
 Day 1: Third Generation Dyalog APL - Objects

13 of 195

Module1: Objects and their Properties

Amongst Ken Iverson’s many aphorisms was the cautionary dictum not to labour too hard on any

particular explanation of any particular fine point of APL notation (such as 0½0) because it is as likely to

be an indication of an unsuccessfully hurdled hurdle behind the tutor as an especially difficult conceptual

leap for that audience. This course is not so good: it labours every nook and cranny. It is a labour of

love, but nevertheless every page can be justly criticised on some grounds by sharp students. I just hope

somebody learns something true and useful from it. Hold your breath .. here goes …

Simula 67 introduced in 1967 most of the key concepts of object-oriented (OO) programming – objects, classes, subclasses

(involving inheritance) and virtual procedures. Most (but not all) of the objects discussed below have a graphical (visual)

manifestation. The first graphical user interface (GUI) was designed by Xerox Corporation's Palo Alto Research Center in

the 1970s. It was not until the 1980s and the emergence of the Apple Macintosh that GUIs started to prevail, and not until

the appearance of Microsoft Windows in the early 1990s that GUIs became ubiquitous.

Modern computer applications, including operating systems themselves, are designed using object-

oriented architecture. Microsoft's graphical user interface has evolved into an archetypically object-

oriented collection of buttons, forms, and other progressively more complex active constructs. Most of

Dyalog's 71 or so Microsoft-based GUI objects are virtually tangible, arguably real and thoroughly useful.

1.1

For a comprehensive list of primitive GUI objects available in Dyalog APL version 10, see [Help][GUI

Help][Objects Overview]. Or type Type into the APL session and hit F1. Or see the invaluable Dyalog

APL Object Reference manual. Also load workspace WINTRO and follow the 56 lessons. And load

WTUTOR and follow 37 tutorials in there. Then load WTUTOR95 and follow the 18 extra tutorials in

there. Alternatively, begin your investigations at http://www.dyalog.com [Products]. But first follow

Modules 1-3 below ☺.

§ 1.1 Object Spaces

§§ 1.1.1 Creating vanilla Namespaces with ŒNSŒNSŒNSŒNS

 CVec ŒNS '' © Creates an empty Namespace, named in CVec

1.1.1.1
Create an empty namespace called MySpace.

)CS Name Changes Space into Namespace named Name

1.1.1.2
Change space into your new namespace and verify ├(ŒNL ¼4)−0 0½''

Read this as: "It happens to be true that ŒNL ¼4 matches an empty character matrix." Compare with ╞1Ÿ0 which reads: "It is necessarily true that 1Ÿ0 ."

)CS Changes Space to the Root space named #

1.1.1.3
Change back to the Root space using system command)CS and examine the result of ŒNL 9

§§ 1.1.2 Creating GUI Object Spaces with ŒWCŒWCŒWCŒWC

 CVec2 ŒWC CVec1 © Creates GUI Object name in CVec2;Type in CVec1

1.1.2.1
Create an object of Type Form with name MyForm. The structure of the right argument of this

system function can be much more complicated (essentially Name-Value pairs) as we shall see later.

)OBS Displays a list of global objects

1.1.2.2
Use system command)OBS to verify the existence of MyForm although its existence is manifest:

 Day 1: Third Generation Dyalog APL - Objects

14 of 195

 1.1.2.3
Try moving and resizing your Form with the mouse.

Other objects have less obvious existence, such as the SysTrayItem object created by typing

 'STI'ŒWC'SysTrayItem'
But notice the new APL icon that has appeared in the system tray at bottom right of your task bar.

§§ 1.1.3 Changing Space with ŒCSŒCSŒCSŒCS

 ŒCS CVec © Changes current space to object named in CVec

An object of a particular Type can only exist as the child of parents of particular Types. For example, a

Button can be the child of a Form but not of a SysTrayItem object.

1.1.3.1

Change space to MyForm and create an object of Type Button with name MyButton.

 The Button has no Caption because this property has not yet been specified.
1.1.3.2

Change into MyButton space and verify ŒNL ¼9↳0 0½'' then change back to the Root space (#).

§ 1.2 Properties of Object Spaces

Objects have properties. The properties determine the specific appearance and behaviour of individual

objects. For example, the Size property, which is common to many objects, determines the height and

width of the object.

§§ 1.2.1 Examining Properties of an Object with ŒWGŒWGŒWGŒWG

Some information about MyForm can be discovered by right-clicking on the word MyForm in the APL

Session and then selecting the menu item [Properties]. However, the value of a specific individual

property is found by means of the property name.

 Arr „ CVec2 ŒWG CVec1 © Gets the value of property CVec1 of object CVec2

1.2.1.1
Get the Size of MyForm. Go into MyForm space and get the Size of MyButton.

)PROPS Reports the properties in the space of the current object

1.2.1.2
Display the list of properties in the MyForm space and the MyButton space. These are the intrinsic

properties of Forms and Buttons respectively. Examine the values of various properties. Return to #.

§§ 1.2.2 Setting Properties of an Object with ŒWSŒWSŒWSŒWS

 CVec ŒWS CVec_Arr © Sets prop-value pair CVec_Arr of object CVec

For example,

 'MyForm'ŒWS'Size' (6.5 11)
sets the Size of MyForm to 6.5% by 11% of the full screen size.

 Day 1: Third Generation Dyalog APL - Objects

15 of 195

 'MyForm'ŒWS'Caption' 'Form' ª ŒCS 'MyForm'
 'MyButton' ŒWS'Caption' 'Button'

 1.2.2.1
Try getting and setting the values of various properties of Forms and

Buttons. Return to # and erase your Form with)ERASE or ŒEX.

Note that it is possible to get (ŒWG) and set (ŒWS) many properties in a single call, and to set many properties at create time

(ŒWC). Indeed some properties, such as the Points property, must be set at create time, as must Type. Most properties

have sensible default values and do not need to be explicitly set on most occasions.

§§ 1.2.3 Building complex Objects

ŒWC returns a shy result of the name of the object just created (Larg). Here are some lines that illustrate

the flexibility of the right argument (Rarg) of ŒWC and ŒWS. Note that Name-Value pairs do not need the

Name if specified in the default property order (see for example the MenuBar and Menu below).

 w„,›'Type' 'Form'
 w,„›'Caption' 'Temperature Converter'
 w,„›'Size'(266 238)
 w,„›'Coord' 'Pixel'
 ŒCS'Temp'ŒWC w
 ŒCS'MB'ŒWC'MenuBar'
 ŒCS'M'ŒWC'Menu' 'Scale'
 'C'ŒWC'MenuItem' 'Centigrade'
 'F'ŒWC'MenuItem' 'Fahrenheit'
 ŒCS'#' ª ŒCS'Temp' ª num„'FieldType' 'Numeric'
 'LF'ŒWC'Label' 'Fahrenheit'(16 8)(24 72)
 'F'ŒWC'Edit' ''(16 88)('Decimals' 2)num
 'F'ŒWS('ValidIfEmpty' 1)('Value' 32)('Size' 24 72)
 'F2C'ŒWC'Button' 'f->c'(16 184)(24 48)
 'LC'ŒWC'Label' 'Centigrade'(56 8)(24 72)
 'C'ŒWC'Edit' ''('Decimals'(2))num
 'C'ŒWS('ValidIfEmpty' 1)('Size' 24 72)('Posn' 56 88)
 'C2F'ŒWC'Button' 'c->f'(56 184)(24 48)
 'LTB'ŒWC'Label' 'Fahrenheit'(88 96)(24 72)
 'LLO'ŒWC'Label' ''(112 16)('Decimals' 0)num
 'LLO'ŒWS('FCol'(0 0 255))('Value' 0)('Size' 24 16)
 'TB'ŒWC'TrackBar'('Limits'(0 212))('Posn'(112 40))
 'TB'ŒWS('Size'(32 168))('TickSpacing' 10)
 'LHI'ŒWC'Label' ''(24 24)('Decimals' 0)num
 'LHI'ŒWS('FCol'(255 0 0))('Value' 0)('Posn' 112 208)
 'Q'ŒWC'Button' 'Quit'(152 80)(24 80)('Default' 1)

1.2.3.1
Verify that a Menu is only visible if it has a non-empty Caption set. A MenuBar is never visible.

)NS Reports the name of the current space

§ 1.3 Property Variables

It is possible to create ordinary APL variables in vanilla namespaces.

1.3.1

Create a namespace called MySpace and inside it create a variable called MyVar. Verify that the

variable is only visible inside MySpace and is invisible from the Root space.

 Day 1: Third Generation Dyalog APL - Objects

16 of 195

§§ 1.3.1 Exposing Object Properties with ŒWXŒWXŒWXŒWX

 ŒWX © Whether GUI names are exposed

ŒWX is a localisable system variable that determines whether or not the names of properties, methods and

events provided by Dyalog APL GUI objects are exposed. The value of ŒWX in a clear workspace is

defined by the default_wx parameter (see the definitive Dyalog APL User Guide). Check ├ ŒWX=0.

For every object there is a property called PropList.

1.3.1.1

Create a Printer object. Check that the value of ŒWX has been inherited from the Root. Type

PropList and get a VALUE ERROR. Now assign ŒWX to 1 and again type PropList. The property

name has now been exposed. The listed keywords are case dependent . Show they cannot be erased.

§§ 1.3.2 Assigning Properties with „„„„

Notice that most properties, having been exposed, act just like variables in the object space. Go into a

Form’s object space and type

 Size
50 50

1.3.2.1

By manipulating object properties, the "state" of an object may be changed and influenced. Try

assigning Size and notice the Form change size. Show that there is a minimum Size of a Form.

Investigate the effect on Size and Posn when setting the Coord property to 'Pixel'. Every object

has a Data property to which may be assigned any array. Any other variable may be assigned within the

object space and treated like a new property. Verify these statements.

1.3.2.2

Create a Bitmap object in the Root with the Bits property set to a 150 by 150 matrix of random

numbers between 0 and 15. In a Form, assign the Picture property to the name of the Bitmap that

you have just created. This should display the Bitmap in the centre of your Form in colours chosen

from the first 16 rows of the default colour map. Now assign the CMap property of the Bitmap to a 16

by 3 matrix of random numbers between 0 and 255. The picture changes each time this property is set.

1.3.2.3

You can get more control over the Bitmap. Create an Image object as a child of a Form and then

assign the Picture property of the Image to the name of the Bitmap. Assign the Dragable

property of the Image to 2 and use the mouse to drag the Image around the Form. (Remember that the

Points property must be set at create time.)

1.3.2.4

Using a Poly object, draw a solid triangle in the middle of a Form. Rotate it.

§§ 1.3.3 Rebuilding complex Objects

Essentially, properties are variables and can be treated as such. All use of ŒWG and ŒWS can be

eliminated as of Dyalog version 9.0.

1.3.3.1

Rewrite the lines of code in §§1.2.3 to eliminate the use of ŒWS and to minimise the Rarg of ŒWC.

Now you have to learn lots about each primitive object available to you in Dyalog APL. Typing any GUI

keyword into the APL Session and hitting F1 brings up the ‘well navigable’ GUI Help file at the page of

the selected keyword topic. This is backed up by the extensive and thorough (could one ever again say

comprehensive?) Dyalog APL Object Reference manual.

1.3.3.2

Ask for the next module on methods and events. How did you get on with Module 1? ☺.

