
 Day 1: Third Generation Dyalog APL - Objects

17 of 195

Module2: Methods and Events

Objects can be brought to life by the built-in functionality that is intrinsic to the object (methods and

default event processing) or by arbitrary user defined functions (callbacks) which are assigned to events

in such a way as to run whenever the particular event occurs as a result of some user interaction with the

object.

§ 2.1 Object Methods

A method is essentially a type of event that can only be generated under program control. A method may

perform an operation and may return a result.

§§ 2.1.1 Enqueuing Object Methods with ŒNQŒNQŒNQŒNQ

 2 ŒNQ CVec_Arr © Enqueues method given by Arr for object CVec

ŒNQ adds the method specified in Arr to the end of the Windows event queue. The method will

subsequently be processed when it reaches the front of the queue. If the method returns a result then it is

returned by ŒNQ as a shy result.

2.1.1.1

Investigate the methods associated with a Form by way of the MethodList property or the

)METHODS system command, and try

 2 ŒNQ(›'MyForm'),›'ChooseFont'

§§ 2.1.2 Invoking Event default Action using ŒNQŒNQŒNQŒNQ

The default action of an event can be invoked by calling the event as a method.

2.1.2.1

Investigate the events associated with a Form by way of the EventList property or the)EVENTS

system command and try

 2 ŒNQ'MyForm','Configure' 10 10 20 20
This has the same effect as moving the Form to Posn 10 10 and resizing it to Size 20 20 but without

invoking any associated callback function on the Configure event of the Form.

The unnecessary (through lenience) catenations and enclosures in the above right arguments for ŒNQ are

included to emphasise the separation of the object name and method calling information. The forgiving

nature of ŒNQ syntax (like that of ŒWC) can obscure the essential components of the arguments. At this

point DISPLAY.DWS or varChar.exe might help to clarify some details of strand notation. Also note

that it can be useful to put system commands onto programmable function keys with ŒPFKEY.

§§ 2.1.3 Method Functions

When ŒWX is set to 1 then not only are property names exposed and become immediately accessible as

pseudo-variables, but also method and event names are exposed and become pseudo-functions. Thus

 ŒCS'MyForm'ŒWC'Form'
 Configure 10 10 20 20
will configure the Form as above.

2.1.3.1

Experiment with mouse events on a Button.

 ŒCS'MyButton'ŒWC'Button'
 MouseDown 50 50 1 0

 Day 1: Third Generation Dyalog APL - Objects

18 of 195

 MouseUp 50 50 1 0
Notice that when you are inside MyForm the Close event does make the Form disappear, but the

remaining vanilla namespace called MyForm does not disappear until you exit the space.

§ 2.2 Object Events and callback Functions

An event may occur as a consequence of a user action. The user action triggers a default behaviour or a

programmer-defined process.

§§ 2.2.1 Firing Events by User Actions

2.2.1.1
Create a Form with a Calendar on it.

 'F'ŒWC'Form' ª 'F.C'ŒWC'Calendar'
Hit the right and left cursor keys to move the highlit day back and forth. Given that

 ŒKL'RC'↳'Right'

experiment in the F namespace with

 2 ŒNQ'C' 'KeyPress' 'RC'
 ŒNQ'C' 22 'RC'
and in the C namespace with

 KeyPress 'RC'
On the one hand the event may be triggered by user action, on the other hand it may be generated under

program control.

2.2.1.2

Use the GetEnvironment property of the Root object (or alternatively use REGEDIT.EXE) to

discover the name of the APL input (.DIN) file. Open that file in Notepad and view the key labels

section. Which of these could apply to the Calendar? Look at the EventList for the Calendar

and guess which events are triggered by which keystrokes. Check whether some do what you expect.

§§ 2.2.2 Attaching callback Functions to Events

Functions may be associated with events by way of the Event property. The Event property is very

flexible and tolerant (lenient) in its assignment. We shall focus on the simplest forms of assignment and

leave the more complicated forms aside.

In its simplest form, the Event property expects a 2-element vector of character vectors, the first being

the name of the particular event and the second being the name of the callback function. (View the

default content of this property in varChar.) For example, in a clear workspace,

 ŒCS'F'ŒWC'Form'
 Event„'MouseMove' 'moveForm'
where we define the callback function simply as

 ’moveForm Msg
 [1] Posn„Posn+Msg[3 4]÷100’
The Rarg of every callback function is supplied automatically, if required, by APL and its content is

determined by the event in question. In every case the first element supplied contains the object in

question and the second element contains the event in question. In the case of a MouseMove event, for

example, the definition of the remaining 4 elements may be found in [Help][GUI Help]. In particular, the

third and fourth elements of the event message refer to the coordinates of the position of the mouse.

2.2.2.1

Move the mouse over the Form and explain the effect. Put a stop on the first line of the callback and

investigate the elements of the incoming right argument.

 Day 1: Third Generation Dyalog APL - Objects

19 of 195

The Event property may be assigned to more than one event. Each assignment only affects the events

named in the assignment. All other events retain their current settings.

Event names may be prefixed with "on" to give a new set of properties that can obviate the need for the

Event property, and make it redundant.

 onMouseMove„'moveForm'
results in behaviour very much like that produced by setting the Event property, but with one subtle

difference in the message right argument automatically supplied to the callback.

2.2.2.2

Can you determine the difference? Use varChar if necessary.

Callback functions may return a result. If there is no result, or the result is 1, then APL proceeds to

process the default action for the event. If the result is 0 the default processing does not take place. If the

callback function modifies the incoming argument and returns that modified message as the result of the

callback function then APL (leniently) processes default action in accordance with that new message.

APL is even surprisingly lenient with a would-be VALUE ERROR result, and a niladic callback.

§§ 2.2.3 Bringing Objects to Life

Now we have all the ingredients necessary to breathe life into objects and superobjects built by a

superposition of primitive Dyalog GUI objects.

There is a poorly documented but very useful event called All that is recognised by every primitive GUI

object. This event can be used to associate a callback function with all the events relating to an object.

Write a trivial callback that just prints its message argument in the Session. Assign it to the All event.

 ’ show Msg
[1] Msg
 ’
 onAll„'show'
Now use the mouse and keyboard to interact with the Form. Doing this you will discover many ways in

which you can programmatically intervene in the default behaviour of a Form using callbacks. This

technique is a good way to explore the event structure of any GUI object.

In version 10.1, under the [Tools][Spy] menu,

there is a new EventViewer that allows you to

spy on events in a similar manner to the above,

but with much more control through many new

features.

Compare this with the EventViewer in

[Control Panel][Administrative Tools].

§ 2.3 The Event Queue

§§ 2.3.1 Dequeuing Events with and without ŒDQŒDQŒDQŒDQ

Given the elements above it would be possible to write an APL cover function to control the activities and

events associated with collections of GUI objects. However, as the complexities of superobjects grow,

 Day 1: Third Generation Dyalog APL - Objects

20 of 195

and the numbers of events multiply, and callbacks begin to take noticeable amounts of time to run, the

administration of events waiting to be processed becomes a significant problem.

In Immediate Execution Mode (IEM) events are processed as they arrive in the queue and the need for

further control might seem unnecessary. However, IEM is not available in runtime systems and an

alternative then becomes essential.

 ŒDQ CVec © Dequeues events associated with object CVec

ŒDQ takes the name of a top-level object as its argument and administers its events plus any events from

subobjects (child objects). (ŒDQ may also take a vector of top-level names.)

 'F'ŒWC'Form'
 ŒDQ'F'

2.3.1.1

Write a callback on the Configure event of Form F which resizes the Calendar to fit the Form

exactly whenever the Form is resized. What is the difference between running in IEM and under ŒDQ?

The default value for an event is zero. So, if the Close event for a Form has not been set to a callback

function or any other action code then onClose↳0. Zero means handle the event normally. If the event

action code is set to ¯1 then the event is entirely ignored.

2.3.1.2

Investigate the consequence of

 onClose„¯1
or, alternatively,

 Event„'Close' ¯1
both in IEM and under ŒDQ.

Note that the way to terminate ŒDQ as a programmer developing a system is either by the keyboard

Ctrl+Break, or by the Session menu [Action][Interrupt], or via the SysTray APL icon - select [Weak

Interrupt] or [Strong Interrupt].

Within the program itself, one way to terminate ŒDQ is via action code 1.

 onMouseMove„1
This causes ŒDQ ������������������������to terminate when the mouse is moved over the Form.

§§ 2.3.2 Tracing ŒDQŒDQŒDQŒDQ

ŒDQ'F' is just like the "immediate" default processing of the Session with one very significant

difference - YOU CAN TRACE INTO IT! It is possible to put a ŒSTOP on a callback that causes it

to suspend when run, but tracing into ŒDQ is a much more powerful means of debugging applications. (I

like [Options][Configure][Trace/Edit] with Classic Dyalog mode and Independent trace stack checked.)

2.3.2.1

In the Root space, write a function (as in §§ 2.2.3) called ’show’ which simply displays its right

argument. Then create a Form with some event or events set to call ’show’. For example,

 'F'ŒWC'Form' ('Event' 'All' 'show')
Then trace ŒDQ by typing

 ŒDQ'F'
and hitting Ctrl+Enter. Tracing ŒDQ'F' allows you to see all the callback code that is running - this is

an important ingredient in debugging GUI applications.

 {Msg}„ŒDQ CVec © Dequeues events of CVec and returns a message

 Day 1: Third Generation Dyalog APL - Objects

21 of 195

It is important to know how to terminate ŒDQ under program control. This is especially important for

time-consuming processes that the user might want to terminate early. Controlled interruption can be

achieved in a two-step arrangement. First set some arbitrary event on the object to action code 1.

 'F'ŒWS'Event' 501 1
ŒNQing an event with action code 1 just before a ŒDQ can allow you to pass through a ŒDQ in a loop

while waiting for some other event. Then analysing the result of ŒDQ allows one to continue, or not.

2.3.2.2

By placing line

 ŒNQ'F' 501
in a callback function, show that this will terminate ŒDQ as soon as the enqueued event reaches the top of

the stack of events to be dequeued. (Tracing is not usually fast enough to both enqueue and dequeue.)

2.3.2.3

Show that it is possible to monitor some arbitrarily complex looping process in a function such as

that below while still displaying a GUI via ŒDQ

 ’ process;I;Sink
[1] 'F'ŒWC'Form'('Event' 'Close' 1)('Event' 501 1)
[2] I„0
[3] Loop:…End×¼10=I„I+1
[4] ŒNQ'F' 501 © Enqueue event 501
[5] Œ„R„ŒDQ'F' © Dequeue event at top of queue
[6] …(501»2œR)/0 © Was that event a 501 or a Close?
[7] Sink„VVVVVVVV?200 200½10000 © Good on a 3.19GHz machine
[8] © ProgressBar object in here?
[9] …Loop
[10] End:
 ’
Why does tracing through line [4] not have the desired effect? (Instead put a stop on line [6] and run.)

2.3.2.4

Trace ŒDQ'ŒSE'.

Immediate Execution Mode makes most objects alive and usable - but a few objects actually need ŒDQ to

give them life. For example, a MsgBox requires ŒDQ to make it visible.

 'MBX'ŒWC'MsgBox'('Style' 'Info')('Caption' 'Info')('Text' 'Msg')

 ŒDQ'MBX'

2.3.2.5

In [Help][GUI Help], investigate the Wait method and compare the objects to which it applies.

§§ 2.3.3 Defining complex Behaviour

You now have all the ingredients necessary to write complex GUI applications that call arbitrary APL

functions as a result of user actions. These functions can modify the GUI itself or create new GUI objects

and pass user control from one object to another. Essentially, all the visible GUIs and functionality to be

found in Microsoft Office applications can now be reproduced in Dyalog APL!

 Day 1: Third Generation Dyalog APL - Objects

22 of 195

It is quite a conceptual leap from traditional linear programming to object-oriented programming, but you

might not have that baggage...

A GUI object on your screen is bristling with hotspots that are ready to spring into action and might

potentially change the virtual or indeed the real world almost beyond recognition.

2.3.3.1

Below is a function that creates a Form with a number of controls on it, and associates a number of

(undefined) callback functions with these controls. Read the function and consider various alternative

ways in which this function might be written. Discuss with your partner good practices and what the

callback functions might do in a completed application.

 ’ MAKE_Form ’ MAKE_Form ’ MAKE_Form ’ MAKE_Form

[1] ŒCS'Form1'ŒWC'Form' 'Address Book'(60 2[1] ŒCS'Form1'ŒWC'Form' 'Address Book'(60 2[1] ŒCS'Form1'ŒWC'Form' 'Address Book'(60 2[1] ŒCS'Form1'ŒWC'Form' 'Address Book'(60 268)(266 238)68)(266 238)68)(266 238)68)(266 238)↵↵↵↵
('Coord' 'Pixel')('Event'('Close' 1))('Coord' 'Pixel')('Event'('Close' 1))('Coord' 'Pixel')('Event'('Close' 1))('Coord' 'Pixel')('Event'('Close' 1))¶¶¶¶

[2] 'Label2'ŒWC'Label' 'Name:'(0 8)(24 32)[2] 'Label2'ŒWC'Label' 'Name:'(0 8)(24 32)[2] 'Label2'ŒWC'Label' 'Name:'(0 8)(24 32)[2] 'Label2'ŒWC'Label' 'Name:'(0 8)(24 32)↵↵↵↵
('Attach'('Top' 'Left' 'Top' 'Left'))('Attach'('Top' 'Left' 'Top' 'Left'))('Attach'('Top' 'Left' 'Top' 'Left'))('Attach'('Top' 'Left' 'Top' 'Left'))¶¶¶¶

[3] 'Edit1'ŒWC'Edit' ''(0 48)(24 184)[3] 'Edit1'ŒWC'Edit' ''(0 48)(24 184)[3] 'Edit1'ŒWC'Edit' ''(0 48)(24 184)[3] 'Edit1'ŒWC'Edit' ''(0 48)(24 184)↵↵↵↵
('Attach'('Top' 'Left' 'Top' 'Right'))('FCol'(0 0 192))('Attach'('Top' 'Left' 'Top' 'Right'))('FCol'(0 0 192))('Attach'('Top' 'Left' 'Top' 'Right'))('FCol'(0 0 192))('Attach'('Top' 'Left' 'Top' 'Right'))('FCol'(0 0 192))↵↵↵↵
('Event'('KeyPress('Event'('KeyPress('Event'('KeyPress('Event'('KeyPress' 'EditKeyPress'))' 'EditKeyPress'))' 'EditKeyPress'))' 'EditKeyPress'))¶¶¶¶

[4] 'Label3'ŒWC'Label' 'E-mail:'(24 8)(24 32)[4] 'Label3'ŒWC'Label' 'E-mail:'(24 8)(24 32)[4] 'Label3'ŒWC'Label' 'E-mail:'(24 8)(24 32)[4] 'Label3'ŒWC'Label' 'E-mail:'(24 8)(24 32)↵↵↵↵
('Attach'('Top' 'Left' 'Top' 'Left'))('Attach'('Top' 'Left' 'Top' 'Left'))('Attach'('Top' 'Left' 'Top' 'Left'))('Attach'('Top' 'Left' 'Top' 'Left'))¶¶¶¶

[5] 'Edit2'ŒWC'Edit' ''(24 48)(24 184) [5] 'Edit2'ŒWC'Edit' ''(24 48)(24 184) [5] 'Edit2'ŒWC'Edit' ''(24 48)(24 184) [5] 'Edit2'ŒWC'Edit' ''(24 48)(24 184) ↵↵↵↵
('Attach'('Top' 'Left' 'Top' 'Right'))('Attach'('Top' 'Left' 'Top' 'Right'))('Attach'('Top' 'Left' 'Top' 'Right'))('Attach'('Top' 'Left' 'Top' 'Right'))↵↵↵↵
('Event'('KeyPress' 'EditKeyPress')) ('Event'('KeyPress' 'EditKeyPress')) ('Event'('KeyPress' 'EditKeyPress')) ('Event'('KeyPress' 'EditKeyPress')) ¶¶¶¶

[6] 'EditBox1'ŒWC'E[6] 'EditBox1'ŒWC'E[6] 'EditBox1'ŒWC'E[6] 'EditBox1'ŒWC'Edit' ''(48 0)(184 232)dit' ''(48 0)(184 232)dit' ''(48 0)(184 232)dit' ''(48 0)(184 232)↵↵↵↵
('Attach'('Top' 'Left' 'Bottom' 'Right'))('HScroll' ¯1)('Attach'('Top' 'Left' 'Bottom' 'Right'))('HScroll' ¯1)('Attach'('Top' 'Left' 'Bottom' 'Right'))('HScroll' ¯1)('Attach'('Top' 'Left' 'Bottom' 'Right'))('HScroll' ¯1)↵↵↵↵
('VScroll' ¯1)('Style' 'Multi')('Event'('VScroll' ¯1)('Style' 'Multi')('Event'('VScroll' ¯1)('Style' 'Multi')('Event'('VScroll' ¯1)('Style' 'Multi')('Event'↵↵↵↵
('KeyPress' 'EditBoxKeyPress'))('KeyPress' 'EditBoxKeyPress'))('KeyPress' 'EditBoxKeyPress'))('KeyPress' 'EditBoxKeyPress'))¶¶¶¶

[7] 'TrackBar1'ŒWC'TrackBar'[7] 'TrackBar1'ŒWC'TrackBar'[7] 'TrackBar1'ŒWC'TrackBar'[7] 'TrackBar1'ŒWC'TrackBar'↵↵↵↵
('Attach'('Bottom' 'Left' 'Bottom' 'Right'))('Limits'(1 1))('Attach'('Bottom' 'Left' 'Bottom' 'Right'))('Limits'(1 1))('Attach'('Bottom' 'Left' 'Bottom' 'Right'))('Limits'(1 1))('Attach'('Bottom' 'Left' 'Bottom' 'Right'))('Limits'(1 1))↵↵↵↵
('Posn'('Posn'('Posn'('Posn'(232 0))('Size'(32 184))('TickAlign' 'Top')(232 0))('Size'(32 184))('TickAlign' 'Top')(232 0))('Size'(32 184))('TickAlign' 'Top')(232 0))('Size'(32 184))('TickAlign' 'Top')↵↵↵↵
('Event'('KeyPress' 'TrackBarKeyPress')('Scroll' 'TrackBarEvent')('Event'('KeyPress' 'TrackBarKeyPress')('Scroll' 'TrackBarEvent')('Event'('KeyPress' 'TrackBarKeyPress')('Scroll' 'TrackBarEvent')('Event'('KeyPress' 'TrackBarKeyPress')('Scroll' 'TrackBarEvent')↵↵↵↵
('ThumbDrag' 'TrackBarEvent'))('ThumbDrag' 'TrackBarEvent'))('ThumbDrag' 'TrackBarEvent'))('ThumbDrag' 'TrackBarEvent'))¶¶¶¶

[8] 'Push1'ŒWC'Button' 'Close'(240 184)(24 48) [8] 'Push1'ŒWC'Button' 'Close'(240 184)(24 48) [8] 'Push1'ŒWC'Button' 'Close'(240 184)(24 48) [8] 'Push1'ŒWC'Button' 'Close'(240 184)(24 48) ↵↵↵↵
('Attach'('Bottom' 'Left' 'Bottom' 'Right'))('Data'(1))('D('Attach'('Bottom' 'Left' 'Bottom' 'Right'))('Data'(1))('D('Attach'('Bottom' 'Left' 'Bottom' 'Right'))('Data'(1))('D('Attach'('Bottom' 'Left' 'Bottom' 'Right'))('Data'(1))('Defaefaefaefa↵↵↵↵

ult' 1)('Event'('Select' 1))’ult' 1)('Event'('Select' 1))’ult' 1)('Event'('Select' 1))’ult' 1)('Event'('Select' 1))’¶¶¶¶

Notice that extra spaces introduced at the front of the last line above do matter, whereas spaces introduced

at the front of the second last line displayed above do not matter - through expected APL syntax lenience.

One conceptual leap involved in object oriented programming (OOP) relates to a new mental model of

the place of a program. Evolving from a linear sequence of instructions with occasional embedded

jumps, OOP conceives a model of a hierarchy of objects each bristling with callback functions that can

arbitrarily modify existing objects and create with impunity other new bristling object hierarchies.

2.3.3.2

Ask for the next module on dot syntax. How did you get on with Module 2? Was it clear? ☺

