
 Day 2: Fourth Generation Dyalog APL – The Internet

136 of 195

 Module15: APL Web Servers

§ 15.1 Making a simple Server

It is possible to use TCPSockets on your computer to host a web server that will be accessible by

everyone on your network. A good example, trivialised below, is to be found in the supplied workspace

..\Samples\tcpip\www.dws, namespace #.SERVER, and is described in detail in the Interface Guide. A

more robust example server is to be found in the distributed workspace ..\aplserve\server.dws and

associated files.

§§ 15.1.1 Creating a listening Socket

15.1.1.1
In a clear WS, create a socket on LocalPort 80, the default for simple web servers:

 'S0'ŒWC'TCPSocket' ('LocalPort' 80)
Check that it's CurrentState is 'Listening'. Now open your Internet Explorer and type

http://127.0.0.1 in the address bar and hit Enter. Check that the CurrentState is now

'Connected'.

Had we created a socket on a different port, say 2020, typing http://127.0.0.1:2020 into the address

bar we would have established a connection to this port, but :80 is the assumed default. (Different ports

relate to different services. The IP address plus port combination uniquely identifies a web site.)

The socket connection is not much use as it stands. IE and our server remain connected indefinitely but

the connection does nothing useful. If you go to the IE address bar and hit Enter again then an error box

pops up in APL. It tells us that we did not get the communication protocol right. This is not surprising as

our server socket did not acknowledge in any way the explorer who made the link.

The CurrentState of S0 is now 'Closed' and the socket soon disappears.

Placing a callback function with result 0 on the TCPError event, or setting the Event action code to

¯1, will stop these popup error boxes from appearing.

15.1.1.2

In a clear WS, create a socket on LocalPort 80, and set all Events to ’show’, which is just

 ŒFX'show Msg' 'Msg'

 'S0'ŒWC'TCPSocket' ('LocalPort' 80)('Event' 'All' 'show')
The Create event callback (show) should respond immediately with the message

 S0 Create 1
Now repeat the above experiment by entering http://127.0.0.1 into your Internet Explorer.

Inside IE the explorer creates a socket using the IP address specified in its address bar as the remote

address. It then gets a connect event and immediately sends an HTTP request to our server.

The subsequent events from the APL host server's point of view occur as follows. First the TCPAccept

event triggers and reports the socket number (handle) of the original socket we created (272).

 S0 TCPAccept 272

 Day 2: Fourth Generation Dyalog APL – The Internet

137 of 195

The original S0 has actually been replaced by a new socket S0 that has taken on the responsibility of

connecting to the client browser that requested the connection. The original listening socket, now

nameless, continues to exist, at least until any callback on the TCPAccept event has finished processing.

The TCPAccept event is followed by a TCPReady event and then by a TCPRecv event. This last

event, the TCPRecv event, triggers on receipt of some data from IE. The event message contains the

received data concatenated with the IP address and port number of the network source of the data (the

address and port of the client – our IE browser socket). The actual data received from IE, which prints

out in the session as a consequence of the ’show’ callback, looks something like:
GET / HTTP/1.1

Accept: */*

Accept-Language: en-gb

Accept-Encoding: gzip, deflate

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; .NET CLR 1.1.4322)

Host: 127.0.0.1

Connection: Keep-Alive

This message is composed in HTTP protocol and says something like "Hello Host, please send me your

home page. I understand all sorts of stuff if you talk HTTP/1.1 language. I'll keep the line open until I

hear from you. Over." (Over is CRLF CRLF.)

Details of the precise meaning of the message may be extracted from the official World-Wide Web

specification of the HTTP/1.1 protocol - in http://www.w3.org/Protocols/rfc2616/rfc2616.txt.

The first and most important line is made up of a request type, a request document URI (Uniform

Resource Identifier) and a protocol, all separated by a single space:
GET / HTTP/1.1

The network location of the URI is also transmitted in a Host header field.

The above is a GET request, for the domain root index file (/ followed by a space or just a space) in

protocol HTTP/1.1 . RFC2616 says,

"The GET method means retrieve whatever information (in the form of an

entity) is identified by the Request-URI. If the Request-URI refers

to a data-producing process, it is the produced data which shall be

returned as the entity in the response and not the source text of the

process, unless that text happens to be the output of the process."

All we need to understand so far is that GET may be followed (after a space) by the name of a file on the

server whose hypertext content is to be returned (inside a valid HTTP message) to the client, and if no file

is specified, but only a /, then this implies that the file to be returned is the site home page.

Setting the TargetState of S0 to 'Closed' will close the connection gracefully and erase the

socket.

§§ 15.1.2 Cloning a listening Socket on TCPAcceptTCPAcceptTCPAcceptTCPAccept

The main thing an APL server has to do in the TCPAccept event is to clone the listening socket so that

someone else can establish a connection (even while the other is still connected). This is done by creating

a socket in the TCPAccept callback with the same SocketNumber as the original listening socket.

15.1.2.1

In a clear WS, create a socket on LocalPort 80 (or LocalPortName http), with a callback on

the TCPAccept event and a global variable COUNT, set to zero:

 'S0'ŒWC'TCPSocket'('LocalPort' 80)('Event' 'TCPAccept' 'acc')

 Day 2: Fourth Generation Dyalog APL – The Internet

138 of 195

in which ’acc’ is

 ’ acc Msg;w © WHEN ACCEPT CONNECTION TO CLIENT
[1] COUNT+„1 © increment COUNT on each accept.
[2] w„,›'Type' 'TCPSocket' © create a socket,
[3] w,„›'SocketNumber'(3œMsg) © with the handle of the original,
[4] w,„›'Event'((œMsg)ŒWG'Event')© with all the events as before.
[5] ('S',•COUNT)ŒWC w © create with next name.
 ’

After connecting from IE, check (S0 S1).CurrentState ↳ 'Connected' 'Listening'.

Set the TargetState of S0 to 'Closed' and repeat the request from IE. After connecting from IE,

check that (S1 S2).CurrentState ↳ 'Connected' 'Listening'.

Note the hopeful message in the IE status bar saying "Opening page http://127.0.0.1/…".

§§ 15.1.3 Sending an HTML File on TCPRecvTCPRecvTCPRecvTCPRecv

The simple general pattern of events in a working server is this:

1. Wait for a request to connect from a web browser

2. Connect and clone listener in preparation for another request

3. Send the information requested by the browser, eg the home page

4. Close the connected socket

5. REPEAT AS REQUIRED

A TCPRecv callback implements items 3 and 4. In the simplest scenario, all the receive function has to

do is read the web site home page, send it back to the server and close the connection.

 ’ rec Msg;t;d © WHEN RECEIVE MESSAGE FROM CLIENT
[1] t„'C:\homepage\index.htm'ŒNTIE 0
[2] d„ŒNREAD t 82,2†ŒNSIZE t © read
[3] ŒNUNTIE t
[4] 2 ŒNQ(œMsg)'TCPSend'd © send
[5] (œMsg)ŒWS'TargetState' 'Closed' © close
 ’
A trivial home page in the file C:\homepage\index.htm, written in HTML so that IE can present it

nicely, could be just one simple line:

15.1.3.1

Erase all sockets and restart IE. Create a new socket with TCPAccept and TCPRecv callbacks:

 COUNT„0
 'S0'ŒWC'TCPSocket'('LocalPort' 80)©('LocalAddrName' 'LocalHost')
 'S0'ŒWS('Event'('TCPAccept' 'acc')('TCPRecv' 'rec'))
With line [1] of ’rec’ pointing to a suitable root file, such as index.htm above, use IE to navigate to

your web site. IE should then display the intended page.

 Day 2: Fourth Generation Dyalog APL – The Internet

139 of 195

Note that to run/trace this repeatedly it might be necessary to close IE between connections as IE

remembers (caches) and doesn't deem it necessary to request a static page again before displaying it.

§ 15.2 Making a realistic Server

Of course a real web page would be expected to have more on it than just 'Hello…'. Not only that, a real

web designer would aspire to having more than one page on his web site. This and much more is possible

using hypertext HTML. See a beginner's guide at http://www.put.com/HTMLPrimer.html.

The HTML in the main web site file (traditionally called index.htm - the one that is loaded if nothing

special is requested), can tell a client browser that other HTML files and pictures to be found on the web

site host are required in order to construct the complete home page. The browser opens another

connection to the web site and requests that file next. If that file points to others which are required to

complete the page being displayed then the browser will open another connection and ask for that file,

and so on .. until the entire page has been built on the screen.

Also embedded in HTML might be links to other files on the web site that define (through a number of

sub-files) other complete pages. The links can be defined such that one click from a user can send the

browser off to request all the required files and then construct the page even while more pieces are being

delivered from the web site host server. The links can equally refer to pages (or, by default, the main

page) of any other web site on the network by including an IP address of the site in question in the

HTML.

Thus, for example, the server in the distributed workspace ..\server\tcpip\www.dws refers to a homepage

to be built from ..\samples\tcpip\homepage\index.htm. This homepage file, shown below, includes

links to other files such as that in:
 <frame src="home.htm" name="overview">

The HTML in home.htm includes calls to other files that call yet more files - all required in order to

build the home page.

 Day 2: Fourth Generation Dyalog APL – The Internet

140 of 195

Calls to pages other than the site home page are to be found in navigate.htm. When the area in the

specified rectangle is clicked, the browser will take the user to the URL (Uniform Resource Locator)

specified by the HREF (Hypertext Reference) value.
<AREA SHAPE="RECT" COORDS="338, 6, 392, 27" HREF="support.htm">

The requested resource in HREF may be anywhere on the network:
<AREA SHAPE="RECT" COORDS="460, 6, 537, 27" HREF="http://195.212.12.1:8081/frserve.htm">

Developing web sites in raw HTML can be an onerous task. However, numerous WYSIWYG

applications have been developed to write HTML for you. This makes it much easier to create complex

web sites with many pages, each containing text, graphics and other controls. Microsoft FrontPage,

Macromedia Dreamweaver or even Microsoft Word 9.0, are some of the applications that you may use to

design and alter WYSIWIG pages of your web site.

§§ 15.2.1 Threading multiple Connections

A web server is usually intended to be able to host a service to a number of clients simultaneously. So far

we have enabled this by ensuring that a new listening socket is always present. However, a new client

cannot connect to a new socket or expect a reply until processing for previous clients has finished.

Creating each new listening socket in a separate APL thread can dissipate this potential queue and thus

make the service more responsive to multiple simultaneous connections.

15.2.1.1

Change ’acc’ as below so that new listeners are cloned in a separate thread. Use the unique thread

ID to name the socket and process socket events through ŒDQ.

 ’ acc Msg;w © WHEN ACCEPT CONNECTION TO CLIENT
[1] :If 9=ŒNCœMsg © if socket exists,
[2] clone&Msg © clone in a separate thread.
[3] :End
 ’ ��
where�����

 ’ clone Msg;w © CLONE THE OLD LISTENING SOCKET
[1] w„,›'Type' 'TCPSocket' © create socket,
[2] w,„›'SocketNumber'(3œMsg) © with the handle of the original,
[3] w,„›'Event'((œMsg)ŒWG'Event')© and with all previous events.
[4] ŒDQ('S',•ŒTID)ŒWC w © create with unique name.
[5] © a line after a line with a ŒDQ is helpful for tracing
 ’

 Day 2: Fourth Generation Dyalog APL – The Internet

141 of 195

Check that your web server still works with this enhancement in place.

A number of other essential features and useful suggestions are to be found in the supplied SERVER

workspace. For example, you are advised to include a callback, even if empty, on the TCPClose event

to ensure that a socket does not close prematurely. Also the TCPError event callback returns 0 to stop

popup error boxes appearing during the transaction process. The callback simply erases any socket

causing an error. The TCPError event message contains the error details and therefore more error

handling could be done in this callback. To avoid potential problems in development, all sockets should

be expunged before initiating the service.

In preparation for the information expected in the TCPRecv callback, a variable called BUFFER is

initialised to ŒAV[4 3] (CRLF) in the connected TCPSocket namespace. CRLF is the recognised

HTTP command string separator and BUFFER is going to be filled with the HTTP commands from the

client browser connected to this socket.

§§ 15.2.2 Communicating through HTTP

If large amounts of data are being sent between stream sockets in a single transaction then the data is

automatically broken into manageable packets and sent one at a time. The HTTP identifier for the end of

a complete set of packets is CRLF CRLF – two empty lines. The possibility of receiving incomplete

message packets is incorporated in a robust server by adding lines to the TCPRecv callback which add

packets to a buffer and look for the end marker CRLF CRLF.

(–œMsg).BUFFER,„3œMsg
 :If ŒAV[4 3 4 3]»¯4†(–œMsg).BUFFER © if we have not got everything,
 :Return © stop and wait for more.
 :EndIf

In the simple examples above, a small amount of data was sent so no :Return was necessary, but this is

not guaranteed in a stream socket, although the order of receipt is always the same as the order of

transmission.

When a browser first establishes a connection with our server, the HTTP data shown in section §§15.1.1

is received, terminated with ŒAV[4 3 4 3]. Our APL server could simply send the requested file or it

could proceed with a challenge to the browser saying that our site has restricted access and requires a user

ID and password to be supplied before entry will be granted. This our server may do by sending the

client an HTTP request for authorization looking something like:
HTTP/1.1 401 Authorization Required

Date: Fri, 24 Mar 2006 13:12:55 GMT

Server: Dyalog APL

WWW-Authenticate: Basic realm="User Area 100"

Keep-Alive: timeout=15, max=100

Connection: Keep-Alive

Transfer-Encoding: chunked

Content-Type: text/html; charset=iso-8859-1

1c0

<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML 2.0//EN">

<HTML>

 <HEAD>

 <TITLE>401 Authorization Required</TITLE>

 </HEAD>

 <BODY>

 <H1>Authorization Required</H1>

 <P>This server could not verify that you are authorized to access the document requested. Either you supplied the wrong credentials (eg, bad password),

 or your browser doesn't understand how to supply the credentials required.</P>

 <HR>

 <ADDRESS>Dyalog APL 10.0 Server</ADDRESS>

 </BODY>

</HTML>

0

 Day 2: Fourth Generation Dyalog APL – The Internet

142 of 195

This tells the browser to prompt the user for an ID and password. The arbitrary words "User Area 100"

chosen by the server site programmer are displayed on the password dialog box to indicate the realm to

which access is being offered. An HTML error message is embedded (with a 'parity check' 1c0). This is

to be displayed by the client in the event that the supplied credentials are insufficient.

Note that in order to specify which version of the HTML standard they conform to, all HTML documents

should start with a document type declaration (informally, a "DOCTYPE"), which makes reference to a

document type definition (DTD). Using the line
<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML//EN">

is adequate for our purpose, and indeed it may be omitted entirely.

When an ID and password have been entered, the two strings, separated by a colon, are encoded and

included in the form of an Authorization field in all further messages sent by the browser to the server.

On this subject, RFC2616 says,

"A user agent that wishes to authenticate itself with a server--

usually, but not necessarily, after receiving a 401 response--does

so by including an Authorization request-header field with the

request. The Authorization field value consists of credentials

containing the authentication information of the user agent for

the realm of the resource being requested."

The server has an opportunity to validate credentials at the head of each GET request before processing

the specific contents of the request URI and sending a response to the client browser. The credentials are

sent in a base-64 encoded string in an Authorization field such as
Authorization: Basic QWxhZGRpbjpvcGVuIHNlc2FtZQ==

The distributed PATCH workspace contains functions for encoding and decoding credentials. For

example (noting the changed translation vector in ŒNXLATE):

 enco'Aladdin:open sesame' ↳ 'QWxhZGRpbjpvcGVuIHNlc2FtZQ=='
and

 deco 'QWxhZGRpbjpvcGVuIHNlc2FtZQ==' ↳ 'Aladdin:open sesame'
where

 ’ strg„deco code;raw;alph
[1] alph„ŒA,(26†17‡ŒAV),ŒD,'+/'
[2] raw„œ{(ŒDR ¾)11 ŒDR ¾},³(6½2)‚(alph¼code~'=')-ŒIO
[3] strg„82 ŒDR(-8|½raw)‡raw
 ’
This gives a Basic level of security. There is also a higher Digest level of security as described in HTTP

Authentication: Basic and Digest Access Authentication in http://www.ietf.org/rfc/rfc2617.txt.

§§ 15.2.3 Running APL Functions on a Server

So a conversation between IE and a server could proceed as
IE Client: GET / HTTP/1.1…
APL Server: HTTP/1.1 200 OK…
IE Client: GET /images/tennis.gif HTTP/1.1…
IE Client: GET /banners/scoresheet.gif HTTP/1.1…
APL Server: HTTP/1.1 200 OK…
APL Server: HTTP/1.1 200 OK…

But negotiations between clients and servers are not restricted to requesting and supplying static pages.

Often significant background processing is desired. The GET request type can fulfil both roles.

 Day 2: Fourth Generation Dyalog APL – The Internet

143 of 195

If the GET request URI does not contain a question mark then the URI is assumed to be an HTML file

name whose content is to be returned. If, however, the URI does contain a question mark then a browser

recognises this as a query URI that can perform operations with significant side effects.

Such a request URI may be embedded in an HTML page in a hyperlink such as
Sage Driller<\a>

This creates an element that becomes a hyperlink (with an optional 'hover box' title). In the event that a

user clicks on "Sage Driller", the browser will send
GET driller.RUN? ...

On receipt, the server in ..\aplserve\server.dws interprets this as a request to run a function ’RUN’ in a

namespace called driller. The function must be defined dyadically and is automatically given a left

argument of the name of the socket involved. The right argument consists of parameters following the ?,

and separated by & if there is more than one parameter in the argument. A number of parameters may be

needed for a particular function, or none at all as in the case of driller.RUN. The other requirement

of the APL function is that any result is in the form of an HTML string. The browser will display this

HTML automatically on receipt.

Note that this syntax is not APL-specific. For example
Groups

is to be found on the Google front page.

By adding a new namespace with a top level function adhering to the above syntax, new applications may

be added to the server workspace in a very straightforward and elegant fashion. See, for example,

functions rain.Climate, rain.Fourier or CODEVIEW.FUNCTION.

The POST request type may be used as an alternative way of initiating a function call in the server.

"The POST method is used to request that the origin server accept the

entity enclosed in the request as a new subordinate of the resource

identified by the Request-URI in the Request-Line."

The POST request type is suitable for calling a function from an HTML form. For example, the loan.htm

file contains the line
<form action="loan.RUN" method="POST" …

In this case loan.RUN is recognised as a function call when a POST request is received from the client

as a result of the user clicking on the form.

The ..\aplserve\server.dws workspace supports both GET and POST requests. More examples of client-

server negotiations may be found in ..\ws\FTP.dws and ..\ws\PATCH.dws.

A very useful tool for intercepting TCP interactions between a computer and the outside world may be

downloaded free from http://www.westbrooksoftware.com/tsdownload.shtml.

§ 15.3 Internet Practicalities

§§ 15.3.1 Domain Name Servers

Web sites are better known by their names than by their IP addresses. For example, www.dyalog.com is

more memorable than 194.159.243.250. But an IP address in LocalAddr or RemoteAddr is

essentially equivalent to a domain name in LocalAddrName or RemoteAddrName.

Either the address or the address name may be used in the specification of a TCPSocket property. A

name is converted into the equivalent IP address by a Domain Name Server (DNS) which is always

 Day 2: Fourth Generation Dyalog APL – The Internet

144 of 195

accessible from an ISP via the Winsock API. A TCPSocket object has a TCPGotAddr event. This

event is triggered when an address name is resolved into an IP address. For example

 'S0'ŒWC'TCPSocket'('RemoteAddrName' 'www.dyalog.com')↵
 ('RemotePort' 80)('Event' 'TCPGotAddr' 'show')¶
 S0 TCPGotAddr
 S0.RemoteAddr
194.159.243.250

In Windows XP the DNS may be invoked by the nslookup utility which can be applied to any domain

name to extract the underlying IP address.

Port numbers are also often referred to by the service names.

15.3.1.1

Create a socket with LocalPortName http and show the event message from TCPGotPort.

Check the LocalPort property when the port name has been resolved.

§§ 15.3.2 Firewalls and proxy Servers

If you are inside the walls of a large company, the chances are that you have to go through a firewall

every time you communicate with the outside world via your personal computer. A firewall is a proxy

server which filters and controls the traffic between the company Intranet, a trusted zone, and the outside

Internet, which is not trustworthy and is teeming with parasites. A proxy server is both a client and a

server. It acts as a server for all requests to the outside world from the Intranet, and as a client to all

Internet servers. It therefore offers a protective barrier between order and anarchy.

In this case, a proxy server responds to a request, not with HTTP/1.1 401 Authorization Required.., but

with HTTP/1.1 407 Proxy Authentication Required... With a simple request for an Internet page
GET http://www.google.co.uk/ HTTP/1.0

Accept: */*

Accept-Language: en-gb

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; .NET CLR 1.1.4322)

Host: www.google.co.uk

Proxy-Connection: Keep-Alive

the response of a proxy server may be something like:
HTTP/1.1 407 Proxy Authentication Required (The ISA Server requires authorization to fulfill the request. Access to the Web Proxy service is denied.)

Via:1.1 OURPRXY

Proxy-Authenticate: Basic realm="Privileged User Access Area"

Pragma: no-cache

Cache-Control: no-cache

Content-Type: text/html

Content-Length: 2370

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">

<HTML dir=ltr><HEAD><TITLE>The page cannot be displayed</TITLE>

...

 Day 2: Fourth Generation Dyalog APL – The Internet

145 of 195

to which a suitable reply, containing an encoded Proxy-Authorization field, could be
GET http://www.google.co.uk/ HTTP/1.0

Accept: */*

Accept-Language: en-gb
User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; .NET CLR 1.1.4322)

Host: www.google.co.uk

Proxy-Connection: Keep-Alive

Proxy-Authorization: Basic QWxhZGRpbjpvcGVuIHNlc2FtZQ==

and the proxy server's response, having checked the credentials might be
HTTP/1.1 200 OK

Via: 1.0 OURPRXY

Date: Thu, 30 Mar 2006 07:59:35 GMT

Content-Type: text/html

Cache-Control: private
Server: XYZ/2.2

…

The command Proxy-Authorization: Basic QWxhZGRpbjpvcGVuIHNlc2FtZQ== must be included in all

further requests to the proxy server from the client.

§§ 15.3.3 An ISP running Dyalog.DLL

In order to have a web server that runs Dyalog APL code and is accessible on the Internet it is clearly

necessary to have Dyalog APL running on a computer that is connected to the Internet.

Your Internet Service Provider may be willing, at a price, to run Dyalog APL but this gives you less

control than you would wish, at least during the development phase. Rather than ask your ISP to host

your site, why not host it yourself from an old computer in the shed outside?

15.3.3.1

Please ask for the next module on Web Clients.

