
 Day 1: Third Generation Dyalog APL - Objects

36 of 195

Module5: Control Structures

§ 5.1 Logical Decisions and Jumps

In APL 1 and APL 2, program flow was controlled by branch (…) and also, sometimes, by execute (–) and

ŒSIGNAL plus ŒTRAP. In APL 3 program flow may be controlled by more readable control structures

such as :If. There are 8 different types of control structures in Dyalog APL. They are defined by the

control words :If, :While, :Repeat, :For and :Select, :With, :Trap, :Hold. Like line

labels, these structures are only usable inside programs, not in immediate execution mode.

§§ 5.1.1 The :If:If:If:If Statement

:If is a simplified version of branch (…).

 :If Propª … ª:End © If Prop is true execute … code

If ├Prop , ie Prop=1↳1, where Prop is a logical (Boolean) proposition and therefore either true(1) or

false(0), then execute the code indicated by …, otherwise end the :If statement.

 :If Propª … ª:Elseª … ª:End © If Prop is false execute second …

If ├Prop, then execute the code indicated by the first … expression, otherwise ├~Prop and the second …

expression is executed before ending the :If statement.

 :If Prop1ª … ª:ElseIf Prop2ª … ª:End

A :If statement may be embedded in another by means of the :ElseIf conditional.

5.1.1.1

Rewrite

 –(0=ŒNC'Forename')/'Forename„'''''
in a :If statement.

§§ 5.1.2 Further truth Conditionals

 :If Prop1ª:AndIf Prop2ª…ª:AndIf PropNª…ª:End

Any number of :AndIf conditionals may be included after :If or :Else or :ElseIf conditionals.

 :If Prop1ª:OrIf Prop2ª…ª:OrIf PropNª…ª:End

Any number of :OrIf conditionals may be included after :If or :Else or :ElseIf conditional

segments. :AndIfs and :OrIfs may not be mixed within individual segments of code.

5.1.2.1

Rewrite the function below in APL 1 (1
st
 generation) language.

 ’ pass(A B C D E)
[1] :If A
[2] :AndIf B
[3] 'A and B'
[4] :ElseIf C
[5] :OrIf D
[6] :OrIf E
[7] 'C or D or E'
[8] :Else
[9] 'not A and not C'

 Day 1: Third Generation Dyalog APL - Objects

37 of 195

[10] :End
 ’

Which notation is more legible? What other pros- and cons- can you think of?

5.1.2.2

Rewrite the expression

 –(P^Q)/'''P and Q'''
where P and Q are propositions, without using any of the symbols –…^. Replace (P^Q)� with an arbitrary

logical expression involving logical connectives and (^), or (Ÿ) and not (~), eg ((PŸQŸR)^~P^Q), and

rewrite it in a :If statement control structure?

§§ 5.1.3 The :Select:Select:Select:Select Statement

:Select is a simplified version of branch (…).

 :Select Arrª:Case Arr1ª…ª:Case Arr2ª…ª…ª:End © Execute … case

Execute the code in the :Case segment expression which satisfies ├Arr−ArrN . The last … in this

structure implies the possibility of more :Case ArrXª… code snippets.

 :Select Arrª:Case Arr1ª…ª:Case Arr2ª…ª…ª:Elseª…ª:End

5.1.3.1

Run the function below with various sorts of arguments, such as

 WhatIs ŒNULL

 ’ WhatIs I
[1] :Select I
[2] :Case 1 ª 'I=1'
[3] :Case 2 ª 'I=2'
[4] :Else ª '((I¬1)^(I¬2))Ÿ(~I=1)^~I=2'
[5] :EndSelect
 ’
and then replace :Else with a suitable :CaseList conditional qualifier, the definition of which is to

be found in [Help][Language Help] or the invaluable Dyalog APL Language Reference.

§ 5.2 Looping Constructs

§§ 5.2.1 The :For:For:For:For Statement

In many computer languages, a For statement provides a compact way to iterate over a range of values.

:For is a specific application of branch (…).

 :For Var :In Vecª‥Var…ª:End © Execute ‥Var… for each Sc in ,Vec

In each iteration, Var takes the value of the next element of vector ,Vec.

5.2.1.1

Rewrite the expression +/NumVec in a :For statement, using ŒMONITOR to compare efficiencies.

5.2.1.2

When might this looping mechanism sometimes be preferable to using operators such as each (¨)?
Hint: try tracing examples of both options.

5.2.1.3

Convert a looping statement such as

 Loop: ª…ª …Loop××¼Bool

into a :For statement.

 Day 1: Third Generation Dyalog APL - Objects

38 of 195

§§ 5.2.2 Generalised :For:For:For:For Statements

The Var entry may be replaced by multiple variable names. In this case Vec is expected to be a vector

of vectors and the N
th

 variable in the list of names is assigned at each iteration to the N
th

 element in the

disclosed next element of the control vector.

 :For Var1 Var2 ‥ :In VecNVecª‥Var1‥Var2…ª:End © Strand

In each iteration, VarN takes the value of the N
th

 element of iteration subvector of the control vector. An

example of a valid line in this case might be

 :For V1 V2 V3 :In (1 2 3)(4 5 6)(‥)…

An alternative definition is used if :In is replaced with :InEach. Again Vec is expected to be a vector

of vectors but in this case the N
th

 variable in the list of names is assigned, at each iteration, to the next

element in the N
th

 element of the control vector.

 :For Var1 Var2 ‥ :InEach NVecVec ª‥Var1‥Var2…ª:End © Distribute

In each iteration, VarN takes the value of the next element of vector NœNVecVec. An example of a

valid line in this case might be

 :For V1 V2 V3 :InEach (1 4 ‥)(2 5 ‥)(3 6 ‥)

In Module11 we shall see how a collection object may be treated as a Vec in a :For statement.

§§ 5.2.3 :Repeat:Repeat:Repeat:Repeat and :While:While:While:While Loops

 :Repeatª…ª:Until Prop © Repeat execution of … until ├Prop

This is an infinite loop unless proposition Prop can change from false to true in the process.

5.2.3.1

Write a 2-line function with the infinite loop

[1] :Repeat ¶ [2] :Until 0 ¶
Run the function and break the execution in a number of different ways. Now convert to a 1-line function

[1] :Repeat ª :Until 0

Try to break this loop. Be prepared to close APL. Repeat the experiment simply with [1] …1

 :While Propª…ª:End © Execute … while ├Prop

5.2.3.2

Loop round executing some code while proposition Prop is true (1), or :Until Prop2 is true.

Note :AndIf or :OrIf may be included in the structure logic of :While and at the end of :Repeat.

§ 5.3 Digging

§§ 5.3.1 The :With:With:With:With Statement

:With is an alternative form to ŒCS.

 :With Objª…ª:End © Execute … within object Obj

Obj may be the name of an object or an object reference (value). The lines of code in … are executed

inside the space of Obj. The effect of :With is similar to that of ŒCS. Local variables in the outer

space continue to be visible.

 Day 1: Third Generation Dyalog APL - Objects

39 of 195

5.3.1.1

Write a function such as

 ’ drill
[1] :With ŒSE
[2] :With cbbot
[3] :With bandsb1
[4] Dockable
[5] :End
[6] :End
[7] :End
 ’

to drill into ŒSE.cbtop.ilh.bm and display the Type property at each level.

Within the Dyalog function editor, [Edit][Reformat] indents control structures and substructures

according to the settings in [Options][Configure][Trace/Edit]. As in the case of the :For statement,

:With extends to Collections, as described in Module11. :With also extends to unnamed namespaces,

as described in Module11.

§§ 5.3.2 Digging into SubSpaces

Within an APL program one is usually working with local variables and functions all in the same space.

It would therefore be tedious to prefix all names with the space-qualified name, especially for deeply

nested spaces. As we shall see when looking at OLEClient objects in Module7, the :With control

structure plays an important role in identifying the current space in a program.

§§ 5.3.3 :Trap:Trap:Trap:Trap versus ŒTRAPŒTRAPŒTRAPŒTRAP

:Trap is a simplified version of ŒTRAP.

 :Trap ENumª…ª:End © Trap error ENum and execute …

When running code … , in the event of an error having an error number which is in the list ENum, no

default error action is taken and execution is passed to code after the end of the :Trap control structure,

if there is any. This is similar to the action of something like ŒTRAP„ENum 'C' '…1+ŒLC'.

 :Trap ENumª…ª:Elseª…ª:End © On error in first …, do second …

If an error of type ENum occurs in the first … segment, then pass execution to the second segment and do

not report the error. Further, disable the error trapping in the processing of the second segment.

 :Trap ENumª…ª:Case ENum1ª…ª:Case ENum2ª…ª…ª:End © Split

The last … in this structure implies the possibility of more :Case ENumXª… code snippets. As in

:Select, :CaseList and :Else segments may be used here too.

For a summary of the :Hold statement, see multi-threading in Module13.

5.3.3.1

Ask for the next module on OLE Servers ☺.

