position
of a Rectangle object.

For a user-defined class, a constructor is defined as a method which takes a right argument, and which
has the same name as the class itself.

In some other object-oriented programming languages, constructors are a very important part of the
language because they are the only way of initializing property values. For user-defined classes in
APLX, default values can be set up in the class definition, so constructors are not always needed.

Where a class inherits from another class, the constructor which gets run automatically is that of the
class itself (if it has a constructor), or of the first ancestor class which has a constructor. Normally, in a
constructor, you will want to do some initialization specific to the class itself, and also call the
constructor of the parent class (using OPARENT) to do any initialization which it and its ancestors
require. You can do this at any point in the constructor; there is no restriction on where you make this
call to the parent's constructor; indeed, you don't have to call it at all if it is not appropriate.

In APLX, a constructor is also a perfectly ordinary method; it can be called in the normal way by one
of the other methods in the class, or from outside (if it declared as Public). This can be useful for re-
initializing an object.

Some object-oriented languages also include a special method called a destructor, which is called just
before the object is deleted. APLX user-defined classes do not have destructors. This means that, if
you need to release system resources (for example, close a file or a database connection), you need to
call a method to do that explicitly before erasing the last reference to the internal object. However,
APLX will automatically take care of deleting all the properties of the object, and releasing the
memory back to the workspace.

Using Classes without Instances

So far, we have concentrated on using objects as instances of classes. However, classes can also be
very useful in their own right, without the need to make instances of them. There are two major
reasons why you might want to define a class which can be used directly:

Defining a set of constants

If you define a class with a set of read-only properties, those properties can be used as a set of constant
values or ‘enumerations'. For example, you might have a class called Messages, which holds all the
messages which your application displays to the user:

APLX Language Manual 69

Messages {

OutOfMemorye«'There 1is not enough memory to continue'
AskModelName<««'Enter the name of the model'’
OpComplete<«'Operation Complete'’

AskResete«'Do you want to reset the model?’

...etc

)

You can then use this class in your application (without having to make an instance of it) to
encapsulate all the messages and refer to them by name:

vReCheckWS
[1] :If R<OWA<MIN_FREE_WS
[2] ShowError Messages.OutOfMemory
[3] :EndIf

v

This keeps all the messages together in one place, allows you to refer to them by a name which is easy
to remember and is self-documenting, but does not pollute the global symbol space with hundreds of
APL variables.

Keeping namespaces tidy

In traditional APL systems, it often used to be the case the number of global functions was very large.
By placing related functions in a class, the workspace can be kept tidy.

For example, in a statistical application, you might have a class average which contained methods for
calculating many different types of average (Mean, Median, Mode €tc). As long as these methods do not
write to any property of the class, there is no need to make an instance of the class to run them; you
can just run them using dot notation as average .Mean, Average.Median €tC.

Note that, in APLX classes, there is no pre-determined difference between a method which can only
be run inside an instance (sometimes known as an instance method), and a method which can be run as
a class member without an instance being created (sometimes known as a static method). The only
difference is that, at run time, if a method writes to a property, an error will be generated if there is no
instance to write to.

However, you do need to be aware of the difference between static and instance methods when using
classes written in other languages such as Java or C#. See the system function OCALL for more details.

Editing User-Defined Classes

You can create and edit user-defined classes in a number of ways:

e Using the on-screen class editor, invoked from the Edit menu or)EDIT. The class editor allows
you to edit each method of the class, as well as set up properties and default values;

« Using the line ('del’) editor;

e Using the system function OFX, to convert a text representation into a class;

APLX Language Manual

e Using the system function 0Ic, to transfer global functions, operators and variables into the
class as methods and properties.

70

APLX Language Manual 71

Mixins

What are Mixins?

As we saw in the previous sections, classes which you write in APLX can inherit from other classes;
this means that the methods and properties of the parent class (or classes) are available in the child
class.

Although the concept of inheritance is very powerful, there are some circumstances where more
flexibility is required. In APLX, a class cannot inherit from multiple different classes, only from one
parent class (although that might itself inherit from its parent, and so on). Nor can a class inherit from
an external class; for example, you cannot write an APL class which directly inherits from a Java
class.

‘Mixins' address both of these requirements. They allow you to extend your user-defined classes so
that, at run-time, they dynamically 'mix in' functionality (i.e. methods and properties, and perhaps
events) from one or more other classes; these can be internal (user-defined, and written in APL), or
external (.Net, Java, Ruby etc, or a built-in APLX system class).

Because mixins are attached dynamically at runtime, they are very flexible. For example, in a
commercial application you might have an 1nvoice class (which perhaps inherits from an
AccountingDocument Class). If you wanted to add functionality which would allow the 1nvoice class
to be faxed or e-mailed to the client, you could dynamically (at run time) mix-in a Fax or EMail class
to handle the transmission of the document. This is similar to multiple inheritance as implemented in
some other languages, but more flexible because you don't need to know in advance which mixin will
be required; different instances of the same class can, if appropriate, mix-in different classes.

When you 'mix-in' another class, what effectively happens is that a new object of the mixed-in class is
created, and merged into the original object. The public properties and methods of the mixed-in class
now become available in the original object, very much as though they were defined in the original
class.

You can mix-in as many other classes as you like; you can even mix in classes from multiple different
architectures. For example, you could write (in APL) a Financialclock class to display the time in
London, New York and Singapore. It could mix-in the System Class window for the display, and the
Java class timezone to handle the different time-zone information.

Using Mixins

To use mix-ins, you first create an object (i.e., an instance of your APL class) in the normal way using
ONEW. You then use the System Method OMIXIN to mix another class into the object. OMIXIN has a
similar syntax to ONEW; the right argument is the class reference (or name, as a text vector), followed
by any arguments to the constructor for the class you are mixing-in. The left argument can be omitted
if you are mixing-in an APL class, otherwise it defines the architecture for the mix-in. For example, if

APLX Language Manual

you have a class called tnvoice, and another class called rax, you can mix the rax class into an
Invoice object as follows:

Create an instance of Invoice:

invednew 'Invoice'
A Properties:
inv.Onl 2
customer
invoice_number
lines
order_number
A Methods:
inv.Onl 3
SetStatus

Mix class Fax into the Invoice object:
inv.Omixin 'Fax'

A Properties and methods now include those of Fax class:

inv.Onl 2
cover_page A <--- From Fax class
customer
fax_number A <--- From Fax class
invoice_number

l1ines
order_number

inv.Onl 3
Send A <--- From Fax class
SetStatus

You can mix-in further classes in the same way.

Although in this example we have mixed-in the Fax class (using dot notation) after creating the
original object, in many cases the natural place to do this will be in the Constructor of the original
class. If you do that, the mix-in facility effectively becomes like multiple inheritance in some other
languages.

Mixing-in an external class

You can mix an external class (.Net. Java, Ruby, or a built-in APLX system class) in to your APL
class in the same way. In this case, you need to provide a left argument to OMIXIN to specify the
architecture, in the same way as you would with ONEW. For example, we could add a second mixin,
based on a Java class, to the 1nvoice class shown in the example above. All the properties and
methods of the Java class then become available in the object:

"java' inv.Omixin 'java.util.Date'
Obox 1inv.0Onl 3

Send SetStatus UTC after before clone compareTo equals getClass getDate getDay
getHours getMinutes getMonth getSeconds getTime getTimezoneOffset getYear
hashCode notify notifyAll parse setDate setHours setMinutes setMonth
setSeconds setTime setYear toGMTString tolLocaleString toString wait

APLX Language Manual

inv.tolLocaleString
20-Mar-2009 11:43:03

Referencing the mixed-in object directly

Sometimes you may need to access the underlying object which has been merged into your APL
object. For this, you need a reference to the underlying object. You can get this in two ways:

(1) oMIXIN actually returns as an explicit result the underlying object reference (but with display
potential switched off, as a 'shy' result). So you can assign this to a variable or property of your APL
class, and use this to call the underlying object directly:

jde'java' dnv.Omixin 'java.util.Date'
jd.Oclassname
Jjava:java.util.Date

(2) You can use the system method OMIXINS to get a vector of references to the mixins:

my_mixinseinv.Omixins
my_mixins
[Fax] [java:Date]
my_mixins[2].0classname
Java: java.util.Date

Search order and over-riding a method

When a member of the class is referenced (either using dot notation, or as unadorned symbols when
running methods of the class), APLX will use the following search order to find the named symbol:

o First it will search the original class, (and its parent classes, if any)
o Then it will search in the first mixin (and its parent classes, if any)

o If there are further mixins, it will search these in the order in which they were mixed-in.

It follows from this that you can 'over-ride' a property or method from a mixed-in class; if your own
APL class defines a member of the same name as a member of the mixed-in class, the APL version
will be the one which is accessed; the mixed-in version will be hidden.

However, you can still call the mixed-in version by accessing it directly using the object reference
returned either when it is created (explicit result of OMIXIN), or from OMIXINS. In our example, you
could define a method tostring, which overrides the Java version, but calls it to get the date as text:

vretoString
[1] A String representing invoice
[2] r<'Invoice number ',(sinvoice_number),' dated ',inv.Omixins[2].toString

[3] v

A Insert toString as a method 1into class Invoice:
'"Invoice' Oic 'toString'

1
inv.toString

Invoice number 11345301 dated Fri Mar 20 11:57:32 GMT 2009

APLX Language Manual 74

Removing mixins from an object

The System Method OUNMIX can be used to remove one or more mixins from an object. It takes a right
argument which is a scalar or vector list of mixin-references to delete, and returns a binary vector with
1 for each mixin removed, and 0 if the mixin reference could not be found:

inv.Omixins
[Fax] [java:Date]

inv.Ounmix inv.0Omixins
11

inv.Omixins

inv.Onl 3
SetStatus
toString

Note that you don't normally need to do this; the mixins will be deleted automatically when the object
which owns them is deleted.

APLX Language Manual 75

Branching and labels

Traditionally, the APL right arrow '»' has been used to control execution in user-defined functions and
operators. It can be used as a conditional or unconditional branch, and thus allows conditional
execution and loops to be programmed. (Note that APLX alternatively allows you to control execution
using structured-control keywords, which are preferable in many contexts).

The symbol - is usually followed by an integer scalar, vector, or label name which identifies the line
to branch to. If the argument is a vector, the first element of the vector determines the line at which
execution will continue, and subsequent elements are ignored. If the line number does not exist, the
function terminates (often a line number of 0 is used for this purpose). If the argument is an empty
vector, no branch is taken and execution continues at the next statement. Thus, conditional branches
can be programmed by using a right argument which, at run-time, evaluates either to an integer
scalar/vector, or to an empty vector.

A label is a name which is followed by a colon. It is placed at the start of the line which it identifies it.
When the function is running, it is treated as a local variable whose value is the number of the line on
which it is placed. It can thus be used directly as the argument of the right arrow.

A special case arises if no argument is given to the right arrow (a 'naked branch’). This terminates
execution of the current function and of all functions which called it, removes them from the state
indicator, and returns to desk-calculator mode. If the APL interpreter is already in desk-calculator
mode, this will have the effect of removing the top function and all thouse down to the next function
marked with an asterisk in the)SI display. A naked branch can also be used to end O input.

Examples:
To branch back from line 10 to line 3;

[10] -3

To branch unconditionally to a line labelled LAB2:

[10] -LAB2
[11] ...
[12] LAB2:TOTAL«QTYxPRICE

To branch to a line labelled LAB2 only if LOOP has the value 10, by using an expression which
evaluates to an empty vector if the condition is not true or to the label value if it is true:

[10] »(LOOP=10)/LAB2
[11] ...
[12] LAB2:TOTAL«QTYxPRICE

To branch to one of several lines depending on the value of the variable INDEX:

[6] >(CASE1 CASE2 CASE3)[INDEX]

APLX Language Manual 76

To branch to one of several lines using a boolean vector to select which (execution will continue at the
label corresponding to the first 1 in the vector. If there is none, a message will be displayed and the
function will end):

[6] >SELECT/(CASE1 CASE2 CASE3) ¢ 'No case applies' o >0

APLX Language Manual

Control Structures

As well as the conventional branch arrow, APLX supports structured-control keywords for flow
control, often making for more readable functions.

The structured control keywords are not part of the International Standards Organisation (1SO)
specification of the APL language, but they are supported by a number of APL implementations
including APLX.

The structured control keywords include:

Function Keywords

Conditional execution :If :0rIf :AndIf :Elself :Else :EndIf

For loop :For :In :Leave :Continue :EndFor

While loop :While :Until :Leave :Continue :EndWhile
Repeat loop :Repeat :Until :Leave :Continue :EndRepeat
Case selection :Select :Case :CaselList :Else :EndSelect
Error trapping :Try :CatchIf :CatchAll :EndTry

Terminate current function :Return

Branch :GoTo

Note: The general keyword :End can be use in place of any of :End1f :EndFor :EndwWhile
:EndRepeat :EndSelect :EndTry

Using Control Structures

The keywords all begin with a colon character, and usually appear at the start of the line (APLX will
automatically indent lines within a block for you). For example:

vITERATE N
[1] :If N<O
[2] 'Negative argument not supported’
[3] :Return
[4] :EndIf

[5]

You can also place a block on a single diamond-delimited line:

vITERATE N

[1] :If N<O o 'Negative argument not supported' o :Return ¢ :EndIf
(21 ...

Multi-line sequences can be nested to any depth, but single-line sequences cannot contain further
nested control structures. Note: The single-line form cannot be used with : Try. . :EndTry.

APLX Language Manual 78

The APLX function editor prompts you with the correct indentation as you type. If you cut or paste
lines, you can clean up the indentation from the Edit menu (or press Ctrl-I in Windows, Cmd-I under
MacOS)

The supported set of structured-control phrases is as follows (items in square brackets are optional).
You can end any sequence with :End rather than the more specific ending keyword shown. Note that
in APLX, structured-control keywords are not case-sensitive when you enter them, but APLX will re-
display them in the case shown.

Conditional execution

Syntax:

:If <boolean expression>

[:ElselIf <boolean expression>]

[:Else]

:EndIf

The expression following the : 1 keyword is evaluated. If it is true, the block which follows it is
executed, until an :F1seTf, :Else, :End Or :EndIf iSencountered, at which point execution transfers
to the statement after the :End or :End1f. If the expression is false, the same procedure is followed for

any :else1f blocks in the sequence. If none of the tests is true, the :E1se block (if any) is executed. It
is permissible to have as many :E1se1f sections as you like.

For example, this function returns a string which depends on the value of B:

VR<CLASSIFY B
[1] :If B=0

[2] Re'Zero'

[3] :ElseIf B>0
[4] Re'Positive'
[5] :Else

[6] Re«'Negative'
[7] :End

v

You can also add :and1f or :or1f phrases after an : 1f or :E1se1f phrase. If you use :and1f, each
expression must be true for the block to be executed, whereas if you use :or1f only one of them needs

to be true. (The :and1f and :or1f conditional expressions are evaluated only if necessary). For
example:

vRe«A CLASSIFY B
[1] :If B=0
[2] :AndIf A=0
[3] Re'Both arguments are zero'
[4] :Elself B=0
[5] :0rIf A=0

[6] Re'One argument 1is zero'
[7]1 :Else
[8] Re'Neither argument 1is zero'

[9] :End

APLX Language Manual 79

For loop

Syntax:

:For <control variable name> :In <vector expression>
:EndFor

The control variable is assigned successive values from the vector expression and the loop is executed
once for each value. The values can be of any type, not just integers. The vector expression is
evaluated only once, at the start of the loop. For example:

:For W :In "It's" "Off" "To" "Work" ¢ 'HiHo' W ¢ :EndFor
HiHo It's
HiHo Off
HiHo To
HiHo Work

You can use the :continue keyword within the loop to force premature termination of a particular
iteration - execution continues at the top of the loop with the next value (if there is one). You can also
use the :Leave keyword to exit the loop completely and continue execution with the line after the
:EndFor.

While loop

Syntax:
:While <boolean expression>
:EndwWhile

If the boolean expression is true (value 1), the loop body is executed. At the end, control returns to the
:While Statement and the loop is re-executed as long as the boolean expression remains true.

vEvaluate B
[1] :While B>0
[2] Be<NextNode B
[3] :EndWhile

v

An alternative form allows a test at the end of the loop as well:

Syntax:

:While <boolean expression>

:Until <boolean expression>

The :continue and :Leave keywords can again be used to force an early termination of a particular
iteration or of the whole loop.

APLX Language Manual 80

Repeat loop

Syntax:

:Repeat [<integer expression>]
:EndRepeat

The loop body is repeated a maximum of N times, where N is the value of the integer expression
(evaluated only once, at the start of the loop). If the integer expression is omitted, the loop is repeated
for ever, unless terminated in another way. For example:

:Repeat 3 o OTS o :EndRepeat
2002 7 30 14 36 2 228
2002 7 30 14 36 2 228
2002 7 30 14 36 2 228

The :continue and :Leave keywords can again be used to force an early termination of a particular
iteration or of the whole loop:

vGUESS; VAL
[1] 'Guess a number'
[2] :Repeat
[3] VAL<O
[4] :If VAL=231153
[5] 'You were right!’
[6] :Leave
[7] :EndIf
[8] 'Sorry, try again..'

[9] :EndRepeat
v

You can also end the loop with an :unti1 statement so that execution repeats only if a boolean
expression remains true:

:Repeat [<integer expression>]

:Until <boolean expression>

Case selection

Syntax:

:Select <expression>
:Case <expression>

i;éaseList <vector expression>]

i;ﬁlse]

;ﬁédSelect

The :select expression can be any APL scalar or array. It is matched against each of the :case
expressions (or elements of the :caseList expressions) in turn. If they match in value and shape

(using the same rules as the APL = (match) primitive), the body of lines following is executed, until
the next control keyword in the sequence is reached when execution jumps to the line following the

APLX Language Manual 81

:EndSelect (FOr :caseList the match is done against each of the elements of the vector expression
in turn, and if any of them match then the test is regarded as true). If none of the expressions match,
the :e1se clause (if any) is executed. For example:

vR<CLASSIFY B;0OIO0
[1] 0OI0«1
[2] :Select B
[3] :Case 0

[4] Re'Scalar zero'

[5] :Case 1p0

[6] Re'Length 1 vector, value 0'
[7] :CaselList 110

[8] Re<'Scalar in the range 1 to 10'
[9] :Else

[10] R<'None of the above'
[11] :EndSelect
v

CLASSIFY 0
Scalar zero
CLASSIFY 2
Scalar 1in the range 1 to 10
CLASSIFY 1p2
None of the above
CLASSIFY 1p0
Length 1 vector, value 0

Error Trapping

Syntax:
:Try

[:CatchIf <boolean expression>]
[:CatchAll]
:EndTry

The block of code following the : Try keyword is executed, until either an error occurs, or a
:CatchIf, :CatchAll, :End OF :EndTry iS encountered. (Unlike the other control structures,
:Try...:EndTry blocks cannot be placed on a single line).

If no error has occurred within the : Try block, execution transfers to the line after the :End or
:EndTry.

If an error occurs in the : Try block (either in the statements in this function, or in any functions called
from it), control transfers to the first :catcn1f line, and the expression is evaluated. If it is true, the
block of code following the :catch1f is executed, and execution then resumes after the :EndTry oOr
:End. If the expression is false, the same procedure is followed for any further :catcn1f blocks in the
sequence. If none of the tests is true, the :catcnai1 block (if any) is executed. It is permissible to
have as many :catchIf sections as you like.

Typically, you use the :catch1f statement to catch specific types of error, by looking at OLER or DET.
See the section Error trapping using :Try..:EndTry for more information.

APLX Language Manual 82

Miscellaneous keywords

The :coTo keyword (followed by a line label name) can be used to branch directly to a label. It is
equivalent to using a conventional APL » symbol to branch to a label. You can branch to a label inside
the same control structure, or to a label outside the control structure, but not to a label which is more
deeply nested than the line you are branching from.

The :return keyword causes the current function execution to terminate. It is equivalent to a
conventional APL branch to line 0.

Named loops

Normally the :continue and :Leave keywords apply to the current loop in which they are executed,
so that if you have a loop nested within a loop, execution resumes at the start or end of the innermost
loop. However, you can also name loops by including a label at the start line, and follow the
:Continue OF :Leave With the name to apply it to a particular level of nesting. In this example, if the
: 1 clause is true, execution continues at line 9:

vITERATE;N
[1] OUTER: :Repeat
[2] :For N :In SAMPLES
[3] :If INTERRUPTED
[4] :Leave OUTER
[5] :EndIf
[6] e
[7] :EndFor
[8] :EndRepeat
[9] ...
Errors

If there is an error in the usage of structured keywords, APLX will report a STRUCTURED CONTROL
ERROR. This typically arises if the keywords at the beginning and end of the block do not match up
correctly, or if you branch to a line label within a control structure without executing the initial
keyword line at the start of the block.

Note that APLX does not prevent you from fixing a function which is syntactically incorrect.
However, the APLX editor will warn you of mismatched structured-control keywords if you select
‘Clean up indentation' from the Edit menu (Ctrl-1 in Windows, Cmd-I under MacOS).

APLX Language Manual 83

System commands

APLX supports a range of commands ('system commands') which are used to communicate directly
with the system. They are not part of the APL language itself. APL system commands start with a
right parenthesis:

)SAVE

The display generated by a system command cannot directly be used as the argument to a function.
However, in APLX, system commands can be executed using the ¢ (execute) primitive:

vLIB
[1] a Show contents of library 0
[2] ¢')LIB'
[3] v

The output from executed system commands can be captured in a variable or passed as an argument to
a function:

Xes')SYMBOLS'
X
IS 1026, USED 21

See the reference section on System Commands for a full list of available commands.

APLX Language Manual 84

System Functions and Variables

APL system functions implement a wide variety of system-related or utility features. They are built-in
to the APL interpreter, but often call out to the operating system to perform some function (such as
reading from a database, or fetching the current date and time). They have names of one or more
characters and start with a O (OBOX OTS OWS etc).

System functions can be niladic, monadic or dyadic.

See the reference section on System Functions and Variables for a full list.

APLX Language Manual 85

System Methods

Just as traditional APL interpreters have system variables and system functions (whose names all
begin with the 0O character), system methods are pre-defined methods (also with names beginning with
0) which apply to internal user-defined object classes, and in most cases to external classes as well.

You can call a system method exactly as you would call an ordinary method of a class, either using
dot notation (for example MyPoint .OCLASSNAME), or (within a user-defined class method) by simply
using the system method's name such as OCLASSNAME (equivalent to OTHIS.OCLASSNAME).

System methods can be niladic, monadic or dyadic.

See the reference section on System Methods for a full list.

APLX Language Manual 86

System Classes

A System Class is a pre-defined class which is part of APLX. They are mostly used for user-interface
programming. Examples are the Form, Timer, ChooseColor and chart classes. (In previous versions
of APLX, these classes were accessed through OwI. Although you can continue to use OWI, you may
find the new class-based syntax more readable and more consistent.)

To create an instance of a top-level System class (such as a Form or a pre-defined dialog), you provide
the name of the class as the right argument to ONEW, and use 'O0" as the left argument to indicate that
this is a System class:

DLG«'O' ONEW 'ChooseColor'
DLG.ONL 3

Close

Create

Delete

New

Open

Send

Set

Show

Trigger

You can then use dot notation to access the properties and methods of the object:

DLG.colore«234 23 56
DLG. Show
1

See the separate manual on System Classes and User-Interface Programming for more details.

APLX Language Manual 87

Files and Databases

APLX offers a range of features for accessing data in files. These include facilities both for storing and
retrieving data within your APL applications, and for exchanging data with other applications. They
include:

Component Files

For simple APL applications, you can often keep all the data you need in the current workspace in
APL variables. However, for more sophisticated applications, this may not fit your requirements. For
example, if you wrote a suite of functions which produced monthly profit and loss accounts, you
might want to store the data for each month separately. You could arrange to keep the data in a series
of stored workspaces, but you would not want to replicate the functions in each of these workspaces.

Component files provide an efficient and easy-to-use method to store APL variables (of any type,
shape, and size) in a file, and read them into the workspace when they are needed. Each individual
item in the file is known as a component. A single number may constitute one component, while a
matrix containing several thousand numbers may be its next door neighbour.

Functions, operators and classes can also be stored in component files, but they must first be converted
into character arrays by the system function OCR, or stored via the overlay system function, Oov.

APLX supports two different component file systems. The first is based on system functions such as
OFTIE. It uses a syntax which is compatible with APL interpreters from other vendors.

The second of these is based on the file-access primitives B B B @, as implemented in the predecessor
to APLX, APL.68000.

For more information, see the separate section on Component File Systems.

Native Files

‘Native' files are operating-system files which are not necessarily associated with APL, and which are
typically used for exchanging data with non-APL applications. For example, they might include text
files, HTML pages, or binary files produced by a Fortran application. Unlike component files (which
retain information about the type and shape of APL data), the structure of native files is unknown to
APLX, so you as the programmer are responsible for specifying how the data should be interpreted.
For example, you can specify that you want to read the first four bytes of a file as an integer, and the
next 32 bytes as a character vector.

See the section on Native File Functions for details.

APLX Language Manual 88

System Functions for Data Import/Export

Although native files provide a general, low-level way to exchange data with other applications, there
are a number of common file formats for which APLX provides an easier alternative, by means of the
OIMPORT and OEXPORT functions. These allow you to read or write the entire contents of a file in a
single call. They support a number of common file formats, for example Unicode text, or Comma-
Separated Variable (CSV) files used for spreadsheets. The advantage of 0IMPORT and OEXPORT is that
you do not have to write any code to interpret the file format yourself, since APLX already has the
necessary logic built-in.

Accessing Database Records

Much of the data in modern computer systems, especially for large commercial applications with
many thousands of records, is held in relational databases. These are accessed and updated using SQL
(‘Structured Query Language'). You can easily interface to such databases by using the O0SQL system
function. This allows you to read and write records in most major commercial database systems
including Oracle, SQL Server and DB2, as well as open-source databases such as MySQL and
PostgreSQL. You can also exchange data with popular desktop file systems such as Microsoft Access.

Other facilities

In addition to the above facilities for directly reading and writing data into the APL workspace, APLX
provides a number of System Classes which can manipulate specific types of files such as images and
movies. See the documentation on the Picture, Movie, Image classes in the separate manual System
Classes and User-Interface Programming.

APLX Language Manual

Section 2: APL Primitives

89

APLX Language Manual

+ Conjugate

One-argument form See also two-argument form Add

+ returns the value of the numeric expression to its right. (See also O output which can be used for a
similar purpose.) Contrast the first example below, which places the result of a multiplication in
COST, but does not display it, with the second:

COST « 320x8.56 (No result displayed)
+COST « 320x8.56 (Result displayed)
2739.2
+(71 0 17) (2 3p16) (Argument displayed unchanged)
10 17 123
456

+ Add

Two-argument form See also one-argument form Identity (Conjugate)

Adds the numbers in the right and left-hand arguments:

12+3 (Adds two scalars)
15
372+01 "4 (Adds the corresponding numbers
38 72 in vectors of equal size)
11+65 23 98 3 (Adds 11 to each number 1in a vector)
76 34 109 14
TABLE « 2 3 p 1 6 (Puts the numbers 1 to 6 in TABLE)
10+TABLE (Adds 10 to each number +in TABLE)
11 12 13
14 15 16
TABLE+TABLE (Adds corresponding numbers in
2 46 matrices of equal size and dimensions)
8 10 12
1 +5 (2 2 p14) (15) (Scalar left argument added to all
6 2 3 2345686 elements of right argument)
4 5
2 345 (2 2 pr4) (15) (Arguments must be the same length)

LENGTH ERROR

2 3+5(2 2p14)(15)

A

(2 2p14) 10 (5p3)+5 (2 2 pir4) (15)

11 12 4567 8 (Corresponding elements added)
13 14

O

APLX Language Manual

- Negate

One-argument form See also two-argument form Subtract

Reverses the signs of the right-hand argument:

- 56 2
75 6 T2
- "14 761
174671
-(T11 17 723) (2 3p73+16)
11 ~17 23 2 1 0

1 2 3

- Subtract

Two-argument form See also one-argument form Negate

Subtracts the number(s) in the right-hand argument from the number(s) in the left-hand argument:

240-1 (Subtracts one number from another)
239
8 4 6-1 0 2 (Subtracts each number in a vector from
74 4 the corresponding number in a vector of
equal size)
22 “4 15-1 (Subtracts 1 from each number 1in a
21 75 14 vector of numbers)
TABLE « 3 3 p 1 9
100-TABLE (Subtracts each number in a matrix
99 98 97 from a scalar)
96 95 94
93 92 91
TABLE-TABLE (Subtracts each number in a matrix
000 from the corresponding number in a
000 matrix of equal size and dimensions)
000
1 -51(2 2 pr4) (15) (Each element 1in the right argument is
4 01 017273 74 subtracted from 1)
T2 73

2 3-5 (2 2 pr4) (15) (Arguments must be the same length)
LENGTH ERROR
2 3-5(2 2p14)(15)
A
(2 2p14) 10 (5p3)-5 (2 2 pr4) (15)
4 73 98 21071 2 (Corresponding elements subtracted)
271 7 6

Note: Remember that APL uses a special symbol (the high minus ~) to indicate negative numbers.

You will see some examples above.

92

APLX Language Manual 93

x Sign of

One-argument form See also two-argument form Multiply

Shows the sign of the number(s) in the right-hand argument. Each positive number is represented by a
1, each negative number by a "1 and each zero by a 0.

x33 98 0 75
11071
x(733.1 0 27) 55 (2 2p 2+14)
101 1 1 0
1 1

x Multiply

Two-argument form See also one-argument form Sign of

Multiplies the number(s) in the right-hand argument by the number(s) in the left- hand argument.

23.8x0.12 (Multiplies one number by another)
2.856

12 8 39x9 81 2 (Multiplies each number in a vector by
108 648 78 the corresponding number in a vector of

equal size)

12x89 91 "2 87 (Multiplies a scalar by each number in
1068 1092 24 1044 a vector)

TABLE « 3 5 p v 15

TABLE x 5 (Multiplies each number 1in a matrix
5 10 15 20 25 by a scalar)

30 35 40 45 50
55 60 65 70 75

TABLExTABLE (Multiplies each number in a matrix
1 4 9 16 25 by the corresponding number 1in a matrix
36 49 64 81 100 of equal size and dimensions)

121 144 169 196 225
2 x5 (22 p14) (15) (Multiplies every element 1in the right

10 24 246810 argument by 2)
6 8
2 3 x5 (22 pr4) (15)
LENGTH ERROR (Arguments must be the same length)

2 3x5(2 2p14)(15)

A

(2 2p14) 10 (3p3)x5 (2 2 pr4) (13)
5 10 10 20 3609 (Corresponding elements multiplied)
15 20 30 40

APLX Language Manual

+ Reciprocal

94

One-argument form See also two-argument form Divide

Gives the reciprocal of the right-hand argument, that is, the result of dividing 1 by each number in the

right-hand argument.

2
0.5

£10 51 71
0.10.21"71

+.5 .25 .01
2 4 100

+(2 2p1 2 4 5)(+14)
1 0.5
0.25 0.2

(Reciprocal of 2, ie 1 divided by 2)
(Reciprocal of each number 1in a vector)
(Reciprocal of each number 1in a vector)

(Reciprocal of each element in the vector)
1234

If the right argument contains a zero, APLX will generate a DOMAIN ERROR.

+ Divide

Two-argument form See also one-argument form Reciprocal

Divides the number(s) in the left-hand argument by the number(s) in the right- hand argument.

9+3
3
0+0
1
21 15 75 13+5
4.2 315 2.6
12 8 24+2 8 6
6 14
TABLE « 2 5 p 1 10
TABLE=+10
0.1 0.2 0.3 0.4 0.5
0.6 0.7 0.8 0.9 1
TABLE=+TABLE
11111
11111
1 +5 (15)
0.2 1 0.5 0.3333333333 0.25
2 3:5 (14) (15)

LENGTH ERROR
2 3:5(14)(15)

A

(One number 1is divided by another)
(This is a special case)

(Division of each number 1in a vector by

a single number)

(Each number 1in one vector is divided by the
corresponding number 1in another vector)
(Numbers 1 to 10 assigned to TABLE.

(Each number 1in TABLE 1is divided by 10

(Each number in one matrix is divided by the
corresponding number in another of the same
size and dimensions)

(1 divided by each element on the right)

0.2

(Arguments must be the same length)

(14) 10 (13)+ 5 (2 2 pr4) (13)

0.2 0.4 0.6 0.8 10

5 111

3.333333333 2.5

APLX Language Manual 95

(Corresponding elements divided)

If the right argument contains a zero, APLX will generate a DOMAIN ERROR.

[Ceiling

One-argument form See also two-argument form Greater of

The number or numbers in the right-hand argument are rounded up to the next whole number.

[45.9
46
[73.8 (Note effect of rounding up on a
~3 negative number)
1.2 70.3 99.1 2.8 (Each number 1in a vector is rounded up)
2 0 100 3
[T0.5+1.2 0.3 9.1 2.8 (0.5 1is subtracted from each number
10093 before [is applied, producing
"true' rounding)
TABLE
62.8 3.0 2.9
9.1 7.3 0.01
[TABLE (Each number in TABLE 1s rounded up)
63 3 72
10 8 1
r(1.7 11.99 72.3) (2 2p71.1 17.3 0.1 103.4)
212 72 "1 18 (Each element is rounded up)
0 104

Comparison tolerance

When acting on a number which is very close to but slightly bigger than an integer, Ceiling may round
down to that integer rather than round up. This will happen if the argument is within comparison
tolerance of the integer, and is therefore considered in APL to be equal to it.

Effect on internal representation

See the description of L Floor for information on the internal representation of the result of Ceiling.

APLX Language Manual 96

[Greater of

Two-argument form See also one-argument form Ceiling

Finds the larger of two numbers. Each number in the right-hand argument is compared with the
corresponding number in the left-hand argument. The result is the larger number from each
comparison. (This operation is affected by OCT, the comparison tolerance)

87 [91
91
5T 79 (The negative number nearer 0
5 is considered the greater)
20 7 40 [91 3 41 (Each number +in a vector 1is compared
91 7 41 with the corresponding number 1in a
vector of equal size)
[/TABLE (The / operator used with T
62.8 9.1 to select the biggest in each row.
See the entry for /.)
2 T1 (2 2 pr4) (13) (The result of comparing 2 with each
2 2 2 223 element 1in the right argument)
3 4
2 32 (2 2 pr4) (13) (Arguments must be the same length)

LENGTH ERROR
2 372(2 2p14)(13)

A

(2 2p14) 3 (3)3 (2 2 p14) (3 21)
33 33 323 (Corresponding elements compared)
34 34

One-argument form See also two-argument form Lesser of

The number or numbers in the right-hand argument are rounded down to the next whole number.

L 45.9
45

L 2.3 (Note the effect on a negative number)
~3

L 1.2 70.3 99.1 2.8 (Each number 1in a vector is rounded
17199 2 down)

LO.5+1.2 0.3 99.1 2.8 (0.5 1is added to each number before
1099 3 L 1is applied to 1it, ensuring 'true'

rounding)
TABLE

62.8 3.0 2.9
9.1 7.3 0.01

L TABLE (Each number 1in TABLE 1is rounded down)
62 3 73

APLX Language Manual 97

9 7 0
L(T0.1 710.1 11.3 7.4) (2 2p70.3 2.8 99.1 "2.3)
1 711 11 7 1 2 (Each element 1is rounded down)
99 73

Comparison tolerance

When acting on a number which is very close to but slightly smaller than an integer, Floor may round
up to that integer rather than round down. This will happen if the argument is within comparison
tolerance of the integer, and is therefore considered in APL to be equal to it.

Effect on internal representation

If the argument to Floor or Ceiling is an array which is held internally in boolean or integer form, then
the result will always be represented in integer form and the numbers in the array will be unchanged.

If the argument to Floor or Ceiling is internally in floating-point form, then in general, provided all the
numbers within the argument are in the range of numbers which can be represented as integers, the
result will internally be represented as integers rather than floating points. Floor or Ceiling can
therefore be used to force the internal representation of numbers to integer form:

X€3.0 100.0 720.0
ODR X

Yel X
ODR Y

X

3 100 20
Y

3 100 20
X=Y

111

In this example, X is held internally in floating-point format, but Y is held internally in integer format.
The values of the array elements are, however, equal.

See ODR for more information on data representation.

Differences between 32-bit and 64-bit implementations of APLX

In the 32-bit version of APLX, numbers can be represented as integers if they are in the range
72147483648 t0 2147483647. If the argument to Floor or Ceiling contains numbers which round to
numbers outside this range, the result will internally be represented in floating-point format.

In the 64-bit APLX64 interpreter, numbers can be represented as integers if they are in the range
T9223372036854775808 t0 9223372036854775807. However, the floating-point representation of a
number is limited to 53 bits of precision, which is equivalent to saying that at 2«53 and above, several
integers all map to the same floating-point representation. For this reason, if the argument to Floor or
Ceiling is in floating-point form, and contains numbers whose magnitude is equal to or greater than
2+53, the result will be left in floating-point form so as not to introduce a spurious precision to
numbers which are inherently imprecise.

APLX Language Manual

In this example using APLX64, X is represented internally as a 64-bit integer, and Y is represented

internally as a floating-point number:

Xe2%53
X
9007199254740992
ODR X
2
YeXx1.0
Y
9.007199255E15
ODR Y
3
LY
9.007199255E15
ODR LY
3
LY-1
9007199254740991
ODR LY-1
2
L Lesser of

Two-argument form See also one-argument form Floor

Finds the smaller of two numbers. Each number in the right-hand argument is compared with the
corresponding number in the left-hand argument. The result is the smaller number from each
comparison. (This operation is affected by OCT, the comparison tolerance)

87 L 91
87
5L 9
79
20 7 40 L 91 3 41
20 3 40
TABLE1
0 "3 66
9 16 4
TABLE2
12 78 17
7 0 1
TABLE1 L TABLE2
0 "8 17
7 0 1

[EEY

—
N
NN
N ©

(The negative number further from 0

is considered the smaller)

(Each number +in a vector 1is compared
with the corresponding number 1in a

vector of equal size)

(Each number in a matrix is compared
with the corresponding number iin

a matrix with the same number of rows

and columns)

(Each element 1in the right argument is
compared with 2)

APLX Language Manual 99

| Absolute value

One-argument form See also two-argument form Residue

Makes any negative numbers in the right-hand argument positive.

| 2 74 77.8 3
2 47.83
[(T0.1 710.1 11.3 25) (2 2p710 3 745 2.1)
0.1 10.1 11.3 25 10 3
45 2.1

| Residue

Two-argument form See also one-argument form Absolute value

For positive arguments, gives the remainder resulting from dividing the right- hand argument by the
left-hand argument. When the arguments are of the opposite sign, the result is the complement of the
result that you would get if they had the same sign. So for non-zero results, you must subtract the
remainder from the divisor. (This operation is affected by OCT, the comparison tolerance)

3110 (The remainder of 10+3)
1
71 2450 25 (The remainder of dividing each
3504 number in a vector by 7)
317 2| 5 20 3 (The remainder after dividing each
231 number in a vector by the corresponding
number in another similar vector)
"7 | v 10
"6 5 4737271076 54
TABLE « 2 3 p 1 6 (The remainder of dividing each
4 | TABLE number in a matrix by 4)
123
012
TABLE | TABLE (The remainder after dividing each
000 number in a matrix by the
000 corresponding number 1in another)
2 11 (2 2 pr4) (13) (Divide every element by 2)
1 10 101
10
2 312 (2 2 pr4) (13) (Arguments must be of equal length)

LENGTH ERROR
2 312(2 2p14)(13)

A

(2 2p14) 3 (13)13 (2 2 p14) (3 2 1)
01 12 001 (Corresponding elements divided)
03 01

APLX Language Manual 100

1 Index generator

One-argument form See also two-argument form Index of

1 generates a series of integers which start at the index origin (010) and whose length is specified by
the right argument which must be 0 or a positive integer scalar. The examples below assume the
default index origin of 1 (see 010 for more details). The argument to + must be a simple numeric
scalar or one-element vector.

0Io (Default setting of 0OI0)
1

To generate the series from 1 to 10:

1 10
12345678910

To generate the series 1 to 5 to be used in selecting the first five elements from a vector (see separate
entry for [1):

PRICE<29 4 61 5 88 2 18 90 3 201 12 53 27 80
PRICE[v 5]
29 4 61 5 88

To generate a vector of five elements containing the series 1, 1 2, and so on, use the " (‘each’) operator.

1715
1 12 123 1234 12345

A common mechanism to generate an empty vector is:

10
(No display)

1 Index of

Two-argument form See also one-argument form Index generator

1 finds whether the items in the right argument occur in the left argument (which must be a vector)
and if so in what positions. For each element in the right argument a number is returned showing its
position in the left argument. If an element is not found in the left argument (or if the arguments are of
different types), a number one greater than the position of the last element in the left argument is
returned. The shape of the result is the same as that of the left argument.

APLX Language Manual 101

The result of dyadic 1 is influenced by 010, which will control whether the index positions start at O or
1 - for more details see the entry for 010. The comparisons done by this operation are affected by OCT,
the comparison tolerance value.

25914 2019

3 (9 1is 1in position 3)
259 14 20 v 12 (12 isn't 1in the left argument, so a
6 number 1 greater than the number of

elements on the left results)
"GORSUCH'" 1+ 'S’
4 (S occurs 1in position 4)

"ABCDEFGHIJKLMNOPQRSTUVWXYZ' v 'CARP'
3 118 16 (The characters 'CARP' are 1in positions
3118 and 16)

' ABCDEFGHIJKLMNOPQRSTUVWXYZ' v 'PORK PIE'

16 15 18 11 27 16 9 5 (The 27 1in the result indicates
characters not found in the 26-character
left argument. In this case the 'space'
character.)

DAYS«<'MON' 'TUES' 'WED'

oDAYS
3 (DAYS is a 3 element vector)

DAYS v 'MON' 'THURS' ('"MON' found 1in first position, 'THURS'
14 is not found)

See = (Match) for a discussion of the criteria which determine whether two elements are considered
the same.

? Roll

One-argument form See also two-argument form Deal

Generates numbers chosen at random from the series of the first N integers which start at the index
origin (0I10),where N is specified by the right argument. In the examples below 010 is set to 1, the
default.

? 100 (Generates a random number between 1
14 and 100)
? 10 100 1000 (Generates 3 random numbers, the first
10 39 520 between 1 and 10, the second between
1 and 100, the third between 1 and 1000)
DATA « ?100 p 100 (Generates 100 random numbers 1in the range

1 to 100 - not necessarily unique)
2(3p5) (2 3p10)
143 6 3 1
7 7 10

Note: The system variable ORL (random link) contains a value used to generate random numbers. To
generate the same number(s) on two occasions, set ORL to the same value before each use of 2.

APLX Language Manual 102

? Deal

Two-argument form See also one-argument form Roll

Generates as many random numbers as are specified in the left-hand argument from the first N
numbers starting at 010, where N is specified in the right-hand argument. Each number generated is
unique; that is to say there are no repetitions. The left and right arguments must be simple numeric
scalars or one-element vectors.

10 ? 100 (A request for 10 unique random numbers
46 54 22 5 68 94 39 52 84 4 in the range 1 to 100, assuming OI0 is 1)
LIST « 3 ? 10 (3 random numbers between 1 and 10

are put 1in LIST)
BINGO«4 4p16?7100

BINGO (16 random numbers between 1 and 100
41 12 46 71 are put into a 4-by-4 matrix called
6 54 68 4 BINGO)
63 94 87 58
21 70 50 75
4 ? 3 (A request for 4 unique integers in
DOMAIN ERROR the range 1 to 3 causes an error)

Note: The system variable ORL (random link) contains a value used to generate random numbers. To
generate the same number(s) on two occasions, set ORL to the same value before each use of 2.

ORL « 12345
5 ? 10000
97 834 948 36 12
ORL « 12345
5 ? 10000
97 834 948 36 12

* Exponential

One-argument form See also two-argument form Power

Returns the mathematical constant e (approximately 2.718) raised to the power of the right argument.

« 1

2.718281828 (e to the power of 1 1is e itself)
* 2

7.389056099 (e squared)
*13 (e to the power 1 2 3)

2.718281828 7.389056099 20.08553692
*(12) (2 2pr4)
2.718281828 7.389056099 2.718281828 7.389056099
20.08553692 54.59815003

APLX Language Manual 103

* To the power of

Two-argument form See also one-argument form ‘e’ to power

Raises the left-hand argument to the power of the right-hand argument.

2 = 3 (2 to the power 3, or 2 cubed)
8

"1+ 234
1711 (71 to the power 2 3 4)

2 » 0.5
1.414213562 (Square root of 2)

2 46 8 16 * 2
4 16 36 64 256 (Square of 2 4 6 8 16)

“1%0.5 (No unreal number result allowed)
DOMAIN ERROR

“1+0.5

A

If the right argument is negative, the result is the reciprocal of the result obtained from using a right
argument which is the absolute value of the negative argument.

2% 3
0.125

+2%3 (Reciprocal of 2%3)
0.125

((13)(2 2p14))*2
149 1 4
9 16

o Natural log

One-argument form See also two-argument form Log to the base

Finds the natural logarithm, that is the log to the base e, of the number or numbers in the right-hand
argument (e is approximately 2.7182). The numbers must be positive.

e 10 (Finds the log to base e of 10)
2.302585093

e 3 918 (Finds the log to base e of 3 9 and 18)
1.098612289 2.197224577 2.890371758

e 3.3 (Finds the log to base e of 3.3)

1.193922468
(2 2p14) (13)
0 0.6931471806 0 0.6931471806 1.098612289
1.098612289 1.386294361

APLX Language Manual

@ Log to the base

Two-argument form See also one-argument form Natural Logarithm

104

Computes the log of a number or numbers to an arbitrary base. The left-hand argument is the base and

the right-hand argument is the number whose log is to be found.

39 (The log of 9 to the base 3)
2

2 345 684 9 16 25 36 (The log of each number on the right to
22222 the corresponding base on the left)

2 2 48 16 32 64
1234586

2 & 13.9

3.797012978
2 30(2 2p2 4 8 16) (3 9 27)

12 123
34 (Corresponding elements of left and right
arguments used as successive arguments to
the e function)
o Pi times

One-argument form See also two-argument form Circular & Hyperbolic functions

The value of pi (approx. 3.141592654) is multiplied by the right-hand argument.

o1 (pi times 1 1is pi)
3.141592654

o+4 (pi divided by 4, or 45 degrees, iin
0.7853981634 radians)

o123 (pi times each number in the vector)

3.141592654 6.283185307 9.424777961

10 30 45x0+180 (converts 10 20 45 degrees to radians)

0.1745329252 0.5235987756 0.7853981634

APLX Language Manual 105

o Circular and Hyperbolic functions

Two-argument form See also one-argument form pi times

This form of o provides you with a group of related functions. The left argument identifies which of
these functions you wish to use, the right argument is the data the function works on. (Data to
trigonometric functions is expressed in radians.)

Left argument 0 or positive Left argument negative
0 square root of 1-X*2
1 sin X “1 arcsin X
2 cos X “2 arccos X
3 tan X “3 arctan X
4 square root of (X*2)+1 “4 square root of (X*2)-1
5 sinh X "5 arcsinh X
6 cosh X "6 arcosh X
7 tanh X ~7 arctanh X
For example:
1 o o4 (45 degrees 1is o+4 radians and
0.7071067812 Sin of 45 degrees 1is l:root 2)

The functions 0o, 40, ~40 are known as the 'Pythagorean functions'. For example, given a right-
angled triangle with hypotenuse of length 1, the length of one of the other two sides is 0 o times the
length of the third side. Conversely, if one of the sides in the triangle adjacent to the right angle is of
length 1, the length of the hypotenuse is given by 4o times the length of the third side and the length of
the third side is ~4 o times the length of the hypotenuse.

Numeric Accuracy

Calculations of trigonometric functions are subject to accuracy limitations, especially near
mathematical singularities. In addition, for very large arguments, the circular functions become
meaningless because of limitations in the resolution of floating-point numbers, since the 'correct’
answer depends on bits which have been lost from the representation. For these reasons, APLX gives a
DOMAIN ERROR if you ask for the sine, cosine or tangent of a number greater than 2+51.

APLX Language Manual 106

| Factorial

One-argument form See also two-argument form Binomial

When applied to a positive whole number, ! gives the product of the whole numbers from 1 to that
number, inclusive.

13 (Equivalent of 1x2x3)
6

If the argument is non-integer and positive, ! gives the mathematical ‘gamma function' of the
argument + 1.

! 2.5
3.32335097

| Binomial

Two-argument form See also one-argument form Factorial or Gamma function

In its two-argument form, with positive arguments, ! tells you how many different ways there are of
selecting the number of items specified on the left from the population of items specified on the right.
The order of items in each pair is ignored. So if the population of four consisted of the letters AB C
D, the 6 possible combinations of 2 letters would be: AB AC AD BC BD CD. The combination BA
would be regarded as the same as AB.

21 4 (Number of unique pairs from a population
6 of 4)

3120 (Number of groups of three from a
1140 population of 20)

216 12 20 (Number of pairs from a population
15 66 190 of 6 12 20 respectively)

TABLE1l « 2 3p16
TABLE2 « 2 3 p 3 6 9 12 15 18

TABLE1 ! TABLE2 (TABLE1 1is table of group sizes, TABLE2
3 15 84 is table of populations)
495 3003 18564

Other cases, such as negative or non-integer arguments, are also catered for. The various results that
can be obtained are:

Left Right Right-Left Result

Argument Argument

tve tve +ve (!RIGHT)=+(!LEFT)x!RIGHT-LEFT
tve +ve -ve 0

+ve -ve -ve (T1+LEFT)xLEFT!LEFT-RIGHT+1

APLX Language Manual 107

-ve +ve +ve 0
-ve -ve +ve (T1+RIGHT-LEFT)x(|RIGHT+1)!(|LEFT+1)
-ve -ve -ve 0

B Matrix inverse

One-argument form See also two-argument form Matrix division

Produces the inverse of the matrix in the right-hand argument. The right argument must be a simple
numeric array. The inverse of a matrix is itself a matrix. It is constructed so that, if matrix-multiplied
by the original matrix, it gives the identity matrix, that is the matrix analogue of unity. In matrix
algebra, an inverse is usually found only for a square matrix. APL further defines a matrix inverse for
a matrix with more rows than columns. In this case the shape of the inverse is the reverse of the shape
of the matrix being inverted, and the expression:

(BY)+.xY

still gives the identity matrix. The result of the inverse is the left inverse.

TABLE
7 9 8
3 4 5
6 2 1
6 2 s B TABLE

.11 .12 .23

.47 .72 .19
.32 .70 .02

Matrix multiplication is carried out by the inner product operation +. x (see Inner product).

(B2 2p5 1 0 1)+.x2 2p5 1 0 1
10 (A matrix multiplied by its inverse gives
01 the unit matrix)

If the right argument to B is a scalar, the result is the reciprocal of the argument.

B2
0.5

If the matrix is singular (i.e. does not have an inverse), a DOMAIN ERROR will be reported. Note
that matrix inversion is subject to accuracy limitations imposed by the representation of floating-point
numbers and the algorithm used to calculate the result. In particular, matrices which are nearly
singular may give results of limited accuracy, and small changes to the input can produce very big
changes to the output.

APLX Language Manual 108

B Matrix divide

Two-argument form See also one-argument form Matrix inversion

The right and left-hand arguments are conformable simple numeric matrices (arrays of rank 2).
Vectors are treated as one column matrices and scalars are treated as matrices of shape 1 1. The result
is a matrix which, if matrix- multiplied by the right-hand argument, would yield the left-hand
argument.

O w
O ON

=
[=)
m oo

X8y

2
4
4

o N

This last operation is the same as

(BY) +.xX

which is another way of defining the operation.

An important use for matrix divide is to give the least squares solution to the set of simultaneous linear
equations:

B =A+.x X for a matrix A and vector B, or columns of
matrix B

The solution is:

B HA

If the matrix division does not have a solution, DOMAIN ERROR will be reported. Note that matrix
division is subject to accuracy limitations imposed by the representation of floating-point numbers and
the algorithm used to calculate the result.

APLX Language Manual 109

< Less than

Compares each element in the left-hand argument with the corresponding element in the right-hand
argument. If an element in the left-hand argument is less than the corresponding right-hand element,
the result of that comparison is 1. Otherwise it is 0. (This operation is affected by OCT, the comparison
tolerance)

12 <1
0

2 <12
1

12 < 12
0

117 25<11 326 (Compares each element 1in a vector with
0001 the corresponding element in a vector of

equal length)

3 < 74 (Compares negative numbers. The number
0 nearer 0 is considered the greater.)

8 < 2+2+2+2 (The right argument is evaluated
0 before the comparison is made)

TABLE « 2 3 p 123456

MABLE « 2 3 p 333555

TABLE < MABLE (Compares each element in a matrix

110 with the corresponding element 1in
00

1 a matrix of equal size and dimensions)
3<TABLE
000
111
3 < TABLE MABLE (Compares 3 with the elements of the
000 00O nested vector)
111 111

< Less than or equal

Compares each element in the left-hand argument with the corresponding element in the right-hand
argument. If an element in the left-hand argument is less than, or equal to, the corresponding right-
hand element, the result of that comparison is 1. Otherwise it is 0. (This operation is affected by OCT,
the comparison tolerance)

12 <1
0
2 <12
1
12 < 12
1
11 7 2 5<11 3 2 6 (Compares each element in a vector with

1011 the corresponding element in a vector of

APLX Language Manual

3

< 4

8 < 2+2+2+2

TABLE « 2 3
MABLE « 2 3
TABLE < MAB

3<TABLE

ABLE MABLE

p12345
p33355
E

110

equal length)

(Compares negative numbers. The number
nearer 0 is considered the greater.)
(The right argument 1is evaluated
before the comparison 1is made)

Compares each element in a matrix
with the corresponding element 1in
a matrix of equal size and dimensions)

(Compares 3 with the elements of the
nested vector)

Compares each element in the right-hand argument with the corresponding element in the left-hand
argument and returns 1 if they are equal, O if they are not. (This operation is affected by OCT, the
comparison tolerance)

This function works on both numeric and character data. A numeric element is never considered equal
to a character element.

0
1

o o

o

0
00

00
00

o

1
0

11729=11326

0

'S
0
8

TABLE<«2 3pl1 2
MABLE«2 3p3 3

T
1

OAT' = 'TOAST'

2+2+2+2

TABLE = MABLE

3=TABLE

3

o

TABLE MABLE
11
00

3456
3555

(Compares character data)

(Comparisons between numeric and character
data are allowed, but always give 0)
(Compares each element 1in a vector with
the corresponding element in a vector of
equal length)

(The right argument 1is evaluated
before the comparison 1is made)

(Compares each element in a matrix
with the corresponding element in
a matrix of equal size and dimensions)

(Compares 3 with the elements of the
nested vector)

See also the = (match) function which tests for depth, rank and shape equality as well.

APLX Language Manual 111

If the arguments contain object (or class) references, the elements are considered equal if the reference
indices are the same, i.e. if they refer to the same entry in APL's internal table of objects. For internal
objects, this will be true if and only if the elements refer to the same object. Note that different objects
which happen to contain the same properties are not considered equal. For example, if Point is a
simple class with properties X and Y:

PT<ONEW Point
PT.Xe63 o PT.Ye«42

A<PT
B<PT.OCLONE 1
A.0ODS
X=63, Y=42
B.ODS
X=63, Y=42
A=PT A References to the same object
1
B=PT A Objects are different, but have the same property values
0

For external objects, there might be two references which APL does not know refer to the same object.
Therefore the use of the APL Equals primitive on external objects is not recommended.

2 Greater than or equal

Compares each element in the left-hand argument with the corresponding element in the right-hand
argument. If an element in the left-hand argument is greater than, or equal to, the corresponding right-
hand element, the result of that comparison is 1. Otherwise it is 0. (This operation is affected by OCT,
the comparison tolerance)

12 > 1
1
2 212
0
12 > 12
1
117 25 =>2113 26 (Compares each element in a vector with
1110 the corresponding element in a vector of
equal length)
“3x74 (Compares negative numbers. The number
1 nearer 0 is considered the greater.)
8 > 2+2+2+2 (The right argument 1is evaluated
1 before the comparison is made)
TABLE « 2 3 p 123456
MABLE « 2 3 p 333555
TABLE > MABLE (Compares each element in a matrix
001 with the corresponding element 1in
011 a matrix of equal size and dimensions)
3>TABLE
111
000
3 > TABLE MABLE (Compares 3 with the elements of the
111 111 nested vector)
000 00O

APLX Language Manual 112

> Greater than

Compares each element in the left-hand argument with the corresponding element in the right-hand
argument. If an element in the left-hand argument is greater than the corresponding right-hand
element, the result of that comparison is 1. Otherwise it is 0. (This operation is affected by OCT, the
comparison tolerance)

12 > 1
1
2 > 12
0
12 > 12
0
117 25 >113 26 (Compares each element in a vector with
0100 the corresponding element in a vector of
equal length)
3> 74 (Compares negative numbers. The number
1 nearer 0 is considered the greater.)
8 > 2+2+2+2 (The right argument 1is evaluated
0 before the comparison is made)
TABLE « 2 3 p 123456
MABLE « 2 3 p 333555
TABLE > MABLE (Compares each element in a matrix
000 with the corresponding element in
001 a matrix of equal size and dimensions)
3>TABLE
110
000
3 > TABLE MABLE (Compares 3 with the elements of the
110 000 nested vector)
000 0O00O
Not equal

Compares each element in the right-hand argument with the corresponding element in the left-hand
argument and returns 1 if they are not equal and 0 if they are. (This operation is affected by OCT, the
comparison tolerance function)

12 # 12
0
2 # 12
1
Q' £ 'Q' (Compares character data)
0
11 7 2 9#11 3 2 6 (Compares each element in a vector with
0101 the corresponding element in a vector of

equal length)
"STOAT' # 'TOAST'
11110

APLX Language Manual 113

8 # 2+2+2+2 (The right argument 1is evaluated
0 before the comparison +is made)
TABLE « 2 3 p 123456
MABLE « 2 3 p 333555
TABLE # MABLE (Compares each element in a matrix
110 with the corresponding element 1in
101 a matrix of equal size and dimensions)
3#TABLE
110
111
3 # TABLE MABLE (Compares 3 with the elements of the
110 000 nested vector)
111 111
= Depth

One-argument form See also two-argument form Match

Depth is used to indicate the level of nesting. For a simple scalar, depth is 0. For other arrays, the
depth of the array is 1+ the depth of the item of maximum depth in the array.

=4 (Depth of a scalar is 0)
0

=14 (Depth of a vector is 1)
1

=2 2p16 (Depth of a matrix is 1)
1

='ABC' 1 2 3 (23 55) (Maximum depth 1is 1+ depth of a vector)
2

"ABC' (2 4p('ABC' 2 3 'K'))
ABC ABC 2 3 K (Maximum depth object within the array is

ABC 2 3 K 2 - a matrix)

='ABC' (2 4p('ABC' 2 3 'K'))
3 (Overall depth 1is thus 3)

See also p (shape) to enquire about the shape of an array.

= Match

Two-argument form See also one-argument form Depth

The match function will test whether its arguments are the same in every respect - depth, rank, shape
and corresponding elements. The result is always a scalar 1 or 0.

3=3 (Two scalars are identical)

3=,3 (Scalar does not match a vector)

APLX Language Manual

47.18z=417.238
(3 4p112)=3 4pr12

(3 4 p112)=zc3 4p112

114

(Shape 1is the same but values are not)
(Two matrices are identical)

(Simple matrix does not match an enclosed

0 version of itself)
VEC<'ABC' 'DEF' (Two element vector of 'ABC' 'DEF)

VEC
ABC DEF

pVEC (Length 2)
2

VEC="'ABCDEF" (Does not match the 6 element vector
0 "ABCDEF ")

Empty arrays are considered the same only if they have the same type, rank, shape and prototype.

(v0)="" (Types are different)
0

(2 0p0)=0 2p0 (Shapes are different)
0

(0pcl 2 3)=0pc2 2pr4 (Prototypes are different)
0

The comparisons done by this operation are affected by OCT, the comparison tolerance value.

If the arguments contain object (or class) references, the elements are considered equal if the reference
indices are the same, i.e. if they refer to the same entry in APL's internal table of objects. For internal
objects, this will be true if and only if the elements refer to the same object. Note that different objects
which happen to contain the same properties are not considered equal.

Z Not Match

The Not Match function £ will test whether its arguments are different in any respect - depth, rank,
shape or corresponding elements. The result is always a scalar 1 or 0. It is equivalentto ~L = R

3£3

3£,3

4 7.1 8 £ 4 7.2 8
(3 4p112)£3 4pr12
(3 4 p112)#c3 4p112

VEC«'ABC' 'DEF'
VEC

ABC DEF

pVEC

VECZ ' ABCDEF'

(Two scalars are identical)

(Scalar does not match a vector)

(Shape 1is the same but values are not)
(Two matrices are identical)

(Simple matrix does not match an enclosed
version of itself)

(Two element vector of 'ABC' 'DEF)
(Length 2)

(Does not match the 6 element vector
' ABCDEF ')

APLX Language Manual 115

The comparisons done by this operation are affected by 0OCT, the comparison tolerance value.

See = Match for more information on how the comparisons are done.

€ Enlist

One-argument form See also two-argument form Membership

Enlist produces a vector containing every element from every item in its argument. None of the
properties of an array are preserved - rank, shape or depth. The result is always a simple vector. Note
that empty vectors in the argument do not appear in the result.

A<(1 2 3) 'ABC' (4 5 6)

pA (Length 3 vector containing 3 length 3
3 vectors)
peA (Enlist produces one 9 element vector)
9
Be«2 2p(2 2p14) 'DEF' (2 3p16) (7 8 9)
B
12 DEF
34
123 789
456
pB
2 2
€B (Enlist produces a 16 element vector,
1234DEF 123456789 processing the rows first - as ravel)
peB
16

For simple arguments, enlist is the equivalent of the ravel (,) function.

Enlist can be used for selective specification.

(eA)er9 (A as above)
A
123 456 72829
pA (Shape preserved)

3

APLX Language Manual 116

€ Membership

Two-argument form See also one-argument form Enlist

Checks on whether a data element exists in the right argument. It returns 1 for each element of the left
argument found in the right argument and O for each element of the left argument not found in the
right argument. (This operation is affected by OCT, the comparison tolerance)

The arguments compared need not have the same number of elements, nor need they have the same
number of dimensions. The result has the same shape as the left argument. See = (Match) for a
discussion of the criteria which determine whether two data elements are considered the same.

4 € 4 45

1 (1 means 4 is found 1in 4 4 5)
'"A' € '"ABRACADABRA'

1 (A is 1in ABRACADABRA)
'ABRACADABRA' € 'A'

10010101001

(Elements 1 4 6 8 and 11 of the left-hand argument occur in the right-hand argument.)

'A B C' € 'ABCDE'
10101 (The 0s represent spaces in 'A B C'
which don't occur in 'ABCDE')
12 24 36 € 6 12 18 24 30 36
111 (Vectors don't need to have the same
number of elements)
TABLE « 33 p 12345672829
36 9 € TABLE

111

TABLE € 3 6 9 (Notice that the result always has
001 the same shape as the left-hand
001 argument)
001

"4' € 110 (The character '4' does not appear in
0 the numeric vector 110)

NAMES«'JOHN' 'MARY' 'HARRY'

pNAMES (3 element vector)
3

"MARY 'eNAMES (None of the 4 characters 'MARY' are
0000 elements in NAMES)

(e"MARY')eNAMES (The scalar containing 'MARY' does exist in
1 NAMES)

NAMESec'MARY' (Those elements of names which contain the
010 scalar 'MARY')

'MARY"' 'JIM' '"JOHN' e NAMES
101 ('JIM' not found in NAMES)

APLX Language Manual 117

€ Find

Find searches for instances of the left argument within the right argument. A boolean result is returned
with a 1 where the start of the left argument is found in the right argument. The shape of the result is
the same as the shape of the right argument.

'"ME'€
001000

WEEK
SUNDAY
MONDAY
TUESDAY
WEDNESDAY
THURSDAY
FRIDAY
SATURDAY

'DAY

"HOME AGAIN' (Find the pattern 'ME' in 'HOME AGAIN')
0000

m
~

(Find the pattern 'DAY' 1in WEEK)

[eNeNeNeNoNoNoe)
[e>NeNeNoNoNo Nl
OO OO OOOo
QOO FrRPOOOIMm

oo ocoocoocoo=<

>
< OoOoOooooom

MO OO OKr OO

=T ORrRPROOORrE
7~
m

m

(WEEK not found in 'DAY' - wrong rank)

000

The arguments can be of any rank, but € always searches for the whole of the left argument in the right
argument.

(1 2) (3 4) € "START' (1 2 3) (1 2) (3 4)

0010 (Search within nested vector)
MAT

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 19 20
(2 2p7 8 12 13)eMAT (Search pattern is a matrix)

00000 (1 shows top left corner)
01000
000O0O
00000

See also the system function 0SS for string search operations on vectors.

APLX Language Manual 118

u Unique

One-argument form See also two-argument form Union

Unique is used to remove duplicated items from a vector. The result is a vector containing all the
unique items in the argument, in the order in which they first appear. The argument must be a vector
(or scalar).

When the argument is nested, an exact match in data and structure must be found before an item is
removed as a duplicate. This operation is affected by OCT, the comparison tolerance.

u'THE QUALITY OF MERCY IS NOT STRAINED'
THE QUALIYOFMRCSND

ul 4 17 23 12 4 2 7 99 33 "1 4 17 99 100 101
1417 23 12 2 7 99 33 "1 100 101

u'THIS' 'THAT' 'THE' 'OTHER' 'OTHER' 'THAN' 'THIS' 'AND' 'THAT'
THIS THAT THE OTHER THAN AND

See also the other 'set’ operations: v Union, n Intersection and ~ Without .

v Union

Two-argument form See also one-argument form Unique

Union returns all items which can be found in both the left and right arguments. The right argument
can be of any shape or rank. The left argument must be a scalar or vector. The result is always a
vector.

The result first contains all the items in the left argument (in the order in which they appear), followed
by all the items found in the right argument but not in the left argument. If a particular item appears
more than once in the left argument, it will also appear more than once in the result. Equally, if a
particular item does not appear in the left argument, but does appear multiple times in the right
argument, it will appear multiple times in the result.

This operation is affected by OCT, the comparison tolerance.

'"THE QUALITY OF MERCY IS NOT STRAINED'u'HIP HOP DOWN TO THE ZO0O'
THE QUALITY OF MERCY IS NOT STRAINEDPPWZ

1417 2312 2 7 99 33u™1 4 17 99 100 101
1417 23 12 2 7 99 33 "1 100 101

APLX Language Manual 119

'"THIS' 'THAT' 'THE' 'OTHER'u'OTHER' 'THAN' 'THIS' 'AND' 'THAT'
THIS THAT THE OTHER THAN AND

Odisplay (23 43 21) (15) (2 2p'BLOT') u (15) ('BLOT')

> > > >
[23 43 21 [1 2345 TBL BLOT
oT

>

See also the other 'set' operations: v Unique, ~ Without and n Intersection.

n Intersection

Intersection returns a vector containing all those items in the left argument which can also be found in
the right argument. The right argument can be of any shape or rank. The left argument must be a scalar
or vector. The result is always a vector.

The items are returned in the order in which they appear in the left argument. If a particular item
appears more than once in the left argument, it will also appear more than once in the result.

When the arguments are nested, an exact match in data and structure must be found for two items to
be considered identical. This operation is affected by OCT, the comparison tolerance.

"THE QUALITY OF MERCY IS NOT STRAINED'n'AEIOU'

EUAIOEIOAIE
A«'THIS' '"AND' 'THAT'
AT
A (No match for the single character T)
An"AND'
A (No match for any of the three characters A N D)
Anc'AND'
AND

1417 23 12 2 7 99 33n2 2p14
142

See also the other 'set’ operations: v Unique, v Union and ~ Without.

APLX Language Manual 120

~ Not

One-argument form See also Without

The right argument must consist only of the numbers 1 or 0. The effect of ~ is to change each 1to 0
and each O to 1.

~1
0
~1110 (Each 1 in a vector 1is changed to 0
0001 and each 0 to 1)
TABLE
111
000
101
~TABLE (Each 1 1in a matrix 1is changed to 0
000 and each 0 to 1)
111
010
~ Without

Two-argument form See also Not

Without is used to remove items from a vector. Items in its left argument which are found in its right
argument are removed from the result. When the arguments are nested, an exact match in data and
structure must be found before an item is removed. The right argument can be of any shape of rank.
This operation is affected by OCT, the comparison tolerance.

"ABCDEFGHIJKLMNOPQRSTUVWXYZ'~"'AEIOU'

BCDFGHJKLMNPQRSTVWXYZ (Vowels removed)
123456+~214°6

135 (Even numbers removed)
'THIS IS TEXT'~" '

THISISTEXT (Removal of blanks - see also ODBR)
A<'THIS' 'AND' 'THAT' (Three element nested vector)
A~|Tl

THIS AND THAT (No match for the single character T)
A~"AND'

THIS AND THAT (No match for the length three vector)
A~c'AND'

THIS THAT (Match found for nested scalar <'AND')
A~'TH' 'AND'

THIS THAT

See also the other 'set’ operations: v Unique, v Union and n Intersection.

APLX Language Manual

v Or

Compares two arguments which must consist only of 0's and 1's. If either or both elements compared

are 1's, the result for that comparison is 1. Otherwise the result for that comparison is 0.

= o

A And

o O

= o

0

0o0o010vil1ii1110 (Each element 1in a vector 1is compared
10 with the corresponding element 1in a
vector of equal size)

TABLE « 3 3p 111000101
0 v TABLE (Each element in a matrix is
compared with 0)

vA\0 001 010 (The result 1is all 1's after the
1111 first 1)

Compares two arguments which must consist only of 0's and 1's. If both elements compared are 1's,
the result for that comparison is 1. Otherwise the result for that comparison is 0.

moR

o O

=

1 A1

1 A0

0 A0

00011Aa11110 (Each element in a vector 1is compared
10 with the corresponding element 1in a

vector of equal size)

TABLE«3 3p1 11 000101

1ATABLE (Each element in a matrix 1is compared
with 1)
A/TABLE (Applies A to each row of the matrix.

A 1 in the result shows that the
corresponding line contained only 1's)

0101 (The result 1is all 0's after the first 0)

APLX Language Manual 122

¥ Nor

Compares two arguments which must consist only of 0's and 1's. If neither element compared isa 1,
the result for that comparison is 1. Otherwise the result for that comparison is 0.

1 ~1
0
1 ~0
0
0 0
1
00010~w11110 (Each element +in a vector is compared
00001 with the corresponding element 1in a
vector of equal size)
TABLE«3 3p1 11 000101
0 » TABLE (Each element +in a matrix is compared
000 with 0)
111
010
~ Nand

Compares two arguments which must consist only of 0's and 1's. If either or both elements compared
are Q's, the result for that comparison is 1. Otherwise the result for that comparison is 0.

1 a1
0

1 a0
1

0 A0
1

00011al11110 (Each element in a vector is compared
11101 with the corresponding element in a
vector of equal size)

TABLE « 33 p 111000101
1 ~ TABLE (Each element in a matrix is
compared with 1)

=
e =)
or o

APLX Language Manual 123

p Shape of

One-argument form See also two-argument form Reshape

Enquires about the shape of each dimension of the data in the right-hand argument. See also = (depth)
to enquire about the depth of an array.

p 95 100 82 74 2 (A vector has 1 dimension, length.
5 This vector is 5 elements long.)
p 'SEA SCOUT' (Counting the space, this vector is
9 9 elements long)
p 'SEA' 'SCOUT' (Two element nested vector)
2
TABLE (A matrix has two dimensions, height,
135709 which 1is the number of rows, and
246380 width, which is the number of
86421 columns)
p TABLE
35 (This matrix has 3 rows and 5 columns)
p 501 (A single number or letter is like a
point. It has no dimensions so p
pp501 displays no answer, 1i.e. It returns a
0 vector of size 0 - an empty vector. An empty
vector, being a vector, has a size of 0)
p Reshape

Two-argument form See also one-argument form Shape of

Forms the data in the right-hand argument into the 'shape’ specified in the left- hand argument which
must be a simple numeric scalar or vector. Excess elements are ignored. If there are not enough the
data wraps around

23p123456 (The numbers 1 to 6 are to be formed
123 into 2 rows and 3 columns)
456

3 6 p "ABCDEFGHIJKL' (The 12 characters 'A' to 'L' are to
ABCDEF be formed into 3 rows of 6 columns.
GHIJKL Since there aren't enough different
ABCDEF characters for 3 rows, the last row

repeats the first 6 characters)

22p1l2345 (The numbers 1 to 5 are to be formed
12 into 2 rows of 2 columns. The super-
34 fluous number is dignored)

3p'ABC' (Simple right argument)

APLX Language Manual 124

ABC
3pc'ABC' (Nested right argument is copied 3 times)
ABC ABC ABC
Xe6 (A single number is put 1in X and its size
pX is asked. Since the number has no dimensions
dimensions, the result 1is an empty vector)
Xelpb The same number is put 1in X, but
X is formed into a l-element vector. When
6 displayed, X contains 6, but its
pX size 1is 1 since it was defined as a
1 vector and has the dimension of length)

To produce an empty array (for example to initialise a variable) the right argument may be any value
and the left argument must contain at least one zero (corresponding to the empty axis or axes of the
result).

p0 33p3
0 33

p0 45p'A’
0 45

The empty array has a prototype (see Chapter 1) which is the prototype of the right argument.

If, conversely, the right argument is an empty array, the prototype of the right argument occupies each
position of the result.

' '=2 3p"! (Note the convention of using
to indicate a character empty vector)

Since a scalar has no shape, a scalar can be produced by using an empty vector left argument to p:

Xe(10)plp6 (We deliberately create a vector -

X 1p6 - which 1is then forced to be a
6 scalar

ppX

0

We could have equally used 8p to produce the scalar (see Zilde).

p can be used for selective specification.

ALF

ABCDEFGHIJKLMNOPQRSTUVWXYZ
(5pALF)e"..... ' (First 5 elements selected and used in
ALF the specification)

..... FGHIJKLMNOPQRSTUVWXYZ

APLX Language Manual 125

, Ravel

One-argument form See also two-argument form Catenate, Laminate

Ravel

Ravel converts data into a vector. If applied to a scalar, it produces a one- element vector. If applied to
a matrix or higher dimensional array, it produces a vector made from the elements in the array.

NUM « ,34 (34 dis converted to a 1-element vector)

p NUM (An enquiry about the size of NUM
1 produces the answer, 1)

TABLE (TABLE contains 2 5-row columns)
13738
36281

, TABLE (TABLE 1is converted to a 10-element
1373836281 vector)

TWIGe2 4p'ABC' 1 2 (13) (2 2p14) 'DEF' (2 2p'CART') 102.2

TWIG (Nested matrix, shape 2 4)

ABC 1 2123

1 2 DEF CA 102.2
3 4 RT
pTWIG
2 4
,TWIG (Ravel produces a nested vector)
ABC 1 2 123 1 2 DEF CA 102.2
3 4 RT

p,TWIG
8

See also the function e (enlist) which entirely removes nesting.

Ravel with axis

When used in conjunction with an axis specification, ravel can either increase or decrease the rank of
its argument. Fractional axis specifications will increase the rank, whilst integer axis specifications
will decrease the rank.

A fractional axis specification must be not more than one less than the first dimension or not greater
than one more than the last axis. A new axis of length 1 is added in a position governed by the value of
the axis specification. As with other axis operations this is affected by the value of 0I0. With OI0 set
to 1, the default:

oIo

MAT<2 2p14
MAT

w
N

APLX Language Manual

[

3
4

2

2
4

2

2

4

1

2

’

[.1IMAT

p,[.1IMAT
2
,[1.1IMAT

p,[1.1IMAT
2
,[2.8IMAT

p,[2.8IMAT
1

126

(Add a length 1 axis before the first
axis)

(Shape of result)

(Add a length 1 axis between axes 1 and 2)

(Shape of result)

(Add a length 1 axis after the second axis)

(Shape of result)

When used with an integer axis specification ravel will reduce the rank. The axes must be contiguous
and in ascending order.

w

o BN

9 10
11 12

2

2

SAT<2 3 2p112

SAT

pSAT

,[2 11SAT

AXIS ERROR

,[2 1]SAT

A

(Axes not in ascending order)

With a correctly formed set of axes, the rank of the result is one more than the difference between the
rank of the right argument and the number of axes in the axis specification. The shape may be
predicted by adding the lengths of the axes specified and combining the result with those axes left
unspecified.

1

6

P O NdOlwPk

N

2

,[1 2]SAT

NOowWOS RN

Y

,[2 3]ISAT
2 3 4 5 6
8 910 11 12
,[1 2 3]SAT

345678910 11 12

p,[1 2]SAT

(SAT dis rank 3, two axes in the
axis specification.)

(Rank of result 1is 14+3-2 or 2, a matrix)

(Three axes 1in the specification)

(Rank of result 1is 1+3-3 or 1, a vector)
(Shape of result from adding lengths of
axes 1 and 2, plus length of axis 3)

APLX Language Manual 127

If the axis specification contains an empty vector, the result will have a dimension of length one added
after the last dimension of the argument.

p,[10]SAT (Empty vector axis specification)
2321 (Dimension added at the end)

Ravel with axis can be used for selective specification:

p(,[1 2]SAT) (The variable SAT as used above)
(,[1 2]1SAT)«6 2p'ABCDEFGHIJKL'
SAT

AB

cD

EF

GH

IJ
KL

, Catenate, Laminate

Two-argument form See also one-argument form Ravel

Catenate

Catenate joins data items together.

With single-element items and vectors, catenate works very simply.

10,66 (2 numbers are joined to form
10 66 a 2-element vector)

10 ','MAY ','1985" (3 vectors of characters are joined
10 MAY 1985 to form an 1ll-element vector)

With matrices and other multi-dimensional arrays, catenate expects the dimension at which the join is
made to be specified. (See [1, 'axis".) If no dimension is specified, the last dimension is assumed. -
(comma-bar) behaves in exactly the same manner as , except that the default dimension is the first.
Again, if an axis is specified 5 will use that axis.

The dimension at which items are joined must be the same length. Thus if two matrices are joined ‘at'
the columns dimension, the columns must be the same length. If a scalar is joined to a matrix, it's
repeated along the dimension at which the join takes place. The examples below assume 010 is 1, the
default.

Given the following three matrices called A, B, and D

APLX Language Manual 128

A B D
1 2 3 4 5 6 13 14 15 16 17 18
7 8 910 11 12 19 20 21 22 23 24
C « A,B (A and B are joined to form C,
C Since no dimension is specified,
1 2 3 4 5 6 the join is at the last dimension
7 8 910 11 12 ie the columns. Note that A and
B have the same number of rows.)
c,[1ID (C and D are joined at the
1 2 3 4 5 6 first dimension, 1ie at the rows.
7 8 910 11 12 Note that C and D have the same
13 14 15 16 17 18 number of columns.)
19 20 21 22 23 24
A,[1]0 (A single number 1is joined to A.
1 2 3 4 The join 1is at the row dimension.
7 8 910 The number 1is repeated along that
0 0 0 O dimension.)
Laminate

Catenate can only produce a result of the same dimension but of enlarged shape - a two-dimensional
structure becomes a larger two-dimensional structure. Laminate joins two objects of identical shape
and dimension to form a higher dimensional object.

"ABC',[0.5]'DEF"' (Two 3-element vectors are joined
ABC to form a 2-row, 3-column matrix.
DEF Note the figure 1in square brackets

and the fact that it is less than 1)

Laminate creates a new object which has the same shape as the constituent parts except for the
addition of a new dimension.

So in the example above the original vectors are size 3. Their lamination produces a matrix of size 2 3.
The dimension added by laminate is of size 2. This dimension is placed in respect to the old dimension
according to the number in brackets. With 0I0 set to 1, the default, if this number is less than 1, the
size 2 dimension goes before the old dimension. So in the example above the 2 goes before the
dimension of size 3, giving a 2-row 3-column matrix.

If the number in brackets is greater than 1, the 2 goes after the old dimension. In the example below,
1.5 is specified. The new dimension of size 2 therefore goes after the existing dimension of size 3,
giving a 3-row 2-column matrix.

"ABC',[1.5]'DEF"’
AD
BE
CF

If 010 is set to O, then the examples above would be
"ABC',[70.5]'DEF"

and

APLX Language Manual 129

"ABC',[0.5]'DEF"’

respectively

s 1st axis catenate

s behaves in the same way as catenate (,), except that if no axis is specified, the FIRST axis is
assumed rather than the last.

¢ Reverse

Reverses the order of the numbers or letters in the right-hand argument. (See also ¥, the transpose
function.)

$ 123456
6 54321

$(1 2) (3 4) (5 6) (The three element are reversed, but not
56 3412 their contents)

¢ 'BOB WON POTS'
STOP NOW BOB

TABLE
12345
6 7890

¢ TABLE (When applied to a matrix, it
54321 reverses the order within each
09876 row. You can use the operator []-

¢[1]TABLE 'axis' to make the rotation apply
67890 to a different dimension.)
12345

By default reverse, ¢, applies to the last dimension. Thus, above, TABLE was reversed about its
columns. The first axis reverse, e, behaves exactly as ¢ but operates by default about the first axis.

Both will respond in the same way to the axis operator. The axis operator will depend on the setting of
OIo.

APLX Language Manual 130

¢ Rotate

The numbers or letters in the right-hand argument are shifted by the number of places specified in the
left-hand argument. The shift is to the left if the left- hand argument is a positive number and to the
right if it's a negative number.

1¢12345€6 (Each number moves one place to
234561 the left. This displaces the first
number to the end of the line)
3 ¢ "ABCDEFGH' (Each letter moves left 3 places.
DEFGHABC This displaces the first 3 letters
to the end of the line)
TABLE
12345
67890
3 ¢TABLE (The numbers in each row are moved
45123 3 places to the left. Equivalent to
90678 36[2]TABLE)
2 ¢'ABCDEFGH' (The negative number means a shift
GHABCDEF to the right. All letters are

moved 2 places right)

Similar axis considerations apply to rotate. By default ¢ applies to the last dimension (as in the
example above. First axis rotate, e, applies by default to the first dimension, but otherwise behaves
similarly.

Reverse and rotate can be used for selective specification.

e 1st axis rotate

e behaves in the same way as rotate (¢), except that if no axis is specified, the FIRST axis is assumed
rather than the last.

APLX Language Manual 131

R Transpose

Monadic (one-argument) form:

Transpose reverses the order of the axes of an array. Thus the first row of a matrix becomes the first
column and vice versa, and similarly for arrays of more dimensions. It has no effect on scalars or
vectors.

TABLE
3
8
& TABLE

[N

2
6 7

[y

6
7
8

w N

123
123 (Has no effect on a vector)
DATA « 12 4 9 p 1 432
p DATA
12 4 9
p & DATA
9 4 12
DATA[1;;2]=(%DATA)[2;;1]
1111

Dyadic (two-argument) form:

Changes the order of the rows and columns in the right-hand argument according to instructions in the
left-hand argument and selects a subset of the right argument. There must be as many elements in the
left argument as there are dimensions in the right. This operation has most effect when applied to data
which has more than two dimensions. There must be a number in the left-hand argument for each
dimension of the result. The result can have any rank greater than zero and not greater than the right
argument. Thus for a rank 3 result you must have the numbers 1 2 3 appearing at least once each in the
left argument. The positions of the values within the left argument correspond to the axes of the right
argument and the values of the left argument refer to the axes of the result.

There are two cases to consider. The first is where all numbers in the left argument are unique. In this
case all axes (and all elements) of the right argument appear in the result.

TABLE
1 2
3 6
9 10
2 1 § TABLE (First element of left argument shows that
13 9 axis 1 of TABLE becomes axis 2 of result.
2 6 10 Same as one argument ¥)
1 2 {TABLE (Co-ordinates stay 1in their original
1 2 order so matrix 1is unchanged)
3 6
9 10
pDATA

12 4 9

APLX Language Manual 132

p3 1 2%DATA (1st axis of DATA becomes 3rd axis of

4 9 12 result, 2nd axis of DATA the 1st, etc)
DATA[10;3;7]1=(3 1 28DATA)[3;7;10]

1

When there are repetitions within the left argument, then the appropriate axes of the right argument
will be mapped together and the rank of the result will be less than that of the right argument. Thus if
the left argument to x is 1 2 1 then axis 1 of the result is formed from axes 1 and 3 of the right
argument. This is done by selecting those elements whose position is the same on those axes. The
operation is selecting diagonals. A simple case is when a rank 1 result is specified (a vector):

TABLE1
1 2
3 4
1 1 % TABLE1 (Result 1is those elements whose row and
14 column positions match - [1;1] and [2;2])
pDATA
12 4 9
pl 2 1XDATA
9 4
DATA[L4;3:4]1=(1 2 1xDATA)[4;3]
1

If the axes that are being mapped together are of different lengths, those positions that are common are
only as many as the length of the shortest axis.

Transpose can be used in selective specification.

T First

One-argument form See also two-argument form Take

First selects the first item of its argument. When the argument is an empty array, first returns the
prototype of the array.

12 2p14
1

A<('A.S.FREEMAN') 35 15000

A
A.S.FREEMAN 35 15000

pA
3

TA (First item of A is a text vector)
A.S.FREEMAN

pTA
11

TABLE<2 2p(2 2p14) (15) ('TEXT') ('EVEN MORE TEXT')

APLX Language Manual 133

TABLE (2 row, 2 column nested array)
12 12345
3 4
TEXT EVEN MORE TEXT
TTABLE (First item is a 2 by 2 numeric matrix)
12
3 4
p1TABLE
2 2

First can be used in selective specification.

T Take

Two-argument form See also one-argument form First

The left-hand argument of take specifies how many elements are to be selected from the right-hand
argument in each of its dimensions. If the left-hand argument is positive, the elements are selected
from the start of the appropriate dimension, if negative, from the end. The result is the data selected.

5 T '"A.S.FREEMAN'

A.S.F

"7 1 'A.S.FREEMAN'
FREEMAN

3122219 12
22 2 19

1122219 12
12

LIST«(2 2p14) (110)

pTLIST (Note that first removes depth)
2 2

p1TLIST (Take does not affect the depth)
1

If the left argument specifies more elements than the right argument contains, all elements are selected
and the prototype of the array is added for each missing element:

5 1 40 92 11
40 92 11 0 0

5140 92 11
0 0 40 92 11

If the right argument is a matrix, the first number in the left argument specifies the number of rows to
be selected, and the second, the number of columns:

TABLE « 4 3 p 1 12
TABLE

3

6

9

12

= 0 01N

1
4
7
10 1

APLX Language Manual 134

2 3 1 TABLE (Selects all three columns of the
123 first two rows)
4 56

"1 3 1 TABLE (Selects all three columns of the
10 11 12 last row)

1 2 1t TABLE (Selects row 1, columns 1 and 2)
12

The overtake operation on matrices or higher dimensional arrays uses the prototype of the first
element of each row already in existence to extend rows. New rows use the array prototype.

MAT
1A
B 2
pMAT
2 2
3 3TMAT
1A0 (Extension of row 1 uses row 1 prototype)
B 2 (Row 2 prototype 1is a blank character)
000 (Row 3 1is new and uses the array prototype)

Similar considerations apply to higher dimension arrays. Take can be used for selective specification.

Take used with axis

Take used with the axis operator will select only from the axes specified. Any axis not specified by the
axis operator remains unchanged. Each successive element of the left argument indicates how many
items to take from the corresponding axis within the axis specification (and from which end).

MAT
2 3 4
6 7 8
10 11 12
2T[1IMAT (Take the first 2 members of the first
2 34 dimension, the rows, and leave the number
6 7 8 of columns unchanged)
31[2]MAT (First 3 columns, the second dimension)
2 3
6 7
10 11

gl - O o1~

© o1

Overtake will follow the same rules as for take (see above).

TABLE

37[1]TABLE
(New row uses array prototype)

o
o W x>
OB~ N

41[2]TABLE
0 (Prototype of row 2 1is the blank
character)

[
>
&~ N

APLX Language Manual 135

I Drop

The number of elements specified in the left-hand argument are dropped from the right-hand
argument. If the left-hand argument is positive, the elements are dropped from the left-hand end, if
negative, from the right-hand end. The result is the original data without the dropped elements.

4 | 'A.S.FREEMAN' (Drops the first 4 characters)
FREEMAN

"6 | 'A.S.FREEMAN' (Drops the last 6 characters)
A.S.F

3122219 12 (Drops the first 3 numbers)
12

1122219 12 (Drops the last number)
22 2 19

If the left argument specifies more elements than the right argument contains, all elements are
dropped:

5 1 40 92 11

The result is in fact an empty vector, as we see if we apply p to the result:

p 51 40 92 11
0

If the right argument is a matrix, the first number in the left argument specifies the number of rows to
be dropped, and the second, the number of columns:

TABLE « 4 3 p 1 12

TABLE
1 2 3
4 5 6
7 8 9
10 11 12

2 0 | TABLE (Drops the first two rows, but NO
7 8 9 columns)
10 11 12

"3 0 | TABLE (Drops the last three rows)
123

1 2 | TABLE (Drops the first row and the first

6 two columns)
9
12

Similar considerations apply to higher dimension arrays. Drop may be used for selective specification.

Drop with axis

Drop used with the axis operator will drop only from the axes specified. Any axis not specified by the
axis operator remains unchanged. Each successive element of the left argument indicates how many
items to drop from the corresponding axis within the axis specification (and from which end).

APLX Language Manual

MAT
1 3 4
5 7 8
9 10 11 12
20[1IMAT
9 10 11 12
3V[2IMAT
4
8
12
c Enclose

136

(Drop the first 2 members of the first
dimension, the rows, and leave the number
of columns unchanged)

(Drop first 3 columns, the second dimension)

One-argument form See also two-argument form Partition

Enclose produces a scalar from its argument. If the argument is already a simple scalar the result is
also a simple scalar, otherwise it has a depth of one greater than the argument.

123
456
1
0
2

TABLE<2 3p16

TABLE

=TABLE
pcTABLE
ppcTABLE

=cTABLE

Enclose with axis

(Enclose produces a scalar)
(Shape of a scalar 1is an empty vector)

(Rank of scalar 1is 0)

(Depth has been increased by 1)

When used with an axis specification, enclose will only enclose the axes indicated within the axis

specification.

14

c[11TABLE
25 36
pc[1]TABLE
=c[1]TABLE

c[2]TABLE

123 456

pc[2]TABLE

=c[2]TABLE

(Enclose the rows , leaving columns)
(Result is length 3 vector)

(Depth 1increased by 1)

(Enclose the columns 1leaving rows)
(Result is length 2 vector)

(Depth 1increased by 1)

APLX Language Manual 137

Enclose with axis can also be used to carry out a rearrangement of its argument (see also ¥, transpose)
by using a non ascending set of axes in the axis specification. Including all the axes in ascending order
is equivalent to enclose.

pc[1 2]TABLE (Same as <TABLE)
EMPTY
pc[2 1]TABLE (Scalar result)
EMPTY
c[2 1]TABLE (Order of axes reversed)

(Columns become rows within the first item
of the result)

wWN -
o O &~

When the axis specification is an empty vector, enclose with axis has no effect on a simple array, but
with non-simple arguments increases the depth of the argument by 1. Each item of the argument is
enclosed, but the overall shape is not altered.

pTABLE (TABLE, as above)
23
=TABLE (Depth 1)
1
pc[10]TABLE (Enclose with empty vector axis
23 specification has no effect)
=c[10]TABLE
1
TAB<2 2p(13) (13) 'ABC' 'DE’
TAB (Nested matrix)
123 123
ABC DE
pTAB (Shape 2 2)
2 2
pc[10]TAB (Enclose with empty vector axis
2 2 specification preserves shape)
=TAB
2
=c[10]TAB (Increases depth)
3

c Partition (with axis)

Two-argument form See also one-argument form Enclose

Partition will divide its right argument into an array of vectors according to the specification contained
in its left argument. The left argument must be a scalar or a simple vector of integers that are either
zero or positive, with one element for every item in the right argument. A new item is created in the
result whenever the corresponding element in the left argument is greater than its predecessor.
Elements in the left argument that are zero cause the corresponding items in the right argument to be
omitted. If used without an axis specification, partition will select along the last axis. When used with
an axis specification, selection takes place along the nominated axis.

112233123456
12 34 56 (Result 1is 3 element vector, with each

APLX Language Manual 138

pl 1 2 2 3 3c1l 2 3 45 6 element a length 2 vector)

3
110110cl123456

12 45 (Do not select 3rd and 6th elements)
pl 1 01 10c1 23456

2
MAT«3 3p'CATSATMAT'
MAT
CAT
SAT
MAT
pMAT
33
1 0 1cMAT (Drop the second column)
CT
ST
MT
pl 0 1cMAT
32 (Result 1is nested array)
p"1 0 1cMAT
1 1
1 1
1 1
=MAT
1
=1 0 1cMAT
2 (Depth 1increased by 1)
1 0 1cMAT
CT
ST
MT
1 0 1c[2IMAT (Specification of 1last axis 1is the same
CT as no axis specification)
ST
MT
1 0 1c[1]MAT (Specification of first axis causes
CAT selection by first axis - rows)
MAT
pl 0 1c[1IMAT
2 3
1 2 3<MAT (Create a new element every column)
CAT
SAT
MAT
pl 2 3cMAT
33
=MAT (MAT 1is depth 1 - a simple matrix)
1
=1 2 3c<MAT (The partition of MAT is depth 2 - a nested
2 matrix)
1 2 2c<MAT (MAT dis partitioned into two columns,
C AT the first with one element, the second
S AT with two)
M AT
pl 2 2eMAT
32
p"1 2 2cMAT
1 2
1 2
1 2

APLX Language Manual 139

o Disclose

One-argument form See also two-argument form Pick

Disclose will produce an array made up of the items in its right argument. If its argument is a scalar,
then the result is the array that is within that scalar, and, in this form, disclose will reverse the effect of
enclose. However, if the argument to disclose is a nested vector, the result will be a matrix.

TABLE<2 3p16

pcTABLE (Result of enclose 1is a scalar)
(Shape of a scalar 1is an empty vector)
pocTABLE (Disclose reverses the enclosure)

23

The shape of the result of disclose is a combination of the shape of the right argument followed by the
shape of the items in the right argument.

5(1 2 3) (456) (Shape of argument 1is 2, and of each item
123 within the argument is 3)
4 56

p=2(1 2 3) (4 5 6) (Shape of result 1is 2 3)
23

In general, each item in the argument of disclose must be of the same rank;, or be a scalar. If some of
the items are scalar or have different shapes, they will be padded to a shape that matches the greatest
length along each axis of all of the items in the argument. The prototype of each item in the right
argument will be used as the fill item.

5(1 2) (3 4 5) (First element length 2, second length 3)
120 (First element padded to length 3)
345

>(1 2 3) ('AB") (First element length 3, second length 2)
123
AB (Second element padded to length 3)

This can be a simple way to make a matrix from a series of different length vectors (but see also
OBOX).

>'JOE' "JAMES' 'JEREMY'
JOE
JAMES
JEREMY

Disclose with axis

When used with an axis specification, disclose will combine the shape of the right argument and the
shape of the items within the right argument according to the axis specification. The overall shape of
the result is formed from the combination of the shapes as before, but the axis specification will
indicate which axis or axes in the result will be formed from the shape of the items within the right
argument.

APLX Language Manual 140

NUMS«(1 2 3) (4 5 6) (7 8 9)
>[1INUMS (Elements of the vectors within the right

147 argument form rows in the result
258 ith element becomes ith row)
369

>[2INUMS (ith element becomes ith column)
123
456
7 89

The same rules will apply for higher dimensional arrays. Thus when forming a rank 3 array from a
vector of matrices:

DATA«(2 3p16) (2 3p'ABCDEF')

DATA (Length 2 vector of shape 2 3 matrices)
1 2 3 ABC
4 5 6 DEF
o[1 2]DATA (First and second axes of result made up
1A from shape of elements of right argument.
2B ith plane, jth row from ith row jth col
3C of each element of right argument)
4D
5E
6F
o[1 3]DATA (First and third axes of result from shape
123 of elements of right argument.
ABC ith plane, jth column from 1ith row jth col

of each element of right argument)

456
DEF
o[2 3]DATA (Second and third axes of result from shape
123 of elements of right argument.
456 ith row jth column from ith row jth column
of each element of right argument)
ABGC
DEF

Disclose with axis can also be used to carry out a rearrangement of its arguments (see also ¥,
transpose) by using a non ascending set of axes in the axis specification.

>[3 2]DATA (Second and third axes of result made up
14 from shape of elements of right argument.
25 Jjth row ith column from ith row jth
36 column of each element of right argument)

O W >
m

APLX Language Manual 141

o Pick

Two-argument form See also one-argument form Disclose

Pick is used to select an item from its right argument according to the specification contained in its left
argument. Each element in the left argument is used to specify successively deeper selections in the
right argument. At each level of specification the element in the left argument being used must be of
the appropriate shape - a single number for a vector, a two element vector for a matrix and so on.

A<'FIRST' 'SECOND' 'THIRD'

pA (Three element vector)
3
2oA (Pick the second element)
SECOND
2 3oA (Pick the third element of the second
C element)
Ae(1 'FIRST') (2 'SECOND') (3 'THIRD')
pA (Three element vector, with each element
3 a two element vector)
3oA
3 THIRD (Third element selected)
3 2oA
THIRD (Second element of third element selected)
3 2 1-A
T (First element of second element of third
element)

When operating on arrays with two or more dimensions, care must be taken to ensure that the left
argument to = is correctly formed.

TABLE<2 2p(13) 'NAMES' (2 2p4 5 6 7) (3 3p'ABCDEFGHI')
TABLE
1 2 3 NAMES

4 5 ABC
6 7 DEF
GHI
Selection of one of the outermost items from TABLE must be by means of a two element vector

(given the shape of TABLE is 2 2), but this selection item must be formed as a scalar to indicate that it
refers to the outmost layer.

1 2oTABLE
RANK ERROR
1 2oTABLE

A

In the example above, the left argument to pick is interpreted as ‘first element from outermost layer’
then 'second element from next layer deep'. A correctly formed left argument is:

(e1 2)=TABLE
NAMES

APLX Language Manual 142

(1 2) 2-TABLE

A (Select row 1 column 2, then element 2)
(2 1) (2 2)oTABLE (Select row 2 column 1, then row 2
7 column 2)

Pick may be used with selective specification, in which case the whole array picked will be replaced
by the object being assigned.

0 Index

The 10 ('index’) function selects from the array which forms its right argument according to the index
array formed as its left argument. The left argument cannot be of depth greater than 2. Each element in
the left argument addresses successive dimensions of the right argument and multiple index selections
may be formed by creating a suitably nested vector. The dimensions specified in the left argument are
used in the same order as with the p function, that is columns last, preceded by rows and so on. Index
is affected by the Index Origin (0I0).

2012345 (Scalar for vector indexing - only one
2 dimension)
(es3 4)0 1 2345 (Nested scalar for multiple index)

TAB<2 5p110
TAB

1 2 3 4 5

6 7 8 9 10

2 3 0 TAB
8

2 (2 3)0 TAB (Second element of the indexing vector
7 8 is the enclosed vector 2 3)

(1 2) (2 3)0TAB (Nested 2 element vector for multiple
23 index. Result is rows 1 2 and columns
7 8 2 3)

If the index function is given an empty left argument, and a scalar right argument, it will return the
scalar as the result.

(10)037
37

Index with axis

Index can be used with an axis specification. In this case the left argument only applies to those axes
specified. Other axes are not indexed.

20[1]TAB (Select the second member of the first
6 789 10 dimension - the rows)
(e2 3)0[2]TAB (Select the second and third members of the

23 second dimension - the columns)
7 8

APLX Language Manual 143

A Grade up

Grade up enables numbers or characters to be sorted into ascending order. The arguments to grade up
must be simple and not mixed. The right argument is a simple numeric or character array containing
the data you want to sort. A left argument may be used to specify a sort sequence for character arrays.

The result is a vector which identifies elements by their position in the original data. For matrices or
higher dimensional arrays, the sort is carried out on the first dimension. The result of grade up can be
used to index the right argument into ascending order. 4 is affected by 010, the index origin.

Identical elements or subarrays within the right argument will have the same relative positions in the
result.

One-argument form

With the one-argument form, a numeric argument is sorted into ascending order. With a character
argument OAV (the "atomic vector’) determines sorting order. It puts numeric characters before
alphabetic characters and uses normal alphabetic order. So '1' is before (or less than) 'A', and 'A' is
before 'Z'.

A13 8 122 4 (Produces vector showing ranking:
4 213 4th number is first, 2nd number next)
(13 8 122 4)[4 2 1 3] (Ranking order 1is used as an index
4 8 13 122 to put numbers 1in ascending order)
A'ZAMBIA' (Produces vector showing ranking.
264531 "A' 1in position 2 is first)
"ZAMBIA'[4'ZAMBIA'] (The ranking order found in the []'s
AABIMZ is used as an index to
put the characters 1in order)
TABLE (A 3-row 3-column matrix of names)
BOB
ALF
ZAK
ATABLE (Ranks the names +in alpha order)
213 (By row)
TAB
456 (Sorts TAB by row)
113
112
ATAB
321
TABLATAB;] (TAB 1in ascending order)
112
113
456
ARRAY (Three dimensional array 1is sorted by the
2 3 4 first dimensions, the planes)
0 1 0
1 1 3
4 5 6

APLX Language Manual 144

1 1 2

10 11 12
ARRAY[AARRAY; ;] (ARRAY 1in ascending order by planes)

1 1 2

10 11 12

1 1 3
4 5 6
2 3 4
0 1 0
NAMES (Three dimensional character array)

JOE
DOE

BOB
JONES

BOB
ZWART
ANAMES
231
NAMES[ANAMES; ;]
BOB
JONES

BOB
ZWART

JOE
DOE

Two argument form

The two argument form can only be used with simple character arrays. The left argument specifies the
collation order you want to use.

'ZYXWVUTSRQPONMLK JIHGFEDCBA' 4 'ZAMBIA'
13542686 (Collation order reversed. Compare
result with the example above)

The system variable OA, containing the alphabet, and the function ¢ are used to reverse the alphabet in
the next example:

TABLE
BOB
ALF
ZAK
(¢0A) ATABLE
312 (Compare with example above)

When the left argument is a character matrix (or higher dimension array), more sophisticated sorts can
be devised. When elements of the right argument are found in the left argument they are assigned a
priority depending on their position in the collation array. For this purpose, the last axis of the
collating array is deemed to have most significance, and the first the least significance.

APLX Language Manual 145

If elements in the right argument are not present in the collating array, they given priorities as if they
were found at the end of the collating array and in the order of their occurrence in the unsorted right
argument.

A common use of a matrix collation sequence is to carry out a case-insensitive sort. In the following
example, lowercase characters are used in the array to be sorted. (Some implementations of APLX
will use underlined letters instead of lowercase letters).

DATA
ABLE
aBLE
ACRE
ABEL
aBEL
ACES
CcoLL
ABCDEFGHIJKLMNOPQRSTUVWXYZ
abcdefghijklmnopgrstuvwxyz
COLLADATA
451263
DATALCOLLADATA;]
ABEL
aBEL
ABLE
aBLE
ACES
ACRE

The collation array COLL contains lowercase characters in its second row. When the variable DATA
is sorted, the first sort is by column order in the collation array. Thus rows in the matrix being sorted
beginning with the letter 'A" or 'a’ will be given highest priority, followed by ‘B’ or 'b" and so on for
successive columns within the array being sorted. The next sort is by the rows of the collation matrix,
and 'A'" is given a higher priority than 'a' and so on. Contrast the example above, with a similar sort
using a one dimensional (vector) collation sequence:

coLL1

AaBbCcDdEeF fGgHhI 1J jKkL1MmNnOoPpQgRrSsTtUuVvWwXxYyZz
DATALCOLL1ADATA;]

ABEL

ABLE

ACES

ACRE

aBEL

aBLE

Here, all rows beginning with 'A" are given a higher priority to rows beginning with ‘a'.

APLX Language Manual

Y Grade down

146

Grade down enables numbers or characters to be sorted into descending order. The arguments to grade

down must be simple and not mixed. The right argument is a simple numeric or character array

containing the data you want to sort. A left argument may be used to specify a collation sequence for

character arrays.

The result is a vector which identifies elements by their position in the original data. For matrices or
higher dimensional arrays, the sort is carried out on the first dimension. The result of grade down can
then be used to index the right argument into descending order. v is affected by 010, the index origin.

Identical elements or subarrays within the right argument will have the same relative positions in the

result.

One-argument form

With the one-argument form, a numeric argument is sorted into descending order. With a character
argument OAV (the 'atomic vector') determines sorting order. It puts numeric characters before
alphabetic characters and uses normal alphabetic order. So '1" is before (or less than) 'A’, and ‘A’ is

before 'Z'.

y13 8 122 4
3124
(13 8 122 4)[3 1 2 4]
122 13 8 4
¥ ' ABRACADABRA'
3107529146811
KEY«y'ABRACADABRA'
" ABRACADABRA ' [KEY]
RRDCBBAAAAA
TABLE
BOB
ALF
ZAK
¥ TABLE
312
TAB
456

11
11

N W

yTAB

TABLYTAB;]

=
= ol
w o

(Produces vector showing ranking: 3rd
number is biggest, 1st is next etc)
(Ranking order used as index to put
numbers in descending order)
(Produces vector showing ranking: 'R’
in position 3 1is 'biggest', etc)
(The ranking vector 1is put 1in KEY

and is used as an index to put the
original data into descending order)
(A 3-row 3-column matrix)

(Ranks the names 1in descending
alphabetic order)

(Sorts TAB by row)

(TAB in descending order)

(Three dimensional array 1is sorted by the

first dimensions, the planes)

APLX Language Manual 147

1 1 3
4 5 6
ARRAY[YARRAY; ;] (ARRAY 1in descending order, by planes)
2 3 4
0 1 0

NAMES (Three dimensional character array)
JOE
DOE

BOB
JONES

BOB
ZWART
yNAMES
132
NAMES[YNAMES; ;]
JOE
DOE

BOB
ZWART

BOB
JONES

Two-argument form

The two argument form can only be used with simple character arrays. The left argument specifies the
collation order you want to use.

"ZYXWVUTSRQPONMLKJIHGFEDCBA' y'ABRACADABRA'
1468112957310 (Collation order reversed. Compare
results with the example above)

The system variable OA, containing the alphabet, and the function ¢, are used to reverse the alphabet
in the next example.

TABLE
BOB
ALF
ZAK
(¢0OA)YTABLE
213 (Compare with the example above)

When the left argument is a character matrix (or higher dimension array), more sophisticated sorts can
be devised. When elements of the right argument are found in the left argument they are assigned a
priority depending on their position in the collation array. For this purpose, the last axis of the
collating array is deemed to have most significance, and the first the least significance.

APLX Language Manual 148

If elements in the right argument are not present in the collating array, they given priorities as if they
were found at the end of the collating array and in the order of their occurrence in the unsorted right
argument.

A common use of a matrix collation sequence is to carry out a case-insensitive sort. In the following
example, lower case characters are used in the array to be sorted. (Some implementations of APLX
will use underlined letters instead of lowercase letters).

DATA
ABLE
aBLE
ACRE
ABEL
aBEL
ACES
CcoLL
ABCDEFGHIJKLMNOPQRSTUVWXYZ
abcdefghijklmnopgrstuvwxyz
COLLYDATA
362154
DATALCOLLYDATA;]
ACRE
ACES
aBLE
ABLE
aBEL
ABEL

The collation array COLL places lower case characters in the second row of the collation matrix.
When the variable DATA is sorted, the first sort is by column order in the collation array. Thus rows
in the matrix being sorted beginning with the letter 'A’ or a" will be given highest priority, followed by
'B' or 'b" and so on for successive columns within the array being sorted. The next sort is by the rows
of the collation matrix, and ‘A" is given a higher priority than 'a" and so on. Contrast the example
above, with a similar sort using a one dimensional (vector) collation sequence:

coLL1

AaBbCcDdEeF fGgHhI 1J jKkL1MmNnOoPpQgRrSsTtUuVvWwXxYyZz
COLL1YyDATA

253614
DATALCOLL1YDATA;]

aBLE

aBEL

ACRE

ACES

ABLE

ABEL

APLX Language Manual 149

T Encode

Represents a value in a given number system, for example, represents inches as yards, feet and inches.

The left-hand argument gives the base, or bases of the number system you want to use, the right-hand
argument is the value to be encoded. Both arguments must be simple numeric arrays.

To convert 75 inches to yards feet and inches:

1760 3 12 1 75 (There are 12 dinches to a foot, 3 feet
203 to the yard, 1760 yards to a mile)

Note: Since three numbers were required in the result (yards, feet and inches) three numbers were
given in the left argument. If you don't put sufficient numbers in the left argument, you lose some of
the result:

312 175
03

You can be sure of not losing any of the result by making the first element of the left argument a
number greater than the number to be encoded.

100000 12775
6 3

To express the base-10 number 100 in base-16 (hexadecimal)

16 16 16 16 1100
006 4

In addition, the right argument does not have to be an integer, and indeed T can be a handy way to
separate the fractional part of a number from the integer part.

1760 3 127175.3
20 3.3
0 1775.3 (The second element of the left argument
75 0.3 being 1 ensures that all of the right
argument except the fractional part
appears 1in the first element of the result)

Although the encode function is defined for scalar right arguments, it is possible to use encode with
any array as the right argument. In this case the encode operation is applied to each element of the
right argument to produce a vector result for each element. Similarly, if the left argument of T is not a
vector, but a higher dimensional array, then each base vector across the first axis of the left argument
is applied to obtain the representation of each element of the right argument. The shape of the result is
the same as the shape generated by an outer product operation, (pLEFTARG), pRIGHTARG.

To convert a series of values expressed as decimal numbers to their binary (base 2) equivalent.

APLX Language Manual 150

222227112345
00000 (The vector left argument is applied to
00000 each element of the right argument. The
00011 results are displayed along the first
01100 axis (rows) of the result)
10101
1 Decode

Finds the value in units of a number represented in a particular number system, for example, how
many inches are in one yard. In general, the result is a scalar value generated from a vector
representation of a value.

The left argument contains the base (or bases) of the number system being used. The right argument is
a value represented in the given number system. A scalar left argument is treated as if it is a vector
which matches the length of the right argument. Similarly, a scalar right argument is extended to
match the length of the left argument.

To reduce the vector 3 2 6 9 representing, say, the readings of the separate dials on a meter, to a single
number:

10 L 326 9 (10 is the base for the conversion)
3269

To convert a number represented in octal (base 8) to decimal:

8 131 (Note that as before, the right argument
25 is a vector)

To reduce 1 yard 2 feet 8 inches to inches:

1760 3 12 1 1 2 8 (12 1is the base for converting feet to
68 inches, 3 is the base for converting
yards to feet. For 1760 see the note
below)

If both arguments to 1 are vectors, they must contain the same number of elements. To make the left-
hand argument up to the same length as the right, an extra number was included: 1760 (the conversion
factor for miles to yards) is irrelevant to the conversion of yards feet and inches to inches, and any
other sufficiently large value could have been used instead.

22211 (The 1 1is extended to match the length of
7 the left argument)

To reduce 2 pounds 15 shillings 6 pence and 3 farthings to farthings (4 farthings to one penny, 12
pence one shilling, 20 shillings one pound):

APLX Language Manual 151

0 20 12 4 1 2 15 6 3
2667

Again note the first number in the left-hand argument. Its only purpose is to make the arguments the
same length.

The more general form of decode allows both left and right arguments to be numeric arrays. When the
left argument is an array of rank 2 or more, it contains a set of vectors which describe different bases
to be used independently. Each base lies along the last axis of the left argument, and is applied to each
of the vectors on the first axis of the right argument. . follows the same rules as inner product, the
length of the last axis of the left argument must match the length of the first axis of the right argument,
and the shape of the result is given by deleting the two inner axes and joining the others in order.

To convert a matrix of yards, feet and inches to inches:

TABLE
1 1 1 (The numbers to be decoded lie along the
2 0 3 first axis, so the first value is 1 yard
0 1 38 2 feet 0 dinches and so on)

1760 3 12 1 TABLE (The left argument 1is applied to each
60 37 80 column of the right)

o Picture format

Displays the numbers in the right argument according to the instructions in the left argument.

Numeric left argument

o can be used in a similar way to the two-argument form of s. (See s for more information and
examples.) The main differences are:

(@) If a number is too big for the field specified, ' «'s are displayed.

(b) If the left argument is a single number, it specifies the number of characters in the field and no
decimals are displayed.

(c) If the left argument consists of the numbers 1 or 2, only the absolute value of the data will be
displayed.

(d) If any field width is specified to be 0, the result will not contain that column.

Character left argument

With « you can also define the way the data is to look by using editing symbols to build up the pattern
you require. This 'picture’ is enclosed in single quotes and forms the left-hand argument. Each number

APLX Language Manual 152

in the right-hand argument is displayed in the way defined by the picture. If the right argument is an
array, each field in the specification is taken to apply to all of the relevant columns.

You can have one picture for all the numbers on the right, or several pictures, one for each number. If
several pictures are defined, each one must be separated by a semicolon (;). If there is nothing between
two semicolons, the previous picture repeats. Any valid APL character except ; may appear in the left
argument.

Numeric Field Specification (9 Z)

The main editing symbols are Z and 9. If a 9 is used in the picture, a digit is displayed at that position;
if the position is blank, a zero is displayed. Z causes a digit, if present, to be displayed, but it does not
display leading zeros. If no 9 is found in a picture, full zero suppression is assumed, but a single
leading 9, or a 9 with Z on either side of it has the special effect of forcing a display only if there is
any significance to the right of the 9. More than one leading or embedded 9 causes a DOMAIN
ERROR. A space in the picture causes a corresponding space in the number and a point . in the picture
inserts a decimal point if required by the format specification. Absence of a decimal point means that
none will be printed.

'9999' ¢« 101 15
01010015 (Each number fills 4 positions - no

space between numbers was allowed for)
' 9999' « 101 15
0101 0015 (The space 1in the picture 1is put at the
beginning of each number. So if we
represent spaces by dots, we have:
.0101.0015)

'ZZ2ZZ' o 101 15 0 10
101 15 10 (Z suppresses non-significant zeros)

'72279.99 ' « 11 12.1 13 .2
11.00 12.10 13.00 0.20 (Three leading zeros are suppressed,
but a zero in the digits position is
displayed. The point 1is inserted)

'27729.7Z7'" o 10 .3 .03 0 .009 .003
10.00 0.30 0.03 0.01 (The 4th and 6th numbers do not print)

A single or embedded residue symbol (|) behaves exactly like a leading or embedded 9 except that it
forces significance in the field immediately to the right. Only one | may be used, and no 9s.

'Z227|.2Z2' «10 .3 .03 0 .009 .003
10.00 .30 .03 .01 (Note that there are no zeros
before the '.' this time)

The floor symbol (L) used in a field specification behaves like the decimal point (.) except that it
specifies where the point will print, rather than where it actually is. If a L symbol is used in a
specification, the decimal point of the right argument is assumed to be at the right of the field, and the
fractional part of the right argument is never displayed.

'2727779199'x123456.78
1234.57 (The number 1is treated as 123456 and the
inserted before the last 2 digits)

APLX Language Manual 153

Commas and other text characters will print where indicated if significance has started before they are
reached. Text following the last Z or 9 will only print if the value of the field is negative. If the picture
is too small for the formatted value, =s are used to fill the field.

'7227,779.99;779.99 CR;ZZZ,27Z2.ZZ' « 101789.356 ~22 7777777
101,789.36 22.00 CR##*x%sxx%xx

'Z9/99/99'%011086
1/10/86 (A date formatter)

Text may be placed between columns of the specification, and will repeat on every output line. The
text must be placed within quotes (') and any number of such fields may be specified.

'Z79;'" VERSUS '';ZZ9' &« 2 2pl1 2 3 4
1 VERSUS 2
3 VERSUS 4

Negative numbers, floating characters, fill characters

The minus sign is not displayed unless specified in the picture (nor indeed is the plus sign). A +, ~, or
- put at the beginning of the picture will cause the specified sign to be displayed where applicable.
Negative numbers can alternatively be displayed in brackets, if brackets are placed round the picture.
The symbols [1, (), as and - are treated as alternative ways of displaying the minus sign.

The + sign or the various negative signs are shown at the very beginning of the relevant field. If you
want the sign to appear immediately before the first displayed digit, use two of the signs at the
beginning of the picture. This is known as ‘floating' the character. Any character may be floated by
placing it twice at the beginning of the picture. The second declaration is converted to a Z internally
after the 'float' is noted.

'-7279.99 ' o 17 "2.3
17.00 - 2.30

'((Z2Z2.99) ' o 17 "2.3
17.00 (2.30)

'$$279.99 ;$779.99 'o 35.45 33.75
$35.45 $ 33.75 (Floating versus fixed character)

If a character is put at the beginning of a picture and followed by the | symbol, it will be used as the
fill character instead of the normal blank. Any character except . and | may be used as a filler, and the
declaration does not affect the resultant field length.

'«1$$22,279.99 0/D ' o "1174.57 303.75
*x$1,174.57 0/D **%%x<303.75%**%x

APLX Language Manual 154

¥ Format

One-argument form See also two-argument forms Format by specification, Format by example

s , applied to any argument (character or numeric, simple or nested), converts it to characters
according to the default display rules. (The formatted data may still look numeric since it is composed
of the digits 0 to 9 together with suitable spaces and decimal points but it has the properties of
character data and can be mixed in displays with other characters). The result is always a simple
character array.

QTY « 1760 2

p QTY (Asks the size of the data +in QTY.
2 Answer 1is 2 numbers.)

QTY « s QTY (Formats data in QTY.)

p QTY (Asks the size of the data in QTY.
6 Answer 1is now 6 characters.)

"PRICE IS ',%22x1.15 (The numeric data is formatted and joins the

PRICE IS 25.3 character data to form a simple character
vector)
DATA«(13) (2 2p14) 'TEXT' 100
DATA
123 12 TEXT 100
3 4
pDATA
4
DATA<«3DATA (Format preserves the appearance of an
DATA array, but makes it into a simple
123 12 TEXT 100 character array)
3 4
pDATA
2 24

¥ Format by specification

Two-argument form See also one-argument form Format

The right argument must be either a simple array, or have a maximum depth of 2 (no element higher
rank than a vector).

Like the one-argument form, this version of s also converts numeric data to characters. The right
argument is formatted according to the instructions in the left argument which is a integer scalar or
vector. These instructions specify the width of each field in characters, and the number of decimal
places to be displayed. If necessary, numbers are rounded in order to display them in the positions
available.

APLX Language Manual 155

If the first number in the left argument is 0, the system uses the specified number of decimal places,
and as many other characters as are needed. If a single number is used for the left argument, it is
treated as two numbers with the first set to 0.

Scaled (or scientific) notation can be forced if the second number of a pair of numbers in the left
argument is negative. In this case, the negative number specifies the number of digits before the E
character.

To display each number on the right in a field which is 10 characters wide and has 2 decimal places:

10 2 s 13.8765390 6 87.213 23.1

13.88 6.00 87.21 23.10
TABLE

2.77 1.731 22.9

11 0.3301 2.3

To display each column in TABLE as a 5-character field with no decimal places:

5 0 s TABLE
3 2 23
11 0 2

To force scaled notation:

8 23 7.1
7.1E000

To specify the number of decimal places while allowing the rest of the number as many character
positions as it needs (including one leading space):

0 2 7 22.1987 999.1
22.20 999.10

p 0253 11.7 (Asks the size of the formatted number.
6 It has been allocated 2 positions after
the point, plus the 4 positions needed
for the 2 integers, the point itself
and a leading space)

Note: the above examples show a single pair of numbers in the left argument being applied in turn to
each number in the right argument. The left argument can instead contain a separate pair of numbers
(ie separate instructions) for each term on the right.

10 2 8 3 5 279.5547 10.1234
279.55 10.123

Using OFc with format by specification

Certain elements in the system variable OFC Format Control can influence the display generated by
s when acting as ‘format by specification'. In index origin 1:

OFcL11] specifies the character used for the decimal point. (. by default).

APLX Language Manual 156

OFcL 4] specifies the overflow character used for numbers too wide for the column width specified. (0
by default, causing a poMAIN ERROR 0N overflow).

OFcL 6] specifies the negative number indicator. (™ by default).

OoFcC

y,*0_ (Default settings)

5 331000 (DOMAIN ERROR for overflow by default)
DOMAIN ERROR

5 331000

A

OFCL4]<" *"

5 351000 (Alternative overflow character)

OFCcl1]e',"
10 3%12.15
12,150
OFcL6]«'/" (Change negative number indicator)
10 3% 12.15
/12,150

¥ Format by example

Two-argument form See also one-argument form Format
The right argument must be a simple numeric array.

Like the one-argument form, this version of = also converts numeric data to characters. The right
argument is formatted according to the instructions in the left argument which is a simple character
vector. The left argument is used as a pictorial model of the format which should be applied to the left
argument.

The left argument can either be one field, in which case that field is used to format each element or
column of the right argument, or a series of fields to be applied, one to each column of the right
argument. Numbers will be rounded to fit into their formatted layout.

A field is made up of characters drawn from the characters '0123456789" and . (full stop), , (comma)
and a special 'print-as-blank’ character, usually _and set by OFC[5]. Fields are separated by either one
or more spaces or by a character identified as a field separator by a special indicator in the field. Any
other characters used in the left argument are treated as decoratorq characters. Decorators may appear
adjacent to the characters defining a field or within a field.

In common with other formatters, format by example permits decorator characters to:

- Appear always

APLX Language Manual 157

- Appear if the number being formatted is negative
- Appear if the number being formatted is positive

- Float against the number being formatted, that is appear immediately next to the front or back of the
number when it is formatted

The standard character used for format by example fields is 5, which is used to indicate simple
formatting with removal of leading zeroes and suppression of trailing blanks. Zero values print as
blanks.

'55.55"' $22.234 1.398 11.00
22.23 1.4 11 (Trailing blanks 1in 11 suppressed)
'55.55 5.555 55.55 55'322.234 1.398 0.00 11.0
22.23 1.398 11 (0 prints as blank)
'555,555,555.55"'51234567.89
1,234,567.89 (The , only appears between digits, leading
blanks are suppressed)

The control character 5 does not print positive or negative indicators (+ or -) and indeed will not
accept negative numbers.

'55.55's 10
DOMAIN ERROR
'55.55's 10

A

Decorator characters which appear at the beginning or end of a field specification without special
control characters will print where they appear in the left argument, they will not float.

' SALARY IS : $555,555,555.00' s 1234567.95
SALARY IS : $ 1,234,567.95 ($ decorator does not float)

Negative numbers and floating decorators

The field control characters 1 and 2 should be used if negative numbers are likely to be found in the
right argument of s. They will control any decorators which appear at the beginning or end of a field
specification. These control characters will print their associated decorators if the number being
formatted is negative (the character 1) or positive (the character 2). In addition the decorator will float
against the number being formatted.

'7155.55"' 310.1 "12.346 11.5

10.1 712.35 11.5 (Negative numbers with high-minus)
'(155.55)"' 310.1 "12.346 11.5
10.1 (12.35) 11.5 (Negative numbers 1in brackets)
p'(155.55)'910.1 ~12.345 11.5
24 (Overall field size is the same, floated
characters which do not appear are replaced
by spaces)

'+255,555,555.55"'s ~101.34 1000234 13.1
101.34 +1,000,234 +13.1

APLX Language Manual 158

The control character 3 will purely float a decorator against a number being formatted, and will not
accept negative numbers.

'"THE BALANCE IS : $555,555.55' s 10027.34
THE BALANCE IS : $ 10,027.34

'"THE BALANCE IS : $555,555.53' 3 10027.34
THE BALANCE IS : $10,027.34

In the example above the currency sign is floated against the amount. Note that the overall field length
is the same and that decorators which are not next to the field specification do not float .

If the control characters 1, 2 or 3 appear in a field specification on their own they will apply to the
decorators on both sides of the field. If two of these characters appear in a field specification, then
each will apply to the decorators on its side of the number. In the example below, 1 acts with the
minus sign on the left, 2 acts with the characters CR on the right.

'-155,555.52CR's 101.34 ~1000.29 15367.346
101.34CR -1,000.29 15,367.35CR

Finally, the control character 4 can be used to switch off the effect of the control characters 1, 2 or 3.
In the example below, the 4 switches off the effect of the 1 such that, on the right of the numbers, the
characters DEG always appear.

'-154.5DEG ' 395.8 32.5 "27.2
95.8DEG 32.5DEG -27.2DEG

Contrast the effect when the character 4 is omitted

'-155.5DEG '%95.8 32.5 "27.2
95.8 32.5 -27.2DEG

In this example, the characters DEG print when the number is negative, under the control of the
character 1.

Leading and trailing zeroes

The printing of leading and trailing zeroes can be forced by the control characters 0 and 9. One of
these control characters placed in a field will indicate that Os should be used up to that position. The
effect of the 0 and 9 only differs in their treatment of the number 0. Control character 0 will print the
appropriate number of 0s, control character 9 will use blanks.

'55.55 's21.1 27.25 33

21.1 27.25 33 (Trailing zeroes suppressed)
'55.50 's21.1 27.25 33

21.10 27.25 33.00 (Always print to two decimal places)
'55.5055 's21.1 27.12345 33

21.10 27.1235 33.00 (0 only forces printing of zero up to its

position 1in the field)
'55.00 's21.1 0 33
21.10 .00 33.00 (Control character 0 prints value 0)
'55.59 's21.1 0 33
21.10 33.00 (Control character 9 does not)

APLX Language Manual 159

'055,555.50" s 1000.1
001,000.10 (Leading zeroes forced)

Cheque protection

Control character 8 fills empty portions of a field with the contents of OFc[31] (by default the =
character).

"TOTAL AMOUNT $385,555,555.00'51000
TOTAL AMOUNT $#*+xx+1,000.00

Alternative end of field delimiter and blanks within numbers

It is sometimes useful to format numbers with no spaces between them. This may be achieved by use
of control character 6 which can be used to mark the end of a field.

'5556/06/05 's310TS (Three fields 1in left argument to)
1991/06/14

Contrast the example above with the next example which inserts a decorator within a number being
formatted.

'0555/55/55 '$19910614 (Only one field in left argument to 9)
1991/06/14

The 'print-as-blank’ character (OFc[5] and _ by default) can be used to insert blanks between the
digits of a number without ending the field.

'5.555_555_555_555_555 's ol
3.141 592 653 589 790

Using OFc with format by example

Certain elements in the system variable OFC Format Control can influence the display generated by
s when acting as ‘format by example'. In index origin 1:

OFcL11] specifies the character used for the decimal point. (. by default).
OFcL2] specifies the character used for the thousands indicator. (, by default).

OFc[31] specifies the fill character for empty portions of a field when 8 is used in the field
specification. (= by default).

OFcL 4] specifies the overflow character used for numbers too wide for the column width specified. (0
by default, causing a DOMAIN ERROR on overflow).

OFcL5] specifies the character to be used in the field specification to indicate that a blank should be
inserted between the digits of a number. (The defaultis _) .

APLX Language Manual 160

aFc (Default setting for OFC)
,*0_"
'55.55"' 31000 (DOMAIN ERROR on field overflow)
DOMAIN ERROR
'55.55'351000
A
OFCL4]e" =" (Overflow character set)
'55.55"' 31000
oFcl1 2]e',." (Reverse characters used for decimal point,
'555,555.55 '$1170.45 thousands indicator)
1.170,45
OFCL3]e' | (Fill empty positions with |)
'$855555 '31002
$111002
¢ EXxecute

Execute, followed by an APL text expression, causes the expression to be evaluated as if it had been
entered at the keyboard in calculator mode. This has numerous applications, some of which are briefly
summarized below.

It can be used to turn character data, which contains numeric characters only, into numeric data:

LIST « '345 567'

p LIST
7 (LIST contains 7 characters.)

p ¢ LIST (LIST +is executed, and p 1is applied to the
2 result - 2 numbers)

1 + & LIST (This demonstrates that the
346 568 executed form of LIST can be

used 1in arithmetic)

It can be used as an alternative to branching in a user-defined function:

[4] ¢ (LOOP=10)/'DATA<DATAx10'

If LOOP does not equal 10 when line 4 is executed, the / operator will give an empty vector to ¢, and
nothing will happen. If LOOP does equal 10, the 7 operator will pass the character data to ¢, and the
value of DATA will be multiplied by 10 after execution.

In APLX, system commands can be executed using the ¢ primitive:

vLIB
[1] a Show contents of 1library 0
[2] &')LIB'
[3] v

The output from executed system commands can be captured in a variable:

APLX Language Manual 161

Xes')SYMBOLS'
X
IS 1026, USED 21

¢ can be used to execute single line function definition statements. The implicit result of the operation
IS an empty vector, as is the result of executing any statement which does not have a result.

With an existing function called FUNCTION:

¢'VFUNCTION[3]A«2v'
¢ 'VFUNCTION[2]B«1" (Note ¢ supplies the closing v)

With an existing function called FN:

vFN[O]v (Function with no result)
[1] Ael 2 3
v
pFN
VALUE ERROR
pFN
A
pa'FN' (Execution gives an empty vector result)
0
<4 Stop

One-argument form See also two-argument form Left

The monadic primitive function - (stop) takes a right argument of any type, rank and shape. It discards
the argument, and always returns a result which is a (non-printing) empty matrix. It can therefore be
used to discard an unwanted result from another function:

40mount 'c:\temp'

<4 Left

Two-argument form See also one-argument form Stop

The function 4 (left) takes left and right arguments of any type, rank and shape. It discards the right
argument, and passes the left argument through unchanged.

It can be used as a statement separator, where (unlike using o diamond) the actual expressions are
evaluated in normal APL right-to-left order:

APLX Language Manual 162

xel 2 3 A4 ye4 5 6 4 z¢7 8 9
X
123

y
456

z
789

I Pass

One-argument form See also two-argument form Right

The monadic function (pass) simply passes its argument through unchanged. The argument can be of
any type, rank and shape; the result is identical.

Although at first sight this does not appear very useful, it can be used to force the display of a result
which otherwise would be non-printing:

Fael1l0
123456738910

 Right

Two-argument form See also one-argument form Pass

The function + (right) takes left and right arguments of any type, rank and shape. It discards the left
argument, and passes the right argument through unchanged.

It can be used to embed pseudo-comments in an expression:

+/'Samples per test'r233 348 297
878

APLX Language Manual 163

0 Evaluated input

If 0 appears to the right of the « symbol or is referenced in some other way, it causes numeric input to
be accepted from the keyboard and to be put into the variable named in the assignment. Valid APL
expressions can also be entered whilst in 0 input mode, and their results will be returned by 0. System
commands can also be entered whilst in 0 input mode, and their results will be printed and the 0O:
prompt redisplayed. An empty input in response to O input is not accepted, and the prompt is
redisplayed.

PRICE « 12.50

QTY <O (O causes O: to be displayed as a
O: prompt to the user to type a number.
50 Here the user types 50. This is put 1in

"VALUE IS ' (PRICExQTY) QTY and the expression is evaluated)
VALUE IS 625

QTYeO (If the user types any expression
O: yielding a numeric result, this is
50+50 accepted.)
QTY
100
QTY<DO (The user types in a vector of numbers)
0:
12345
QTY
12345
1 2 3+40 (Input 1s requested and then used iin
O: the expression)
4
56 7

O Output with newline

If 0 appears to the left of the « symbol, it causes the result so far to be displayed. This may not be the
result of evaluating the complete line as O can occur anywhere on the line. The data is output together
with a newline (carriage return) character, and is displayed subject to the values of printing precision

(OPP) and printing width (OPW) .

3+0e9-7
2 (The 1intermediate result of 9-7)
5 (The final result of 3+9-7)
O« COSTe 28x5 (The result 1is put +in COST but 1is also
140 displayed)
CODE«O«¢ 'DEATHROW
WORHTAED (Reversed 'DEATHROW' put in CODE and

displayed. Note characters are accepted)

APLX Language Manual 164

@ Character input

The msymbol causes the computer to accept data typed on the keyboard. Whatever is typed is treated
as characters, even if it is made up of the digits 0 to 9. (See O if you require numeric input, or
alternatively use &, (execute) to convert text data to numeric data.)

M does not cause a carriage return when used for output.

A<l (The cursor 1is placed at the beginning of
HELLO the next line and whatever is typed s
accepted. Note there is no prompt. The
characters HELLO are put 1in A.

A the contents of A are displayed)

HELLO
Xel

12 (12 1is put 1in X as a 2-character data item)
X+5

DOMAIN ERROR (The 12 1in X is two characters . Characters
X+5 can't be used in arithmetic. See ¢ if
A you want to convert characters to numbers.)

An extract from a user-defined function:

[3] 'PLEASE TYPE YOUR NAME.'

[4] NAMEeM (The response 1is put in NAME)

[51 'THANK YOU ', NAME (The contents of NAME are
displayed after 'THANK YOU ')

The dialogue will look like this:

PLEASE TYPE YOUR NAME.
REGINALD
THANK YOU REGINALD

[Bare output

In addition to its use for inviting and displaying keyboard input, [can be used to display values
generated internally by APL statements, that's to say, a value or result can be assigned to 0. Bare
output does not include a terminating newline (Carriage Return) character if it is followed by another
bare output or character input. In addition, bare output does not include newlines if lines exceed
printing width. Numeric values placed in o in this way (rather than from the keyboard) are treated as
numeric.

A<[<1000
1000 (Note that the value 1is displayed
Ax3 as well as being assigned to A)

APLX Language Manual 165

3000

An extract from a user-defined function

[1] M « 'PLEASE TYPE YOUR NAME. '
[2] NAME <M
[3] "THANK YOU ', NAME

The dialogue will look like this (the user types the name REGINALD)

PLEASE TYPE YOUR NAME. REGINALD
THANK YOU REGINALD.

Note that there's no carriage return after the mon line 1 - the name is typed in on the same line as the
text.

Note too the spaces when the name is output. The exact form of the result of m (here the variable
NAME) will vary from implementation to implementation. In general, in a situation such as the one
shown, APL notes the character position at which the response to o starts (REGINALD starts at
position 24) and stores the response preceded by a corresponding number of blanks. So the characters
REGINALD preceded by 23 blanks are put in NAME and are subsequently displayed. (The system
function ODBR gets rid of blanks for you if you don't want them.) Check with your implementation
notes issued in case the rules are different for your system.

The system variable OPR (which is set to be a blank character by default) controls the characters used
to replace the prompt. In the example above, if OPR was set to some other character, then that character
would be used in place of the 23 blanks. If OPR was set to be an empty vector, then the actual prompt
is returned. For more details see the entry for OPR.

/ Reduction

When used with a function operand the / operator is known as Reduction (see the entry for
Compression for the other functions derived from /). The context in which the / is used should make
clear the operation being carried out. / can be applied to any dyadic function , including user defined
functions. When used with a scalar or one-element vector integer left argument, the / operator is used
to perform 'N-wise reduction'.

The left operand of / is inserted between all elements of the array right argument. In the absence of an
axis specification, the operand is inserted between items along the last axis (see also the entry for [1,
the Axis operator).

+/ 2 4 6 (This is the same as 2+4+6)
12
SALES<25 5.7 8 50 101 74 19
+/SALES
282.7 (The sum of the numbers 1in SALES)
[/82 66 93 13 (The same as 82 [66 [93 [13.

93 The result of 93713 1is compared

APLX Language Manual 166

with 66; the result of this comparison
is compared with 82; the result of the
last comparison is the largest)

v/01 100 (The same as 0 v1vilvO0vDO)
1 (Used to test if there are any 1s)
A/001100 (Are there any 1's?)
,/ "ABC' 'DEF' 'HIJ'
ABCDEFHIJ
p,/"'ABC' 'DEF' 'HIJ' (Result is a scalar)
EMPTY
TABLE
123
4 56
x/TABLE (Multiply is applied to the elements
6 120 of a matrix. Since no dimension is

specified, it works on the last
dimension, the columns. 6 is the
result of multiplying the columns 1in
row 1. 120 1is the product of those
in row 2)

/ applies by default to the last dimension, whilst the similar operator, #, applies by default to the first
dimension.

x/[1]TABLE (The [1] specifies that the operation
4 10 18 is to apply across the 1lst dimension,
x/TABLE the rows. Each element in row 1 s
4 10 18 multiplied by the corresponding

element 1in row 2.)

N-Wise Reduction

The definition of N-wise Reduction is very similar to the definition of Reduction. The left argument,
an integer scalar or length one vector, is used to specify the length of successive subsets of the right
argument on which the Reduction operation is performed. If the left argument is negative, each subset
is reversed before the reduction operation is carried out.

For a left argument of absolute value n and the selected axis of the right argument of length m, the
number of subsets to which the reduction can be applied are:

1 +m-n

and thus the limiting case is where the sample size is 1 greater than the length of the selected axis,
giving a empty result.

2+/110 (Add up the numbers 2 at a time, starting
357911 13 15 17 19 at the beginning of the vector)

5+/110 (5 at a time)
15 20 25 30 35 40

10+/110 (10 at a time - the same as ordinary
55 Reduction)

11+/110 (Sample size 1 greater than right argument

empty result)
DATA<3 4p112

APLX Language Manual 167

DATA
1 2 3 4
5 6 7 8
9 10 11 12
2+/[2]1DATA (Add up 2 at a time across the columns
3 5 7 the second dimension)
11 13 15
19 21 23
2+/[11DATA (Add up 2 at a time across the rows, the
6 8 10 12 the fist dimension)
14 16 18 20
NUMS«107?10
NUMS
285631710409
2-/NUMS (Subtract sucessive pairs of elements)
63713276 36 5 (Reverse the elements before subtracting)
~2-/NUMS
6 31 37263765
2,/'AB" 'CD' 'EF' 'HI' (Join elements, 2 at a time)
ABCD CDEF EFHI
3,/"AB" 'CD'" 'EF' 'HI'
ABCDEF CDEFHI

N-wise reduction is commonly used for moving averages. For example, if SALES is a vector of
monthly sales figures, then

(12+/SALES) =12

gives the annualised moving average sales figures by month.

1st axis reduction

/ applies by default to the last dimension, whilst the similar operator, #, applies by default to the first
dimension.

x/[1]TABLE (The [1] specifies that the operation
4 10 18 is to apply across the 1st dimension,
x/TABLE the rows. Each element in row 1 is
4 10 18 multiplied by the corresponding

element in row 2.)

APLX Language Manual 168

\ Scan

When used with a function operand, the \ operator is known as 'scan’. The type of operation being
carried out will be apparent from the context in which the symbol is used. Scan (\) can be applied to
any dyadic function, including user- defined functions.

The left operand of \ is any dyadic function. The effect is as if the function had been entered between
all the elements of the data. In the absence of an axis specification, the function is applied to the last
dimension. (This is similar to /) . A given element of the result consists of the result of applying the
function repeatedly over all the positions up to it. In each case the general rule for the order of
execution is obeyed.

+\20 10 "5 7 (Compare with 20+10+ 5+7. The result shows
20 30 25 32 the running totals and the final sum)
,\"AB' 'CD"' 'EF' (Repeated applications of ,)
AB ABCD ABCDEF
TABLE
523
47 6
x\ TABLE (Puts x between all elements of TABLE
510 30 and shows the result of each
4 28 168 multiplication in row 1 and in row 2.
Note that since no dimension was
specified, the operation takes place
on the last dimension, the columns.
See [] - the axis operator)
xXTABLE (First axis scan. Applies across each
5 2 3 row, i.e. Down the columns. Same as
20 14 18 x\[1]TABLE)
AAN111011 (Applies logical 'and' over all
111000 elements. A series of 1's 1is produced
up to the first 0. Shows where a test
first failed)
-\12 3 4 (The intermediate results are
1712 72 1
1 -2
1-2-3

1-2-3-4

Useful examples of Scan include:

A\ All 0 after the first 0
v\ All 1 after the first 1
<\ 1 at the first 1
<\ 0 at the first 0

#\ 0 or 1, reversing at each 1

APLX Language Manual 169

X 1st axis scan

\ applies by default to the last dimension, whilst the similar operator, X, applies by default to the first
dimension.

TABLE
523
4 7 6
x\ TABLE (Puts x between all elements of TABLE
510 30 and shows the result of each
4 28 168 multiplication in row 1 and in row 2.
Note that since no dimension was
specified, the operation takes place
on the last dimension, the columns.
xXTABLE (First axis scan. Applies across each
5 2 3 row, i.e. Down the columns. Same as
20 14 18 x\[1]TABLE)

/ Compression, Replication

When used with a simple numeric scalar or vector operand the / operator is used to perform the
compression or replication functions. The context in which / is used will make the type of operation
apparent.

Compression

The left argument is a vector of 1's and 0's. The right argument must conform in length but can be
numbers or characters. With a matrix right argument the dimension on which the operator works must
be of the same length as the left argument. For each 1 in the left argument, the corresponding element
in the right argument is selected. For each 0, the corresponding element in the right argument is
ignored. If a single 1 or O is used as the left argument, scalar extension ensures that none (0) or all (1)
of the right argument is selected.

0101/ "ABCD' (The letters 1in the same positions as
BD the 1's are selected)

11110/12 14 16 18 20
12 14 16 18 (20 corresponds with the only 0 and

is dignored)
MARKS«45 60 33 50 66 19

PASS«MARKS>50 (Each mark greater than or equal to
PASS/MARKS 50 puts a 1 in PASS. Those less
60 50 66 than 50 produce 0's. The numbers
corresponding to 1's are selected)
(MARKS=50) /1pMARKS (Which members of MARK were 507?
4 The fourth)
1/'FREDERIC' (The 1 or 0 left argument to /

FREDERIC can be used to select whether the

APLX Language Manual 170

0/'FREDERIC' text is selected or not.)
(empty)

TABLE<2 3 p16

0 1 0/TABLE (Select on the last dimension-columns)
2
5

1 0/[1]TABLE (Select on the first dimension-rows
123 same operation as 1 0#TABLE)

The form of / shown with the text string FREDERIC is often used to control branching within
functions. See the Reference section which covers Functions. The compression operation, /, applies
by default to the last dimension, although it may be used in conjunction with the axis operator, [].
First axis compression, #, applies by default to the first dimension, but again may be used together
with the axis operator. Remember that the axis operator is affected by 0I0.

Replicate

This is used to generate multiple copies of elements of the right argument. In addition Replicate can be
used either to replace a specified element with one or more instances of that element's prototype or to
insert one or more instances of that dimension's prototype. Positive integers in the left argument
specify how many copies of each corresponding element in the right argument are wanted.

Negative integers in the left argument are used to insert or substitute prototypes. The two alternative
mechanisms for this case are:

(a) Length of left argument the same as the length of the selected dimension of the right argument. In
this case, negative elements in the left argument specify that the corresponding element in the right
argument should be replaced by the appropriate quantity of its prototype.

(b) If the number of non-negative elements in the left argument is the same as the length of the
selected dimension of the right argument, then negative elements in the left argument indicate the
position and quantity of prototype elements to insert - the prototype being used being that of the first
element of the axis.

As usual, a scalar left argument is extended to match the selected axis. If a replication is carried out
along an axis of length 1, that axis will be extended.

2 ~2 2/TABLE (Replace second column of TABLE by
110033 2 columns of 0s - the prototype)
4 40066
2 72 2 72 2/TABLE (Insert two sets of two columns of 0s)
1100220033
4 4005500¢6F€6
VEC<l 2 (2 2p14) 3 4
VEC
12 12 3 4
3 4
11721 1/VEC (Insert two copies of the prototype of the
12 00 00 3 4 third element of VEC)
00 00
117211 1/VEC (Insert two copies of the prototype of VEC)
1200

12 3 4
3 4

APLX Language Manual 171

2 3 2/ 'ABC'
AABBBCC
2 / 'DEF' (With a scalar left argument, the 2 is
DDEEFF is extended to each element on the right)
505/123
111113332333
2/TABLE (TABLE as above. Replicate on last
112233 dimension)
4 45566
2/TABLE (Replicate on first dimension. Same as
123 2/[11TABLE)
123
456
456
2 3/3 1p'ABC' (Last axis, the columns, 1is extended to
AAAAA length 5 to satisfy left argument)
BBBBB
CCCCC
2 71 2/[213 1p'ABC' (Last axis extended and blank column
AA AA inserted)
BB BB
CC CC

1st axis Compress, Replicate

/ applies by default to the last dimension, whilst the similar operator, #, applies by default to the first

dimension.

S

BAR R

=N

OCITOITNN

2
5

OO WwWw

TABLE«2 3 p16

2/TABLE (Replicate on last dimension)

233

5 6 6

2/TABLE (Replicate on first dimension. Same as
2/[11TABLE)

APLX Language Manual 172

\ Expand

When used with a simple numeric scalar or vector operand, the \ operator performs the function
known as Expansion. The context in which the symbol is found should make it apparent which
operation is being performed.

Two-argument form only

Inserts the array prototype. If the left argument consists of 1's and 0's, each 0 causes a space or 0 to be
put in the corresponding position in the right argument.

There must be as many 1's in the left argument as there are elements in the right argument.

111011 1\'PIGDOG"' (The 1's represent the existing
PIG DOG characters in the right argument.
The 0 shows where a space 1is to go)

TABLE
1234 5
6 78 9 10

011111\ TABLE (Each row 1is to have a 0 dinserted
01 2 3 4 5 before the existing numbers. Note
0 6 7 8 910 that the last axis 1is assumed)

The expansion function applies by default to the last axis, unless used in conjunction with the axis
operator, [] (remember this is affected by 010). The first axis expansion function, X, applies by
default to the first axis, but otherwise behaves in the same way as the expansion function.

1 0 1 \[1] TABLE (Using the other axis, the
1 2 3 4 5 same as 1 0 1\TABLE)
0 0 0 0 O
6 7 8 910

If the left argument includes numbers other than 1 or 0, a positive number specifies how many of the
corresponding element to insert, and a negative number specifies the number of prototype elements to
insert. There must be as many positive numbers in the left argument as there are numbers in the right
argument. (See replicate under /).

103 725\382 (1 copy of first element, then 1 prototype,
880022 2 2 3 copies of second element, 2 prototypes

5 copies of third element.
VEC«(2 2p14) 3 456 (Prototype is a simple numeric matrix
11011 1\VEC shape 2 2 and is used by expand)

3 00 456
00

3
308 2

w
AN

APLX Language Manual 173

X 1st axis expand

The expansion function applies by default to the last axis, unless used in conjunction with the axis
operator, [] (remember this is affected by 0I0). The first axis expansion function, X, applies by
default to the first axis, but otherwise behaves in the same way as the expansion function.

TABLE « 2 5p110

1 01 X TABLE (Using the other axis, the
1 2 3 4 5 same as 1 0 1I\[1]TABLE)
0 0 0 o0 O
6 7 8 9 10

. Inner product

Inner product takes the form:

DATA1 FN1 . FN2 DATA2

Where the operands, FN1 and FN2, are both dyadic functions, including user- defined functions. Inner
product first combines the data along the last axis of the left argument with the data along the first axis
of the right argument in an 'Outer Product' operation with the right operand. Finally a ‘reduction’
operation is applied to each element of the result.

If the two arguments are vectors of the same size, then the inner product gives the same result as FN2
being applied to the data and then FN1 being applied to the result in a reduction operation. (See / for
reduction.)

Xe1357

Y «2367

X +.=Y (This finds and totals the agreements
2 between X and Y)

The above statement is equivalent to +/X=Y and involves the following steps:

X=Y (Compares X and Y)
0101 (1 means agreement between elements)
+/01 01 (Sums the agreements)

2

Using the same values of X and Y as above:

XA, =Y (Returns a 1 1if all elements 1in
0 X equal all elements 1in Y)
Xa.=1 35 7

APLX Language Manual 174

When applied to data of more than one dimension, such as matrices, the operation is more complex.
For matrix arguments the shape of the result of the operation is given by deleting the two inner axes
and joining the others in order. For example if we have:

TABA of 4 rows and columns
and TABB of 5 rows and 6 columns

The inner dimensions are used by the inner product operation, and the result will be a 4-row 6-column
matrix.

The operations take place between the rows and columns of the two matrices and are therefore the
same as inner product operations between vectors as described above.

TABLE1 TABLE2

1 2 6 2 3 4
5 4 7 0 1 8
3 0

RESULT«TABLE1l +.x TABLE2
RESULT

20 2 5 20

58 10 19 52

18 6 9 12

The first number in RESULT is produced from row 1 of TABLE1 and column 1 of TABLE2.

12+.x67 (Equivalent to +/1 2 x 6 7)
20

Row 1 of TABLEL1 is then used with each remaining column in TABLEZ to produce the first row of
RESULT. Then row 2 of TABLEL is used with each column of TABLE2 to produce the second row
of RESULT and so on. So the 10 highlighted in row 2 of RESULT is derived from row 2 of TABLEL1
and column 2 of TABLE2:

54 +.x20 (Equivalent to +/ 5 4 x 2 0)
10

The operation shown above is the Matrix Multiplication operation. The operation can have non-scalar
operands:

23
56

1
4
123
456
7 89

X+.,Y (Columns of Y catenated to rows of X
18 21 24 and the results added up)
27 30 33

pX+.,Y
23

Other useful combinations are:

APLX Language Manual 175

An.=B Instances of vector B in matrix A

An.#B Finds where there 1is no single match of vector B 1in
in matrix A

A+.=B Gives a count of agreements between A and B

A+.eB Give a count of memberships of B in A

These may, of course be extended to higher dimensional arguments. The general definition of inner
product is given below. For the inner product operation

DATA1 FN1.FN2 DATA2

the result is defined as

FN1/" (<[ppDATA1IDATALl)-.FN2 <[1]DATA2

o, Quter product

This involves two data items and a function. The function can be any dyadic function, including user-
defined functions. The function operates on pairs of elements, one taken from the left argument and
one from the right, till every possible combination of two elements has been used.

X «2 34
Y <1234
X o.x Y (Multiplies every number 1in X by every
2 4 6 8 number in Y generating a multiplication
3 6 912 table:
4 8 12 16 Y
| 1 2 3 4
X 2] 2 4 6 8
3] 3 6 9 12
4] 4 8 12 16
01234-.101231#4
11111
01234 (Gives all possible combinations. See !)
00136
00014
00001

Note that this function always generates a result of one more dimension than the original arguments.
Two vectors, for example, generate a matrix.

1 2-.,13 (Combines each element of the left argument
11 1213 with successive elements of the right
21 2223 argument using the , function)
pl 2°.,13
23 (Shape of result 2 3)
2 3,11 2 (The t, 'take', function 1is applied using
10 20 successive elements of the left argument
100200 and right argument)
p2 3°.171 2

22 (Shape of result 2 2)

APLX Language Manual 176

The Outer Product will accept arguments of any shape and number of dimensions. The result will be
an array whose shape is the shape of the left argument followed by the shape of the right argument.
For example:

A -.xB

where A is a matrix of 4 rows and 3 columns, and B is a matrix of 5 rows and 2 columns, will produce
aresult of shape 4 35 2 - a four dimensional array.

The result is as defined above, namely all possible combinations of the left and right arguments. The
rule that shows the layout of the result is that, for

ReA °.<FUNCTION> B (where A and B are shaped as above)

The result, R, has a shape 4 35 2 and

RLC;D;E;F] s given by ALC;D] <FUNCTION> B[E;F]

" Each

One-argument form

The ™ (‘each’) operator applies its operand to each element of its argument. In the case of a scalar
operand, or a scalar function, each has no effect.

DAYS<'MONDAY"' 'TUESDAY'

p~DAYS
6 7
DATA«(2 2p14) (110) 97.3 (3 4p'K")
pDATA (Length 4 nested vector)
4
p DATA (Shape of each element, note empty vector
22 10 3 4 shape for element 3, the scalar)
pp DATA (4 shapes returned)
4
p " p"DATA (The shape of each of the shapes - the
2 1 02 ranks - of each element)

Two-argument form

The two-argument form of each applies is left argument and its operand to each element of its right
argument. Again, for empty left or right arguments, a fill function is applied.

(123),"456 (Joining successive pairs of elements 1in
14 25 36 the left and right arguments)

2 31" 'MONDAY' 'TUESDAY' (2% of first element of right argument
MO TUE 31 of the second)

27" '"MONDAY' 'TUESDAY' (Scalar extension results in 21 of each
MO TU element of the right argument)

APLX Language Manual 177

2 3p71 2 (2p of first element, 3p of second)
11 222
4 5p”'THE' 'CAT'
THET CATCA

[] Axis

The highest dimension of a data item is considered to be the first dimension and the lowest dimension
the last . Thus the first dimension of a matrix is the rows and the last dimension is the columns. In the
case of a three-dimensional object, the first dimension is the planes followed by the rows and columns.

AXxis numbers are governed by the Index Origin, 0I0, and in Index Origin 1, (the default), the first
dimension is represented by [11, the second by [2] and so on. In Index Origin 0 the first dimension
would be [0], the second [1] and so on. The number used to represent the axis is always a whole
number, except for the ravel and laminate functions.

The primitive functions and operators which will accept an axis specification include the dyadic forms
of the primitive scalar functions :

+ - x| [L *eo0o! AVaw<<g=2>4%

and some primitive mixed functions :

Ravel/Catenate/Laminate (note first axis variant)
Reverse/Rotate (note first axis variant)
Enclose/Partition

Disclose

Take

Drop

Index

SOe—->U N o -

as well as the operators :

/ # Compress/Replicate (note first axis variant)
/ # Reduce (note first axis variant)
\ X Scan (note first axis variant)
\ X Expand (note first axis variant)

Axis with scalar functions

When used with dyadic scalar functions (see above) the axis operator is placed after the function. The
axis specified is a scalar or vector of axis numbers such that the number of axes specified is the same
as the rank of the argument with the lower rank and all the axes specified must be found in the
argument with the higher rank. Thus, for example, if the following expression is typed

vector +[AXES] MATRIX

APLX Language Manual 178

the left argument (vector) is rank 1 and the right argument (matrix) is of rank 2. The axes specified (
axes) can only be a scalar or vector of length 1 and (in index origin 1) that axis can only be 1 or 2 (one
of the two dimensions of matrix).

Aer3 (Vector A)
Be3 4p112 (Matrix B)
A+[1 21B (Cannot have two axes specified with a
AXIS ERROR vector argument - the left argument)
A+[1 2]B
A
A+[3]B (3 1is higher than the highest dimension
AXIS ERROR of B - the higher rank argument)
A+[31B
A
A+[2]B (Ax1is specification 1is valid for length
LENGTH ERROR and value, but the length of A - the
A+[21B lower rank argument - does not match the
A size of the second dimension of B - the
A+[11B columns)
2 3 4 5
7 8 910 (A valid example)
12 13 14 15
B+[11]A (The left or right argument may be of
2 3 4 5 higher rank)
7 8 910
12 13 14 15
MAT<2 3 4p124
MAT
1 2 3 4
5 6 7 8
9 10 11 12
13 14 15 16
17 18 19 20
21 22 23 24
1 10x[1IMAT (Vector multiplied across the first
1 2 3 4 dimension of MAT. Result has the same
5 6 7 8 shape as MAT)

9 10 11 12

130 140 150 160
170 180 190 200
210 220 230 240
TAB<2 3p1 5 10 10 50 100
TABx[1 2]IMAT (Higher dimension example)
1 2 3 4
25 30 35 40
90 100 110 120

130 140 150 160

850 900 950 1000

2100 2200 2300 2400
TABx[2 1IMAT (Order of axes 1is immaterial)

1 2 3 4

25 30 35 40

90 100 110 120

130 140 150 160
850 900 950 1000
2100 2200 2300 2400

APLX Language Manual 179

Multiple axis specifications cannot contain repetitions.

The next condition for axis with a scalar function is that the dimensions of the lower rank argument
must be the same as the selected dimensions of the higher rank argument. When multiple axes are
specified, they are used in ascending order, irrespective of the order in which they are entered.

Thus, for the example above, if vector is of length 5 and the axis specified is 1 (rows), then matrix
must have 5 rows. If the axis specified is 2, matrix must have 5 columns.

Given correctly shaped arguments and valid axis specifications, the lower rank argument is applied
across the dimensions of the higher rank argument specified by the axis operator. The result will have
the shape of the higher rank argument.

Axis with mixed functions and operators

When an operator or mixed function which accepts the axis operator is applied to data, it works on the
last dimension, unless another dimension is specified. Alternatively, you can use the ‘first-axis'
functions and operators (see Ravel, Catenate, Rotate, Compress, Expand, Scan and Reduce) which are
specially defined to apply by default to the first dimension. To specify a different dimension, enclose
the number representing the dimension in square brackets, and put it after the operator or function.

TABLE
1 2 3 4 (TABLE has 2 rows and 4 columns)
50 60 70 80
+/ TABLE (No dimension 1is specified, so the
10 260 add takes place on the last
dimension, ie across the columns
giving the sums of the rows)
+/[1] TABLE (The first dimension is specified
51 62 73 84 so the add is on the rows,
giving the sums of the columns.)
+\TABLE
1 3 6 10 (The operator acts on the last dimension)

50 110 180 260

TABLE,13 14 (TABLE 1is joined with the vector 13 14.
1 2 3 413 This takes place at the last dimension,
50 60 70 80 14 the columns making a new column)
TABLE,[1] 13 14 15 16 (This vector is joined at the
1 2 3 4 rows, making a new row.)
50 60 70 80
13 14 15 16
¢ TABLE (The rotation is across the
4 3 2 1 columns. The same effect could be
80 70 60 50 achieved by ¢[2]TABLE)
¢[1]TABLE (The rotation is across the rows)
50 60 70 80

1 2 3 4

APLX Language Manual 180

® Zilde

Zilde is a primitive constant, which contains an empty numeric vector. It is equivalent to 10 or 0p0.

Xef
pX
0
X=z0p0
1
X=""'
0
ODISPLAY ' a Empty character vector
]
ODISPLAY ¢ A Empty numeric vector
©
)
318

000

¢ Statement Separator

The ¢ ("diamond™) character acts as a statement separator, which allows you to place multiple
statements on a single line. This works either in a function, or in desk-calculator mode. The left-most
statement is executed first:

QTY«4 o PRICE<«2.5 o QTYxPRICE

10

QTY
4

PRICE
2.5

If an error occurs within one of the statements, execution is abandoned (the remaining statements are
not executed).

The statement separator can be used with structured-control keywords:

:Repeat 3 o "No!" o :End
No!
No!
No!

APLX Language Manual 181

v Line Editor

v opens or closes function definition mode, a simple line editor (or 'del' editor) for editing functions,
operators and classes. Although largely obsolete because APLX offers powerful on-screen editing
facilities via the Edit menu or)epzT, it is retained for compatibility with older systems. It is also
sometimes useful for creating very small functions.

Editing functions and Operators

(For brevity, we use the word ‘function’ in this section to denote either user-defined functions or user-
defined operators).

v followed by a name or function header (for a function which does not already exist in the
workspace) opens definition mode. If the function already exists, you should follow it with just the
name, not the full header.

The editor prompts you with the next line number, in square brackets. (Note that the function header is
line 0.)

To enter a line for the line number which is being shown, just type the line. When you press Enter, the
line will be fixed and you will be prompted with the next line number.

By entering line numbers and other characters in square brackets, you can control the editor, as in the
following examples:

vNAME[O] Enter editor, open function NAME, list whole function

[o] List function (once you have opened it)

[04] List from line 4 onwards

[3] Overwrite line 3

[3] ... Overwrite line 3 immediately

[5.1] Insert new line after line 5

[a2] Delete 1line 2 from the function

[406] Place cursor at line 4, character position 6
[400] Place cursor at end of line 4

[oOo0] Place cursor at end of the function header

To insert a line, use a fractional line number between the line numbers of the lines on either side of the
insertion point. For example, 3.1 will insert a line between existing lines 3 and 4 (and you will be
prompted with [3.2] as the next line).

Note that you can edit the line number itself. This has the effect of copying the line to the new
position, either inserting a new line, or overwriting an existing line.

When you have finished editing, type another v character to end the edit session. Lines will be
automatically re-numbered in sequence 1 to N, to allow for any insertions or deletions.

APLX Language Manual 182

Defining or editing a class using the line editor

The line editor can also be used to create or edit a class, in much the same way as it is used to edit a
function or operator. To define a new class, open the line editor by entering a line which begins with
the del (v) character, is followed by the header line of the class (optionally including a parent class
name and localized names, as per the canonical representation), and which ends with a left curly brace.
APLX will open the class definition, and prompt you with the name of the class in curly braces as a
reminder that you are in class-edit mode. For example, we can create a new class sphere which
inherits from point:

vSphere : Point {
{Sphere}:

You can then define properties by entering lines in the same format as the canonical representation of
a class. After each line, APLX prompts again with the class name enclosed in curly braces:

Radius<0
{Sphere}:

You can also enter methods by using the del editor in the normal way (you will be prompted with the
line number until you finish editing the method, then return to class-definition mode and again be
prompted with the class name):

vRe<Volume
[1] Re1.333333333333x(01)xRadius*3
[2] v
{Sphere}:

Finally, exit from class-definition mode by entering a single right curly brace:

}

The canonical representation of the class defined in this way would then be as follows:

OCR 'Sphere’
Sphere : Point {
Radiuse<0
VReVolume

Re1.333333333333x(0l)xRadius*3
v

)

APLX Language Manual 183

w» Lock

You can lock a user-defined function, operator or method by entering or leaving the line editor using
the 'del-tilde’ character (%) rather than 'del’ (v).

Once a function has been locked, it can be run, but cannot be edited or displayed. If you try to edit it, a
DEFN ERROR will be reported.

If execution of a locked function is stopped because of an error or interrupt, the function is never
suspended, but instead is abandoned. Any error within a locked function will cause a DOMAIN
ERROR to be signalled to the caller.

APLX Language Manual 185

Section 3: Errors

APLX Language Manual 187

Overview of error handling and the State Indicator

Errors in calculator mode

If you enter a statement containing an error in calculator mode, APL responds with an error message.
For example, if you attempt an operation on unsuitable data, you normally get a domain error:

11011 v1100
DOMAIN ERROR
11011 v1100

A

This error has occurred because the OR primitive function operates only on values 0 and 1, not 11 as
supplied in the left argument. As the example shows, the statement containing the error is displayed
with an error indicator (A) marking the point at which the APL interpreter detected the error.
Depending on the version of APLX you are running, and your system preference settings, error
messages are usually displayed in red, as shown above.

To correct an error in calculator mode, simply retype the statement correctly, or alternatively use the

recall-line key (usually Ctrl-Up Arrow, or Cmd-Up Arrow on the Macintosh) to recall the statement,
then edit it and re-enter it. In most versions of APLX, you can also correct it directly in the window,

and then press Return or Enter to re-evaluate it.

Errors in user-defined functions or operators

If an error is encountered during execution of a user-defined function or operator, execution stops at
that point. The appropriate error message is displayed in the session window, followed on a separate
line, by the name of the function containing the error, the line number at which execution stopped and
the statement itself:

LENGTH ERROR
CALC[2] Re«(X,Y)-1 2 3

A

The above example shows that execution stopped in function CALC at line 2.

The Debug Window

As well as displaying the error in the Session Window, desktop editions of APLX will normally
display the Debug Window if an error occurs in a user-defined function, operator, or class method.
This shows the function or operator in which the error occurred, and allows you to edit the line
immediately and continue:

APLX Language Manual

g]
Debug HELPJAVA:DEMO_TimeZone el (=
File Edit Debug Attributes Tools Window Help

o | LOGICAL UNIT NOT FOUND Resume at line:
“Q“ DEMO_TimeZone[13] tzclasse’ jeva' DGETCL| 31 _| 2| 9 _] X _J
DEMO_TimeZone;date;tzclass;tz;dateFormat;datelList

DEMO[4] [1] A
[2] A Demonstration of using a TimeZone object 1in Java
[3] A =
[4] A First create a date
[51] datee' java' ONEW 'java.util.Date
[6] A
[7] A What is the date?
[8] 'Resu 1 f date.toString ,date.toString
[9]
[10] =
[11] @A To create a TimeZone object we need to call a static
[12] @A method in the TimeZone class
[13]+ tzclasse' jeva' OGETCLASS 'java.util.Time 2
[14] tzetzclass.getTimeZone 'America/Los_Ange
[1S] =
[16] =~ Could also call the stat1c method d1rect1y =
raiza > o 5 (A _NDCALL - 3 Fa . 0 =t W

KB: StdAPL |Fn: DEMO_TimeZone 4| | oy

In this example, an error has occurred on line 13 of the function, so execution has stopped there.
Normally you would edit the incorrect line in situ (in this case correcting the spelling mistake ‘jeva’
instead of 'java’), and then press the Run button (the solid triangular arrow) to continue execution. You
can also resume at a different line (by dragging the small green position indicator, currently on line 13,
or by using the 'Resume at line' control), or abandon the function by pressing the Quit (red cross)
button.

Interrupts

A function or operator can also be halted by the user hitting the interrupt key (usually Ctrl-Break on
Windows, Cmd-Period on the Macintosh, or Ctrl-C under Linux). A single interrupt causes APLX to
complete the line of code it is executing before stopping. Two interrupts in quick succession cause it
to stop as soon as it can, even if it is executing a single calculation which takes a long time (for
example inverting a matrix with). The OCONF system function allows interrupts to be disabled.

Again, on desktop editions of APLX, the Debug window will appear if you interrupt a user-defined
function, operator or method.

The State Indicator

It may be that the function at which execution halted was called by another function. You can inspect
a system variable called 0SI, the State Indicator, or use the system command) s1, to see the state of

play:

osI
CL2] =
BL8]

AL5]

APLX Language Manual 189

This display (often referred to as the 'Sl Stack’) tells you that function ¢ was called from line 8 of
function B which was itself called from line 5 of function A.

The asterisk on the first line means that the function named on that line is 'suspended'. The other
functions are 'pendent’; their execution cannot be resumed till execution of function C is completed.

If at this point you executed another function, D, which called function E, and at line 3 of E a further
error occurred, the state indicator would look like this;

E[3] =
D[6]
c[2] =
B[8]
A[5]

Effectively it contains records of two separate sequences of events;

E[3] =
D[6]

You can clear the top level of the state indicator (i.e. the record of the most recent sequence) by
entering the branch symbol - on its own;

OsI
c[2] =
B[8]
AL5]

In this example, another » would clear the remaining level (now the top level) and restore the state
indicator to its original (empty) state.

Alternatively, you can clear the entire state indicator at any stage by using the system command
)SICL.

Action after suspended execution

If you want to resume execution at the point where it stopped you can do so from the Debug Window
as described above, or by using the symbol - followed by the line number. If, for example, execution
halted at line 3 of E, to resume at that point you could type:

-3

A system variable OCL contains the current line number, so you could achieve the same effect by
typing:

»0OCL

APLX Language Manual 190

You don't have to continue from the point where execution was suspended. You can specify a line
other than the current line:

>4

or

-»0CL+1

Equally, you can specify execution of a different function.

Editing suspended and pendent functions

What's perhaps most likely after an error in execution of a function is that you'll want to edit the
function containing the error. (It's marked with = in the Sl display and, as you may remember, is
described as a suspended function.) This is done in the normal way by using)EDIT (or using v and the
function name to enter the del editor), and then making the required correction, or directly in the
Debug Window.

It is possible that after editing the function you may get this message:

SI DAMAGE

This indicates that you've done something which makes it impossible for the original sequence of
execution to be resumed. No action is necessary other than to use the system command)SICL to clear
the state indicator.

What you cannot do after a halt in execution is to edit any of the pendent functions. They are the
functions in the state indicator display that are not marked with an asterisk:

osI
EL3] =
DL61]
c[2] ~
BL8]
A[5]

An attempt to edit a pendent function using the Del editor will produce a DEFN ERROR:

vA
DEFN ERROR
vA

A

Similarly, you can edit the function using)EDIT A but APLX will not let you save the changes
because the function is pendent. You will get the error message "Cannot fix object - Function is on)SI
stack”

If you want to edit a pendent function, simply clear the state indicator using)SICL.

APLX Language Manual 191

Error trapping

You can specify in advance what should happen if an error occurs during execution, in which case that
error will not cause execution to stop. For example, if you wrote a function which invited the user to
type in some numeric data, you might foresee the possibility that he or she would type non-numeric
data instead. This would cause an error. APLX allows you to 'trap’ the error at runtime. There are two
main ways of doing this:

e A block of code (including any functions called from within the block) can be executed under
error-trapped conditions using : Try. . :EndTry. If an error occurs, control passes to the
:CatchIf OF :CatchAll Sections.

« Simple error trapping on a single line or expression can be achieved using OEA, which allows
an alternate line of code to be executed in the event of an error, or OEC, which executes code
under error trapped conditions and returns a series of result codes. These are compatible with
IBM's APL2.

APLX also implements the older OERX style of error-trapping, which specifies a line to be branched to
if an error occurs. Use of DERX is not recommended for new applications.

In general, it is probably best not to mix different styles of error-trapping in a single function.
However, if you do, and an error occurs in a line where more than one error trap is live, then the error
trap which will take effect is the first of:

1. OEA

2. OEC

3. :Try... :EndTry
4, OERX

Error-related system functions

A number of system functions are available for finding out where an error occurred and why, or for
simulating an error. These include:

e DOERS which can be used to signal an error (see also the APL2-compatible equivalent OES).
e OERM which displays the current error message (see also the APL2-compatible equivalent OEM).

e OLER which contains the error code and line number for the most recent error. Each kind of
event that can be trapped has an error code. A DOMAIN ERROR, for example, is number 11.
(See also OET which holds the last error code in a format compatible with APL2).

Other debugging aids

« [OsTOP allows you to set ‘breakpoints’, i.e. specify that a function should stop at a given line.
(Normally, the Debug Window will then be invoked). On desktop editions of APLX, you can
also set or clear breakpoints by clicking in the line-number area of an Edit, Debug or WS
Explorer window.

e OTRACE can be used to display a record of the results when certain 'traced’ lines are executed.

APLX Language Manual 192

Error trapping using : Try..:EndTry

Syntax:

:Try

;éétchIf <boolean expression>

:CatchAll

;éﬁdTry

The block of code following the : Try keyword is executed, until either an error occurs, or a
:CatchIf,:CatchAll,:EndOf:EndTryiSGﬂCOUﬂKHed

If no error has occurred within the : Try block, execution transfers to the statement after the :End or
:EndTry.

If an error occurs in the : Try block (either in the statements in this function, or in any functions called
from it), control transfers to the first : catch1f statement (if any), and the boolean expression is
evaluated. If it is true, the block of code following the :catch1f is executed, and execution then
resumes after the :EndTry Or :End. If the expression is false, the same procedure is followed for any
further :catch1f blocks in the sequence. If none of the tests is true, the :catchai1 block (if any) is
executed. It is permissible to have as many :catch1f sections as you like.

Once an error has been trapped and control passed to a :catchif Or :catchall statement, the error
trap is disabled. Thus, if a second error occurs, it will not be trapped, and the function will stop in the
normal way (unless the whole :Try... :EndTry Sequence is itself executed under another error trap).
:Try..:EndTry blocks can be nested.

Typically, you use the :catch1f statement to catch specific types of error, by looking at OLER or DET.

For example:

vRe<A DIVIDE B
[1] a Protected divide

[2] :Try

[3] A Do division under error-trapped conditions
[4] R<A+B

[5] :CatchIf 11=10LER

[6] a DOMAIN ERROR occurred

[7] Re0

[8] :CatchAll

[9] A Some other error occurred

[10] 'Unexpected error. The message was:'
[11] ' ' ,0EM

[12] >

[13] :EndTry

APLX Language Manual 193

4 DIVIDE 3
1.333333333

4 DIVIDE 0
0

DIVIDE 4

Unexpected error. The message was:
VALUE ERROR
DIVIDE[4] ReA+B

A

APLX Language Manual 194

Error Trapping (OEA, OEC)

Note: The use of OEA is now deprecated, unless you need to retain compatibility with IBM's APL2. For
most cases, we recommend that you use the structured-control error trapping mechanism (:Try
:CatchIf :CatchAll :EndTry) instead.

OEA and OEC provide statement-level error trapping, using a syntax which is compatible with IBM's
APL2.

OEA allows an APL expression to be executed under error trapped conditions. The right argument is a
character vector containing an expression to be executed. The left argument is a character vector
containing the APL expression to be executed if the right argument encounters an error or is
interrupted.

If an error occurs in the alternate code of a OEA call this is not trapped but is handled in the default (or
non-trapped) manner.

OeC allows an APL expression to be executed under error trapped conditions. The right argument is a
character vector containing the line of code. If the expression contains an error or is interrupted then
OEC returns a return code plus the error code given by OET.

OET is a numeric vector containing the error code associated with the last error that occurred. The first
integer indicates the general class of the error. The second integer indicates the specific nature of the
error. OET can be used to identify the possible source of an error.

OEM is a character matrix containing the error message associated with the last error which occurred.
The message contains the error description, the function name and line number where the exception
occurred, the line of APL code where execution stopped, with a caret () pointing to the last character
interpreted.

OES is a function which simulates an error and causes execution of the active function or operator to
stop. In the monadic form, the right argument is a two element numeric vector containing the error
code. If the code is defined then the appropriate error description is displayed. If the code is undefined
then no error description is displayed in the error message. If the right argument is zero or empty then
no error is signalled. If the right argument is a character vector then that vector is displayed as the
error description. In the dyadic form the left argument is the character vector error description and the
right argument is the integer error vector.

If an error occurs in a locked function then the error message just gives the name of the function, with
no internal details. The error description will usually be DOMAIN ERROR (sometimes WS FULL or
INTERRUPT). DET similarly gives no indication of the true nature of the error. The same is true if a
locked function calls an unlocked function which encounters an error. No internal details of the error
are given. If a function containing a OEA or OEC statement is locked this does not affect the behaviour
of the error handling internal to the function.

APLX Language Manual 195

In the first example, OEA is used to handle the error:

vR<A DIVIDE B
[1] Re'A' OEA 'A:B'

v

3 DIVIDE 2
1.5

3 DIVIDE 0 (Alternate execution invoked - returns
3 left argument)

As an alternative, OES is used:

vR«A DIVIDE B
[1] "ATTEMPT TO DIVIDE BY ZERO ERROR' OES(B=0)/5 4

[2] R<A+B

v

3 DIVIDE 4
0.75

3 DIVIDE 0 (Error signalled)
ATTEMPT TO DIVIDE BY ZERO ERROR

3 DIVIDE 0

A

0OEM (OEM contains the message matrix)
ATTEMPT TO DIVIDE BY ZERO ERROR

3 DIVIDE 0

A

pOEM
3 31

OET (OET contains the appropriate codes)
5 4

Finally, controlled execution allows the results and error messages (if any) to be studied:

OEC '3+4'
1 00 0.75
OeC '3=0'
0 5 4 DOMAIN ERROR (Three element nested vector result)
3:0
A

pOEC '3:0"

APLX Language Manual 196

Error Trapping (OERX)

Note: The use of OERX is now deprecated. We recommend that you use the structured-control error
trapping mechanism (:Try :CatchIf :CatchAll :EndTry) instead.

The system function OERX allows you to set an error trap which will cause control to pass to a given
line in a function, if an error occurs:

vF00;Z
[1] Z<OERX LABEL Z will contain the previous value of OERX

Control will pass to LABEL when an error occurs in this function, (or a called function which does not
have error trapping set). DERX returns the previous trap value. When an error occurs the normal error
display of error message and line number is suppressed. A right argument of O to OERX suppresses the
trap.

A non-error trapped function, called by an error trapped function, will behave as if it is locked. A
branch will again take place to the designated line in the calling function.

Having transferred execution to an error handling routine, it is important to know the type of error that
has occurred and also where it occurred. Sometimes the APL function can attempt some sort of
corrective action, but often the error is logged and some message passed to the user.

The function OLER returns the error code number (see below) and the line where the error took place,
as a two element vector. If, when error trapping is active, an error occurs, the line number will refer to
the most recent function to which the error has been propagated (i.e. the error trapped function).

To read the error message, the system function OERM shows the character vector that APLX would
normally print with a Carriage Return (OR) between lines. Inside a locked function, DERM will show
the error message that would be displayed if the function were unlocked. Outside a locked function,
however, OERM is set to be an empty vector for security reasons.

vF00;Z;ER
[1] Z<OERX ERR
[2] 100x'A'

[3] 'THIS LINE WILL NOT BE REACHED'

[4] ERR: "INTERNAL PROGRAM ERROR'

[5] ER<OR OBOX OERM m FORM THE OERM VECTOR INTO A MATRIX

[6] "ERROR MESSAGE: ',(ER[1;]),' ON FUNCTION LINE ',sOLER[2]
v

Example of Error Trapping

It is possible to encounter the error message WS FULL if you try to carry out operations using large
arrays. Rather than have your function stop, you might like to check for this error state and undertake
corrective action.

APLX Language Manual 197

vADDUP; X; DATA
[1] ~ADDS UP ALL THE NUMBERS UP TO THAT ENTERED

[2] Xe<OERX ERR n X IS USED TO HIDE THE RETURN FROM OERX
[3] START:'ENTER A NUMBER'
[4] DATA<LO = MAKE IT THE NEXT LOWEST INTEGER

[5] 'THE SUM OF THE FIRST ', (sDATA),' NUMBERS IS: '

[6] +/1DATA

[7] -0 & END OF THE FUNCTION

[8] ERR:»(1#11"0OLER)/REALERR a ERR CODE 1 IS WS FULL

[9] 'THE NUMBER YOU ENTERED WAS TOO BIG TO USE, TRY AGAIN'
[10] »START

[11] REALERR: n AN ERROR HAS OCCURRED WHICH IS NOT WS FULL
[12] 'ERROR TYPE ', (s1tOLER),' ON LINE ', s1l0OLER

[13] 'MESSAGE IS:'

[14] OERM

[15] v

Make sure that you have some escape route from the error trap routine, otherwise any error within that
section of the function will cause an uninterruptible loop. (The Interrupt key or menu item also causes
an error - type 13)

Error Signalling

If some error report is to be made to the user of the system, it is useful to be able to modify the usual
APL error messages, which may not be very meaningful to the end user. This can be carried out by the
function OERS. DOERS can be used to force a standard APL error report, or, if used with a character left
argument, it will display those characters and assign the error code in its right argument to OLER.

Here is an example where OERS is used to make sure that the user hasn't hit the interrupt key
accidentally:

vFO0O0;DATA
[1] [OERX ERR n SET ERROR TRAP
[2] L:'ENTER YOUR EXPRESSION'
[3] DATAeN
[4] '"THE RESULT IS:'
[51 & DATA
[6] L

[7] ERR: »(13#110LER)/NOTINTA NOT INTERRUPT

[8] 'DID YOU MEAN TO HIT INTERRUPT? (Y/N)'

[9] >('Y'#11™0)/L o OERS 13 a SIGNAL IF CONFIRMED

[10] NOTINT: OERS 11OLER n SIGNAL OTHER ERRORS
v

If the right argument is a number in the range 1 to 51, OERS will display the standard APLX error
message. As you will see later in the chapter, some error numbers are undefined, and in these cases
OERS will display UNKNOWN ERROR TYPE SIGNALLED. If the right argument is an empty
vector, no error is signalled. Used with a character left argument, the error message may be altered. An
empty vector left argument (") will suppress the error message.

VR«AV B
[1] "NUMERIC ARGUMENT PLEASE' OERS (4=0DR B)/8
[2] Re(+/B)+pB

\4

APLX Language Manual 198

AV 1 23
2
AV 'ABC'
NUMERIC ARGUMENT PLEASE
AV
A
OLER
80
OsI

(empty response) (the function has been halted)

APLX Language Manual

Error Codes (OET)

199

Error types reported by OET are listed below. Note that some codes are unassigned.

OO UICIOITCITCICITW WNNNNNMNNRFRPRPERPRPRPRPRPRPRPERPRPRPRPRPOOO

O©COoOPHS~,WNEFDNRFO

o

NO ERROR

UNKNOWN ERROR

DEFN ERROR
INTERRUPT

SYSTEM

WS FULL

SYSTEM
SYSTEM
SYSTEM
SYSTEM
SYSTEM
SYSTEM
SYSTEM
SYNTAX
SYNTAX
SYNTAX
SYNTAX
SYNTAX
SYNTAX

ERROR

LIMIT
LIMIT
LIMIT
LIMIT
LIMIT
LIMIT
LIMIT
ERROR
ERROR
ERROR
ERROR
ERROR
ERROR

VALUE ERROR
VALUE ERROR

VALENCE ERROR

RANK ERROR

LENGTH
DOMAIN

ERROR
ERROR

INDEX ERROR
AXIS ERROR
FILE ERROR
FILE ERROR
FILE ERROR
FILE ERROR
FILE ERROR
FILE ERROR
FILE ERROR
FILE ERROR
FILE ERROR
FILE ERROR
FILE ERROR
FILE ERROR
FILE ERROR
FILE ERROR

SYMBOL TABLE

ARRAY RANK

ARRAY SIZE

ARRAY DEPTH

PROMPT LENGTH

UNASSIGNED

TOKEN LIST LIMIT

OPERAND OR RIGHT ARGUMENT OMITTED
ILL FORMED LINE

NAME CLASS

INVALID IN CONTEXT/NONCE ERROR
COMPATIBILITY SETTING PREVENTS THIS
STRUCTURED-CONTROL ERROR

NAME WITH NO VALUE

FUNCTION WITH NO RESULT

UNAUTHORISED FILE ACCESS
FILE NOT IN SYSTEM
COMPONENT NOT IN FILE
FILE ALLOCAION EXCEEDED
FILE OR COMPONENT HELD
FILE MAINTENANCE IN PROGRESS
USER ALLOCATION EXCEEDED
FILE IN EXISTENCE

FILE I/0 ERROR

DISK FULL

USER NOT IN SYSTEM

DATA DAMAGED

FILE LOCKED

LOGICAL UNIT NOT FOUND

APLX Language Manual 200

Error Codes (OLER)

Errors reported by OLER are allocated integer Error Codes. Some error codes are unassigned, but these
codes may still be used by the OERS function.

0 NO ERROR, OR ERROR RESET

"1 OUT OF RANGE ARGUMENT FOR OES

1 WS FULL 17 FILE I/0 ERROR

2 SYNTAX ERROR 18 FILE NOT IN SYSTEM

3 INDEX ERROR 19 UNAUTHORISED FILE ACCESS
4 RANK ERROR 20 COMPONENT NOT IN FILE

5 LENGTH ERROR 21 FILE ALLOCATION EXCEEDED
6 VALUE ERROR 23 FILE MAINTENANCE IN PROGRESS
7 VALENCE ERROR 24 FILE OR COMPONENT HELD

8 AXIS ERROR 25 INCORRECT COMMAND

9 SYSTEM ERROR 26 DATA DAMAGED

10 SYSTEM LIMIT 27 USER NOT IN SYSTEM

11 DOMAIN ERROR 28 USER ALLOCATION EXCEEDED
12 SYMBOL TABLE FULL 29 FILE IN EXISTENCE

13 INTERRUPT 40 DISC FULL

14 DEFN ERROR 41 FILE LOCKED

15 UNKNOWN ERROR 42 LOGICAL UNIT NOT FOUND

16 NONCE ERROR 43 STRUCTURED CONTROL ERROR

APLX Language Manual 201

Error Messages

The various error messages that APLX will generate are shown below:

Message Problem and corrective action

AXIS ERROR The axis used is incorrect or the operator is
not defined with axis or the axis specification
contains invalid characters.

BUFFER FULL Input 1line too long.
Action: interrupt the display and shorten the
line.

COMPONENT NOT IN FILE The file does not contain the specified

component, or the function was not found iin
the shared library.

COPY BUFFER FULL Name 1list of)COPY command is too long.
Action: shorten name 1list.

DATA DAMAGED Error detected in the internal format of a
variable.

DEFN ERROR When using v to create function:

- function name duplicates name of an object
already 1in the workspace, invalid header
Action: change name of either, or erase
object, correct the header.

- the name you have used is 1invalid or locked.

When using v to edit a function:

- you've 1included the argument names with
the function name when attempting to edit
an existing function.

- the function is locked.

- the function is pendant. (see the section on
Error Handling)

When editing body of function:
- dimproper attempt at function line editing,
for example a [, a number, but no closing 1J.

DISK FULL File dataspace is full

DOMAIN ERROR You've used an APL function, but the
arguments you have supplied are outside the
domain of that function. For example:

- You've tried to divide by zero.

- You've tried to use one of the arithmetic
functions (+ - x <) with characters

- You've used fractional numbers with
functions which require whole numbers (e.g.
monadic 1 or ?)

FILE ALLOCATION EXCEEDED The file has reached its maximum allowed size

APLX Language Manual

FILE IN EXISTENCE

FILE I/0 ERROR

FILE LOCKED

FILE NOT IN SYSTEM

FILE OR COMPONENT HELD

INCORRECT COMMAND

INDEX ERROR

INTERRUPT

I/0 ERROR

LENGTH ERROR

LOGICAL UNIT NOT FOUND

NONCE ERROR

NO SPACE

NOT COPIED....

NOT ERASED.. ..

NOT FOUND.....

NOT GROUPED,NAME IN USE

NOT SAVED: THIS WS IS WSID

202

Attempt to rename a file to an I.D. which
already exists

The host operating system has signalled to APL
an error in some disc-related operation

An dincorrect file password has been used
The file that is being accessed does not exist

The operation cannot be performed due to an
outstanding file or component hold by another
user

You've typed a command starting with), but
the remainder of the command is not correct or
not recognised.

When carrying out an 1indexing operation, you

have used an invalid index. For example:

- You have asked for element [5] of a 4
element vector

User 1interrupt.

APL encountered an error during input/output.
Probably hardware failure or illegal OMOUNT
table.

Arguments are of unequal lengths, or the axes
where the 1lengths of the arguments must
match are unequal. For example:

23 +345

The logical unit requested does not exist,
or the shared library was not found, or the
external class was not found.

The expression you have typed is syntactically
correct, but the interpreter does not support
it at the moment.

Not enough disc space to perform)COPY or
)SAVE command

Attempt to)PCOPY an object which exists 1in the
active workspace.

The objects shown were not found by the)ERASE
operation.

Workspace does not contain the object.
Action: check spelling of workspace or object
name.

Variable or function already has the name;
Action:change name of group or erase conflicting
object

Normally occurs on attempt to save a
workspace using a name which is not that of

APLX Language Manual 203

the active workspace and which duplicates the
name of a workspace in the library. You have
used the)SAVE command 1in the form

)SAVE NAME
to rename and SAVE the workspace.
Action: rename the active workspace using
)JWSID, then save.

NOT SAVED, WS LOCKED Occurs on attempt to save an active workspace
with the same name as, but a different
password from, a workspace already 1in the
library. A locked workspace cannot be loaded,
dropped, copied or saved-over without
knowing the correct password. To change a
password on a saved workspace, JLOAD the
workspace,)DROP the workspace, then resave

with a new password.
Action: change the password of the active
workspace using)WSID.

NOT WITH OPEN DEFINITION The command cannot be processed while you
are editing a function.
Action: <close the definition with v and re-
issue the command.

RANK ERROR Function not defined for data of this structure
or arguments are of incompatible rank.
Action: provide argument of correct structure
(single number/character, vector, matrix, etc)

SI DAMAGE A pendant or suspended function has been
replaced or removed by)COPY or)ERASE. Label
lines of a suspended function have been
edited. A function not at the top of the SI
list has been edited, erased or copied. A
function on the SI list has had its header
edited.

Action: clear the state indicator by)SICLEAR.

STRUCTURED CONTROL ERROR A Structured Control keyword has been encountered
but the context 1is wrong. For example, an :End
may have been encountered but there 1is no current
block active, or you have branched into an
indented block.

Action: Check the block structure keywords
match up.

SYMBOL TABLE FULL Too many names in use for the current symbol
table size.
Action:)SAVE the current workspace,)CLEAR the
active workspace, increase the size of the
symbol table using)SYMBOLS,)COPY the saved
workspace back into the active workspace.

SYNTAX ERROR I11-formed expression, or 1incorrect number of
arguments for a function. For example:
- You have used a one argument function
without a right argument.
- You have unbalanced parentheses

SYSTEM ERROR An internal hardware or software problem
such as a memory fault. After this error a

APLX Language Manual

SYSTEM LIMIT

UNAUTHORISED FILE ACCESS

USER ALLOCATION EXCEEDED

VALENCE ERROR

VALUE ERROR

WS FULL

WS LOCKED

WS NOT FOUND

204

clear workspace 1is loaded automatically.

One of the system limits has been exceeded, for
example the rank of an array.

The file's access matrix does not allow the
operation from this user number.
Action: modify access matrix

User has too many files or the aggregate size
of the file exceeds the user's quota.

A function has been used with too many or too
few arguments - for example a left argument for
a monadic function or a right argument only for
a dyadic function.

The name you've asked for does not exist, or
you have referred to the result of a function
which does not return a result.

Insufficient workspace. The active workspace
cannot contain all the objects requested.
During a)COPY command no objects are copied.
Action: erase some variables or functions to
make more space. Clear the state indicator
using)SICLEAR.

You have wused an incorrect password for a
workspace that was saved with a password.

The workspace requested s not in the
specified library or logical unit.

Action: check the location of the workspace
and the spelling of the workspace name.

APLX Language Manual 205

Section 4. Component File Systems

Component files are APL files in which you can store arbitrary APL arrays or overlays. APLX
supports two different component file systems. The first of these is based on the file-access primitives
B B B ®(as implemented in APL.68000), and the second is based on system functions such as OF TIE.

APLX Language Manual 207

based File System

The APLX B based File System uses four primitive functions to transfer APL data between the active
workspace and a file space located on a disk storage device:

] File Read ('Quad-Read")
B File Write ('Quad-Write')
i File Hold ('Quad-Hold")
vl File Drop ('Quad-Drop"')

APL files are identified by a file number, and components are accessed by component number. A file
may be kept secure from other users by passwords, or by one of two methods of access control:
control of access by user number, and a file or component hold facility.

The file system has been designed to facilitate casual use of the system without reducing the security
features which may be required by more complex applications. Files are created automatically when
the first write operation is performed.

Individual components may be any valid APL data, including overlays. The components keep their
type and shape when stored and retrieved. Components may be added or inserted at any point in a file
and any component may be deleted, even if it is located in the middle of a file.

APL files are located in a 'data space'. There may be several ‘data spaces' throughout the system. Each
'data space’ is independent of all other 'data spaces'. A utility program is supplied with APLX to create
and maintain these 'data spaces’, and this will be detailed in the system dependent notes. All file
operations allow subscripts to select, via a logical unit number set in the OMOUNT function, which 'data
space' is to be used in a given operation.

Basic File Operations

A file consists of a set of sequentially numbered components, each of which may be any APL variable.
The components are referred to by their position within the file. Deletion of components or insertion
of components within the file automatically renumbers the file in a manner similar to the renumbering
of APL function lines during function editing. Files are created by the first valid write operation.
Extensions to the built-in file functions allow information about the files, and their components to be
read.

For each 'data space’, the file system keeps tabs on the number of files each user owns and the size of
those files. Each user has quotas which limit the number (if any) of files he may own, and the
aggregate size of those files. In addition to the limits on a user, there are quota restrictions on the size
of each individual file. The user is free to alter the default file size (which varies from system to
system) upwards or downwards - subject, of course, to his overall quota.

APLX Language Manual 208

Advanced File Operations

Each user of APLX can be allocated a user number (shown by 110AI), which allows each user in a
multi-user environment to assume a unique identity. Individual APLX files are tagged with a User
Number, and have an associated File Access Matrix which indicates which users can access the file
and what operations they may perform. Users will be allocated their user number by the logon
procedure adopted by their system. Each user can thus ‘own' a number of files and the user can grant
or deny access to these files.

The Access Matrix is two columns wide. The first column is a list of user numbers - with 0 being
taken to mean ALL users. The second column is a list of integers which indicate the access privileges
for the indicated user. When a file is created, the default access matrix allows only the owner to access
it, and grants to the owner all accesses except File-Delete. An Access matrix may have a maximum of
29 rows.

The access privileges can be given in two ways.

A positive privilege states what the user can do, and a negative privilege states what the user cannot

do.

The privilege code is effectively a number generated by adding various powers of 2 (1,2,4,8,16,....),
each power of 2 corresponding to a particular privilege. Positive privilege codes are merely the sum of
the individual privileges granted, whilst negative privilege codes are generated by adding ~1 and the
result of negating the sum of all the privileges denied.

Power of 2 Operation
0 (1) Read components
1 (2) 1d 26 3H
2 (4) Insert Components
3 (8) Append Components
4 (16) Replace Components
5 (32)
6 (64) Delete a File
7 (128) Delete a Component
8 (256)
9 (512) Set File Allocation
10 (1024) Rename
11 (2048) Hold/Release File
12 (4096) Hold/Release Components
13 (8192)
14 (16384) 6d 7H
15 (32768) 1d
16 (65536) 24
17 (131072) 3d
18 (262144)
19 (524288) Read Access Matrix

(

1048576)

Write Access Matrix

APLX Language Manual 209

For example:

Privilege Meaning

0 No Access
1 Read Only Access
17 Read and Replace Access
1 Full Access
65 All Operations except Delete allowed

In addition to the access privileges afforded to users by the Access matrix, the Hold mechanism
temporarily suspends file access by other users, whilst, for example, an updating operation is being
carried out. Hold may be applied and released to whole files or components, and holds may be applied
in two strengths - write access restricted and both read and write restricted.

For more information, see the descriptions of the file-access primitives:

M Read, Get info, Rename

B Write

i Hold/Release, Change Quota
0 Delete

APLX Language Manual 211

File read

One-argument form

B reads data from a file. The right argument specifies the file and component number of the data
required.

The one-argument B statement takes this form ({} means optional):

Re<E {[LIBRARY]} FILE, COMPONENT {,USER, PASSWORD}

LIBRARY identifies the library volume from which data is to be read. If you omit the library number,
library 0 is assumed. If included, the library number is put in square brackets. (see also the section on
OMOUNT).

FILE identifies the file the data is to be read from (a positive integer)

COMPONENT identifies the data item you want to read (an integer). Component number O means the
last component, and if the component number is omitted, it is assumed to be 0.

USER and PASSWORD are used for file security in shared file applications; the defaults are 110AI
and 0 respectively if omitted (both integers). User number 0 also means the owner.

E 3 300 (Component 300 1is read from file 3 on
2.6 7.1 3.3 on library 0. The data 1is displayed)
A<E 2 40 (The data 1in component 40 of file 2 is

read and is assigned to A)
A<d[3] 10 19 1000 99 (Data 1is read from component 19 of file

10 on library 3, belonging to user 1000
and with password 99)

A variant of the one-argument form is used for reading the file access matrix. Here the negative of the
file number is used and the value returned is the present access matrix. (See the discussion of file
access matrices above)

AcE™3 (The file access matrix of file 3 on
library 0 is assigned to A)

Two-argument form

The two argument form of B provides information about the files and components. The general syntax
is:

R « A B {[LIBRARY]} FILE {,COMP,USER,PASSWORD}

APLX Language Manual

212

The action of @ in this form is governed by the value of A, as the next table shows (library, file,
component ,user and password are as defined for the one argument form). The file number is
required when information is sought about a given file and the component number is only used when
information about a given component is sought. If the file number is omitted it defaults to 0, as does

the component number.

A File no. Comp. no.
1 FILE 0
2 FILE 0
2 0 0
3 FILE COMP
5 0 0
6 FILE 0
7 FILE COMP

The file description vector comprises:

- File number

- Actual size
- Number of components

O©COoONOOOTHWN P
1

The user quota vector comprises:

- User number

- Maximum allowed size 1in bytes

Date file was created, MMDDYY
- Time file was created, HHMMSS
- Date file was last updated, MMDDYY
- Time file was last updated, HHMMSS
- Bytes attributable to file overhead

Result of H

The number of components in the file

A nine-element file description vector

An eight-element user quota vector

A six-element component description vector
A vector of the file numbers belonging to
the user, in ascending order

A three-element vector of file hold
information

A three-element vector of component hold
information

OO OIS~ WN P

Aggregate file allocation quota

Current aggregate file size

Number of files quota

Number of files in existence

Allocation assigned to a new file

Free space remaining in dataspace

Largest contiguous space left in dataspace

The component description vector comprises:

DTS~ WN -

File number

Component number

User number

Date component was written, MMDDYY
Time component was written, HHMMSS
Size of component in bytes

The file hold information request returns the following:

1 - Number of components held
2 - User holding the file (or 0)
3 - Hold restriction (0, 1 or 2)

APLX Language Manual 213

And finally, the component hold vector:

1 - Component number
2 - User holding the component (or 0)
3 - Hold restriction (0, 1 or 2)

For example:
5@[1] 0 (A vector of all files on volume 1)
1 117 10923478
2@8[1] 117 0 (The file description vector of file 117 on
library 1)

117 500000 388864 60 10383 2429 22384 223357 56

File Rename

The file may be renamed with a variant of the two argument B function. The general form of the
operation is ({} means optional) :

Re(NEWFILE,OVER,USER {,NEWPASS})® {[LIBRARYI}OLDFILE,O,USER, {OLDPASS}

NEWFILE means the new file number
OLDFILE means the original file number

NEWPASS means the new password (if a password is to be changed it must be specified in both
arguments)

OLDPASS means the original password
R, the result, is 1 for a successful rename; O if the operation failed

OVER means whether or not the rename may overwrite an existing file (except when changing the
password).

OVER
OVER

0 means that overwriting is not allowed
64 means that overwriting is allowed

When overwriting, the file being overwritten must have delete access set, and the password (if any)
must be correct. Otherwise a file locked error is shown.

APLX Language Manual 214

File write

B writes data to a file. The left argument is the data. The right argument identifies where it's to go. If
the file specified as the destination already exists, the data is put in it. If it doesn't exist, B causes it to
be created first. A component may only be written within the range of existing components (either by
replacement or insertion), or be appended to the end of the file.

The full form of B is as follows ({} means optional)

R « A B {[LIBRARY]} FILE,COMPONENT {,USER,PASSWORD}

Ais any APL variable.
R (the result) is an empty vector with display potential off.

LIBRARY number identifies the library volume number to which the file is to be written. If you omit
the library number, library 0 is assumed. If included, the library number is put in square brackets. (See
also OMOUNT for a discussion on alteration of library numbers.)

FILE number identifies the file the data is to be written to (an integer).

COMPONENT number is the identifying number which shows the way in which the variable is to be
put into the file:

€=0 Append a new component to the end of the file

C=1integer Replace an existing component, unless the number is 1 past the end of the file when it is
appended

C=fraction Insert the component between the two integers on either side of C. Again append if C is
less than 1 after the end of file. If C is omitted, it defaults to 0.

USER number and PASSWORD are used for file security in shared file applications; the defaults are
110AI and O respectively if omitted.

137862 (The vector 1 3 7 becomes component 2 of
file 6 on library 0. If component 2
already exists 1it's overwritten.)

VAREI[2]506 3 1075 (VAR dis written to component 3 of file
506 belonging to user 1075 on library 2)

(0 OOV ONL 3)B12 5 (A1l the functions 1in the workspace are
filed as an overlay, into file 12
component 5 - see also ONL, 0O0V)

APLX Language Manual 215

A variant of 8 is used for updating the file access matrix. Here the negative of the file number is used
and the left argument is the new access matrix.

Note:

Writing an access matrix to a non-existent file is a way to create an empty file.

A B {[LIBRARY]} -FILE {,COMPONENT,USER,PASSWORD}

(1 2p1000 "1)B[3]79 (File 9 on library 3 1is set to FULL access
for the owner)

[File hold

One-argument form

@ in one-argument form alters the file allocation quota (how much the file may ‘hold’). When a file is
first created it is restricted to a given size. (This size will vary from system to system). The file
allocation quota may be examined via 28. A file may be created by reading the file allocation quota.
A file so created will have no components.

The general form is ({} means optional):

R « B {[LIBRARY]} FILE,ALLOCATION {,USER,PASSWORD}

A file number of 0 means change the default allocation given to all new files. @ returns the old value of
the allocation quota.

mL1] 120 200000 (The file allocation quota of file 120 on
50000 library 1 is to be raised to 200000 bytes)

mL2] 0 100000 (The default file allocation on library 2 is
50000 to be increased to 100000 bytes)

Two-argument form

This more common form of @ allows file access by other users in a shared file system temporarily to
be suspended. While a hold is in effect at the component or file level, the user issuing the successful
hold is granted exclusive access to the held component or file to perform his file update(s). The
general form of the command is:

ReA B {[LIBRARY]} FILE,COMPONENT {,USER NO,PASSWORD}

For a component number of O the entire file is held. The left argument A determines the strength of the
hold:

APLX Language Manual 216

0 means release the component or file, removing a previous hold
1 means restrict write access by others
2 means restrict read and write access by others
1 @[1] 120 3 (Restrict write access to component 3
1 of file 120 on library 1)
2 @98 0 (Restrict read/write access to whole
1 of file 98 on library 0 (default))
0 m[1] 120 3 (Release component 3 of file 120
1 on library 1)
0@ 98 0 1000 (Release file 98 on library 0, file
1 belongs to user 1000)

In two-argument form, @ returns a 1 if the operation was successful, 0 otherwise.

Effect of Access Matrix on Hold Operation

Some file operations are not affected by the & function, and some others are blocked even to the
holder. The following table illustrates:

Operation Effect of Hold
File Hold Component Hold
Read components 2 2
168 2H 2 0
36 2 2
Insert Components 1+2 N
Append Components 1+2 0
Replace Components 1+2 1+2
Delete a File 1+2 N
Delete a Component 1+2 N
Set File Allocation 1+2 N
Rename 1+2 N
Hold/Release File 1+2 N
Hold/Release Components 1+2 1+2
66 7H 0 0
Read Access Matrix 2 0
Write Access Matrix 1+2 N

where:

0 means the operation 1is not affected by a hold

2 means that when the hold strength is 2 (read and write held),
only the holder may perform the operation. For components, the
block is only on the held components

1+2 means that when the hold strength 1is 1 or 2, only the holder may
carry out the operation. Again, for components, the block 1is only on
the held components

N means that when the hold strength is 1 or 2, no one may carry out the
operation

APLX Language Manual 217

@ File drop

One-argument form

Deletes a component within a file. The right argument identifies the file or component to be dropped.
A file is identified by its file number and a component is identified by the number of the file it's in,
and its own number within that file.

The full form of @is ({} means optional):

R « B {[LIBRARY]} FILE,COMPONENT {,USER,PASSWORD}

R (the result) is 1 if the operation was successful, and 0 if not.

LIBRARY number identifies the library volume which holds the file to be accessed. If you omit the
library number, library 0 is assumed. If included, the library number is put in square brackets. (see also
the entry on OMOUNT for discussion of library numbers)

FILE number is the number of the file to be accessed.

COMPONENT number is the number identifying the component to be deleted. If O the last component
is deleted. If the component is not specified, the number will be assumed to be 0.

USER number is the number of the owner of the file. If omitted, defaults to 110AI, i.e. your own user
number. PASSWORD is the optional number designated as a security password 0 is assumed if the
password is omitted.

APLX will return a code 1 to indicate that it has successfully carried out the operation, otherwise a 0 is
returned.

@ 2 100 (Delete component 100 in file 2)
1

mf1]4 222 (Delete component 222 of file 4 which is
1 on library volume 1)

Two-argument form
Deletes an entire file from the system. The form is ({} means optional):
R<USER @ {[LIBRARY]} FILE,0, {USER,PASSWORD}

where R, USER, LIBRARY, FILE, PASSWORD are as defined above.

Note: By default, a user is denied the privilege of deleting an entire file, even his own. In order to
delete a file, the owner must first grant himself the deletion privilege by adjusting the Access matrix
(see sectionon @) .

APLX Language Manual 219

OF xxx Component File System

As an alternative to the powerful multi-user component file system accessed using the file primitives B
B @ m APLX also implements a second component file system similar to that used in many other
APL interpreters, with important extensions. This is based on the system functions OFCREATE OFTIE
OFREAD and so on.

OF xxx files are identified by a file name, and created using OFCREATE. For each APL component file, a
separate operating-system file will be created. When you want to use an existing file, you first 'tie'
(open) it using OF TIE or OFSTIE, and then you refer to the file by the tie number which you have
specified or which has been automatically allocated by APLX. (This is in contrast to the B E-based
system, where a single 'dataspace' holds multiple APL component files, component files are always
identified by number, and there is no need to 'tie' a file to use it.) Once the file has been tied,
components are accessed by component number. When you have finished using a file, you must close
it using OFUNTIE. (They are untied automatically when the APL task ends, but they are not untied
automatically when you)CLEAR the workspace or)LOAD another workspace).

Components within a file are numbered sequentially, initially from 1 to N, where N is the number of
components in the file. You read components from an existing file using OFREAD. You can write a
component to the file using the OFAPPEND and OFREPLACE facilities implemented by other APL
interpreters; these allow you to append to the end of the file, or to replace an existing component
respectively. You can also delete components using OFDROP, but only from the start or the end of the
file. Components are not re-numbered, so if you drop components from the start of the file, the first
component will no longer be number 1.

APLX retains upwards compatibility with this simple model, but in addition provides the more general
functions OFWRITE (which allows you to insert components anywhere within the range of existing
components, or immediately before or after them), and OFDELETE (which allows you to delete a
component anywhere in the file). When you use these extensions, components are automatically re-
numbered so that they always comprise sequential integers from the first component M to the last
component 1+M-N, where N is the number of components in the file.

Individual components may be any valid APL data, including nested arrays and overlays created using
ooV (which can contain multiple functions and variables). The components keep their type and shape
when stored and retrieved. When you replace a component, the new component does not have to be
the same size as the original; the file system automatically expands the file if necessary to
accommodate a larger component, and if possible releases space when you replace an existing
component with a smaller one.

When using the file system in a multi-user or multi-tasking environment, you can optionally tie a file
for exclusive use (OFTIE), or for shared access (OFSTIE). A file may be kept secure from other users
by a pass number, and you can set an access matrix which determines what operations other users can
perform. To facilitate concurrent use of shared files whilst maintaining data integrity, the file hold
facility OFHoLD allows you to hold one or more files temporarily for exclusive use.

APLX Language Manual 220

Special considerations for Client-Server implementations of APLX

See OFCREATE for details on how component files can be located on either the Client or Server
machine.

Mixing 32-bit and 64-bit Component Files

If you are running both 32-bit and 64-bit versions of APLX, then it is possible to share component
files between the two architectures, but there are some special points you should be aware of. The
rules are as follows:

If the file has been created from a 32-bit version of APLX, then it will always remain as a 32-
bit component file. It can be accessed from 64-bit APLX64 systems, but all components will
be held in 32-bit form. If you write a component from APLX64, then the data is converted to
32-bit form before it is written. This means no component can be bigger than 2GB, nor have
more than 2,147,483,647 elements. It also means that any 64-bit integer data will be converted
to floating-point form if it contains integers of magnitude bigger than 2*31. If it contains
integers of magnitude bigger than 2*53, the data conversion will involve loss of precision. The
maximum size of the file is currently 2GB.

If the file has been created from a 64-bit APLX64 interpreter, it will be a 64-bit component
file. It cannot be accessed from 32-bit APLX systems. Data can be of any type or size, subject
only to an overall size limit for a single component file of 1024GB.

Component File Functions

For more information, see the descriptions of the OF xxx system functions:

OFAPPEND Append component to file

OFCREATE Create a new component file

OFCSIZE Read component size information

OFDELETE Delete component from file

OFDROP Drop components from start or end of file

OFDUP Duplicate component file, reclaiming wasted space
OFERASE Erase component file

OFERROR Return operating-system error

OFHOLD Hold/Release component files for exclusive access
OFLIB Return names of component files in directory
OFNAMES Return names of currently-tied files

OFNUMS Return tie numbers in use

OFRDAC Read component-file access matrix

OFRDCI Read component information

OFRDFI Read file information

OFREAD Read component

OFRENAME Rename component file

OFREPLACE Replace existing component

OFRESIZE Set maximum file size

OFSIZE Read file-size and component-range information
OFSTAC Set component-file access matrix

APLX Language Manual 221

OFSTIE Tie file for shared use

OFTIE Tie file for exclusive use

OFUNTIE Untie component file(s)

OFWRITE Append, replace or insert component

APLX Language Manual 223

Section 5: Native File Functions

APLX Language Manual 225

APLX Native File Support

APLX provides a full set of system functions which let you access the native file system on your host
machine.

In many cases, the easiest way to read or write data in files is to use the OIMPORT and OEXPORT
functions. These allow you to read or write the entire contents of a file in a single call, in a number of
common formats, for example in formats which spreadsheets can access. However, for more detailed
control of the contents of a file, or to access files which are too big to read into a variable in the
workspace, you will need to use the native file functions described below.

See also OsqL, which allows you to read and write data held in relational databases.

Native file functions using tie numbers

Most of the APLX native file functions refer to a host file through a file tie number, a non-zero integer
value used to identify the file once it has been opened. You can specify the tie number yourself as an
argument to the ONTIE or ONCREATE functions. Alternatively, you can provide an argument of 0 and let
APLX choose a unique tie number for you (in this case it is returned as the explicit result of the
function). The name of the file to tie is supplied to the ONTIE or ONCREATE call as a character vector
and may be a file name or a full host path name. If the full path is omitted the current working
directory is assumed. Case is significant in host file names under Linux or AlX, but not under
Windows and MacOS.

Files may be accessed totally randomly, that is you can read and write data as an arbitrary stream of
bytes anywhere in the file. The ONREAD and ONWRITE functions also allow you to specify an optional
conversion to apply to the file data. For example you can read data as raw bytes or translate text files
into the internal representation used by APLX. Unicode text is also supported. You can read numeric
data as 2 or 4-byte integers, or as booleans or 8-byte floats. In addition you can specify that data is
byte-swapped for transfer between machines with different byte-ordering conventions.

When you have finished using a file it must be untied using the ONUNTIE function. This will close the
file and release any file locks that have been set by the ONLOCK function. Files are also untied
automatically by a)CLEAR or an)OFF . Tied files are not affected by a) LOAD operation.

Errors may arise using the native file system for a number of reasons, for example an attempt to tie a
non-existent file or to read beyond the end of a file. In the event of an error of this type, the system
function will return a FILE 1/0 ERROR. In addition, if error trapping is not enabled, a short
informative message is displayed:

'"TEST.DATA' ONTIE 1
A file or directory in the path name does not exist.
FILE I/0 ERROR

'"TEST.DATA' ONTIE 1
A

APLX Language Manual 226

The text of the specific error message is also available using the ONERROR function. This returns the
error message for the last native file system function to give rise to a FILE 1/0 ERROR.

File size limits

In 32-bit versions of APLX, the maximum integer is 2147483647. Because file sizes and positions are
expressed as integers, this effectively puts a limit of 2GB on the size of native files which you can
directly access in the 32-bit versions of APLX.

In APLX64, the maximum integer is 9223372036854775807, making it possible to directly access
files of up to 8,589,934,592 GB.

Special considerations for Client-Server versions of APLX

In Client-Server implementations of APLX, you can specify whether the native file access should take
place on the Client or Server machine. See the description of ONCREATE for more information.

APLX Language Manual 227

Native File System Functions

For details on using the native-file functions, see the following entries in the section on System
Functions and Variables:

ONAPPEND Append data to file
ONCREATE Create file
ONERASE Erase file

ONERROR Get last file error
ONLOCK Lock/Unlock file
ONNAMES List names of tied files
ONNUMS List tie numbers
ONREAD Read data from file
ONRENAME Rename file
ONREPLACE Replace data in file
ONRESIZE Resize file

ONSIZE Get size of file
ONTIE Open file

ONUNTIE Close file

ONWRITE Write data to file

APLX Language Manual 229

Section 6: System Commands

APLX Language Manual 231

) CLASSES (first (last))

Lists the names of the user-defined classes in the current workspace. If the command is followed by a
character or group of characters, the list gives the names of all functions beginning with that character
or group of characters onwards (the parameter first, used on its own). A second character or group
of characters after the command (the parameter 1ast) is used to end the list of names. Names are
shown in alphabetic order, fully sorted.

)CLASSES

Point Polygon Rectangle Sphere Triangle
)CLASSES S

Sphere Triangle
)CLASSES Pol R

Polygon Rectangle

See also OCLASSES, which returns a list of user-defined classes and references to external classes.

) CLEAR (wssize)

Clears the current workspace. All objects in the workspace are erased, most system variables revert to
their default settings, and the name of the workspace reverts to CLEAR WS.

)CLEAR
CLEAR WS

)CLEAR also optionally changes the workspace size. Y ou can specify a parameter which is the
workspace size you want. It must be an integer, and can be specified in bytes, or followed by K or KB
for kilobytes, M or MB for megabytes, or G or GB for gigabytes. The valid range is 50 KB to 2 GB
(for 32-bit versions of APLX), or up to a theoretical maximum of 8580934592 GB for APLX64.

Depending on the operating system and its configuration, and the amount of memory already in use by
APLX tasks, you are likely to be limited in the maximum size of workspace which you can allocate.
Thus you may not get the full size requested. In practice also, if the workspace you allocate is larger
than the physical RAM in your system, then performance may become be very poor.

For example:

)CLEAR 1000000
WS Size = 976KB
CLEAR WS

JCLEAR 1024KB
WS Size = 1.0MB
CLEAR WS

APLX Language Manual 232

JCLEAR 100M
WS Size = 100MB
CLEAR WS

)JCLEAR 2G
WS Size = 484MB
CLEAR WS

Note that in the last example, the user requested 2GB but the operating system allocated only 484MB.

Example valid only in APLX64:

JCLEAR 16G
WS Size = 16GB
CLEAR WS

)CONTINUE

The)CONTINUE command is implementation dependent, but when implemented this command will
change the name of your active workspace to CONTINUE and)SAVE it, then leave APL. On re-
entering APL, the CONTINUE workspace is automatically loaded. Use of this command is not
recommended, as it can quite easily lead to confusion on a multi-user system.

)CONTINUE
11.15.54 04/29/89 CONTINUE

)COPY (lib) name (:pass) (name(s)

Copies into the currently-active workspace named items from a saved workspace. For example, to
copy functions FRED and JOE from a workspace called MYWS in library 3, you would enter:

)COPY 3 MYWS FRED JOE
SAVED 1991-06-13 23.24.06

If just the workspace name is used, the entire contents are copied:

)COPY MYWS
SAVED 1991-06-13 23.28.17

If the name of an object to be copied matches the name of an object already in the active workspace,
the copy will overwrite the object already in the workspace. See also)PCOPY Protected copy,)SCOPY
Silent copy,)SPCOPY Silent protected copy). If a WORKSPACE FULL or SYMBOL TABLE FULL
error is encountered, the active workspace is left unchanged. You should note that the)COPY operation
works by temporarily)SAVE ing the active workspace in the logical unit from which objects are being
copied (or in a disc defined for temporary objects), extracting the required objects from the workspace

APLX Language Manual 233

identified in the)CoPY command and then merging the active workspace and the objects to be copied.
It is thus possible to see a DISC FULL message during a copy operation.

Copying classes and objects

)COPY can be used to copy classes and objects from a saved workspace. However, some special
considerations arise:

o Ifaclass is copied, and in the original workspace it had a parent, then the)cory will fail
unless a parent class of the same name exists in the destination workspace, or is copied at the
same time. APLX will report an error "Class XXX not copied, missing parent class YYY"

« If avariable containing an object reference is copied, APLX will attempt to copy both the
object reference, and the object itself together with its saved property values. However, a class
of the same name as that of the original object must exist in the destination workspace (or be
copied in at the same time). If this is not the case, the)CcoPY will proceed, but the object
reference will be set to refer to the Null object. APLX will print a warning "At least one object
reference set to NULL (class does not exist)".

e When an object instance is copied in, it is possible for data to be lost. This will happen if the
original version of the object (in the saved workspace) had a non-default property which is no
longer valid in the current destination workspace (because the version of the class is different).
If this happens, the)coPY will proceed, but APLX will print a warning "At least one object
property not copied (not valid for class)".

If you)COPY a list of classes and/or objects, or an entire workspace, APLX will first copy any top-
level classes (classes with no parent), then classes of the first generation (children of top-level classes),
and so on. It will then)COPY object instances and other items. This guarantees that no object
properties or class hierarchy information is unnecessarily lost.

Library specification and path names

There are two different ways in which you can specify where APLX should look for the saved
workspace:

e You can specify the workspace name as just the base name of the workspace, for example
MYWS or Budget03, optionally preceded by a library number. In this case, APLX appends any
default file-extension to the name (.aws for Windows, AIX or Linux), and searches in the
directory corresponding to the specified library number. Library numbers 0 to 9 are set up
either using the Preferences dialog, or by using the OMOUNT system function. Library 10
contains the utility and demonstration workspaces supplied with APLX. If you omit the library
number, library 0 is assumed.

e You can specify a full operating-system path name, including directory separation characters,
such as /usr/workspaces/Budget03.aws (Linux), C:\workspaces\Budget03.aws
(Windows), or MacHD: :workspaces:Budget03 (MacOS). APLX uses the path name exactly as
supplied, so under Linux, Windows and AlX you usually need to provide the .aws file
extension.

See the description of the)L0OAD system command for more detail on libraries and path names.

APLX Language Manual 234

Indirect copy

If one or more of the names following the)COPY command is enclosed in parentheses and is the name
of a variable in the workspace to be copied from which is a simple character scalar, vector or matrix,
then the contents of the variable are interpreted as the name or names of objects to be copied. The
alternative forms of)COPY (i.e.)PCOPY,)SCOPY, and)SPCOPY) will also accept name arrays as part of
the name list of the command.

(THIS THAT THE_OTHER)ec'DATA'
NAMES<OBOX 'THIS THAT THE_OTHER'

JWSID TEST
WAS TEST
)VARS
NAMES THAT THE_OTHER THIS
)SAVE
1991-06-13 19.14.26 TEST
)CLEAR
CLEAR WS

YCOPY TEST (NAMES)
SAVED 1991-06-13 19.14.26
)VARS
THAT THE_OTHER THIS

)CS (number)

)cs followed by an integer from 0 to 7 establishes APL.68000 Level I or Level Il mode. The
Compatibility Setting is a workspace parameter and defaults to 0. See OCS for details of the
parameters. For example,

)CS 0
1 2 3[2]

generates a RANK ERROR whilst Compatibility Setting 1 (APL.68000 Level I mode) will return the
result 2 for the same expression. The Compatibility Setting is a workspace parameter and defaults to 0

)DIGITS number

Followed by a whole number between 1 and 15, this command sets the maximum number of
significant digits displayed after the decimal point in results. On its own (without any following
number) it asks the current setting of DIGITS. The default setting is 10. (See also the system variable
OPP, Print precision)

)DIGITS
IS 10

)DIGITS 8
WAS 10

APLX Language Manual 235

)DIGITS
IS 8
OPP
8

)DISPLAY name

Displays the structure of a variable, in the same form as that returned by the ODISPLAY system
function.

DATA<(2 2p14) 'HELLO'
)DISPLAY DATA

> >
11 2| |HELLO
La 4

~

-

€

Xec(2 3p16) (1 1pl) (1 2 2pr4)
JDISPLAY X

See the description of ODISPLAY for details of the display format.

)DROP (lib) name (:pass)

Drops (erases) a named workspace from disk. If the saved workspace has been saved with a password
(see)wsID and)SAVE), then the)DROP command must include the correct password. For example:

)DROP MYWS

)DROP 1 MYWS

)DROP MYWS:SECRET

)DROP /usr/workspaces/MYWS.aws

Library specification and path names

There are two different ways in which you can specify where APLX should look for the workspace to
be erased:

e You can specify the workspace name as just the base name of the workspace, for example
MYWS or Budget03, optionally preceded by a library number. In this case, APLX appends any

APLX Language Manual 236

default file-extension to the name (.aws for Windows, AlX or Linux), and searches in the
directory corresponding to the specified library number. Library numbers 0 to 9 are set up
either using the Preferences dialog, or by using the OMOUNT system function. Library 10
contains the utility and demonstration workspaces supplied with APLX. If you omit the library
number, library 0 is assumed.

e You can specify a full operating-system path name, including directory separation characters,
such as /usr/workspaces/Budget03.aws ﬂJnUX),C:\workspaces\BudgetO3.aws
(Windows), or MacHD: :workspaces: Budget 03 (MacOS). APLX uses the path name exactly as
supplied, so under Linux, Windows and AlX you usually need to provide the .aws file
extension. (Note: In Client-Server implementations of APLX, you can specify that the path
refers to the Client or Server machine by preceding the file name with an Up Arrow 1t or Down
Arrow {).

See the description of the)L0OAD system command for more detail on libraries and path names.

JEDIT (type) name

APLX includes a 'full screen' editor for functions, operators, variables and classes. This editor may be
accessed via:

JEDIT

The editor is entered thus:

JEDIT NAME EDIT EXISTING OBJECT <NAME>

EDIT NEW FUNCTION OR OPERATOR <NAME>

EDIT NEW OR EXISTING FUNCTION OR OPERATOR <NAME>
EDIT NEW OR EXISTING VAR <NAME>

EDIT NEW OR EXISTING CLASS <NAME>

JEDIT 0 NAME
JEDIT 1 NAME
JEDIT 2 NAME

D ® ®DDD

JEDIT can also be used to edit individual class members, rather than the whole class. In this case, you
specify the fully-qualified name in the form ClassName.MemberName.

See also OEDIT

APLX Language Manual 237

) ERASE name(s)

Erases named global variables, functions, operators and classes from the active workspace. The
command is followed by the name, or names, of the objects to be erased. If an item cannot be erased, a
message to that effect is displayed. Local variables are not erased - use OEX if you wish to do this.

JERASE aCC NEMO
NOT FOUND: NEMO

Indirect erase

If one or more of the names following the)ERASE command is enclosed in parentheses and is the
name of a variable which is a simple character scalar, vector or matrix, then the contents of the
variable are interpreted as the name or names of items to be erased.

)VARS
A B C DATA MAT
JERASE A C
)VARS
B DATA MAT
NAMES<OBOX 'B DATA'
NAMES

DATA
JERASE (NAMES) (rows of NAMES interpreted as object to erase)
)VARS
MAT NAMES
)ERASE NAMES
)VARS
MAT
DATA<'A_NAME'
)VARS
DATA MAT
JERASE (DATA) (same error message as direct erase)
NOT FOUND: A_NAME

Erasing individual class members

JERASE can be used to erase a member (a method of property) from a class definition, using dot
notation in the form ClassName.MemberName to specify which member should be deleted. The
change will immediately be reflected in any existing instances of the class:

PT<ONEW COLOR_POINT

PT.ONL 2 a List properties of object PT
COLOR
X
Y
z
JERASE COLOR_POINT.Z
PT.ONL 2 a Object PT now has one less property
COLOR
X

Y

APLX Language Manual 238

Erasing whole classes

JERASE can also be used to erase a class definition (and all the methods and properties defined in it).
Any instances of the class will become instances of the erased class's parent, if there is one, or of the
NULL class, if the erased class did not have a parent. Similarly, any classes which inherited from the
erased class will be re-parented so that they now inherit from the erased class's parent.

In this example, class pornT3D inherits from coror poInT Which in turn inherits from poInT. PT IS an
instance of COLOR POINT:

)CLASSES

COLOR_POINT POINT POINT3D
OCLASS POINT3D

{POINT3D} {COLOR_POINT} {POINT}
PT<ONEW COLOR_POINT
PT.OCLASSNAME

COLOR_POINT

If we erase the class cor.or poinT, its child class poINT3D is re-parented. The instance pT becomes an
instance of the original parent:

JERASE COLOR_POINT

OCLASS POINT3D
{POINT3D} {POINT}

PT.OCLASSNAME
POINT

If we now erase the class po1nT, PoTNT3D Will nOW have no parent, and the instance pt becomes an
instance of the NULL class:

JERASE POINT

PT.OCLASSNAME
NULL

OCLASS POINT3D
{POINT3D}

)FNS (first (last))

Lists the names of all the functions in the current workspace. If the command is followed by a
character or group of characters, the list gives the names of all functions beginning with that character
or group of characters onwards (the parameter first, used on its own). A second character or group
of characters after the command (the parameter 1ast) is used to end the list of names. Names are
shown in alphabetic order, fully sorted.

JFNS
AFE CONTINUE HELP INFO SCLOSE SLOG SMOUNT SOPEN
SREAD SRET SUNMOUNT TRANSLATE AMERR ASNAME

JENS T
TRANSLATE AMERR ASNAME

)JFNS SM

APLX Language Manual 239

SMOUNT SOPEN SREAD SRET SUNMOUNT TRANSLATE
AMERR ASNAME
JFNS SM T
SMOUNT SOPEN SREAD SRET SUNMOUNT TRANSLATE
) GROUP name(s)

Gathers functions and variables into a group. The first name given will be the name of a group, and the
subsequent names are those of variables, functions and operators to be placed in the group. If only the
group name is supplied, the effect is to disband that group.

Groups can be used with the commands)ERASE and)COPY to deal with a set of objects in a single
operation. However, they are generally considered obsolete, because APLX support 'indirect’)ERASE
and)coPY, where the list of names is contained in an APL variable.

YFNS

COVARIANCE MEAN MEDIAN MODE STANDARD_DEV VARIANCE
)GROUP AVERAGES MEAN MEDIAN MODE
)GRPS

AVERAGES

)GRP AVERAGES
MEAN MEDIAN MODE
JERASE AVERAGES
YFNS
COVARIANCE STANDARD_DEV VARIANCE

) GRP name(s)

Lists the names of objects in group name.

) GRPS (first (last))

Lists the names of all the groups in the current workspace. If the command is followed by a character
or group of characters, the list gives the names of all groups beginning with that character or group of
characters onwards (the parameter first, used on its own). A second character or group of characters
after the command (the parameter last) is used to end the list of names. Names are shown in alphabetic
order, fully sorted.

)GROUP FILEFNS SOPEN SREAD SRET
)GRP FILEFNS
SOPEN SREAD SRET

APLX Language Manual 240

)GRPS
FILEFNS

YHOST (command)

The)HOST command allows the user to issue a command directly to the host environment and display
the result without leaving the APL workspace.

When used without a command, it displays the operating system under which you are working:

JHOST
IS AIX

When used with a command specified, the command is passed to the operating system and executed.
For example:

JHOST pwd
/usr/apl/aplx

Control-C or Break in the Interrupt menu will end the command and return to APL. Otherwise, control
returns to APL when the command terminates, or after a timeout value of 10 seconds. (For finer
control of the timeout, see the OHOST system function)

The)HOST command is highly implementation-specific, and some operating system commands may
not be allowed. Points to note are:

e AlXand Linux: Interactive commands can be executed if required.

e MacOS:)HOST is not implemented under MacOS 8 and 9 except to report the OS name. Under
MacOS X,)HOST is implemented. It invokes the BSD terminal shell to run Unix-style
programs such as 'Is' or shell scripts. However, interactive programs are not supported.

e Windows:)HOST is implemented under Windows, although interactive programs are not
supported. Note that, under Windows, many common commands are 'built-in' to the command-
line shell, rather than being separate executable programs. Under Windows NT, 2000, XP and
Vista, you can run these using the '‘cup’ program with the '/c' option. (Under Windows 95, 98
and ME, use 'commanp.com /c'). For example:

JHOST CMD /C DIR C:\PROG=*. *
Volume 1in drive C has no label.
Volume Serial Number 1is 07D0-0B11

Directory of C:\
17/11/2000 21:05 <DIR> Program Files

0 File(s) 0 bytes
1 Dir(s) 14,522,580,992 bytes free

APLX Language Manual 241

Special considerations for Client-Server implementations of APLX

In Client-Server implementations of APLX, the front-end which implements the user-interface (the
"Client™) runs on one machine, and the APLX interpreter itself (the "Server") can run on a different
machine. The two parts of the application communicate via a TCP/IP network. Typically, the Client
will be the APLX front-end built as a 32-bit Windows application running on a desktop PC, and the
Server will be a 64-bit APLX64 interpreter running on a 64-bit Linux or Windows server.

In such systems,)HOST allows you to specify whether the command should be executed on the Client
or the Server machine. You do this by preceding the command string with either an Up Arrow 1 to
indicate that the command should be executed on the Client, or a Down Arrow ! to indicate that it
should run on the Server. If you do not specify, the default is that the call should take place on the
Client.

In this example, the Client is running under Windows 2000, and the Server under Linux x86_64:

JHOST 1Tcmd /c ver
Microsoft Windows 2000 [Version 5.00.2195]

JHOST luname -nsp
Linux nx6125 x86_64

) IN (lib) filename (name(s))

Imports a Transfer File into the active workspace. Transfer Files are text versions of APL objects that
are created by the)ouT command, or equivalent APL functions. They may be created by APLX or by
another APL interpreter such as IBM's APL2. The Transfer File format is fully explained under the
)OUT and OTF commands. The default file extension for Transfer Files is . atf.

You can import either the whole Transfer File, or just selected items as specified by the 'names'
parameter of the command. For example:

)FNS
JIN DISPLAY (Read the whole Transfer File)
)FNS
ABSTRACT DISPLAY DESCRIBE
)CLEAR
CLEAR WS
JIN 3 DISPLAY DESCRIBE (Read specified objects from Transfer
File in Library 3)
)FNS
DESCRIBE
)IN 2 DODO (Transfer File not found)
WS NOT FOUND

Library specification and path names

There are two different ways in which you can specify where APLX should look for the Transfer File:

APLX Language Manual 242

e You can specify the just the base name of the file, for example MYWS or Budget03, optionally
preceded by a library number. In this case, APLX appends the default file-extension .atf to
the name, and searches for the file in the directory corresponding to the specified library
number. Library numbers 0 to 9 are set up either using the Preferences dialog, or by using the
OMOUNT system function. Library 10 contains the utility and demonstration workspaces
supplied with APLX. If you omit the library number, library 0 is assumed.

e You can specify a full operating-system path name, including directory separation characters,
such as /usr/transfer/Budget03.atf (LINUX), C:\transfer\Budget03.atf (Windows), or
MacHD: : transfer:Budget03.atf (MacOS). APLX uses the path name exactly as supplied, so
you usually need to provide the .atf file extension explicitly. (Note: In Client-Server
implementations of APLX, you can specify that the path refers to the Client or Server machine
by preceding the file name with an Up Arrow t or Down Arrow).

See the description of the)L0OAD system command for more detail on libraries and path names.

JLIB (lib)

Lists the names of the workspaces in the library or explicit path specified (or Library 0 by default). If
the command (and library number, if used) are followed by a letter, only workspaces beginning with
that letter are listed.

J)LIB
COAL CONSOLE FORMAT MIRSEQ NEWGRAF
PSYS SYSFNS

J)LIB C
COAL CONSOLE

JLIB 3

CALCULATE DISPLAY
JLIB C:\workspaces\budgets
Budget02 Budget03 BudgetDraft

Note that only APLX workspaces are shown in the list, not other files. Under Windows, Linux and
AlX, these will have the file extension .aws (any workspaces you save using a full pathname without
this extension will not be listed). The file extension is not shown in the)LIB display.

Library specification and path names

There are two different ways in which you can specify the directory where APLX should look for the
workspaces:

e You can specify a numeric library number, as shown in the first three examples above. Library
numbers 0 to 9 are set up either using the Preferences dialog, or by using the OMOUNT system
function. Library 10 contains the utility and demonstration workspaces supplied with APLX. If
you omit the library number, library 0 is assumed.

e As shown in the last example above, you can specify a full operating-system directory name,
including directory separation characters, such as /usr/workspaces/ (Linux),

APLX Language Manual 243

C:\workspaces\ (Windows), Or MacHD: : workspaces : Budget03 (MacOS). APLX uses the
directory name exactly as supplied.

Note also that, in Client-Server implementations of APLX, you can precede the path name with an Up
or Down arrow to specify on which machine the directory should be searched.

See the description of the)L0OAD system command for more detail on libraries and path names.

)LOAD (lib) name (:pass)

Loads a named workspace. The workspace is loaded into memory and overwrites any workspace
already associated with the current APL task. If the workspace has a password, it must be given.
Otherwise the message WS LOCKED appears and the workspace is not loaded.

JLOAD MYWS
SAVED 2002-09-11 10.32.16

Library specification and path names

There are two different ways in which you can specify where APLX should look for the saved
workspace:

e You can specify the workspace name as just the base name of the workspace, for example
MYWS or Budget03, optionally preceded by a library number. In this case, APLX appends any
default file-extension to the name (.aws for Windows, AlX or Linux), and searches in the
directory corresponding to the specified library number. Library numbers 0 to 9 are set up
either using the Preferences dialog, or by using the OMOUNT system function. Library 10
contains the utility and demonstration workspaces supplied with APLX. If you omit the library
number, library 0 is assumed.

e You can specify a full operating-system path name, including directory separation characters,
such as /usr/workspaces/Budget03.aws (LINUX), C:\workspaces\Budget03.aws
(Windows), or MacHD: :workspaces:Budget03 (MacOS). APLX uses the path name exactly as
supplied, so under Linux, Windows and AlX you usually need to provide the .aws file
extension.

How APLX interprets the name and library specification

The rules which APLX applies when interpreting a name and/or library specification in a system
command are as follows:

1. If the name begins with a number followed by one or more spaces, the number is taken to be a
library number and the text after the space(s) is the file name. The directory in which the file is
located is taken from the appropriate row of the OMOUNT table, or the installed workspace
directory for library 10. If the directory is blank, the user's home directory is assumed. Under
AlX, Linux or Windows, the file extension (.aws) is automatically appended to the supplied
name.

APLX Language Manual 244

2. If the name does not begin with a number followed by spaces, APLX looks at the name to see
if it contains at least one directory separator character (/ under Linux, \ under Windows, / or :
under MacQS). If it does not, then it is treated as a simple filename in Library 0, and (under
AlX, Linux or Windows) the file extension is automatically appended to the supplied name.

3. If the name does contain a directory-separator character, it is assumed to be a full pathname,
including the file extension if any. APLX uses the name exactly as supplied.

In each case, the name is normally assumed to end at the first blank character. If you want to include
blanks in the name, you can enclose the whole file name in single quotes.

If you use full pathnames under AIX, Windows or Linux, you should normally supply the . aws file
extension when saving workspaces, otherwise the workspace will not show up in the)LIB listing. This
Is not true under MacQOS, which keeps a file type separate from any file extension.

Some system commands (including)LOAD) can take an optional colon and password. Under MacOS,
this might be confused with a full pathname, so you must include a space before the colon to terminate
the name.

Examples (Windows):
Suppose the first three rows of your OMOUNT table are set up as follows:

3 40TOMOUNT "'
c:\temp

G:\apl\historic\aplx

Note that the second row, library 1, is blank, so will correspond to the user's home directory. This
might be something like: c:\Documents and Settings\Jim\My Documents.

Library of directory O:

JLIB 0
IF JIM PICTUREDEMO PLUSFNS SC TESTDISPLAY

Library of directory 0, implicit library number:

JLIB
IF JIM PICTUREDEMO PLUSFNS SC TESTDISPLAY

Library of the same directory, specifying a full library path:

J)LIB c:\temp
IF JIM PICTUREDEMO PLUSFNS SC TESTDISPLAY

Library of directory 1. Because OMOUNT table entry is blank, this is the user's home directory:

JLIB 1
ANOTHER BERT FRED

APLX Language Manual 245

Load a workspace from library 0 (the O could be omitted). Full path is c: \temp\PICTUREDEMO. aws

JLOAD 0 PICTUREDEMO
SAVED 2002-07-05 15.51.31

Load a workspace from library 1. Full path is aNOTHER. aws In user's home directory:

JLOAD 1 ANOTHER
SAVED 2003-11-18 10.49.51

Load a workspace using full explicit path, including file extension (Note that Windows file names are
not case-sensitive):

JLOAD C:\TEMP\PICTUREDEMO.AWS
SAVED 2002-07-05 15.51.31

YWSID
C:\TEMP\PICTUREDEMO.AWS

Save under a name containing spaces - we need to enclose the name in quotes:

)JSAVE 'A nice name with spaces'
2003-12-10 13.44.16

)LIB
A nice name with spaces IF JIM PICTUREDEMO PLUSFNS
SC TESTDISPLAY

Re-load using a full pathname - again we need to enclose the name in quotes, and supply the file
extension because we are using a full path:

JLOAD 'c:\temp\A nice name with spaces.aws'
SAVED 2003-12-10 13.44.16

Paths in MacOS X

Under MacOS X, you can enter file paths either using in traditional Macintosh style, using colon as a
directory separator (MacHD: :workspaces : Budget03), OF in a Unix style, with slash as the separator
(/Volumes/MacHD/workspaces/Budget03).

Special considerations for Client-Server implementations of APLX

In Client-Server implementations of APLX, the front-end which implements the user-interface (the
"Client™) runs on one machine, and the APLX interpreter itself (the "Server™) can run on a different
machine. The two parts of the application communicate via a TCP/IP network. Typically, the Client
will be the APLX front-end built as a 32-bit Windows application running on a desktop PC, and the
Server will be a 64-bit APLX64 interpreter running on a 64-bit Linux or Windows server.

In such systems, you can specify whether the file should be accessed on the Client or the Server
machine. You do this by preceding the file name with either an Up Arrow 1 to indicate that the file
should be accessed on the Client, or a Down Arrow ! to indicate that it should be accessed on the
Server. If you do not specify, the default is that the access takes place on the Client. This is true either
if you specify the full path name in the system command, or via the OMOUNT table.

APLX Language Manual 246

In this example, we load a workspace from the Client machine (under Windows), and save it on the
Server machine (in this case, a Linux system):

JLOAD tC:\workspaces\mailfilter.aws
SAVED 2006-08-15 8.50.04

)SAVE l/usr/local/wsrelease/mailfilter.aws
2006-08-24 15.50.10

)NMS (first (last))

Lists the names of all the global symbols in the current workspace. If the command is followed by a
character or group of characters, the list gives the names of all symbols beginning with that character
or group of characters onwards (the parameter first, used on its own). A second character or group
of characters after the command (the parameter 1ast) is used to end the list of names. Names are
shown in alphabetic order, fully sorted.

Each name is followed by a dot and a number which indicates the type of symbol:

Code Type
2 Variable
3 Function
4 Operator
9 Class
)VARS
A B C D
JFNS
FRED JOE
)CLASSES
Stats
YNMS
A.2 B.2 C.2 D.2 FRED.3 JOE.3 Stats.9
JNMS C
C.2 D.2 FRED.3 JOE.3 Stats.9
JNMS C FO

C.2 D.2

APLX Language Manual 247

) OPS (first (last))

Lists the names of all the defined operators in the current workspace. If the command is followed by a
character or group of characters, the list gives the names of all operators beginning with that character
or group of characters onwards (the parameter first, used on its own). A second character or group
of characters after the command (the parameter 1ast) is used to end the list of names. Names are
shown in alphabetic order, fully sorted.

)OPS

A B c D
)OPS C

c D
JOPS B Z

B C D

)OFF

Ends an APL session and returns the user to the operating system.

)ORIGIN (number)

Followed by 0 or 1 it sets the index origin to 0 or 1. The index origin affects the origin (or base of the
range) used for generating random numbers and indexes.

The index origin is normally set to 1.

On its own, without any following number, this command displays the current value of the index
origin. (See also the system variable, 010, for a full discussion of Index Origin.)

JORIGIN
1S 1

JORIGIN 0
WAS 1

aIo

0

APLX Language Manual 248

)OUT (lib) filename (name(s))

Creates a Transfer File in the library specified. If no individual objects are named then the Transfer
File will include all functions, operators and variables in the workspace as well as OCT, OFC, 0OI0,
OLX, OPP, OPR and ORL . Alternatively, specified objects may be written to the Transfer File together
with an optional selection of system variables.

JWSID (Sample workspace)
TEST
) VARS
A B C D
)FNS
FRED JOE
)OUT TESTWS (Export everything, including standard

system variables)
)OUT PARTWS A C FRED OPP OPW
(Partial export only)

The Transfer File is written in a format which can be read using the system command)IN by APLX or
by another APL interpreter such as IBM's APL2. Before it is written, the data is translated to the form
similar to that used by APL2/PC. Not all APLX characters can be represented in this form, and
variables containing control codes should not be transferred.

Library specification and path names

There are two different ways in which you can specify where APLX should save the transfer file:

e You can specify the workspace name as just the base name of the file, for example MYws or
Budget03, optionally preceded by a library number. In this case, APLX appends the default
file-extension .atf to the name, and saves the file in the directory corresponding to the
specified library number. Library numbers 0 to 9 are set up either using the Preferences dialog,
or by using the OMOUNT system function. Library 10 contains the utility and demonstration
workspaces supplied with APLX. If you omit the library number, library 0 is assumed.

e You can specify a full operating-system path name, including directory separation characters,
such as /usr/transfer/Budget03.atf (LINUX), C:\transfer\Budget03.atf (Windows), or
MacHD: : transfer:Budget03.atf (MacOS). APLX uses the path name exactly as supplied, so
you usually need to provide the .atf file extension explicitly. (Note: In Client-Server
implementations of APLX, you can specify that the path refers to the Client or Server machine
by preceding the file name with an Up Arrow 1 or Down Arrow {).

See the description of the)LOAD system command for more detail on libraries and path names.

Transfer file format

The Transfer File format is based on an ancient layout known as punched card layout and is a series of
length 80 character records. Each record is delimited by an ‘end of record' character (Hex F8) and a
Carriage Return - Line Feed pair - making 83 characters in all. The first character of each record is
reserved for format information, which will be:

APLX Language Manual 249

Character Meaning

*

Timestamp for the function or operator
Last record for the object (or only record)
(blank) All other records

Remaining columns of the record are occupied by the Transfer Form of the objects selected. The
Transfer Form is described under OTF Thus for the sample workspace shown above:

3

4

10

XFFRED OFX 'FRED' '2'

XFJOE OFX 'JOE' '4' 'L:''SAMPLE FN''' '80'

XNOPP
X

XNOIO
X

XNOCT
X

XCOFC
X

XNORL
X

XCOPR
X

XcoLx
X

XNA 0
X

XNB 0
X

XNC 0
X

XND 0
X
X
X

and for the partial export:

XNA 0 1
X
XNC 0 3
X
XFFRED OFX 'FRED' '2'
X
XNOPP 0 10
X
XNOPW 0 80

APLX Language Manual 250

)PCOPY (lib) name (:pass) name(s)

Copies into memory named objects from a named workspace without overwriting existing objects.

)PCOPY MYWS FRED JOE

If just the workspace name is used, the entire contents are copied:

JPCOPY MYWS

If the name of an object to be copied matches the name of an object already in the workspace in
memory, the copy does not take place and a message is displayed. (See also)COPY).

JPCOPY MYWS NAME
SAVED 1.21.33 05/29/89
NOT COPIED: NAME

)REPARENT class parent

JREPARENT allows you to change the parent of an internal (user-defined) class.

The first argument is the name of the class which you want to re-parent. The second is the name of the
class which will be the new parent.

Other than the restriction that the new parent class must not be descended from the class you are
modifying, there is nothing to prevent you from re-parenting a class arbitrarily. However, the main use
for)REPARENT is for inserting an extra level into the class hierarchy. For example, if you have a class
car which inherits from vehicle, you might want to create a new class Motorvehicle Which inherits
from venicle, and re-parent car so that it now inherits from Motorvehicle:

)CLASSES

Car MotorVehicle Vehicle
OCLASS Car

{Car} {Vehicle}
OCLASS MotorVehicle

{MotorVehicle} {Vehicle}
JREPARENT Car MotorVehicle
OCLASS Car

{Car} {MotorVehicle} {Vehicle}

Any existing instances of the class will be unaffected except that any properties which are not valid in
the new version of the class (because they were inherited from the old parent but are not inherited
from the new parent) will be lost.

APLX Language Manual 251

You can also re-parent a class using the OREPARENT system function, or by using the Class Editor
(select Reparent Class.. from the File menu).

)RESET (number)

Clears all of the State Indicator (as) SICLEAR) or the appropriate number of entries from the State
Indicator. DERM, OEM and OET are adjusted appropriately. If the State Indicator is cleared to an entry
that was pendent, OERM, DOEM are set to be empty and the error type is set to an interrupt (DET is 1 1).

See also the - (branch) symbol which, when used on its own, clears the top function marked with an
asterisk, and its calling function(s), from the state indicator.

) SAVE (lib) (name (:pass))

Saves the current workspace to disk. It is given the same name as the workspace in memory, unless a
different name is specified after the command.

If a password is specified, the workspace can be subsequently accessed only if the password is used.

) SAVE
2002-09-11 10.32.16 MYWS
)SAVE 3 MYWS:SECRET
2002-09-11 10.35.25 MYWS
)SAVE C:\Workspaces\Budget.aws
2002-09-11 10.37.25 C:\Workspaces\Budget.aws
)WSID
C:\Workspaces\Budget. aws

When attempting to) SAVE a workspace with the same name as a workspace that has already been
saved to disk with a password, the operation will only succeed if the password of the active workspace
matches that of the workspace on disk. In order to change the password of a workspace that is already
saved to disc, you must first)DROP the copy on disk and then)SAVE with the new password.

Library specification and path names

There are two different ways in which you can specify where APLX should save the workspace:

e You can specify the workspace name as just the base name of the workspace, for example
MYWS or Budget 03, optionally preceded by a library number. In this case, APLX appends any
default file-extension to the name (.aws for Windows, AIX or Linux), and saves the
workspace in the directory corresponding to the specified library number. Library numbers 0 to
9 are set up either using the Preferences dialog, or by using the OMOUNT system function.
Library 10 contains the utility and demonstration workspaces supplied with APLX. If you omit
the library number, library 0 is assumed.

APLX Language Manual 252

e You can specify a full operating-system path name, including directory separation characters,
such as /usr/workspaces/Budget03.aws (LINUX), C:\workspaces\Budget03.aws
(Windows), or MacHD: :workspaces: Budget 03 (MacOS). APLX uses the path name exactly as
supplied, so under Linux, Windows and AlX you usually need to provide the .aws file
extension.

See the description of the)LOAD system command for more detail on libraries and path names.

) SCOPY (lib) name (:pass) (name(s))

Silent copy. The same as)COPY except that no message is displayed on completion, unless there is an
error.

) SDROP (lib) name (:pass)

Silent drop. The same as)DROP except that no message is displayed on completion, unless there is an
error.

)SI (number)

Displays the contents of the State Indicator. This contains the names of all halted user functions and
operators. If no number is specified in the command, each line of the State Indicator is shown. If a
number is specified, that many lines of the State Indicator will be displayed. (See also the system
function, 0SI). Certain lines will have a = displayed against them, these are suspended functions (or
operators) which have stopped execution because of an error (or an interruption).

If a function or operator which is on the State Indicator is altered or replaced by the)coPY command
such that the SI DAMAGE error report is given, then that entry on the State Indicator will have its line
number altered to 1.

vTOP
[1] 'TOP LEVEL'
[2] MIDDLE

v

vMIDDLE

[1] "MIDDLE LEVEL'
[2] TEST
v

APLX Language Manual 253

vTEST;A;B:C
[1] Aerl10
[2] BeDA
[3] CeAxB
\%
TOP
TOP LEVEL

MIDDLE LEVEL
DOMAIN ERROR
TESTL3] Ce«AxB
A

)SI
TESTL3] =
MIDDLE[2]
ToP[2]

)SI 1
TESTL3] =

)SI 2
TESTL3] =
MIDDLE[2]

)SIC (number)

Clears all of the State Indicator (as)RESET) or the appropriate number of entries from the State
Indicator. DERM, OEM and OET are adjusted appropriately. If the State Indicator is cleared to an entry
that was pendent, DERM, OEM are set to be empty and the error type is set to an interrupt (DET is 1 1).

See also the » (branch) symbol which, when used on its own, clears the top function marked with an
asterisk, and its calling function(s), from the state indicator.

)SICL (number)

Clears all of the State Indicator (as)RESET) or the appropriate number of entries from the State
Indicator. DERM, OEMand OET are adjusted appropriately. If the State Indicator is cleared to an entry
that was pendent, DERM, OEM are set to be empty and the error type is set to an interrupt (DET is 1 1).

See also the » (branch) symbol which, when used on its own, clears the top function marked with an
asterisk, and its calling function(s), from the state indicator.

APLX Language Manual 254

)SINL

Lists the names of all halted user functions and associated local variables.

vTEST;A;B;C
[1] Ae110
[2] BeDA
[3] C<AxB
[4] v
TEST

DOMAIN ERROR
TESTL3] Ce«AxB
A
)SI
TESTL3] =
)SIV
TESTL3] = A B o

)SIS (number)

Displays the contents of the State Indicator (see)SI above), showing the line number and the
statement that was being executed. A carat mark indicates where execution was interrupted. If no
number is specified in the command, each line of the State Indicator is shown. If a number is
specified, that many lines of the State Indicator will be displayed.

)SIS (using the sample functions shown with)SI)
TESTL3] C<AxB
A
MIDDLE[2] TEST

TOP[2] MIDDLE

A

* TOP (The asterisk indicates that the function
A executed from desk-calculator mode)
)SIS 1
TESTL3] CeAxB
A
)SIS 2
TESTL3] CeAxB

MIDDLE[2] TEST

APLX Language Manual 255

)SIV (number) or)SINL (number)

Lists the names of all halted user functions and operators and associated local variables. If no number
is specified in the command, each line of the State Indicator is shown. If a number is specified, that
many lines of the State Indicator will be displayed.

vTEST;A;B;C
[1] Ae110
[2] BeDA
[3] C<AxB
[4] v
TEST

DOMAIN ERROR
TESTL3] Ce«AxB
A
)SI
TESTL3] =
)SIV
TESTL3] = A B C

) SLOAD (lib) name (:pass)

Silent load. Same as)LOAD except that no message is displayed on execution, unless there is an error.

) SPCOPY (lib) name (name(s))

Silent copy. Same as)PCOPY except that no message is displayed on execution, unless there is an
error.

APLX Language Manual 256

) SSAVE (lib) (name (:pass))

Silent save. Same as) SAVE except that no message is displayed on execution, unless there is an error.

)SWSID (lib) name (:pass)

Silent workspace identification. Same as)WSID except that no message is displayed on execution.

) SYMBOLS (number)

The symbol table is a list maintained by APL of all variable names, function names, labels and other
names used in the current workspace. To discover how much space is available in this table, use the
)SYMBOLS command on its own. The default symbol table size will vary from system to system, but in
most implementations of APLX it is 1026.

To alter the number of symbols that you can use, you can alter the symbol table size. The system will
allocate a symbol table size at least as big as you have requested, up to the maximum. This command
can only be used in a CLEAR WS and must be the first command carried out.

)SYMBOLS
IS 270, USED 5
)SYMBOLS 500
INCORRECT COMMAND
)CLEAR
CLEAR WS
)SYMBOLS 4000
WAS 1026
)SYMBOLS
IS 4023, USED 0

Exceptionally you may get the error message SYMBOL TABLE FULL. If this happens, you must
save the current workspace, clear the workspace and reset the size of the symbol table by typing the
)sYMBOLS command followed by a new limit. You can then use)COPY to call back your functions and
variables. There is little point in specifying a very large size as the symbol table uses up memory. The
maximum symbol table size is 32022.

APLX Language Manual 257

) TABS (number)

Use the) TABS command on its own to list the current tab positions. Use with a vector of numbers
from 1 to 160 to set the logical tab positions for automatic tabbing of input and output. Alternatively, a
scalar argument X will set the tab stops every X columns. These must coincide with the physical tab
settings on the terminal.

)TABS
ARE NOT SET
)TABS 10 25 60
WERE NOT SET
)TABS
ARE 10 25 60
YTABS 10
WERE 10 25 60
)TABS
ARE 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160

This command is implementation dependent, and generally applies only for versions of APLX which
output to a 'dumb’ terminal.

)TIME

Displays the current date and time in the format currently set by the OCONF function. Various formats
are allowed, for example:

)TIME

1990-05-24 21.15.55 (1S0)
)TIME

24/5/1990 21.15.55 (European)
)TIME

5/24/1990 21.15.55 (Us)

APLX Language Manual 258

) VARS (first (last))

Lists the names of all global variables in the current workspace. If the command is followed by a
character or group of characters, the list gives the names of all variables beginning with that character
or group of characters onwards (the parameter first, used on its own). A second character or group
of characters after the command (the parameter 1ast) is used to end the list of names. Names are
shown in alphabetic order, fully sorted.

)VARS
A A_NAME AA AAA ANT ART B BAT CAT
CAULDRON EVENT GOOD GREAT GREATEST MANY MORE
MOST MUCH THETEND THE_VERY_END A A

JVARS T
THE"END THE_VERY_END A A

JVARS A D
A A_NAME AA AAA ANT ART B BAT CAT
CAULDRON

)VARS ANT GREATEST
ANT ART B BAT CAT CAULDRON EVENT GOOD

GREAT GREATEST

YWIDTH (number)

Lists the current WIDTH setting. This determines the maximum number of character positions in a
line of output. This is normally 80. You can change it to any number between 40 and 390 by typing
the command followed by the number. (See also OPW.)

JWIDTH
IS 80
YWIDTH 65
WAS 80
YWIDTH
IS 65
aOPW
65

APLX Language Manual 259

)WSID (lib) (name (:pass))

Workspace identification. Used on its own, it tells you the name of the current workspace. Followed
by a name (optionally preceded by a library number) it names the current workspace. If you include a
password (preceded by a colon), you will have to use the password when you subsequently access the
workspace.

)JWSID FRED
WAS CLEAR WS

JWSID 3 FRED:SECRET (password is SECRET, library 1is library 3)
WAS FRED

JWSID /usr/workspaces/FRED.aws (full pathname supplied)
WAS 3 FRED

Library specification and path names

There are two different ways in which you can specify the full path associated with the workspace
name:

e Asshown in the first two examples above, you can specify the workspace name as just the
base name of the workspace, for example MYWS or Budget03, optionally preceded by a library
number. In this case, APLX appends any default file-extension to the name (. aws for
Windows, AIX or Linux), and makes the full path for the workspace by prepending directory
corresponding to the specified library number. Library numbers 0 to 9 are set up either using
the Preferences dialog, or by using the OMOUNT system function. Library 10 contains the utility
and demonstration workspaces supplied with APLX. If you omit the library number, library O
is assumed.

e Asshown in the third example above, you can specify a full operating-system path name,
including directory separation characters, such as /usr/workspaces/Budget03.aws (Linux),
C:\workspaces\Budget03.aws (WINdOWS), Of MacHD: :workspaces :Budget 03 (MacOS).
APLX uses the path name exactly as supplied, so under Linux, Windows and AlX you usually
need to provide the . aws file extension.

See the description of the)LOAD system command for more detail on libraries and path names.

APLX Language Manual 260

) XLOAD (lib) (name (:pass))

Loads a named workspace, without executing the latent expression. The workspace is loaded into
memory and overwrites the workspace already there. If the workspace has a password it must be
given. Upon loading the Latent Expression (see OLX) is not executed unless attention checking is set to
OFF for the workspaces (see 5 OCONF) .

See the description of the)LOAD system command for details on specifying workspace names and
library paths.

APLX Language Manual 261

Section 7: System Functions & Variables

APLX Language Manual 263

OA Alphabet, Upper Case

The niladic system function OA returns a result which is a 26 character vector of the letters in the
alphabet in upper case only.

OA
ABCDEFGHIJKLMNOPQRSTUVWXYZ
OAv'"APL'
116 12

Oa Alphabet, Lower Case

The niladic system function Oa returns a result which is the 26 characters of the lower-case alphabet.

Oa
abcdefghijklmnopgrstuvwxyz

OAF Atomic Function

The monadic function OAF is used to convert characters into integers and vice versa. If the right
argument is a character array, the result is an integer array of the same shape, with each element being
the position in OAV of the corresponding character. If the right argument is an integer array, the result
is a character array of the same shape, with each element being the character at the corresponding
position in OAV.

Exceptionally for an APL function it is origin independent, always assuming origin 0. It is the same as
OAVw or OAVL. .] (in origin 0). Integer arguments must be in the range 0 to 255 and the right argument
must always be a simple array.

OAF 'LEVEL IT'
108 101 118 101 108 32 105 105

OAF 108 101 118 101 108 32 105 105
LEVEL II

APLX Language Manual 264

OAI Account Information

The niladic system function OAI returns a result which gives a statement of the computer facilities the
current APL task has used during the current APL session. It consists of 7 numbers representing
respectively:

User number

CPU time used by this APL task
Connect time

Keyboard unlock time

APL version number

Month to-date CPU time

Month to-date connect time *

= (or this session's CPU and connect time, depending on the implementation.)

All times are in milliseconds. By default, the user number is 1000.

OAT Object Attributes

The dyadic system function OAT returns a variety of attributes for objects named in its right argument.
The right argument should be a character scalar, vector or matrix of names and the left argument an
integer in the range 1 - 4. The information available is:

Left Length of Attributes Returned
Argument result

1 3 Valences

2 7 Fix timestamp

3 4 Execution properties

4 2 Object size

and the attributes are defined as follows (using the sample workspace defined below):

JFNS (Sample workspace)
GO STOP WAIT

)VARS
NUMS

Valences (Left argument 1)

The first element of the valence vector is 1 if the object is a variable or function with an explicit result
and 0O for other cases. The second element is 0 1 for monadic functions, 2 for dyadic or nomadic
functions, and 0 otherwise. The third element is O if the object is not an operator, 1 for monadic
operators, 2 for dyadic operators.

APLX Language Manual 265

(ONL 2 3),1 OAT ONL 2 3

GO 100 (Niladic function, explicit result)
NUMS 1 0 O (variable)

STOP 0 0 O (Niladic function, no result)

WAIT 0 2 0 (Dyadic/nomadic function, no result)

Fix timestamp (Left argument 2)

If the named object is a function/operator, the timestamp of the latest fix of the function is returned.

(ONL 2 3),2 OAT ONL 2 3
GO 1990 5 25 0 19 14 703 (Latest fix time)
NUMS 00 00 O O 0 (Not a function)
STOP 1990 5 25 0 19 10 906
WAIT 1990 5 25 0 19 30 640

Execution properties (Left argument 3)
A four element vector detailing the four execution properties:

Nondisplayable; Nonsuspendable; Ignores weak interrupts; Converts APL
errors to DOMAIN ERROR

Thus the vector is 0 0 0 0 for unlocked functions and 1 1 1 1 for locked functions.

3),3 DAT ONL 2 3

Object size (Left argument 4)

A two element vector is returned for each object named, showing first the size of the object as a
whole, and secondly either size of the data portion (for variables) or repeating the object size.

(ONL 2 3),4 DOAT ONL 2 3

GO 100 100 (100 byte function)
NUMS 56 40 (56 byte variable, 40 byte data portion)
STOP 68 68

WAIT 104 104

APLX Language Manual 266

OAV Atomic Vector

The niladic system function OAV returns a result which contains a vector of 256 characters which
correspond to all the possible characters in the character set. The order in which they appear is the
order of internal representation, as described in the section on the APLX Character Set.

OB Backspace

The niladic system function OB returns the Backspace character.

OAV.0OB

OBOX Vector to/from Matrix

Converts a vector to a matrix, or a matrix to a vector using optional fill characters and line delimiters.
oBox will only accept simple arguments.

One-argument form

In creating a matrix from a vector, OBOX uses the space characters in the vector to determine the line
breaks. It also uses the space character as a filler to make up the lines to the same length.

O0BOX 'LEE PRENDERGAST PSMITH'
LEE
PRENDERGAST
PSMITH

When 0BOX is used to convert a matrix into a vector it will treat the space character(s) at the end of
each row as fillers, and will separate the original rows by spaces in the resultant vector:

TAB
APL
LISP
PASCAL
O0BOX TAB
APL LISP PASCAL

APLX Language Manual 267

Two-argument form

The two argument form of OBOX accepts one or two character left argument. The first character is used
as the delimiter and the second the filler. If no filler is specified, the space character is used. In this
example, OBOX has a left argument of '+ and it uses ' ="' to determine breaks between lines:

"+' 0OBOX 'JAN FEB MAR* 1 2 3
JAN FEB MAR
1 2 3

Here's an example with "." used as the filler:

'/.' OBOX 'LEE/PRENDERGAST/PSMITH'

PRENDERGAST
PSMITH.....

In this next example, $ is treated as the delimiting character and the space character as the filler in the
matrix TAB (defined above):

'$' OBOX TAB
APL$LISP$PASCAL

If the matrix contains ‘filler' symbols, these can be removed:

NAMETAB

PRENDERGAST
PSMITH.....

'$.' OBOX NAMETAB
LEE$PRENDERGAST$PSMITH

OBOX can also use numeric left and right arguments in the same way as character arguments. By
default the delimiter and fill numbers are both 0.

OBOX 1 23 01 2
123
120
"6 0BOX 234716 17182

"1

4
6
6
6

00 oo N
NO O W

APLX Language Manual 268

OC Control Characters

The niladic system function OC returns a vector of the 32 ASCII control characters and rubout. It is
mainly useful for sending escape sequences to dumb terminals or other low-level devices. For
example, with 010 (index origin) set to 1 (the default).

Ocl1] is NUL

ocls] is BELL

ocr9] is BACKSPACE
Ocl10] is TAB

Oocl11] is LINE FEED
Ocl13] is FORM FEED
OC[14] is CARRIAGE RETURN
OcL28] is ESC

Oc[33] is RUBOUT

Note that some of these character positions have been assigned to line-drawing characters in some
versions of APLX.

See also OTC.

OCALL Call external static method

The dyadic system function OCALL allows you to call a 'static’ method (or access a static property) in
an external environment such as .Net or Java. A 'static' method is a member of a class which can be
called without needing to create an instance of the class.

The left argument is a character vector which specifies the external environment in which you want to
make the call, in the same format as for ONEW. The right argument is either a character vector
containing the name of the method (if there are no arguments or this is a property), or a nested vector
where the first element is the name of the method and subsequent elements are the arguments to the
method. The explicit result is whatever the external environment returns as the result of the call; it
may be an ordinary array of data, or a reference to an object in the external environment.

For example, the .Net System.DateTime class contains a static property now which returns the current
date and time as an instance of the pateTime class:

".net' OCALL 'System.DateTime.Now'
[.net:DateTime]
TSe«'.net' OCALL 'System.DateTime.Now'
TS.ToStr1ing
10/10/2007 12:06:42

It also contains a static method 1s1n.eapyear Which takes an integer argument representing a year, and
returns a Boolean value indicating whether the year is a leap year:

APLX Language Manual 269

".net' OCALL 'System.DateTime.IsLeapYear' 1994
0

'.net' OCALL 'System.DateTime.IsLeapYear' 1996
1

Similarly, in Java, to create a Timezone Object we need to call a static method in the Timezone class:

tzejava OCALL 'java.util.TimeZone.getTimeZone' 'America/Los_Angeles'

a Does this time zone use daylight savings time?
tz.useDaylightTime

a What is the time zone called with and without daylight savings time?
tz.getDisplayName 1 (tz.LONG)

Pacific Daylight Time
tz.getDisplayName 0 (tz.LONG)

Pacific Standard Time

Using a class reference to call static methods

Another way of calling a static method of an external class is to get a reference to the class itself
(usually by calling OGETCLASS), and use that to access the method using dot notation. For example, in
the above Java example we could have called the getTimezone method as follows:

tzclasse' java' OGETCLASS 'java.util.TimeZone'
tzetzclass.getTimeZone 'America/Los_Angeles'

OCC Console Control

The monadic system function Occ provides terminal-control facilities. With the exception of arbitrary
output each Occ operation is identified by a numeric code or code list which is included as the right
argument to OCC. The typical form of a OCC expression is:

RESULT<OCC OPERATION

where RESULT is the result of the operation and OPERATION is the appropriate code or code list.
The numbers used as the right argument to 0cC must be integers (whole numbers). The OCC operation
specified is carried out, and in most cases an empty vector is returned as the result.

System Dependent

gcc is highly system dependent. On console-mode (dumb-terminal) implementations of APLX OcC
controls the user's terminal display. On windowing implementations (APLX for Windows and APLX
for MacOS), it controls the Session window.

APLX Language Manual 270

Single key input with occ
RESULT<OCC "1

The code, "1, specifies that the next character entered on the keyboard is to be assigned to the named
variable. No input translation takes place.

If the next key hit after the above statement has been executed is 'Z', then RESULT will contain 'Z'.

Arbitrary output with occ
RESULT<OCC TEXT

The characters in the right argument are output to the screen without output translation. RESULT is an
empty vector with display potential off.

Cursor addressing with occ
RESULT<OCC 0 R C

You can move the cursor to a particular line and character position, by using the code 0, followed by
the numbers of the row and column you require. Rows and columns start at 0. Invalid cursor positions
are ignored.

The result of OCC is an empty vector with display potential off.

[3] OCC 0 10 20 o 'HELLO'

The cursor moves to row 10 column 20 and the text string 'HELLQO" is printed.

Basic screen control with occ
Each of the following operations can be invoked by a statement of the form:

RESULT<OCC code(s)

The required operation is carried out. The result returned by the operation is in most cases an empty
vector with display potential off. (An exception is OCC 20 which returns a numeric vector consisting
of three elements.) Multiple codes can be output at one time (up to a maximum of 50), but all must be
integers.

RESULT<OCC 20

Returns a three element vector which contains the row and column where the cursor is positioned and
the screen width.

The complete list of OCC codes is as follows. Codes marked with an asterisk * are NOT implemented
on the Windows, MOTIF or MacOS systems.

APLX Language Manual

271

Operations Performed by OCC
Code Operation Code Operation
1 Clear Screen 19 Insert Character
2 Home cursor 20 Read Curs. Pos, Screen Width
3 Cursor to beginning of line 21 Insert Mode On
4 Move Cursor Up One Line 22 Insert Mode Off
5 Move Cursor Down One Line 23 * Half Intensity On
6 Move Cursor Left One Position 24 = Half Intensity Off
7 Move Cursor Right One Position 29 * Underlined characters On
8 APL character set 30 * Underlined Characters Off
9 ASCII character set 31 * Reverse Screen Video
10 Erase from Cursor to End of Line 32 * Normal Screen Video
11 Erase from Cursor to End of Screen 33 * Select 80 Columns
12 * Protect Characters On 34 » Select 132 Columns
13 * Protect Characters Off 35 Bell (Audible Alarm)
14 * Protection On 36 Bold Text On
15 * Protection Off 37 Bold Text Off
16 Delete L1ine 38 Italic Text On
17 Insert Line 39 Italic Text Off
18 Delete Character

On implementations which support color display, the following codes are also implemented:

101
102
103
104
105
106
107
108

Black text
White text
Red text
Green text
Blue text
Cyan text
Magenta text
Yellow text

Other code numbers are reserved.

The operations which Occ can perform depend on the capabilities of the terminal and/or system, but

the following operations are almost always available:

12345671011 20

v TEST
[1] @ EXAMPLE OF OCC USAGE
[2] OCC1 2 n
[3] OCC 0 10 10
[4] POSITION «OCC 20
[5] 0OCC 29 a UNDERLINE ON
[6] 'I AM AT POSITION ',POSITION
[7] 0OCC 30 = UNDERLINE OFF

[8] v

CLEAR SCREEN AND HOME TO SET OCC (IF NEEDED)

APLX Language Manual 272

OCHART Draw Chart of Data

Implemented on desktop editions of APLX only

OCHART provides a quick way of drawing a chart (graph) of data in an APL array. The right argument
is the data to be plotted, which can comprise one or more data series. The optional left argument is a
set of keyword/value pairs which allow you to customize the appearance of the chart. The chart
appears in a new window. Once it has appeared, you can use the menu bar to alter the way in which it
is displayed (for example, to switch to a logarithmic Y scale).

OCHART is designed to provide automatic graph-drawing facilities with very little programming effort.
If you wish to have full control over how the chart is drawn, you should instead use the chart object
under OWI. You can also chart data by right-clicking over the name of a variable and selecting 'Display
As Chart' from the pop-up menu, or by choosing 'Chart Variable.." from the Edit menu of the session
window.

Data to be Charted

The right argument to OCHART is the data to be charted. It can be any of the following:

e A numeric vector (or one-row or one-column matrix). In this case, the values in the array are
regarded as the Y values, and they are plotted against implicit X values 0, 1, 2...

e A numeric matrix of at least two rows and columns. In this case, APLX by default assumes
that the longer dimension represents the points of each series, and the shorter dimension
represents the number of series to be plotted. For example, for an array of 20 rows and 3
columns, it is assumed that there are three data sets, each containing 20 values, rather than 20
data sets, each containing 3 values.

Once APLX has decided which dimension represents the data sets, it then tries to decide which
data set (if any) represents the X values. APLX first looks to see whether the first or the last
data set comprises a regularly incrementing series (such as 10, 14, 18, 22); if so, it is assumed
to be the series of X values against which the other data sets are plotted as Y values. If neither
data set comprises a regularly-increasing series (i.e. with a constant interval), APLX next looks
to see if either data set comprises an irregularly incrementing series (such as 10, 12, 16, 24); if
so, it is taken to represent the X values. Finally, if neither data set satisfies the criteria, it is
assumed that all the data sets represent Y values, which are then plotted against implicit X
values 0, 1, 2...

If any of these assumptions are wrong, you can change them using the menu bar once the
window has opened. You can also specify explicitly where the data is by supplying a left
argument to OCHART, as discussed below.

e A nested matrix of either two rows or two columns, where one of the rows (or columns)
comprises a series of numbers, and the other a set of character strings. In this case, the numbers

APLX Language Manual 273

are assumed to represent data values, and the strings labels. The data is initially plotted as a
Bar chart, but using the Chart menu you can change it to a different type such as a Pie chart.

Customizing the Chart

The optional left argument to OCHART allows you to the determine how the chart is displayed. (If you
omit it, APLX uses the above rules initially, and then the parameters can be adjusted using the Chart
menu.)

It comprises a nested vector of one or more phrases of the form 'Keyword=Value'. (If there is only one
such phrase, the argument can be a simple character vector). The options are as follows (case is
ignored in checking the keywords):

title - Sets the title for the whole chart, for example 'title=Absorbtion of Calcium’

type - Sets the type of graph, for example 'type=area'. The value part of this phrase should be one
of the following: 1ine scatter area bar stair horizbar Of pie. If you omit this phrase, a Line
chart is drawn initially, unless the right argument is nested, in which case a Bar chart is drawn. Once
the chart has appeared, you can change the type using the Chart menu.

data - Specifies how the data is laid out in the right argument, for example 'data=rows'. The value
part of this phrase should be one of the following: rows (the data points are along the rows of the right
argument, or columns Of cols (the data points are laid out down the columns of the right argument). If
you omit this phrase, APLX uses the rules described above. Again you can adjust the choice once the
chart has been drawn.

x - Specifies which data set contains the X values. This can one of first (the X values are in the first
row or column of the right argument), 1ast (the X values are in the last row or column of the right
argument), or implicit (all the rows/columns contain Y values, which should be plotted against 0, 1,
2...). If you omit this phrase, APLX tries to guess the most likely layout using the rules described
above.

seriesname - Allows you to specify a label to be attached to each series of the graph. You will
normally want to repeat this phrase several times, once for each series in the chart. For example, if you
wanted a chart showing sales for three regions against an implicit X axis of 0,1 2, you could provide
an N by 3 array as the right argument, and for the left argument specify: 'seriesname=America’
'seriesname=Europe' 'seriesname=Asia' 'x=implicit'. The data in the first row would be
labelled 'America’, the second 'Europe’, and the third 'Asia’.

Live Charting

The 'id' keyword can be used to tell OCHART to re-use an existing chart window to graph new data.
This can be useful if you want to do simple animations, for example display a graph of changing data
acquired from an external measuring device in real time. The keyword takes the form 'ig=n', where n
is a positive integer. When the 14 keyword is specified, OCHART will check whether there is already a
chart window with the same id, creating a new window only if one is not found (See examples).

APLX Language Manual 274

Tip: If you want to chart a variable, and have the chart change when the variable changes (in desk
calculator mode), you can use an expression like this in a Watch window:

"id=1" OCHART X

Examples
Draw a sine wave. Because no X values are specified, implicit X values of 0, 1, 99 are used:

OCHART 100.1x1100

Draw a sine wave with the X values specified in degrees. We provide a two-column matrix; APLX
assumes the second column is the X axis, because it increments regularly:

0I0<1
OCHART (10(10x0,136)%x02+360),[1.5]0,10%x136

Draw a bar chart:

OCHART 2 4p'Apples' 'Pears' 'Oranges' 'Kumquats' 445 323 345 765

Draw the same data as a pie chart:

"type=pie' OCHART 2 4p'Apples' 'Pears' 'Oranges' 'Kumquats' 445 323 345 765

Draw some random data as two, named series, against implicit X values 0, 1, 2..:

'x=1implicit' 'seriesname=Bicycles' 'seriesname=Tricycles' OCHART ?2 8pl100

Draw an animated graph

vAnimatePulse;pulse; X

[1] pulsee(*-X+10)%x104xXe1100 A Create some fake data
[2] pulsee<(¢pulse),pulse
[3] :Repeat
[4] "id=1"' OCHART pulse
[5] pulsee<2¢pulse
[6] :EndRepeat

v

See also the Chart and Series system classes, which give you much more detailed control over the
layout and appearance of graphs.

APLX Language Manual 275

OCL Current Line

The result of the niladic system function OCL is a single number which identifies the line currently
being executed in a user-defined function, or that which was being executed when the function was
suspended. It is equivalent to 110LC.

OCLASS Class hierarchy for object or class

Not implemented for System classes

The monadic system function OCLASS returns a vector of references to the class hierarchy for an object
(or a class). The right argument is an object reference or a class reference. The result is a vector of
class references. The first element is a reference to the class of the object (or the class itself, if the right
argument was a class reference). Subsequent elements are references to successive parent classes, if
any.

For example, if the class poem inherits from the class LiteraryWork, and sonnet inherits from poen:

)CLASSES
LiteraryWork Poem Sonnet

TwoLoves<[ONEW Sonnet

OCLASS Poem A Argument 1is a Class reference
{Poem} {LiteraryWork}

OCLASS Sonnet
{Sonnet} {Poem} {LiteraryWork}

OCLASS TwolLoves A Argument is an Object reference
{Sonnet} {Poem} {LiteraryWork}

(OCLASS TwolLoves).OCLASSNAME
Sonnet Poem LiteraryWork

OCLASS can also be used for external classes. For example, the Ruby pateTime class inherits from
Date Which inherits from object:

DT« 'ruby' OSETUP 'require' 'Date’
DTe«'ruby' ONEW 'DateTime’
OCLASS DT

{ruby:DateTime} {ruby:Date} {ruby:Object}

APLX Language Manual 276

OCLASSES References to user-defined and external classes

The niladic system function OCLASSES returns a vector of references to all the user-defined classes in
the workspace, plus any references to external classes which have been retained in the workspace
(typically by a call to the system function OGETCLASS or the system method OCLASSREF)

In this example, we have three user-defined classes in the workspace, and we also create a reference to
the .Net pateTime class:

)CLASSES
LiteraryWork Poem Sonnet
DT«'.net' ONEW 'System.DateTime' 2007 5 30
CLASSDT«DT.OCLASSREF
CLASSDT
{.net:DateTime}
OCLASSES
{LiteraryWork} {Poem} {Sonnet} {.net:DateTime}

OCONF Configure APL

The user can change certain parameters of the APL system via OCONF. The extent to which OCONF is
implemented varies from system to system. The current range of options is:

5 OCONF 0 = disable interrupts, 1 = enable interrupts
6 OCONF (date format) (time format) (display order)
date 0 = US 8 character mm/dd/yy
1 = US 10 character mm/dd/yyyy
2 = European 8 character dd/mm/yy
3 = European 10 character dd/mm/yyyy
4 = IS0 yyyy-mm-dd
time 0 = 24 hour US hh.mm.ss
1 = 24 hour European hh:mm:ss
2 = 12 hour US hh.mm.ss am
3 = 12 hour European hh:mm:ss am
order 0 = time before date
1 = date before time
7 OCONF Preferred workspace size for this workspace (in bytes),
or 0 for the default value, -1 for 'as much as possible’
8 OCONF APL component file-system name, as a character vector

In each case the result returned by OCONF is the previous value.

The Interrupt Checking Flag is a workspace parameter. A workspace can be saved with attention
checking off, thereby preventing the latent expression being interrupted.)CLEAR will enable interrupts.

The Date/Time Format controls the display format adopted by) TIME)SAVE)LOAD and the v editor.

APLX Language Manual 277

The Preferred Workspace Size parameter applies to the current workspace if you)SAVE it, and then it
is loaded by double-clicking on the workspace icon or by dragging the workspace on to the APLX
program icon. When APLX starts up, it will be allocated the workspace size if possible. This value
does not affect the workspace size if you)LOAD the workspace once APLX is already running.

The APL Component File-System Name is the filename used for component-file operations using the
B B B @primitives. It defaults to 'apisfile.af1'. If you change the name using 8 OCONF, the
change applies only for the current APL session; when you restart APLX, the name reverts to the
name stored in the APLX preferences file.

OCR Canonical Representation

Converts a user-defined function, operator, method, or class into a character matrix or vector. The
name of the item to be converted to text form is the right argument of OCR. OCR can be used
monadically, or optionally with a left argument. The value of the left argument determines the shape
of the result.

Left Argument Result
Omitted or 0 |Character matrix

1 Character vector with embedded carriage-returns separating lines
2 Vector with each item a vector of characters corresponding to one line of the text form

The matrix or vector shows the lines of the function, operator, method or class, with line numbers
omitted. It has the characteristics of any object composed of characters. You can, for example, use
indexing to alter its elements, or use the I and 1 functions on it. And, if you want, you can arrange for
another function to make the alterations for you by specifying within that function the alterations you
require. To convert a function called DT to character data

MATRIX<OCR 'DT' (for a matrix result)
VECTOR«1 OCR 'DT' (for a simple delimited vector result)
VECTOR«2 OCR 'DT' (for a nested vector result)

See also OF X for the reverse operation, which takes the text form and fixes it as a function, operator or
class.

Canonical representation of a class

OCR can also be used to convert an entire class to text form. In this case, the right argument should be a
class name. The format of the result is as follows:

o The first line is the class header. This comprises the name of the class, followed (if the class
inherits from another class) by a colon and the name of the parent class. Any private members
of the class (i.e. names which are local to the class) are then listed, separated by semi-colons.
The header line ends with a left curly brace '{' character.

o The properties of the class are then listed, one per line. The name of the property is listed first.
If it has a default value, an assignment arrow follows, and then the transfer form of the
expression which initializes the property. If the property is read-only, two assignment arrows

APLX Language Manual 278

are used. If the property is class-wide (i.e. there is only a single copy shared between all
instances in the workspace, then whole line is enclosed in curly braces.

e The methods of the class (and the constructor, if any) are then listed, with a del character
starting and ending each method.

« Finally, the class ends with a closing right curly brace, on a line by itself.
For example:

OCR 'Point'
Point; IncSerial;serial {
Z€0
Ye0
Xe0
{seriale<0}
{CATEGORY e« 'Geometric'}

vIncSerial

A Increment serial number
serialeserial+l

v

vR<Mag

A Return magnitude (distance from origin)
Re+/(X,Y,Z)*2

ReR*0.5

v

vPoint B
A Constructor for Class B. Optionally set up X Y Z
:If 0#pB
(X Y Z)eB
:EndIf
IncSerial
v

vRe«GetSerial
Reserial
v

)

In the above example, the class point has three instance properties (x v and z), all initialized to 0. It
has two class-wide properties serial and CATEGORY. CATEGORY IS a read-only property, so is
initialized with a double assignment arrow. The serial property is private (i.e. not accessible from
outside the class), so it is localized in the class header. The class has three ordinary methods (of which
one, IncSerial IS private), and a constructor (identifiable by the fact that it has the same name as the
class).

If a second class MovingPoint inherits from point, and adds a new property vEroc1Ty, then you
might have:

OCR 'MovingPoint'
MovingPoint : Point {
VELOCITY«O
}

APLX Language Manual 279

This shows the use of the colon character in the header, to indicate that MovingPoint inherits from
Point.

Canonical representation of a single method from a class

OCR can also be used to convert a single method from a given class to text form. In this case, the right
argument should be the fully-qualified method name (i.e. the class name, a period, and the method
name). For example:

OCR 'Point.Mag'
ReMag
A Return magnitude (distance from origin)
Re+/(X,Y,Z)*2
ReR*0.5

OCS Compatibility Setting

The system variable 0cS (Compatibility Setting) can be used to ensure that applications written under
APL.68000 Level I work in the same way under APLX. It can be set to a number in the range 0 to 7. It
is normally set to O, but if a Level | workspace is loaded it will automatically be set to 7. The
behaviour affected by 0Ocs is as follows:

OCSe1 Expressions of the form 5 6 7[2] will
be allowed rather than giving RANK
ERROR.

OCS«2 ONC and ONL will use the code 4 rather

than 1 to indicate an 1invalid name.

OCS<4 Default formatting of numeric arrays uses
the same width for all columns, rather than
determining the width separately for each
column.

The three parameters can be set in any combination by adding together the codes. For example:

OCS<0
1 3 5[2]
RANK ERROR
1 3 5[2]
A
2 3p1 2 3 1 100 1000 (Each column has 1its own format)
1 2 3
1 100 1000
0CS«5 (Set codes 1 and 4)
1 3 5[2]
3

2 3p1 2 31100 1000 (A1l columns share the same format)
1 2 3
1 100 1000

APLX Language Manual 280

OCT Comparison Tolerance

The setting of the system variable OCT (comparison tolerance) determines the accuracy of the
comparative and logical functions. Comparison Tolerance will only matter, in practice, if either of the
arguments of an affected function is represented internally as a floating-point number.

The following primitive functions are affected by OCT:

'L <<=2>%# €1 | € = £ ~

For equality tests, two numbers are judged to be equal if the magnitude of their difference does not
exceed the value of OCT multiplied by the larger of their magnitudes. X>Y is true if X-Y is greater than
or equal to OCT multiplied by larger of the magnitudes of X or Y. X>Y is true if X>Y is true and X=Y is
not.

The effect on T and L is similar. Both of these functions will have no effect on an integer. A value
which is close to an integer by proportionately less than OCT returns that integer irrespective of the
direction in which it differs from that integer. All other values behave as expected. The residue
function | is fuzzy, and thus A|B will return O if B=A is within OCT of an integer value.

The default in 32-bit implementations of APLX is 1E713, and in 64-bit implementation is 3E715. It
can be reset by assignment to a value between 0 and just less than 1.

acT (OCT at normal setting)
1E713

4=3.9
0

Compare it with the result produced by the same expression after OCT has been changed:

OCT« .026 (4xOCT 1is greater than the

4=3.9 difference between the two numbers)
1

OPP«15 (X is less than 1 by

OeXel-.9x0OCT proportionately less than 0OCT)
0.9766

LX
1

X
1

Special considerations for 64-bit versions of APLX

In APLX64, integers are represented as 64-bit numbers, and floating-point numbers are represented in
64-bit IEEE floating-point format, with 53 bits of precision. The default value of OCT is 3E715. This
means that, if you are dealing with numbers larger than around 2+48 (approx 2. 8E14), you may get
different answers for operations which depend on OCT, according on whether the number is
represented internally as an integer or a floating-point number. This is because operations which act

APLX Language Manual 281

on integers are carried out using exact arithmetic, without reference to OCT, whereas operations which
involve floating-point numbers do take account of OCT.

Consider this sequence:

Xe2x50
X
1125899906842624
ODR X
2
X=X+1
0
Yel.0xX
Y
1125899906842624
ODR Y
3
Y=Y+1
1

In this example, X is represented internally as a 64-bit integer. It is distinct from the 64-bit integer X+1,
because OCT is ignored when APLX compares numbers represented as integers.

In contrast, Y (which has the same value as X) is held internally as a floating-point number. When the
comparison with Y+1 is made, APLX reports that they are equal because the relative difference is less
than OCT.

Note that, in 32-bit versions of APLX, the behavior is the same, but you do not normally notice it
because, with the default value of OCT, no number which could be represented as a 32-bit integer is
within comparison tolerance of the adjacent integer values.

Practical implications for 64-bit APLX applications

If the magnitude of the numbers you are dealing with is less than 2+48, then with the default value of
OcT there should be no problems. The results of arithmetic and comparison operations will not depend
on whether the numbers are represented internally as floating-point or integer.

If the magnitude of the numbers you are dealing with is between 2«48 and 2«53, you might need to
reduce OCT to ensure consistent results, or alternatively force the numbers to be represented as integers
or as floats before making the comparisons.

If the magnitude of the numbers you are dealing with is greater than 2+53, then numbers represented
internally as floating-point cannot be converted to integer because there is not enough precision in the
floating-point representation to know which integer is the correct one. If you want exact comparisons,
you need to ensure that the numbers remain in integer form (for example, do not place them in the
same array as non-integral values).

APLX Language Manual 282

0D Digits

The niladic system function OD returns a 10 element character vector containing the digits 0 to 9.

ob
0123456789

ODBR Delimited Blank Removal

One-argument form

Used with character data to remove leading and trailing blanks and compress embedded multiple
blanks to one blank. The argument must be a simple character vector or scalar.

ODBR JAN FEB MAR APRIL MAY '
JAN FEB MAR APRIL MAY

Two-argument form

A left-hand argument can be included. It defines a character or characters to be used as delimiters in
the right-hand argument. Leading and trailing blanks, and blanks preceding and following the
delimiters are suppressed. Unless the space character is included in the left argument, other blanks
remain:

'=' ODBR ' X JAN = FEB MAR =APRIL * MAY Y
X JAN<FEB MAR+APRIL+MAY Y
"s ' ODBR ' X JAN + FEB MAR *APRIL * MAY Y

X JAN*FEB MAR*APRIL=*MAY Y

ODISPLAY Display Array Structure

The monadic system function ODISPLAY returns a character matrix which shows the structure of an
APL array. It is equivalent to the DISPLAY function supplied with previous versions of APLX and
APL.68000, and with many other APL interpreters. It takes any APL expression as its argument, and
returns a character matrix which is the formatted array with symbols showing the structure and
nesting.

Note: In desktop editions of APLX, you can invoke a Display Window to show array structure, using
the pop-up menu which appears when you right-click (or, under MacOS, click-and-hold) over a
variable name. For named variables, you can also use the)DISPLAY system command. In both cases
the array structure is shown in the same form as shown here.

APLX Language Manual 283

ODISPLAY takes the data or expression whose value is to be examined as a right argument. For
example:

ODISPLAY 1 2 3

The output from ODISPLAY shows the data with boxes around it. The output can have one or many
boxes inside the perimeter box. Also you will see that the characters at the left hand end of the top and
bottom lines and those at the top of the left side line will change for different data types. It is these
boxes and their embedded characters which inform you of the specific structure of the data being
examined.

The symbols indicate the type of variable contained within the box while the number of boxes within
boxes shows the depth of the data. Here are some simple examples:

ODISPLAY 3 7 8

>
[3 78

A~

This first example is a simple 1 dimensional vector. This is indicated by the absence of an arrow on
the left hand side of the box showing that there is no organisation along this axis, only along the
horizontal axis as shown by the right pointing arrow at the top of the box. The '~' symbol at the
bottom of the box indicates numeric data.

ODISPLAY 3 4pOA

r-)
JABCD

EFGH
IJKL

This second example shows a two dimensional (rank 2) character matrix. The right arrow and the
down arrow indicate two dimensions, while the absence of the '~' character indicates text or character
elements.

Here is a summary of the special characters and their meanings:

Meaning

Scalar character
Vector or higher-rank array
Numeric data

|

|

|

Beneath a character |
|

|

Mixed data |
|

|

|

|

|

|

|

|

|

| Left of top edge

| Left of bottom edge
| Left of bottom edge
| Left of top edge

| Left side of box

| Left side of box

| Left of bottom edge
|

Empty vector or higher-rank array
Matrix or higher-rank array

Empty matrix or higher-rank array
Nested array

m - < o0 + ¢ ¥

APLX Language Manual 284

Where an array is empty, this is shown by the "¢ 'character on the left side of the box or the
"o 'Character on the top side, and the prototype of the array is shown inside the box.

Examples

ODISPLAY (3 4 5) 6 (9 9)

> >
[3 4 5| 6 [Q:E}

A~

€

The 'e' is on the outside box because the data within is nested. The inner boxes however have '~

characters showing that within these smaller boxes only numeric data exists. The depth of the data is
two:

= (345)6 (99)
2

This can be read from the display by counting the greatest number of nested boxes, two.

ODISPLAY 'A’ A Character scalar

ODISPLAY 1 A Numeric scalar
1

(Note here that there is no need for a complete box with scalars)

ODISPLAY 10 A Empty numeric vector
()
g
ODISPLAY 'A B CDEF' A Character vector
—_
[A BCDEF
ODISPLAY 3 4pl 2 3 4 5 A 2-dimensional numeric matrix
r—)
11 2 3 4
5123
4512
ODISPLAY 1 1 1 2 5p'MICRO APL ' A Multi-dimensional character matrix
rrrr>
JLLIMICRO
L[
ODISPLAY 2 4 5p130 A 3-dimensional numeric matrix

rr-
L1 2 3 4 5
|| 6 7 8 9 10

APLX Language Manual 285

11 12 13 14 15
16 17 18 19 20

21 22 23 24 25
26 27 28 29 30
1 2 3 4 5
6 7 8 910

ODISPLAY 1 2 3 'A" 45 6 A Mixed vector

[1 23 A456

-

(Note the plus sign in the bottom left denoting mixed data)

ODISPLAY (1 2 3 4) (50 60 70) (89 99 109) ~a Nested vectors

>

[1 2 34 [50 60 70 [89 99 109

A~

A~ ~

€

ODISPLAY (2 3p16) (1 1pl) (1 2 2pr4) A Nested matricies

r- =1 rr»
11 2 3 ¢1] 11 2
L4 56| L~ LLs:;}

A~ A~

€

ODISPLAY ¢'GH I J',(c'K L MN') (3 2pO0D) ~a Nested (OD 1is character)

r>
G H I J| p»—— | 01
——————— KLMN 23
45
€
€
-€
ODISPLAY ccc(3 4pOA) (2 3 7p142),'A’ A Mixed nested matrices

>

r> rr
IABCD| 401 2 3 4 5 6 7| A
EFGH 8 910 11 12 13 14| -
TJKL 15 16 17 18 19 20 21

22 23 24 25 26 27 28

29 30 31 32 33 34 35
36 37 38 39 40 41 42

APLX Language Manual 286
ODISPLAY 0p(2 2pi4) ('PERSIMMON') A Empty nested vector

r-)
10 0
3

~

©

€

(Note that the prototype of the array is shown in the box)

ODL Delay

The monadic system function ODL delays execution for not less than the number of seconds specified
and then returns a numeric result which is the number of seconds actually delayed. You can specify
any positive number including values less than 1, but the time resolution varies from system to system.
It is usually around 10ms or better.

[2]

[3] 'YOU HAVE 10 SECONDS IN WHICH TO WORK OUT THE ANSWER.'
[4] AeODL 10

[5] '"YOUR TIME IS UP.'

ODR Data Representation

The system function ODR is used to examine or alter the internal type of an item of data using the
following codes:

Boolean (patterns of 1ls and 0s)
Integer

Floating point

Character

Overlay

Nested or mixed

Object or class reference

NO O~ WN -
L1 | | | A | I [|

One-argument form

Reports data type of any array.

ODR 2.9
3
Xe1 01101
ODR X
1
ODR 'ABC' 1 2 3
6

ODR (110) (2 2p14)

APLX Language Manual 287

APL will choose which type of number format to use, and certain operations will force data to be of a
specific type. For example, the result of a comparison (< < =2 > #) is guaranteed to beaOora 1, and
the result of these operations is thus Boolean. Internally, the different types of data take up different
amounts of space:

Code Type Space
1 Boolean 1 bit per element
2 Integer 4 bytes per element (32 bits)
or 8 bytes per element (64 bits) under APLX64
3 Floating point 8 bytes per element (64 bits)
4 Character 1 byte per element (8 bits)
5 Overlay see OOV
6 Nested/mixed depends on contents
7 Object/Class ref. 4 bytes per element (32 bits)

or 8 bytes per element (64 bits) under APLX64

(see also OAT).

Two-argument form (scalar left argument in range 1 to 4)

On occasions it is useful to examine or change the data type, either for encryption purposes, or to
combine character and numeric data quickly. When used with a left argument consisting of one of the
data-type codes in the range 1 to 4, and a right argument consisting of a data array of type 1 to 4, ODR
converts the item to the representation specified:

1 ODR 5
00000000OO0OO0OOOOOOOOOOOOOOOOODOOOI1O01
(The 32-bit binary pattern for 5)

Note that, under APLX64, integers are represented internally as 64-bit numbers, so converting an
integer scalar to binary returns a length-64 binary vector.

The conversion of one type to another changes the number of elements in data, and so ODR must
change the dimensions of its result. The last dimension of the result is adjusted to compensate for the
type change. Zero bits are used to pad out a row if necessary.

How the data conversion works

In essence, all that dyadic ODR does is to change the workspace entry's type, without changing the bit
pattern of the data.

Suppose you start with the character vector *1234'. This data is held internally as the four bytes, hex
31 32 33 34. If those same four bytes are used as the data portion of a binary vector, you will get the
bit pattern corresponding to those four bytes:

1 ODR '1234'
0011000100110010001100110011010°0

The first 8 bits are the binary pattern for hex 31,i.e.0 0 1 1 0 0 0 1, the second 8 bits are the
pattern for hex 32, etc.

APLX Language Manual 288

If you represent this data as an integer (in a 32-bit version of APLX), you will get the 32-bit integer
which corresponds to this bit pattern:

2 ODR '1234'
825373492

which is the decimal number equivalent to hex 31323334.

Notes

a) For a scalar or vector, the length obviously changes (a 32-bit scalar integer becomes a length four
character vector or a length 32 binary vector). For higher dimensional arrays, the last dimension is
increased or reduced as necessary.

b) But what if there are not enough elements? For example, suppose we ask for the 8-byte float
representation but only give it 4 bytes (this would happen if we ask for 3 ODR '1234"'). The rule
APLX applies in this case is that the data is padded on the right with null (zero) bytes to make up the

necessary number of whole data elements. So 3 ODR '1234' isthe sameas 3 ODR '1234', OAF 0 0
00

c) Changing arbitrary data to float is potentially dangerous because you can produce a bit pattern
which is not legal as a 64-bit IEEE floating point number (the internal representation used by APLX
for float numbers).

d) If you are running APLX64, the 64-bit version of APLX, you will get different answers for integer
arguments, because integers are represented as 8 byte-numbers in APLX64.

In APLX:

1 ODR 825373492
00110001001100100011001100110100
pl ODR 825373492
32

In APLX64:

1 ODR 825373492
000000000000O0O0O0COOOOOOOOOOOOOOOOOO
00110001001100100011001100110100
pl ODR 825373492
64

Byte-Ordering Issues

In the case of a big-endian processor (PowerPC, SPARC, 68000, etc), the 32-bit hex number
31323234, if viewed as a series of bytes, is in the order you expect: hex bytes 31 32 33 34. But on a
little-endian processor (Intel), it is backwards: 34 33 32 31. So the question arises: on a little-endian
processor, should the result of transforming a 32-bit integer to binary/character treat the data as a 32-
bit container (hex 31323334), or as a series of four bytes as they would appear in memory (hex 34 33
32 31)? In APLX, by default it is treated as 32-bit container (i.e. effectively swap the bytes for the
little-endian case - but see below for changing this default). This design decision was taken for two

APLX Language Manual 289

reasons. Firstly, it means the result is the same on all APLX (32-bit) platforms. Secondly, it means the
results are consistent with what you would reasonably expect. For example, on all 32-bit platforms
APLX gives the following result when converting an integer to binary:

ODR 2
000

1
000 0000000O0OO0O0OO0OOOOOOOOOOOOOOTI1IO

(the bit pattern for the integer 2, comprising four bytes)

OAF 4 ODR 2
0002

(the individual bytes which make up the 4-byte number 2, even though on a little-endian machine they
would be backwards if the processor read them as individual bytes)

2 ODR 4 ODR 1 ODR 2
2

(Convert the integer number 2 to binary. Convert the resulting binary vector to a length 4 character
vector. You get back the number you started with.)

Two-argument form (vector left argument or compatibility mode)

As well as the default conversions described above, you can force alternative representations of the
converted data by providing a two- or three-element vector as the left argument. You can also use
alternative codes for the standard conversions 1 to 4 in the first element, for compatibility with other
APL interpreters, as follows:

Code Type Space

11 Boolean 1 bit per element

83 Integer 1 byte per element (8 bits)

163 Integer 2 bytes per element (16 bits, little-endian)
323 Integer 4 bytes per element (32 bits, little-endian)

7 Integer 8 bytes per element (64 bits)

643 Integer 8 bytes per element (64 bits, little-endian)
645 Floating point 8 bytes per element (64 bits, little-endian)
82 Character 1 byte per element (8 bits)

The optional second element, if supplied, is the number of bytes per element when converting from
character to integer or float, and vice versa. 0 means use the default value implied by the first
argument.

The third element, if supplied, is the byte-ordering (endian) flag:

0 Big-endian or as implied by the fist element (default)
1 Little-endian
2 Natural-endian (big on big-endian systems, little on little-endian systems)

Note that you can only specify the element size if you are converting to or from a character
representation.

APLX Language Manual 290

Examples

OAF 4 ODR 2 a Convert 32-bit integer 2 to four characters
0002

OAF 4 0 1 ODR 2 A Same, but little-endian byte order
2000

OAF 4 2 1 ODR 2 A Force integer to be consider a 16-bit value
20

OAF 4 2 1 ODR 200000 m Too large to fit in 16 bits
DOMAIN ERROR

OAF 4 2 1 Odr 200000

A

OAF 82 ODR 2 A Compatibility mode: Int to Char, little-endian
2000

323 ODR 82 ODR 23 a Round trip
23

OAF 4 ODR 2.56 a Convert float to 8 bytes (IEEE Double representation)
64 4 122 225 71 174 20 122

OAF 4 4 ODR 2.56 a Convert float to 4 bytes (IEEE Single representation)
64 35 215 10

OEA Execute Alternate

Note: The use of OEA is now deprecated, unless you need to retain compatibility with IBM's APL2. For
most cases, we recommend that you use the structured-control error trapping mechanism (: Try
:CatchIf :CatchAll :EndTry) instead.

The dyadic system function OEA will attempt to execute its right argument. If an error (or interrupt)
occurs it will then attempt to execute its left argument. Errors in the left argument will be handled as
they would be normally.

5+0
DOMAIN ERROR (Standard error)
5+0
A
'5+1"' OEA '5+0"' (Alternative expression executed)
5
'3+0' OEA '5+0' (The alternative will report an error
¢ DOMAIN ERROR in the usual way if it contains an error)
3+0

A

See the section on Error Handling for more information.

APLX Language Manual 291

OEC Execute Controlled

The monadic system function DEC will execute its argument and return a result which is a three item
vector containing a return code, the error type and the result (or OEM) respectively. The return code is
an integer in the range 0 to 5

Error

Expression with a result which would display
Expression with a result which would not display
Expression with no explicit result

Branch to a line

Naked branch

Ol WN - O

The second item is the value that would be returned by OET (without altering the current value of
OET) . The third item is the result (if one is generated); for return code 3 or 5 the third item is 0 0p0;
for return code 4 the third item is the argument to the branch; for return code 0 the third item is OEM.

OET
00
OEC '2x"'A'''
0 5 4 DOMAIN ERROR (Error, OET, OEM)
2x'A’
A
OET
00 (OET has not changed)

OEC overrides any OSTOP settings

vTEST
[1] 2x5
[2] +/1100
[3] v
1 OSTOP 'TEST' (Stop set on line 1)
1
OEC 'TEST' (Execute TEST under OEC)
10
5050
3 00 (No explicit result, OET, empty vector)
OSTOP 'TEST' (Stop setting still active)

1

APLX Language Manual 292

OEDIT Edit fn/op/var

The APLX editor may be accessed via the system function DOEDIT (see also)EDIT).

If you are creating a new object, the optional left argument is O if you want to create a function, 1 if
you want to create a variable, or 2 if you want to create a class. The default is to create a function. The
left argument is ignored if the object already exists.

OEDIT 'NAME' EDIT EXISTING OBJECT <NAME>

EDIT NEW FUNCTION OR OPERATOR <NAME>

EDIT NEW OR EXISTING FUNCTION OR OPERATOR
EDIT NEW OR EXISTING VAR <NAME>

EDIT NEW OR EXISTING CLASS <NAME>

0 OEDIT 'NAME'
1 OEDIT 'NAME'
1 OEDIT 'CLASS'

D D D DD

The operation of the editor may vary according to the implementation of APLX being used. Under
Windows and MacOS, APL execution will be suspended until the editing is complete if you invoke it
with OEDIT, but not if you invoke it in any other way.

OEM Error Matrix

OEM contains the current error message as a character matrix. The initial value of DEMis 3 0p"' "and it is
reset to this value by)RESET or)SICLEAR. Note that the error message can originate from calculator
mode errors or errors within defined functions. OEM is implicitly localised in that it shows the error
message which relates to the most currently pendent function on the Sl stack - see the earlier chapter
on Error Handling for more details.

JRESET

pOEM (Default value of OEM)
30

45x 'NAME' (Standard error report)
DOMAIN ERROR

45x'NAME'

A

pOEM (Size of OEM after the error)
3 15

OEM (Contents of OEM are the same as the
DOMAIN ERROR error message above)

45x"'NAME'

A

)RESET (Clear OEM)

pOEM

30

APLX Language Manual 293

OERM Error Message Vector

The niladic system function OERM is the same as OEM except that it returns a character vector with
embedded carriage returns between lines.

OERS Error signalling

The nomadic system function OERS is used to 'signal’ errors to a calling function. The calling function
is halted unless it is error trapped. OERS can be used with one or two arguments:

OERS ERRORNUMBER
ERRORMESSAGE OERS ERRORNUMBER

The ERRORNUMBER may be a vector of numbers, but the first is used as the argument. The
ERRORNUMBER can be any integer, or an empty vector. The error message associated with the first
number in the right argument is displayed, the calling function is halted and the first number of OLER
(Line Error Report) is set to this number. The exact behavior depends on the value of
ERRORNUMBER:

o If ERRORNUMBER is a positive integer associated with a standard APLX error message, the
associated error message is signalled. See the section on Error Codes for a list of standard error
numbers.

« Ifthe ERRORNUMBER is positive, but is not associated with a standard error message, an
UNKNOWN ERROR TYPE is signalled.

o Negative ERRORNUMBERS cause an error to be signalled but no message to be displayed.
o If ERRORNUMBER is 0, no error is signalled and DER, OET, OERM and OEM are reset.

« IfERRORNUMBER is an empty numeric vector, the function has no effect. No error is
signalled.

An error message can be included as the left argument. If present, this is displayed instead of the
normal error message associated with this number.

For example, an attempt to divide by zero normally generates:

2+0
DOMAIN ERROR

20

A

A function DIVIDE can be written which 'signals’ an attempt to divide by zero, rather than stopping:

APLX Language Manual 294

[1]
[2]
(3l

DOMAIN ERROR

v Re<A DIVIDE B

"ATTEMPT TO DIVIDE BY ZERO' OERS (B=0)/8
Re<A+B
v

2 DIVIDE O

2 DIVIDE O

A

and this function can itself be used within other error trapped functions:

v TEST;X
[1] XeOERX ERR
[2] START:'ENTER TWO NUMBERS '
[3] DATA<21O AMAKE SURE WE HAVE 2 NUMBERS
[4] 'THE DIVISION IS:'
[5] DATA[1] DIVIDE DATA[2]
[6] -0
[7] ERR:»(8#1t0OLER)/0 ANOT ONE OF OUR ERRORS
[8] 'ATTEMPT TO DIVIDE BY ZERO, TRY AGAIN'
[9] >START
[10] v
TEST

ENTER TWO NUMBERS
O: 4 2
THE DIVISION IS:

2

TEST

ENTER TWO NUMBERS

O: 40

ATTEMPT TO DIVIDE BY ZERO, TRY AGAIN
O: 4 4

THE DIVISION IS:

1

The use of a negative argument to OERS suppresses printing of the error message.

[1]
[2]

0

0

0

8

1

0

0

0

vR«A DIVIDE B

OERS(B=0)/"8

ReA+B

v 1.53.19 05/28/90

3 DIVIDE 0

3 DIVIDE 0 (No error message shown)
A

OLER (OLER set to 78)
OET (OET set to 0 1)

OERS 0 (Use of OERS 0 to reset error numbers)
OLER

OET

APLX Language Manual 295

OERX Error trapping

Note: The use of OERX is now deprecated. We recommend that you use the structured-control error
trapping mechanism (:Try :CatchIf :CatchAll :EndTry) instead.

The monadic system function OERX is followed by a line number. Its effect is to set or clear error
trapping. It takes a scalar integer argument which is a line number (or label) in the function. If an error
occurs in the error trapped function, or functions called by the error trapped function, control is passed
to the specified line. OERX returns the previous value set.

[2] Re<OERX ERRLAB

[éO] ERRLAB: 'HALTED, ERROR'
[21] 'ERROR WAS ',OR, OERM

To switch off error trapping, use an argument of 0.

OES Error simulate

One-argument form

OES can simulate a predetermined or programmer-defined error, in a form compatible with IBM's
APL2. If the right argument is a character vector or scalar, OET is set to 0 1 and the right argument is
used as the error message. A two element integer right argument will generate the appropriate error
message (if the argument corresponds to a valid value for OET) or no error message (if there is no
corresponding value for OET) . An empty vector right argument causes no action to be taken, whilst a
right argument of 0 O resets error messages and codes (OEM OERM OET OLER).

vR«A DIVIDE B
[1] OES(B=0)/"'ATTEMPT TO DIVIDE BY ZERO'
[2] ReA+B

v 1.43.05 05/28/90

3 DIVIDE 0
ATTEMPT TO DIVIDE BY ZERO (Message displayed)

3 DIVIDE 0

A

OET (OET set to 0 1)
01

OLER (1T0LER set to 15 - unknown error)
15 0

vR<A DIVIDE B
[1] DOES(B=0)/5 4 (Signal the standard error)
[2] R<A+B

v 1.44.32 05/28/90

APLX Language Manual

5 DIVIDE 0
DOMAIN ERROR
5 DIVIDE 0
A
OET
5 4
OLER
11 0

296

(Standard message shown)

(Standard values for OET, OLER)

Using an argument to OES that does not correspond to a error code of OET causes no error message to

display.

vDOIT
[1] OES 101 45
v 1.45.48 05/28/90
DOIT
DOIT
A
OET
101 45
OLER

10

Two-argument form

(Outside the DOET range)

(No error message displayed)
(DET takes chosen value)

(OLER takes ~1 value)

The two-argument form of OES can be used to signal both an Error Type and an Error Message. The
left argument should be a character scalar or vector which will be used as the error message portion of
OEM and OERM and the right argument should be a two element integer vector which will be assigned to
OET. The left argument overrides the usual error message associated with a given value of OET. If the
right argument is empty, no error is signalled. If it is 0 0 any left argument is ignored and error
messages and reports are reset (OET OLER OEM OERM) .

vR<A DIVIDE B
[1] OES(B=0)/5 4

[2] ReA+B
v 1.32.25 05/29/90
3 DIVIDE 0
DOMAIN ERROR
3 DIVIDE 0
A
OET
5 4
OLER
11 0

vR<A DIVIDE B

(Standard error message)

(Standard error codes)

[1] "ATTEMPT TO DIVIDE BY ZERO' OES(B=0)/5 4

[2] ReA=+B
v 1.33.27 05/29/90
3 DIVIDE 0

ATTEMPT TO DIVIDE BY ZERO
3 DIVIDE 0
A
OET

5 4
OLER

11 0

(Redefined error message)

(New error message)

(Standard OET)

APLX Language Manual 297

OET Error Type

OET returns a two element error type code generated by the latest error, either in calculator mode or
within a defined function, in a format compatible with IBM's APL2. The earlier section on Error
Handling contains a fuller discussion of the usage of OET as well as a table of the pre-assigned error
types that OET can return.

1000000p99
WS FULL
1000000p99
A
OET
13
OLER
10

OET is implicitly localised in that it shows the error code which relates to the most currently pendent
function on the SI stack.

See also OES (Error simulate) and OLER (Line Error).

OEV Event Record

(Not implemented in APLX Server Editions)

Each callback property you can set corresponds to an APLX event. Just before your callback is called,
the niladic system function OEV is set to contain the event record, which gives further information
about the event which is being reported. OEV is an integer vector of length 9. The first five elements
are common to all events, and the remaining four depend on the event type.

The elements of OEV which are always supplied irrespective of the event type are (in index origin 1):

OEV[1] Object tie number (the same as the tie property of the
object)

OEV[2] Event type number

OEV[3] System clock time of event in milliseconds

OeEv[4] Mouse vertical position (1in pixels) when event occurred

OEV[S5] Mouse horizontal position (in pixels) when event occurred

The remaining elements depend on the specific event type.

APLX Language Manual 298

OEVA Event Arguments

The niladic system function OEVA is a synonym for OWARG. It is valid only inside a OWE callback
function, run by APLX as the result of an event occurring in one of your windows or other objects. It
is used to pass data associated with the event from an external control or server, or another APL task.
This data comprises the arguments passed when the event was created in the external or system object.

The exact content of DEVA depends on the source of the event.

Use for APL Multi-Tasking (not available in Server Editions)

When you create Child tasks using the apr1. object under OWI, the Child and Parent tasks can each
trigger events for the other task. OEVA is used to pass data associated with the event, as follows:

e When the Child task is about to execute a command or expression, an onExecute event is
triggered in the Parent's task object. When the callback function runs, OEVA contains the
command or expression which the Child task is about to execute, as a simple character vector.

e When an untrapped error occurs during function execution in the Child task, an ontError event
is triggered in the Parent's task object. When the callback function runs, OEVA contains the error
message in the same form as OERM.

« The Child and Parent tasks can each explicitly send an event to the other by using the signa1
method. This takes any APLX array or overlay as an argument. When the onsigna1 callback
in the receiving task runs, OEVA contains the array or overlay which the sending task specified.

Use for OCX/ActiveX controls and OLE Automation (Windows only)

OEVA allows your APL application to examine the arguments which an external caller (for example an
OCX control or OLE server) has passed to APL as part of the underlying event-handling which occurs
when an event is triggered. Typically, it is a simple or nested vector, with one element per argument
passed by the control. If there are no arguments it is an empty vector. You can use the Events tab of
the APLX Control Browser to see what events are associated with a control, and the parameters it
passes.

For example, the Formula One spreadsheet-control allows you to specify a callback, to be triggered
when the user clicks in a cell. The event name is onXClick, and the parameters are defined as:

void Click (long nRow, long nCol);

This means that it passes two integer parameters, which are the row and column of the cell in which
the user has clicked. In your APLX callback function you can retrieve this information; DEVA will
return a two-element vector with these two values.

APLX Language Manual 299

Use in .Net programming (Windows only)

When a .Net event for which you have defined an APL callback is triggered, OEVA contains a reference
to the event argument object. This is an instance of the general .Net class system.EventArgs, Or to a
more specific descendant (such as system.Windows.Forms.MouseEventArgs), Which provides
information about the event. By examining the properties of this object, you can extract information
about the event, such as the position of the mouse when the event was triggered.

OEVAL Evaluate external expression

The dyadic system function OEVAL allows you to evaluate an arbitrary expression in an external object-
oriented environment, provided the architecture supports it.

The left argument is a character vector which specifies the external environment in which you want to
evaluate the expression, in the same format as for ONEW. The right argument is a character vector
containing an expression which is valid in the target environment.

The main use for OEVAL is for running code is an interpreted language such as Ruby or R, and for
setting up variables in the Ruby environment:

'ruby' OEVAL 's=String.new "Hello there"'
Hello there

'ruby' OEVAL 's.length'
11

"ruby' OEVAL 'Math.sqrt(9)'
3

This example shows in the R environment:

re<'r' Onew 'r'

r.xe2 3pi6 A X is an R variable
r.x
123
456
'r' Oeval 'x[2,]'
456
'r' Deval 'mean(x[2,])'
5

Note that the last line could be executed using the alternative syntax:

r.Oeval 'mean(x[2,])'
5

OEVAL is not supported for .Net or Java:

".net' OEVAL '2+2'
Library for architecture
DOMAIN ERROR

".net' OEVAL '2+2'

A

.net' does not support direct evaluation

APLX Language Manual 300

See also OCALL, which allows you to call arbitrary 'static' methods in external environments, and the
system-method form of DEVAL for R.

OEVN Event Name

The niladic system function OEVN is valid only when you are running a OWE callback function in
response to an event. It contains the name of the event as a character vector. For .Net, this will be one
of event property names, such as 'closed' fora rorm, Or 'click' for a Button. For System classes, it
will be one of the callback names beginning with ‘on'.

OEVT Event Target

The niladic system function OEVT is valid only when you are running a OWE callback function in
response to an event. It returns a scalar object reference, which is a reference to the object which
generated the event. For example, if a callback is running in response to a c1ick event for a .Net
Button Object, DEVT will contain a reference to the Button.

If no event target is available, it will return a reference to the Null object.

OEX Expunge

The monadic system function OEX causes hamed objects to be erased. See also)ERASE.

The right argument is a character vector (for a single name) or matrix of names. Expunge returns a
vector of numbers in which 1 indicates successful erasure, 0 non-erasure:

)VARS
DATA RESULT
JFNS
AVERAGE MEAN SD
OEX OBOX 'MEAN STANDARD DATA'
101
)VARS
RESULT
JFNS
AVERAGE SD

Local objects are expunged if both local and global objects of the same name exist. This contrasts with
)ERASE which erases the global version.

APLX Language Manual 301

OEX can be used to erase a class definition (and all the methods and properties defined in it). Any
instances of the class will become instances of the erased class's parent, if there is one, or of the NULL
class, if the erased class did not have a parent. Similarly, any classes which inherited from the erased
class will be re-parented so that they now inherit from the erased class's parent.

In this example, class pornT3D inherits from coror poTnNT Which in turn inherits from poInT. PT iS an
instance of COLOR_POINT:

)CLASSES

COLOR_POINT POINT POINT3D
OCLASS POINT3D

{POINT3D} {COLOR_POINT} {POINT}
PT<ONEW COLOR_POINT
PT.OCLASSNAME

COLOR_POINT

If we erase the class corLor po1nT, its child class poInT3D is re-parented. The instance pt becomes an
instance of the original parent:

OEX 'COLOR_POINT'
1
OCLASS POINT3D
{POINT3D} {POINT}
PT.OCLASSNAME
POINT

If we now erase the class rornT, PornT3D WIill nOW have no parent, and the instance pt becomes an
instance of the NULL class:

OEX 'POINT'
1

PT.OCLASSNAME
NULL

OCLASS POINT3D
{POINT3D}

OEXPORT Export APL array to file in specified format

The dyadic system function DEXPORT exports an APL array to a file, in a format which can be read by
other (non-APL) applications. (See also OIMPORT which allows you to import data from a file of
specified format).

The left argument is the array of data you want to export. The right argument determines the name of
the file to be created, and the format of the file. If the right argument is a character vector, it is
interpreted as the name of the file you want to create (including full path if required) and the format of
the file is inferred from the file extension. If the right argument is a two element nested vector, the first
element is the filename (or full pathname), and the second is a text string specifying the file type. File
types are case-insensitive.

APLX Language Manual

302

For example, the two following statements are equivalent, and will export the contents of the array
BUDGET in ‘comma-separated variables' (‘'CSV') format:

BUDGET OEXPORT 'Budget2007.csv'
BUDGET OEXPORT 'Budget2007.csv' 'csv'

The following file formats are supported, with the restrictions shown on the type and ranks of the data
which can be exported in that format:

File
type/extension

'txt!

'utfle' Or
'utf-16"

'utfg8' or
'utf-8'

CSsv

'tsv'!

"htm' Or
'html’

Description

Text representation of the array (same as
monadic format), with characters
represented in 8-bit extended ASCII
form. For matrices and higher-rank
arrays, lines of text will be separated by
the appropriate newline character for the
platform (CR-LF on Windows, LF on
Linux and MacOS).

Same as 'txt', with characters represented
in 16-bit UTF-16 Unicode form (2 bytes
per character).

Same as 'txt', with characters represented
in the 8-bit UTF-8 Unicode form
(variable number of bytes per character).

'‘Comma-separated variables' format, as
used by many applications such as
spreadsheets for data exchange. The file
comprises one line of text per row of the
data, with individual elements separated
by commas. Numeric elements are
expressed in text form. Text elements are
surrounded by double-quotation marks;
however, when importing CSV, many
applications will ignore the quotation

marks and treat the element as numeric if

the string could be interpreted as a valid
number.

"Tab-separated variables' format. Same
as CSV, except the fields are separated
by tab characters instead of commas.

HTML format. The result isan HTML
page which can be loaded into a Web
Browser or imported into another
application such as Microsoft Word or
Excel. The page will contain an HTML
table containing the data, unless the
array is a simple character array, in
which case it is output as a paragraph
with
 between lines.

Restrictions

All arrays supported, subject to available
memory.

All arrays supported, subject to available
memory.

All arrays supported, subject to available
memory.

The maximum rank of the array is 2. The
array can be nested, but any elements other
than scalars and character vectors will be
represented by their monadic format. The
array must not contain object references.
Characters are output in 8-bit (extended
ASCII) form.

Same as for CSV.

The maximum rank of the array is 2. The
array can be nested, but any elements other
than scalars and character vectors will be
represented by their monadic format. The
array must not contain object references.
All printable characers in OAV can be output
(non-ASCII characters will be output in
escaped Unicode form).

APLX Language Manual 303

Symbolic Link (SYLK) format, a The maximum rank of the array is 2. The
Microsoft-specified file format typically array can be nested, but any elements other
used to exchange data between than scalars and character vectors will be
applications such as Excel and other represented by their monadic format. The
o1k spreadsheets. array must not contain object references.
Only ASCII characters, plus some other
specific characters such as accented letters,
can be represented. APL symbols and other
non-representable characters will be
replaced by '2.
Extensible Markup Language (XML) The left argument must be an APL array
format, a format used for saving with the same specification as OXML. The
structured data with markup information. |data is written as UTF-8 encoded XML
text. This conversion is equivalent to the
two-stage command:
(OXML array) OEXPORT
I 'filename' 'utf8’

In order to ensure that the XML generated
is valid, DEXPORT will add the following
XML prologue if the APL array does not
contain one:

<?xml version="1.0"
encoding="utf-8"7>

Note that, because the intention is to allow APLX to exchange data with other applications, DEXPORT
translates APL high minus (7) to ASCII or Unicode minus (-).

For example, suppose that BUDGET is a 4-row matrix of text vectors and numbers as follows:

BUDGET
Q1 Q2 Q3 Q4
Sales 11300 13220 16550 19230
Expenses 12450 12950 13640 13980
Profit ~1150 270 2910 5250
ODISPLAY BUDGET

I'-t

0 BEE

r>

Sales 11300 13220 16550 19230

=>

Expenses| 12450 12950 13640 13980

r>

Profit ~1150 270 2910 5250

-€

This array can be exported in CSV format as follows:

APLX Language Manual

BUDGET OEXPORT 'Budget2007.csv'

The contents of the file '‘Budget2007.csv' will be:

"", "Ql"’ "Q2"I "Q3"I "Q4"
"Sales",11300,13220,16550,19230
"Expenses",12450,12950,13640,13980
"Profit",-1150,270,2910,5250

Alternatively, the same data can be exported in SYLK format:

BUDGET OEXPORT 'Budget2007.slk'’

The contents of the file '‘Budget2007.slk' will contain the data in SYLK format:

ID; PAPLX; N; E
P; PGeneral
B;Y4;X5
C;Y1;X1;K""
C;X2;K"Q1"
C;X3;K"Q2"
C;X4;K"Q3"
C;X5;K"Q4"
C;Y2;X1;K"Sales"
C;X2;K11300
C;X3;K13220
C;X4;K16550
C;X5;K19230
C;Y3;X1;K"Expenses"
C;X2;K12450
C;X3;K12950
C;X4;K13640
C;X5;K13980
C;Y4;X1;K"Profit"
C;X2;K-1150
C;X3;K270
C;X4;K2910
C;X5;K5250

E

Either format can be directly opened by another application such as Excel:

304

APLX Language Manual 305

. : 0|
(O d -)= Budget2007.slk - Microsoft Excel (=B]
—/ Home Insert Page Layout Formulas Data Review View Developer @J‘ - 3 X

== % Calibri 111 -l =| 5% General ~ A gelnsert~ || F - GV~
- 53 |||[B L U~||A A7 | = S % o 3% Delete - | (8]~ 34~
Paste — P ! : T Styles || ... 2
= e 4 ‘g'”i)'é'& : i ad |%s84500 & =] Format~ || (2~
Clipboard ™ Font i Alignment] Number [Cells Editing
R1C1 v x| ¥
1 2 3 4 5 6 7 8 9 1038
1] !Ql Q2 Q3 Q4 [
2 Sales 11300 13220 16550 19230 =
3 Expenses 12450 12950 13640 13980
4 |Profit -1150 270 2910 5250
5 4
6 l
7 | |
8 | . : . ! ! .
i\ <« » | Budget2007 ¥ m]
Ready |] |80 M| 200%u(-); 0 ()

Special considerations for Client-Server implementations of APLX

In Client-Server implementations of APLX, the front-end which implements the user-interface (the
"Client") runs on one machine, and the APLX interpreter itself (the "Server™) can run on a different
machine. Typically, the Client will be the APLX front-end built as a 32-bit Windows application
running on a desktop PC, and the Server will be a 64-bit APLX64 interpreter running on a 64-bit
Linux or Windows server.

In such systems, you can specify whether the file should be accessed on the Client or the Server
machine. You do this by preceding the file name with either an Up Arrow 1 to indicate that the file
should be accessed on the Client, or a Down Arrow ! to indicate that it should be accessed on the
Server. If you do not specify, the default is that the access takes place on the Client.

OF APPEND Append component to file

The OF APPEND function appends a new component to the file, returning the component number used.
The syntax is:

R « DATA OFAPPEND TIENO {PASS}

DATA is any APL array or an overlay created using OOV. TIENO is the tie number you used to tie or
create the file (or the tie number returned by APLX if you tied or created it using 0 instead of your
own tie number). If you tied the file using a pass number, you must provide the same pass number, as
the PASS.

APLX Language Manual 306

The explicit result is the component number to which the data was written (i.e. the highest existing
component number plus 1).

The effect of OFAPPEND is similar to OFWRITE with a component number of O (or omitted).

OF C Format Control

The system variable OFC contains six characters used by the primitive format function s. The
characters are used as follows:

Character Default Usage
1 . Decimal point character
2 , Thousands 1indicator
3 * Fill for blanks
4 0 Fill for overflows (the default 0 causes a
DOMAIN ERROR)
5 _ Print as blank (cannot be ,.0123456789)
6 - Negative number 1indicator

For details of the way in which OFC is used, see the entries for s (Format by Specification and Format
by example).

OF CREATE Create a new component file

The OFCREATE function creates a new component file, and leaves it tied. The syntax is:

FILENAME OFCREATE TIENO

FILENAME is a character vector specifying the name of the file to create. The name may be specified in
either of two ways. If the name contains a directory-separator character (: / or \), it is treated as a full
host path name, and you need to specify the file extension explicitly, usually .aqf. Otherwise it is
treated as basic file name only, optionally preceded by a volume number 0 to 9, separated by one or
more spaces from the name. In the latter case, the file is created in the directory 0 to 9 specified (the
actual path is set using the preferences dialog or OMOUNT), and the file extension .aqf is added
automatically.

TIENO is an arbitrary non-zero integer to be used in subsequent read/write operations to identify the
file (the tie is exclusive). The tie number must not currently be in use to tie another file. Alternatively,
you can provide a tie number of 0, in which case APLX automatically allocates the next available
unused tie number, and returns it as the explicit result of the function.

APLX Language Manual 307

For example, suppose APLX is running on a Windows machine and the OMOUNT table is set (either
under program control or using the Preferences dialog) so that library 0 is in c:\temp and library 1 is
iN m: \budget\current:

2 30TOMOUNT ''
c:\temp
m:\budget\current

You could create a new file called RUN3 in c: \temp as follows (no directory separator character
appears in the name, so it is taken as a simple file name in library 0):

'RUN3" OFCREATE 2

(Using a left argument of '0 RUN3' would be equivalent). The file is created, and then exclusive-tied
on tie number 2, so you can write to it immediately:

OFNUMS

OTS OFWRITE 2

The full operating-system path would be c:\temp\RUN3.agf.

In this second example, the user has specified 0 as the tie number, so APLX allocates and returns the
next available tie number. The file is created in library 1, so the full operating-system path would be
m:\budget\current\RUN4.aqgf.

'l RUN4' OFCREATE 0
3

OFNUMS
23

In this third example, a full path name has been supplied, with an explicit tie number of 8, so we now
have three files tied:

"c:\temp\RUN4.aqf' OFCREATE 8
OFNUMS

238
OFNAMES

RUN3

1 RUN4

C:\TEMP\RUN4.aqf

(Under Linux or AlX, the full path name might be something like /usr/tmp/RUN4.aqgf. Under
MacQS, it might be something like Macintosh HD:temp:RUN4.agf).

Note that, if you specify a full file name, you can use any file extension (or none). However, we
recommend that you always use .aqf for APLX OF xxx component files. If you do not use the .aqf
extension, your component files will not show up in OFLIB, and you will not be able to access them
using the library-relative syntax.

APLX Language Manual 308

Special considerations for Client-Server implementations of APLX

In Client-Server implementations of APLX, the front-end which implements the user-interface (the
"Client™) runs on one machine, and the APLX interpreter itself (the "Server™) can run on a different
machine. The two parts of the application communicate via a TCP/IP network. Typically, the Client
will be the APLX front-end built as a 32-bit Windows application running on a desktop PC, and the
Server will be a 64-bit APLX64 interpreter running on a 64-bit Linux or Windows server.

In such systems, you can specify whether the file should be accessed on the Client or the Server
machine. You do this by preceding the file name with either an Up Arrow 1 to indicate that the file
should be accessed on the Client, or a Down Arrow ! to indicate that it should be accessed on the
Server. If you do not specify, the default is that the access takes place on the Client. This is true either
if you specify the full path name in the OFCREATE call, or via the OMOUNT table.

Mixing 32-bit and 64-bit Component Files

If you are running both 32-bit and 64-bit versions of APLX, then it is possible to share component
files between the two architectures, but there are some special points you should be aware of. See the
introduction to the OF xxx Component File System for details.

OF CSIZE Read component size information

The OFCSIZE function returns information about the size of a component. The syntax is:

R « OFCSIZE TIENO COMPONENT {PASS}

TIENO is the tie number you used to tie or create the file (or the tie number returned by APLX if you
tied or created it using O instead of your own tie number). If you tied the file using a pass number, you
must provide the same pass number, as the PASS parameter.

The parameter COMPONENT is the component number. This must be an integer in the range Lowest
existing component number to Highest existing component number.

The explicit result is a two-element integer vector:
1. The size the variable would use if read into the workspace.
2.The size of the slot allocated to the component in the file, excluding the component header.

Both are expressed in bytes.

APLX Language Manual 309

OF DELETE Delete component from a file

The OFDELETE function deletes a component from the file, renumbering the remaining components
accordingly. The syntax is:

OFDELETE TIENO COMPONENT {PASS}

TIENO is the tie number you used to tie or create the file (or the tie number returned by APLX if you
tied or created it using O instead of your own tie number). If you tied the file using a pass number, you
must provide the same pass number, as the PASS parameter.

The parameter COMPONENT is the component number you want to delete. This must be an integer in the
range Lowest current component number to Highest existing component number. The component will
be deleted, and any later components will be re-numbered so that they remain in integral sequence. For
example, suppose the file currently has components numbered 1 to 5. If you delete component 3, then
the old components 4 and 5 will be re-numbered 3 and 4 respectively. If you now delete component 1,
the remaining components will be re-numbered 1 2 3 (corresponding to the original components 2 4
and 5).

See also the function OFDROP which deletes components at the start or end of the file, but does not re-
number the remaining components.

OFDROP Drop components from start or end of file

The OFDROP function deletes one or more components from the start or end of the file, without
renumbering the remaining components. The syntax is:

OFDROP TIENO N {PASS}

TIENO is the tie number you used to tie or create the file (or the tie number returned by APLX if you
tied or created it using O instead of your own tie number). If you tied the file using a pass number, you
must provide the same pass number, as the PASS parameter.

The parameter N is a positive or negative integer. If it is positive, the first N components of the file are
deleted. If it is negative, the last -N components are deleted. In both cases, existing components are not
re-numbered.

For example, suppose you have a file with components numbered from 1 to 12. After executing the
two statements:

OFDROP TIENO,2
OFDROP TIENO, 3

APLX Language Manual 310

the first component in the file will be component 3, and the last will be component 9. The original
components 1, 2, 10, 11, 12 will no longer exist. The original components 3 through 9 still exist, and
retain the same component numbers.

See also the function OFDELETE which deletes a single component anywhere in the file, re-numbering
the remaining components accordingly.

OF DUP Duplicate component file, reclaiming wasted space

The OFDUP function makes a copy of an existing tied component file. Component ownership and
timestamp information is retained in the copy of the file. Because the file is copied component-by-
component, any wasted space caused by fragmentation of the original file is not reflected in the copy.
(You can tell how much space is wasted in a file by using OFSIZE.)

The syntax is:

DESTNAME OFDUP TIENO {PASS}

DESTNAME is a character vector specifying the name of the destination file. The name is specified in the
same way as for OFCREATE. If the name contains a directory-separator character (: / or \), it is treated as
a full host path name, and you need to specify the file extension, by convention .aqgf. Otherwise it is
treated as basic file name only, optionally preceded by a volume number 0 to 9, separated by one or
more spaces from the name. In the latter case, the file is created in the directory 0 to 9 specified (the
actual path is set the preferences dialog or OMOUNT), and the file extension .aqgf is added
automatically.

Note that DESTNAME must not be the same as the original file name. If you want to achieve the effect of
reclaiming space whilst keeping the file name unchanged, you should first make a copy using a
temporary file name, then erase the original and rename the temporary file back to the original name.

OFERASE Erase component file

The OFERASE function allows you to erase a component file from the host file system. You must have
the correct host access permission to erase the file. If the file is currently tied it will be untied before
attempting to erase it.

The usual syntax of OFERASE is :

OFERASE FILENAME

FILENAME is a character vector specifying the name of the file to erase. The name is specified in the
same way as for OFCREATE. If the name contains a directory-separator character (: / or \), it is treated as

APLX Language Manual 311

a full host path name, and you need to specify the file extension, by convention .agf. Otherwise it is
treated as basic file name only, optionally preceded by a volume number 0 to 9, separated by one or
more spaces from the name. In the latter case, the file is created in the directory 0 to 9 specified (the
actual path is set the preferences dialog or OMOUNT), and the file extension .aqgf is added
automatically.

For compatibility with some other APL interpreters which require the file to be tied before it can be
erased, an alternate syntax for OFERASE is supported :

FILENAME OFERASE TIENO

OF ERROR Return operating-system error

When a component-file operation fails because the operating system reports an error, APLX usually
generates a FILE I/0 ERROR (error code 17 in OLER, or 6 9 in OET). The niladic system function
OFERROR returns a character vector with further information (if available) from the operating system
about what caused the error. For example:

OFLIB 'C:\JIM\REGIONS'
The system cannot find the path specified.
FILE I/0 ERROR
OFLIB 'C:\JIM\REGIONS'
A
OET
6 9
OFERROR
The system cannot find the path specified.

OFHOLD Hold/Release component files for exclusive access

The function OFHOLD is used for synchronizing access when multiple users and/or tasks are reading or
writing the same file or files. It takes a single argument, which is usually a vector of tie numbers. If
you need to supply pass numbers, the argument is a 2-row matrix of tie number/pass number pairs.
The tie numbers should correspond to files you have share-tied using OF STIE, or should be an empty
vector (meaning release all holds). The effect of OFHOLD is as follows:

Firstly any existing file-holds belonging to this APL task are released. Secondly the system attempts to
secure an exclusive lock on all the file numbers you have specified in the argument. Only one task can
hold a given file at any time. If any of the files you try to hold are already held by another task, the
operation waits until all files are available.

All file holds are automatically released when the APLX task reaches desk-calculator mode (this
means you cannot experiment with OFHOLD in desk-calculator mode), or when the APL task ends. For

APLX Language Manual 312

best performance in multi-user or multi-tasking applications, you should attempt to minimize the
amount of time that your application holds files for exclusive use.

Technical Notes:

OFHOLD is protected against deadlock. Supposing Task 1 tries to lock files A and B, and at the same
time Task 2 tries to lock files B and A. You could get a situation where each task successfully locks
the first file it tries, and then both tasks wait for ever for the second to be unlocked. APLX detects this
situation, and automatically corrects for it by backing off (i.e. releasing any locks), waiting a random
period, and then trying again.

OFHOLD uses operating-system locks. Where you have files accessed over a network, some network
systems do not honor locks correctly, particularly when mixing clients of different types (e.g.
Windows and Linux tasks). We recommend testing the effect of OFHOLD when implementing multi-
user or multi-tasking file-systems across networks.

OFHOLD may do nothing on some single-user versions of APLX, for example APLX Personal Edition.

OF I Convert formatted input

The monadic system function OFI is used in conjunction with OVI to validate a text string and convert
it to numeric form. In both cases, the argument is a character vector (or scalar), containing one or more
sub-strings of characters separated by blanks. For each non-blank sub-string, OVI returns a 1 if the
sub-string represents a valid number, and 0 if it does not. OF I returns the numeric representation of the
sub-string, or O if it is not a valid number. Numbers are validated and converted in the same way as
normal APL input. Scientific notation is supported, and negative numbers are prefixed by the high
minus (7) character. For example:

OFI '100.32 $4 2,,3 0 12.2 "3 +2 -2'
100.32 0 0 0 12.2 "3 0 0

OvI '100.32 $4 2,,3 0 12.2 "3 +2 -2'
10011100

OvI and OFI are usually used to validate and convert user input, or to convert text files to numeric
form. To allow users to enter negative numbers using the ordinary (non-APL) minus sign, you can use
Oss to translate minus to high-minus first. To allow comma-delimited input, use 0SS to translate
comma to space:

STRING«'3,-2,45.5,-0.08"

OVI STRING
0
0SS (STRING; ('-=';',"); ('7'5' "))
3 72 45.5 T0.08
OVI 0SS (STRING; ('-=';',"); ("7'5' "))
1111
OFI 0SS (STRING; ('-=';',"); ("7'5' "))

3 72 45.5 70.08

APLX Language Manual 313

OFLIB Return names of component files in directory

OFLIB returns a character matrix of the names of the component files in a particular directory. Names
are padded to the right with blanks as necessary. It takes a single argument, which can be either a
library number (usually 0 to 9, corresponding to the rows of the OMOUNT table), or a character string
representing an operating-system path.

For example, under Windows you might have:

OFLIB 1
RUN4
JIM
COPY
OFLIB 'C:\TEMP'
RUN3

Only files which end in the . aqf extension will appear in the list. The extension is stripped from the
names of the files returned.

See also OLIB which returns the names of all files in a directory.

Special considerations for Client-Server implementations of APLX

In Client-Server implementations of APLX, the front-end which implements the user-interface (the
"Client") runs on one machine, and the APLX interpreter itself (the "Server™) can run on a different
machine.

In such systems, you can specify whether the directory being searched is on the Client or the Server
machine. You do this by preceding the path name with either an Up Arrow 1 to indicate that the
directory is on the Client, or a Down Arrow ! to indicate that it is on the Server. (If you do not specify,
the default is that the access takes place on the Client.) This is true either if you specify the full path
name in the OFLIB call, or via the OMOUNT table.

OFMT Formatting Function

(See also o (Picture format) and = (Format by specification and Format by example) for other
formatting functions.)

OFMT is a FORTRAN-like formatter. The OFMT function takes the form:

A OFMT B

and converts the elements of an object B which may be a scalar, vector or matrix (2>ppB) to a
character representation of B based on the specifications of A, which consist of phrase types, qualifiers

APLX Language Manual 314

and decorators, as summarised below. If B is a vector it is treated as a 1 column matrix, if it is a scalar
it is treated as if it were a 1 by 1 matrix. B must be a simple array.

The left argument, A, is a character vector consisting of one or more phrases, each phrase separated
from the previous phrase by a comma. Spacing within the phrase does not matter unless it is within
two text delimiters.

The phrases are processed from left to right, with each phrase determining the format of a field in the
result. A phrase may be enclosed by a single pair of parentheses, but nested parentheses or parentheses
which enclose more than one phrase, are not allowed. If 'xxxx' represents a phrase, then 'Xxxx,(Xxxx)'
is valid but '(xxxx,xxxx)" is not. Each phrase, possibly preceded by a repetition factor, consists of 2
basic parts in the following order:

i qualifiers and decorators
ii phrase identifier with associated parameters

The repetition factor is optional and if omitted defaults to 1. If specified, the repetition factor must be
first and may not be enclosed in parentheses. It is used to indicate how often a phrase is to be repeated
before the system uses the next one. 3xxxx,yyy means 'repeat phrase 'xxxx' 3 times, then use phrase
'yyy'. A repetition of 0 is not allowed.

oFMT will also repeat phrases, wrapping around to the first phrase again if necessary, until all columns
in the right argument have been processed.

Delimiters

Delimiters are used to insert text, or a pattern into the result of OFMT. Delimiters may be used by
themselves, in conjunction with picture formatting (G) or with decorators (R,M,N,P,Q,S). The
following pairs of delimiters are used to delimit literal strings, picture patterns and decorators:

Left delimiter Right delimiter

nAG@3IO3
U v.E3O

For readability, you are recommended to reserve the '0 0" delimiters for decorators and the '< >
delimiters for strings and pictures.

'0 THIS IS A <LITERAL> 0O,I5' OFMT 10
THIS IS A <LITERAL> 10

Phrase types
A - character format
E - exponential format
F - fixed point format
G - picture format
I - integer format
T - place the result of subsequent phrases following rightmost column

APLX Language Manual 315

Tn - place the result of subsequent phrases starting in absolute column
n

Xn - offset the result of subsequent phrases by n columns from current
location

A - character format

Syntax: An n is the total field width in the result

Place a character from the current column of the right argument in a right- justified field of width n.
The width specification is usually 1 and it almost always appears with a replication factor equal to the
column dimension of the character matrix being formatted. If the right argument is not character, then
an overflow condition exists (the = character).

Quialifiers: None
Decorators: R
Substitutable Characters: = in overflow

"4A1,A3'0OFMT 2 5p'ABCDEFGHIJ

ABCD E
FGHI J

"A4'OFMT 4 6 (A vector 1is treated as a 1 column
* kK ok matrix, and overflow occurs with a
* ok Kk numeric argument.)

E - exponential format

Syntax: En.m n is the total field width in the result, m is the number of significant digits to be
displayed.

Format a number from the current column in the right argument using the exponential form. If the
field width is 0, then the field is empty. Following the last digit of the mantissa, 5 positions are
reserved for the letter E and the exponent. The exponent is left justified and consists of a minus sign
(if required) and up to 3 digits which represent the magnitude of the exponent. If the m value is 1 then
the . is omitted, and if m is O then the mantissa is omitted.

Qualifiers: B,C,K,L,Z Decorators: M,N,P,Q,R,S Substitutable Characters: E in the exponent, . leading
zeros, the ™ in the exponent and the = for overflow.

'"E11.4'0OFMT 100 7.6978E23 .004
1.000E2
7.698E23
“4.000E"3

'E8.1,E8.0'OFMT 1 2pl1l6 .02
2E1 E™2

F - fixed point format

Syntax: FN.m n is the total field width in the result, m is the number of digits to be displayed after the
decimal point.

APLX Language Manual 316

Format a number from the current column of the right argument using the fixed point form. If the field
width is 0, then the field is empty. If m is 0, then the decimal point is not suppressed.

Quialifiers: B,C,K,L,Z Decorators: M,N,P,Q,R,S Substitutable Characters: The . leading 0s, commas
and the « for overflow.

"CF10.2'OFMT 98.672 ~12796.497
98.67
~12,796.50
'S<,..,>CF10.2'0OFMT 98.672 "12796.497
98,67
~12.796,50
"F4.0'OFMT 6
6.

G - Picture format

Syntax: Gtext text is a COBOL-like 'picture’ format statement within a pair of delimiters.

The text consists of Zs, 9s, and any other characters. A Z will become a digit only if that digit is
significant, otherwise it is replaced in the result by a blank. A 9 is replaced with a digit only if that
digit is significant, otherwise it appears as a 0. A text string with Zs and 9s on both sides which has a
Z on either side is displayed only if the Z becomes a significant digit in the result. Periods are treated
like any other character. Numbers are rounded to the nearest integer before formatting. Fractional
digits can be formatted by using the K qualifier and putting the appropriate number of Z's and 9's after
the decimal point in the picture.

Quialifiers: K,B (Z,C,L will cause a DOMAIN ERROR) Decorators: M,N,P,Q,R,S Substitutable
characters: Leading 0's, the overflow =, and the Z's and 9's used in the picture

'G<DATE IS 99/99/9999>'0FMT 08031985
DATE IS 08/03/1985
"G<TEL: (999) 999-9999>' OFMT 0719228866
TEL: (071) 922-8866
'B K2 G< ZZZ POUNDS AND ZZ PENCE>' OFMT 8.23 12.86 0 2.52
8 POUNDS AND 23 PENCE
12 POUNDS AND 86 PENCE

2 POUNDS AND 52 PENCE

| - integer format

Syntax: In n is the total field width in the result.

Format a number from the current column in the right argument as an integer after rounding. A field
width of 0 will cause the field to be empty.

Quialifiers: B,C,K,L,Z
Decorators: M,N,P,Q,R,S
Substitutable characters: Leading 0s, commas

APLX Language Manual 317

"I4' OFMT 14

A~ WwN -

'16,I3,CI6' OFMT 1 3pl2 7896 48723.4
12++%48,723
"I3'0OFMT 2.6792
3

T - move to absolute position

Syntax: Tn n is the absolute position, reckoned from the left margin. or T

Move to print position n. If T alone is used the cursor or print-element is moved to the ‘first free'
position to the right. The latter form is used only in very complicated formatting exercises involving
backspacing.

NB: This operation does not require a column of data in the right argument.

Quialifiers: None
Decorators: None
Substitutable characters: None

'I13,T3,I2' OFMT 1 2p678 92
6792

'I110,7T1,I3,T,I2'0OFMT 1 3p789 672 12
672 78912

X - move to relative position

Syntax: Xn n is the number of positions the cursor or print-head is to be moved relative to the current
position. n may be positive (right move) or negative (left move).

If m is current print position: move to print position m+n.
NB: This operation does not require a column of data in the left margin.

Quialifiers: None
Decorators: None
Substitutable characters: None

'"I3,X2,I2' OFMT 1 2 p 789 67
789 67
'I3,X"1,I2' OFMT 1 2 p789 67
7867

APLX Language Manual 318

Qualifiers and Decorators

Quialifiers and decorators are used with the format codes to provide further tailoring to specific needs.
All qualifiers and decorators come before the format codes and after the replication factor (if
supplied).

Qualifiers:

B - blank all zero results. Allow background text to show through.

C - put commas after each third digit to the left of the decimal
point

Kn - multiply the right argument by 10 to the power n before
formatting.

L - left justify the result field using blanks to fill in positions

to the right of the right-most formatted digit. This does not
allow background text to show through unless the B qualifier
is used and the value being formatted 1is 0.

yA - put 1in 1leading zeros. If the C qualifier 1is used, however,
commas will not be inserted between any of +the 1leading
zeros.

Decorators:

MOTEXTO - put TEXT immediately in front of negative numbers. If the Z

qualifier is being used, the text will begin at the left of the
field and overlay as many leading zeros as there are characters

in TEXT.
NOTEXTO - put TEXT immediately after negative numbers.
POTEXTO - put TEXT before non-negative numbers (otherwise as M)
QOTEXTO - put TEXT after non-negative numbers (otherwise as N)
ROTEXTO - put 1in background TEXT to fill any unused positions 1in the
field (eg. In cheque protection).
SOTEXTO - substitute standard characters. TEXT must consist of pairs of
characters, where the second of each pair is to replace all

occurrences of the first.

A
B K2 G< ZZ9 DOLLARS AND 99 CENTS>
A OFMT 8.23 12.86 0 2.52
8 DOLLARS AND 23 CENTS
12 DOLLARS AND 86 CENTS

2 DOLLARS AND 52 CENTS

B
<TOTAL >,C MO(O NO)O QO O I8,X2,CF 12.2,X2,ZE12.3
C
100 1321321.2 T12332.7
~19232.563 "232 212.219
B OFMT C
TOTAL 100 1,321,321.20 ~001.23E4
TOTAL (19,233) 7232.00 0002.12E2

Literals

In the last example, the literal string TOTAL ' was placed between < > delimiters to insert characters
into the result. Note that no corresponding column was required in the right argument. When OFMT

APLX Language Manual 319

scans its left argument it moves from left to right. If a left delimiter is found, all text up to the first
corresponding right delimiter, including commas and other delimiters, is treated as a literal:

'"OTHIS IS AN <INTEGER>:0, IS5' OFMT 47
THIS IS AN <INTEGER>: 47

OFNAMES Return names of currently-tied files

The niladic function OFNAMES returns a character matrix of the names of the component files currently
tied by this APL task, in the same order as the tie numbers returned by OFNUMS. Names are padded to
the right with blanks as necessary. The names are returned in the same form in which they were tied.

For example, under Linux you might have:

'RUN3" OFTIE 2
'l RUN4" OFTIE O

'/home/ jim/RUN5.aqf' OFTIE 8
OFNUMS

238
OFNAMES

RUN3

1 RUN4

/home/ jim/RUN5 . aqf

OFNUMS Return tie numbers in use

The niladic function OFNUMS returns an integer vector of the component-file tie numbers currently in
use by this APL task.

See OFNAMES for more information.

APLX Language Manual 320

OFRDAC Read component-file access matrix

The OFRDAC function returns the access matrix for a file. The syntax is:

R « OFRDAC TIENO {PASS}

TIENO is the tie number you used to tie or create the file (or the tie number returned by APLX if you
tied or created it using O instead of your own tie number). If you tied the file using a pass number, you
must provide the same pass number, as the PASS parameter.

The explicit result is the file's current N by 3 access matrix (which may be empty). See the description

of OFSTAC for details.

OFRDCI Read component information

The OFRDCI function returns information about a component. The syntax is:

R « OFRDCI TIENO COMPONENT {PASS}

TIENO is the tie number you used to tie or create the file (or the tie number returned by APLX if you
tied or created it using O instead of your own tie number). If you tied the file using a pass number, you
must provide the same pass number, as the PASS parameter.

The parameter COMPONENT is the component number. This must be an integer in the range Lowest
existing component number to Highest existing component number.

The explicit result is a three-element integer vector:
1. The free workspace required to read the component
2. The account number (110AI) of the user who last wrote the component.

3. The time at which the component was last written, expressed in seconds since the start of the
millennium (00:00:00, 1 Jan 2000).

APLX Language Manual 321

OFRDFI Read file information

The OFRDFI function returns information about the creation and last update of a file. The syntax is:

R « OFRDFI TIENO {PASS}

TIENO is the tie number you used to tie or create the file (or the tie number returned by APLX if you
tied or created it using O instead of your own tie number). If you tied the file using a pass number, you
must provide the same pass number, as the PASS parameter.

The explicit result is a 4 by 2 array of information about the file. The first column represents user
numbers, and the second timestamps, expressed as seconds since the start of the millennium (00:00:00,
1 Jan 2000). The rows are:

1. User who created file, Timestamp file was created
2. Reserved (returns 71 71)
3. Reserved (returns 1 "1)

4. User who last updated file, Timestamp file was last updated.

OFREAD Read component from a file

The OFREAD function reads a component from the file. The syntax is:

R « OFREAD TIENO COMPONENT {PASS}

TIENO is the tie number you used to tie or create the file (or the tie number returned by APLX if you
tied or created it using O instead of your own tie number). If you tied the file using a pass number, you
must provide the same pass number, as the PASS parameter.

The parameter COMPONENT is the component number you want to read. This must be an integer in the
range Lowest existing component number to Highest existing component number.

The explicit result is the data (array or overlay) last written to that component by any user.

If the component number does not exist, APLX will generate an error COMPONENT NOT IN FILE (error
code 20 in OLER, or 6 3 in OET).

APLX Language Manual 322

OFRENAME Rename component file

The OFRENAME function allows you to rename a component file. You must have the correct host access
permission to rename the file. If the file is currently tied, the name change will be reflected in the
name list returned by OFNAMES.

Two alternative syntax forms are supported for OFRENAME:

NEWNAME OFRENAME OLDNAME

or

NEWNAME OFRENAME TIENO

OLDNAME is a character vector specifying the file to rename. The name is specified in the same way as
for OFCREATE. If the name contains a directory-separator character (: / or \), it is treated as a full host
path name (including the file extension, by convention .aqgf). Otherwise it is treated as basic file name
only, optionally preceded by a volume number 0 to 9, separated by one or more spaces from the name.
In the latter case, the file is created in the directory 0 to 9 specified (the actual path is set the
preferences dialog or OMOUNT), and the file extension . aqgf is added automatically.

NEWNAME is a character vector specifying the new name of the file, specified in the same way.

The second syntax form is an alternative way to rename a file which has already been tied. TIENO is
the tie number on which the file is tied.

Note that the host operating system may not allow you to rename a file across different file systems or
physical disks.

OFREPLACE Replace existing component

The OFREPLACE function writes new data to an existing component in the file, or appends to the file.
The syntax is:

DATA OFREPLACE TIENO COMPONENT {PASS}

DATA is any APL array or an overlay created using 00V. TIENO is the tie number you used to tie or
create the file (or the tie number returned by APLX if you tied or created it using O instead of your
own tie number). If you tied the file using a pass number, you must provide the same pass number, as
the PASS.

APLX Language Manual 323

The parameter COMPONENT is the component number at which you want to write the new data. This
must be an integer in the range Lowest current component number to Highest existing component
number plus 1.

The effect of OFREPLACE is similar to that of OFWRITE with an integral non-zero component number.

OFRESIZE Set maximum file size

The OFRESIZE function allows you to specify a maximum size for a component file. The syntax is:

NEWSIZE OFRESIZE TIENO {PASS}

TIENOIs the tie number you used to tie or create the file (or the tie number returned by APLX if you
tied or created it using O instead of your own tie number). If you tied the file using a pass number, you
must provide the same pass number, as the PASS parameter.

The left argument NEWSIZE is the maximum size (in bytes) to which the file will be allowed to grow. If
NEWSIZE is 0, the file size is not limited by APLX, although the maximum size is still subject to any
operating-system imposed limit and available disk space.

If you try to write to a file in a way which would cause the file size to exceed the limit, APLX will
generate the error FILE ALLOCATION EXCEEDED.

The default is 0, meaning there is no limit.

OF SIZE Read file-size and component-range information

The OFSIZE function returns information about the size of a file and the range of its components. The
syntax is:

R « OFSIZE TIENO {PASS}

TIENO is the tie number you used to tie or create the file (or the tie number returned by APLX if you
tied or created it using O instead of your own tie number). If you tied the file using a pass number, you
must provide the same pass number, as the PASS parameter.

The explicit result is a five-element integer vector:
1. The number of the first component in the file

2. The next available component number (i.e. current highest + 1)

APLX Language Manual 324

3. The file size currently used (including unused space), in bytes
4. The file size limit (set using OFRESIZE) in bytes; 0 means unlimited
5. The approximate number of bytes of unused space that would be reclaimed by OFDUP

As you write components to a file, and delete existing components, APLX attempts to make the freed-
up space available for future use. However, in some cases the file may become fragmented, and the
amount of unused space may increase over time. The fifth element of the result of OFSIZE is useful in
deciding whether to make a clean copy of the file (using OFDUP), thus reclaiming the space.

OFSTAC Set component-file access matrix

In multi-user versions of APLX, each user can be allocated a unique user number (shown by 110AI).
Individual APLX component files are tagged with a User Number, and have an associated File Access
Matrix which indicates which users can access the file, what operations they may perform, and
whether they need to specify a pass number to tie the file. Users will be allocated their user number by
the logon procedure adopted by their system. Each user can thus ‘own' a number of files, and can grant
or deny access to these files.

You can change the Access Matrix for a file using the syntax:

MATRIX OFSTAC TIENO {PASS}

The Access Matrix is three columns wide. The first column is a list of user numbers, with 0 being
taken to mean ALL users. The second column is a list of integers which indicate the access privileges
for the indicated user. The third column is the list of pass numbers which must be used by the given
user to access the file with those rights (O means no pass number is required). The access matrix may
have a maximum of 19 rows. When a file is created, the default access matrix allows only the owner to
access it, and grants the owner all rights, with no pass number.

TIENO is the tie number you used to tie or create the file (or the tie number returned by APLX if you
tied or created it using O instead of your own tie number). If you tied the file using a pass number, you
must provide the same pass number, as the PASS parameter.

When any operation on a file is attempted, APLX looks through the access matrix to find the first
match for the user number (in the first column) and the pass number supplied when the file was tied
(in the third column). A user number of 0 in the access matrix matches any user ID. If a match is
found, the user is granted the permissions specified by the second element of the row. If no match is
found, and the user is not the owner of the file, no permissions are granted. If no match is found, and
the user is the owner of the file, all permissions are granted.

The access privileges can be specified in two ways. A positive privilege states what the user can do,
and a negative privilege states what the user cannot do.

APLX Language Manual 325

The privilege code is a number generated by adding various powers of 2 (1, 2, 4, 8, 16,....), each power
of 2 corresponding to a particular privilege. Positive privilege codes are merely the sum of the
individual privileges granted, whilst negative privilege codes are generated by adding ~1 and the result
of negating the sum of all the privileges denied.

Power Value Operation
of 2
0 1 OFREAD
1 2 OFTIE (exclusive)
2 4 OFERASE
3 8 OF APPEND
4 16 OFREPLACE OFWRITE
5 32 OFDROP OFDELETE
7 128 OFRENAME
9 512 OFRDCI OFCSIZE
10 1024 OFRESIZE
11 2048 OFHOLD
12 4096 OFRDAC
13 8192 OFSTAC
14 16384 OFDUP

Permission to use OFSTIE (shared tie) is implicitly granted to any user who has any permission to use
the file. OFCREATE OFLIB OFNAMES OFNUMS and OFUNTIE do not need explicit APLX permissions
(although the operating-system may restrict your rights). OFSIZE does not require explicit permission,
but you must supply a pass number if the file was tied with one.

Examples of privilege codes are:

Privilege Meaning
0 No access
1 OFSTIE OFREAD
3 OFSTIE OFTIE OFREAD
17 OFSTIE OFREAD OFREPLACE OFWRITE
~33 Full access except for OFDROP OFDELETE
1 Full access

OF STIE Open (tie) an existing file for shared use

OFSTIE opens (ties) an existing file for shared use.

See the description of OFTIE for full details.

APLX Language Manual 326

OF TIE Open (tie) an existing file for exclusive use

The OFTIE and OF STIE functions open (‘tie’) an existing component file. The syntax is:

FILENAME OFTIE TIENO {PASS}

or:

FILENAME OFSTIE TIENO {PASS}

If you tie the file using OFTIE, it is tied for exclusive use and no other users or tasks will be able to tie
it until you untie it. If you tie it using OF STIE, other tasks and/or users can also tie it using OFSTIE.

FILENAME is a character vector specifying the name of the file to tie, following the same rules as
OFCREATE. The name may be specified in either of two ways. If the name contains a directory-
separator character (: / or \), it is treated as a full host path name, and you need to specify the file
extension, by convention .aqgf. Otherwise it is treated as basic file name only, optionally preceded by
a volume number 0 to 9, separated by one or more spaces from the name. In the latter case, the file is
searched for in the directory 0 to 9 specified (the actual path is set the preferences dialog or OMOUNT),
and the file extension .aqf is added automatically.

TIENO is an arbitrary non-zero integer to be used in subsequent read/write operations to identify the
file (the tie is exclusive). The tie number must not currently be in use to tie another file. Alternatively,
you can provide a tie number of 0, in which case APLX automatically allocates the next available
unused tie number, and returns it as the explicit result of the function.

The optional PASS parameter is a pass number. If you use this parameter, it must match one of the
valid pass numbers for your user ID set in the access matrix (see the discussion of OFSTAC below), and
you must use the same pass number in all subsequent operations until you untie the file.

For example:

Exclusive-tie the file run3. agr in library 0, under tie number 2:

'RUN3" OFTIE 2

Share-tie the file run4. agf in library 1, allowing APLX to allocate the tie number:

'"RUN3" OFSTIE 0
3

Share-tie the file c: \temp\RUN3. agf, allowing APLX to allocate the tie number and using pass
number 33421:

"c:\temp\RUN3.aqf' OFSTIE 0 33421

APLX Language Manual 327

If you try to tie a file which is already tied for exclusive use by another user or task, APLX will retry
for a few seconds in the hope that the tie will be released. If this does not occur, the operation will fail
with error code 24 in OLER, or OET:

'"RUN3" OFTIE 2
FILE OR COMPONENT HELD
'RUN3" OFTIE 2
A
OLER
24 0
OeET
6 5

Files are untied automatically when an APLX task ends. They are NOT untied when you) CLEAR the
workspace or)LOAD another workspace.

Special considerations for Client-Server implementations of APLX

See OFCREATE for details on how component files can be located on either the Client or Server
machine.

Mixing 32-bit and 64-bit Component Files
If you are running both 32-bit and 64-bit versions of APLX, then it is possible to share component

files between the two architectures, but there are some special points you should be aware of. See the
introduction to the OF xxx Component File System for details.

OFUNTIE Untie component file(s)

The function OFUNTIE unties zero, one or more currently-tied files. The syntax is:

OFUNTIE TIENOS

TIENOS is an integer vector of any length, containing the tie numbers of the files to be untied. If the tie
number is not in use, no error is generated. You never need to supply a pass number to untie a file.

To untie all the files you currently have tied, use the expression:

OFUNTIE OFNUMS

Files are automatically untied when the APL task ends. They are not automatically untied on)CLEAR
or)LOAD.

APLX Language Manual 328

OFWRITE Append, replace or insert component

The OFWRITE function allows you to write a component anywhere in the file, either inserting, replacing
or appending. The syntax is:

DATA OFWRITE TIENO {COMPONENT} {PASS}

DATA is any APL array, or an overlay created using 00V. TIENO is the tie number you used to tie or
create the file (or the tie number returned by APLX if you tied or created it using O instead of your
own tie number). If you tied the file using a pass number, you must provide the same pass number, as
the PASS parameter.

COMPONENT is the component number at which the data should be written. This can be one of the
following:

o If COMPONENT is zero, or is omitted, or is equal to the highest current component number plus 1,
the data is written to the next available component number in the file (i.e. the highest current
component number plus 1). If the file currently contains no components, the data will be
written as component 1. This behavior is the same as that of OF APPEND.

For example, if the file currently contains components 1 to 6, the following are all equivalent;
the data will be written as a new component 7:

DATA OFWRITE TIENO

DATA OFWRITE TIENO,O

DATA OFWRITE TIENO,7

o If COMPONENT is an integer which corresponds to an existing component, the existing

component is replaced by the new data supplied. For example, if the file currently contains
components 1 to 6, and you supply a COMPONENT parameter of 3, the third component will be
replaced by the new data you write. The number of components is unchanged. If the new array
is bigger than the previous data, the necessary space will be allocated automatically. If the new
array is smaller, the released space will be kept in a pool of available space and re-used if
possible in a future operation. This behavior is the same as that of OFREPLACE.

o If COMPONENT is a non-integral number between the first existing component minus 1, and the
last component number plus 1, a new component is inserted and the data is written to the new
component. The new component will be placed at the component number [COMPONENT. Any
later components will be renumbered to allow for the inserted component.

For example, if the file currently contains components 1 to 6, the following statement would
insert a new component between the existing fifth and sixth components, with the old sixth
component becoming the new component 7:

DATA OFWRITE TIENO,5.5

APLX Language Manual 329

If the file currently contains components 3 to 8, then the following statement would insert a
new component (as the new component 3) before the current first component. The existing
components would be renumbered 4 to 9:

DATA OFWRITE TIENO,2.5

If the number is between the current highest component number and the current highest
component number plus 1, the operation is equivalent to appending a new component.

e Any other component number gives rise to an error COMPONENT NOT IN FILE (error code 20 in
OLER, or 6 3 in OET)

The following complete sequence illustrates the various possibilities:

Create a new file, and append four components to it in different ways:

"EXAMPLE' OFCREATE

'First component' OFWRITE 2 1
'Second component' OFWRITE 2
'Third component' OFWRITE 2 0
'"Fourth component' OFWRITE 2 3.5

Read back the four components:

ODISPLAY OFREAD 2,714

>

[First component [Second component [Third component (Fourth component

€

Drop the first component, components are now number 2 to 4:

OFDROP 2 1
OFSIZE 2
2 5 3584 0 256
OFREAD 2 1
COMPONENT NOT IN FILE
OFREAD 2 1

A

Replace component 3 with a new value:

'Third rewritten' OFWRITE 2 3
OFREAD 2 3
Third rewritten

Insert a new component before the existing first component, renumbering existing components to
allow for it:

'Inserted first' OFWRITE 2 1.5
OFREAD 2 2
Inserted first

APLX Language Manual 330

Insert a new component between the existing third and fourth components (it will become the new
component 4):

'"Interloper' OFWRITE 2 3.5

See what we've ended up with:

OFSIZE 2
2 7 4096 0 0

(First component number is 2, next available is 7)

OFREAD 2 2
Inserted first
OFREAD 2 3
Second component
OFREAD 2 4
Interloper
OFREAD 2 5
Third rewritten
OFREAD 2 6
Fourth component

We're done. Untie the file:

OFUNTIE 2

OF X Fix function/operator/class

This system function is the inverse of OCR.

It accepts as a right argument the canonical representation of a function, operator, or class (i.e. the text
representation of the item). The right argument may be a character matrix, a simple character vector
with embedded carriage returns, or a nested character vector with each line a separate item in the
vector.

It returns a result which is either a character vector containing the name of the function, operator or
class which has been fixed, or an integer showing the first line which was invalid. An item cannot be
fixed if the name of that item is already in use for another object type.

For functions and operators, a left argument of 0 (or no left argument) causes the function to be left
unlocked, while 1 causes it to be locked. Normal applications can include functions which are
modified under program control, and it is in such applications that OCR and OF X are of use.

For details of the format for the canonical representation of a class, see OCR. Note that the order in
which the members appear in the text form does not matter.

APLX Language Manual 331

OHC Hard Copy

The monadic system function OHC is used to write hard copy to an output device, usually a printer. The
exact implementation of OHC depends on the system on which APLX is implemented.

Available Printers

For Server editions of APLX, up to 9 logical printers may be available. These are defined using the
Configure Printer option of the File.. Print.. menu, or may be pre-defined in a resource file. Each
logical printer defines the spool queue and type of printer to be used.

Once printers have been set up, they can be used through the Print menu, or through OHC. In OHC
printing, all output to the screen is also sent to the printer, unless screen printing has been switched off
using OHC 1000.

In APLX for Windows and APLX for MacOS, the operation of OHC is similar except that printing
always takes place to the currently-selected printer, i.e. the printer last selected using the Print Setup
dialog. (You can display this dialog under APL program control using the 'Printer’ object class in OWI,
which also provides alternative and more flexible printing facilities). Thus, only printer 1 can be
selected using OHC, even though there may be more printers potentially available via the dialog.

Syntax of OHC
The syntax of OHC is:

RESULT « OHC CODE

where CODE defines the operation you want to carry out, and RESULT is usually an error code (see
below). 0 always means successful operation.

oHc Function Codes

1l to 9 Switch on printing to printer number 1 to 9 dinclusive
(only printer 1 valid under Mac0S and Windows)

1 to 9 Keep the specified spool file open, but do not write to it.
This option 1is useful if you want to ask for dinput, or display
progress messages which you do not want to print.

0 Switch off printing, submit the spool file to the
printer.
1000 Suppress screen output, but continue to write to the spool file.

This option 1is useful +if you want APL output to be printed, but not
appear on the screen. This option is valid only if printing is
on. Screen output 1is reset automatically by OHC 0.

APLX Language Manual 332

~1000 End suppression of screen output.

99 Return the current value of OHC. 1In this case, the
result is not an error code, but a printer number
1 to9 (or 71 to 79), or 0 if printing is not on.

The following codes are valid for Server editions of APLX only:
100,200... Open spool file (append if it exists), but don't

automatically submit on Quad-HC 0. 100 is Printer 1,
200 1is Printer 2, etc.

101,201... Submit spool file opened with 100, 200 etc, then delete.
102,202... Submit but don't delete.
103,203... Delete spool file opened with 100, 200...

oHc Return Codes

Operation successful

Invalid command or printer not defined
Printer not accessible

I/0 error or disc full

OHC 1000 requested, but printing not on

A WNPFE O

OGETCLASS Get reference to named class

The system function OGETCLASS returns a reference to a named Internal or External class. It is not
implemented for System classes.

The left argument is a character vector which specifies the environment in which the class exists, in
the same format as for ONEW. It can be omitted, in which case it is assumed that the class is an internal
(user-defined) class in the workspace. The right argument is a character vector containing the name of
the class. If the class is found, a scalar reference to the class is returned:

OGETCLASS 'Point'
{Point}
(OGETCLASS 'Point').ONL 2
X
Y
Z

In this Java example, we fetch a reference to the class Timezone, which can then be used to call a
static method.

tzclass«'java' OGETCLASS 'java.util.TimeZone'
tzclass.OCLASSNAME
Jjava:java.util.TimeZone

APLX Language Manual 333
tzetzclass.getTimeZone 'America/Los_Angeles'

Note: If you are creating many thousands of instances of an external class, it may be much more
efficient to use OGETCLASS to fetch a reference to the class once, and pass that reference to ONEW,
rather than passing the class name to ONEW.

If you)SAVE a workspace containing references to external classes, the references will be set to
ONULL when the workspace is reloaded.

OHOST Command to Host

The OHOST system function allows you to issue a command directly to the host operating-system
environment and display or capture the result, without leaving the APL workspace. This system
function is highly implementation-specific and some operating system commands may not be allowed.

OHOST takes as its right argument the command to be executed. It returns the output (if any) from the
command as a character vector, possibly with embedded newline characters. You can also optionally
specify a left argument which is the maximum time (in seconds) to wait before returning control to
APL. This is useful to prevent your APL program being blocked if, for example, the program called
encounters an error which causes it to wait for input from the command-line. If the optional left
argument is omitted, a default timeout of 20 seconds is used.

If the right argument to OHOST is an empty vector, it returns a character vector with the operating
system name: 'LINUX' 'AIX' 'WINDOWS' OF 'MACOS'

For example, under Linux:

OHOST '
LINUX
SERVER<OHOST 'hostname'
SERVER
penguin
10 OHOST 'telnet rs6000'

Note that, under Windows, many common commands are 'built-in' to the command-line shell, rather
than being separate executable programs. Under Windows NT, 2000, XP and Vista, you can run these
using the ‘cvp' program with the '/c' option. (Under Windows 95, 98 and ME, use ‘comManDp.com /c').
For example:

OHOST 'CMD /C dir'
Volume 1in drive C has no label.
Volume Serial Number is 07D0-0B11

Directory of C:\aplx\ws

APLX Language Manual 334

20/06/2001 19:13 [DIR]
20/06/2001 19:13 [DIR] .
05/09/2001 16:43 17,792 JIM.aws
05/09/2001 17:06 574 EXPLORE.atf
30/07/2001 19:49 17,828 QNA.aws

3 File(s) 39,313 bytes

2 Dir(s) 14,797,176,832 bytes free

Under MacOS 8 and 9, because there is no command-line interface at the operating system, OHOST is
not implemented except to report the OS name. Under MacOS X, OHOST runs the command under the
BSD Unix-style shell.

Special considerations for Client-Server implementations of APLX

In Client-Server implementations of APLX, the front-end which implements the user-interface (the
"Client") runs on one machine, and the APLX interpreter itself (the "Server™) can run on a different
machine. The two parts of the application communicate via a TCP/IP network. Typically, the Client
will be the APLX front-end built as a 32-bit Windows application running on a desktop PC, and the
Server will be a 64-bit APLX64 interpreter running on a 64-bit Linux or Windows server.

In such systems, OHOST allows you to specify whether the command should be executed on the Client
or the Server machine. You do this by preceding the OHOST right argument with either an Up Arrow 1
to indicate that the command should be executed on the Client, or a Down Arrow ! to indicate that it
should run on the Server. If you do not specify, the default is that the call should take place on the
Client.

In this example, the Client is running under Windows, and the Server under Linux x86_64:

OHOST 'tcemd /c vol c:' A Execute on Windows Client machine
Volume 1in drive C has no label.
Volume Serial Number is 07D0-0B11

OHOST 'luname -nsp' A Execute on Linux Server machine
Linux Server23 x86_64

OI Idle Character

The niladic system function OI returns the Idle or time-fill character

OAvV.0OI

APLX Language Manual 335

OIC Insertinto Class

The dyadic system function 0IC allows you to insert existing functions and/or variables into a class. It
is particularly useful for converting older APL systems into object-oriented form.

Example:

'Point' OIC OBOX 'X Y MOVE'

The left argument is a character vector containing the name of a new or existing class. If you specify a
new class, it will be created. If you want the new class to inherit from an existing class, you can follow
the class name by a colon and the name of the parent class.

The right argument is a matrix of the names of the global functions, operators and variables which you
want to insert into the class, padded to the right with blanks if necessary. If there is only one name, the
right argument can be a character vector. If the right argument is an empty vector, the class will be
created but no members will be inserted into it. The named items will be transferred into the class as
follows:

« If the name corresponds to an existing function or operator, it will become a public method of
the class.

e If the name is the name of a function and is the same as the name of the class being created
(i.e. the left argument), it will become the Constructor for the class.

« If the name corresponds to an existing variable, it will become a public, read-write instance
property of the class, with the default value of the property being the current value of the
variable. However, the variable must not contain a class or object reference.

o If the name is currently undefined, it will become an uninitialized, public, read-write instance
property of the class.

Of course, you can alter the attributes of the members of the class later on by using the class editor, for
example if you want to make one of the properties read-only.

Note that the existing global definition of the inserted functions, operators and variables will be
deleted, i.e. the operation moves rather than copies the items into the class. If the name corresponds to
an existing member of the class, the existing member will be overwritten.

The explicit result of OIC is a boolean vector with one element per name, with a value of 1 if the
corresponding member was successfully inserted into the class, and 0 if it was not. (It will fail if the
name is invalid, or is the name of something other than an operator, function or variable, or if a
variable contains class or object references).

In this example, we start with a workspace with a few variables and functions:

APLX Language Manual 336

Subjecte'’
Sendere<'Charles Barker'
Texte''
vMessage B
[1] TexteB
[2] v
vReLength
[1] RepText
[2] v
JFNS
Length Message
)VARS

Sender Subject Text

Now we insert all the existing functions and variables into a new class called Message. Note that the
existing function Message becomes the Constructor of the new class:

'Message' OIC ONL 2 3
11111

)FNS

)VARS

)CLASSES
Message

OCR 'Message'
Message {
Texte''
Subjecte
Sendere«'Charles Barker'

vMessage B
TexteB
v

vReLength
RepText
v
}

Message.ONL 2 A Public properties
Sender
Subject
Text

Message.ONL 3 A Public methods
Length

Message.ONL 10 A Constructor
Message

Finally, we create another class emai1 which inherits from vMessage, and adds an extra uninitialized
property Recipient:

'EMail:Message' OIC 'Recipient'’
1

OCLASS EMail
{EMail} {Message}

)CLASSES
EMail Message

APLX Language Manual 337

OID ID Number

The niladic system function OID returns a single integer which is the System ID Number.

To provide security for applications and packages written to run under APLX, OID, can be used to
query the system identification number. Each APLX interpreter has a unique identity code. This
feature (used, of course, within a locked function) could help prevent unauthorised use of software by
detecting the use of a function on an unauthorised system and taking appropriate action.

OIMPORT Import data from file in specified format

The monadic system function OIMPORT imports data from an external file into an APL array. It
supports a number of data formats which are commonly used for data exchange by spreadsheets and
other (non-APL) applications. (See also DEXPORT which allows you to export data to a file of specified
format, which can then be read into another application.)

The right argument determines the name of the file to be read, and the format of the file. If the right
argument is a character vector, it is interpreted as the name of the file you want to import (including
full path if required) and the format of the file is inferred from the file extension. If the right argument
is a two element nested vector, the first element is the filename (or full pathname), and the second is a
text string specifying the file type. File types are case-insensitive.

The explicit result is the converted data.

For example, the two following statements are equivalent, and will import the contents of the file
Budget2007.csv in ‘comma-separated variables' ('CSV") format, into a variable called supceT in the
workspace:

BUDGET « OIMPORT 'Budget2007.csv'
BUDGET « OIMPORT 'Budget2007.csv' 'csv'

The following file formats are supported by OIMPORT, with the behavior shown:

File

. Description Behavior
type/extension

The contents of the file are read as text,
Text file, with data represented in 8-bit ~ and converted to APL text form. The result
extended ASCII form. is a character vector, with APL newline

characters (OR) between each line.

Same as 'txt'. Any Unicode characters
which cannot be represented in APLX will
be converted to the character set by OMC
(by default, question mark).

'txt!

' ' Same as 'txt', but with characters
EE?& OF Irepresented in 16-bit UTF-16 Unicode
form (2 bytes per character).

APLX Language Manual

'utfg' or
'utf-8'

CSsv

'tsv'!

'slk'

'xml'

Same as ‘'txt', but with characters
represented in the 8-bit UTF-8 Unicode
form (variable number of bytes per
character).

'‘Comma-separated variables' format, as
used by many applications such as
spreadsheets for data exchange. The file
comprises one line of text per row of the
data, with individual elements separated
by commas. Numeric elements are
expressed in text form. Text elements are
usually surrounded by