
 Day 2: Fourth Generation Dyalog APL – The Internet

117 of 195

Module13: APL Threads

Windows divides its workload into tasks or processes. Each process is allocated virtual address space

and given control of some resources. A thread is the smallest kernel-level object of execution. When a

process is created, a primary thread is generated along with it. This thread is then scheduled to run on a

processor. After the primary thread has started, it can create other threads that share its address space and

system resources but have independent contexts. Threads, like processes, can time-slice a processor’s

throughput leading to the illusion of parallel processing on single-processor machines, which are, usually,

most of the time looping idly.

Dyalog APL runs in a C thread. When APL starts up it generates an APL thread, called the base thread

or root thread, which can create other APL threads, each with their own execution stack and state

indicator. Thus Dyalog supports parallel processing of APL code via multi-threading whereby more than

one APL expression can apparently run concurrently. This allows background calculations to run at the

same time as interactive tasks, which greatly improves system responsiveness from a user's point of view.

§ 13.1 Spawning a new Thread

§§ 13.1.1 The Spawn Operator, &&&&

A thread is initiated by an asynchronous call on a monadic or dyadic function using the new monistic

primitive operator spawn (&).

 {TID}„{¸}f&¾ © Runs function f in a new thread with ID TID

The (shy) result of the derived function f& is the identity of the thread in which f is being run. When the

(ambivalent) function f terminates, its result (if any) is, by default, returned in the session.

 t„3×&4
12

 t ↳ 1
The result returned by the derived function ×& is not the result of the multiplication, but is the unique

thread number of the newly created thread – in this case ├t=1. We denote this behaviour by

 3×&4 ↳ 2
12

The thread number is now 2, the next available positive integer.

An analogous situation arises in the case of executing a diamondized statement whereby the result of an

expression is not necessarily that which is displayed in session.

 r„–'33ª44ª55' ↳ 55
33
44

Compare with

 r„–&'33ª44ª55' ↳ 3
33
44
55

which is run in thread number 3, or

 +°Œdl& 5 ↳ 4
5.078

 Day 2: Fourth Generation Dyalog APL – The Internet

118 of 195

which is run in thread number 4. Thread ID's are allocated sequentially from 0, the base thread ID, to

¯1+2*31 ↳ 2147483647, at which point, the sequence ‘wraps around’ and numbers are allocated

from 1 again, avoiding any still in use. The counter may be reset to 0 by)RESET.

Functions that take a significant length of time to return their result may be run in the background if their

results are not immediately required.

 #.–&'S„OLEServers'
Niladic functions can be accommodated by way of execute, or with a monadic dfn:

 –&'Niladic' © because Niladic& is syntactically incorrect
 {Niladic}&0 © argument 0 is discarded by monadic dfn

13.1.1.1

What would happen if you run function {+’&¾} on any argument?

A thread can spawn any number of new sub-threads. This implies a hierarchy of parent and child threads

whose ancestral root is ultimately in base thread number 0. Children of a terminated parent thread are

adopted by the grandparent.

Many parallel threads can be initiated by using each (¨) in conjuction with spawn (&) because f& �̈ is

equivalent to (f&)¨. Compare this with f �̈& which is equivalent to (f¨)& which launches only one

new thread.

13.1.1.2

Use the function ’make’ to initiate a number of ŒDQ'ed Forms in parallel.

 ’ make W
[1] ('F',•W)ŒWC'Form' ª ŒDQ'F',•W
 ’

In order to monitor and debug applications involving many threads a new threads tool has been

introduced in Dyalog version 10.1 (see Dyalog APL Version 10.1 Release Notes). The new tool may be

opened from the session menu by [Threads][Show Threads…] or pop-up menu [Threads…]. It too has a

pop-up menu.

13.1.1.3

Open the threads tool and view the threads created using ’make’ above. .

Delete each Form and observe the corresponding thread disappear.

13.1.1.4

Examine the function ’thrd’ which recurs until the SI stack is 4 levels deep.

 ’ thrd w © start with thrd 0 after)RESET
[1] :If (¯1+½ŒSI)<3
[2] thrd&w,1 © previous,
[3] thrd&w,2
[4] :End
[5] ŒDL ?10 © threads are adopted when parent disappears
 ’

 Day 2: Fourth Generation Dyalog APL – The Internet

119 of 195

Run the expression

 thrd 0
and watch the threads disappear in the thread tool.

§§ 13.1.2 Thread Identity from ŒTIDŒTIDŒTIDŒTID and ŒTNAMEŒTNAMEŒTNAMEŒTNAME

Each thread has a positive integer ID. The ID of the current thread may be found by means of a system

command,

)TID © Reports identity of current thread

or by way of a system function inside an APL program,

 TID„ŒTID © Current thread number

The result TID is a simple positive integer scalar, dataType ZSc. The base thread, which is always

present, has ╞ŒTID−0. This identity assumes that the base thread is the current thread. Otherwise

)RESET

 –&'ŒTID' ↳ 1
1

 –&'ŒTID' ↳ 2
2

Each thread can also be given an arbitrary name, dataType CVec, using the new system variable,

 ŒTNAME © The name of the current thread

Initially, in a new thread ╞ŒTNAME−''.

13.1.2.1

Modify the function ’thrd’ as below and create a global variable DL with a suitable delay value,

say 10 seconds

 ’ thrd w © start with "thrd 0" after)RESET
[1] Œ„ŒTNAME„(•ŒTID),':',(•w),'@level=',•¯1+½ŒSI
[2] :If (¯1+½ŒSI)<3
[3] thrd&w,1 © previous,
[4] thrd&w,2
[5] :End
[6] ŒDL DL
 ’
Open the Threads tools, reset the SI stack and

trace thrd 0 to line [5]. Right click on one of

the threads in the Threads tool and select [Auto

Refresh] and [Switch to]. See new trace window

with new current thread in the caption. A star

appears against this thread in the Threads tool

indicating that it is suspended. Use)TID to

verify that this is now the current thread. View

the)SI stack. Reset and save the workspace.

When more than one thread is running, the)SI stack is a branching tree originating from the root (base)

thread. If a thread sustains an untrapped error then execution of the thread is suspended and all other

threads are paused. The session is attached to the suspended thread making is possible to examine local

 Day 2: Fourth Generation Dyalog APL – The Internet

120 of 195

variables and trace through the code. Error messages are prefixed with thread numbers. More

information on debugging threads can be found in the Dyalog version 10.1 Release Notes. In particular,

the session supports a number of new facilities for examining thread states.

Threads are flagged in the Threads tool as either normal or paused. A paused thread is one that has

temporarily been removed from the list of threads that are being scheduled by the thread scheduler. A

paused thread is effectively frozen. Runaway threads may be paused with the [Pause All] item in the

Thread Tool pop up menu.

It is possible to switch suspension to a different thread, but not to a pendent thread, using the system

command)TID with a thread ID parameter.

)TID TID © Switch to suspension to thread number TID

This suspends a running thread and opens a new trace window on the thread, making it the current thread.

§§ 13.1.3 Thread Numbers with ŒTNUMSŒTNUMSŒTNUMSŒTNUMS and ŒTCNUMSŒTCNUMSŒTCNUMSŒTCNUMS

ŒTNUMS returns all the thread numbers corresponding to initialised threads.

 TIDs„ŒTNUMS © The numbers of all threads

The result of the niladic system function is a positive integer vector, dataType ZVec. ╞0¹ŒTNUMS

Each thread may have child threads. The resulting hierarchy may be analysed using the system function

ŒTCNUMS that reports only the child threads of the argument threads.

 ChildTIDs„ŒTCNUMS ParentTIDs © The numbers of all child threads of given parents

ParentTIDs is a simple array of thread numbers (dataType ZArr), and ChildTIDs is a simple vector

of thread numbers (dataType ZVec), or zilde if there are none.

13.1.3.1

In the function thrd above, set DL to 60 and trace into (Ctrl+Enter) thrd 0. Hit Enter until you

reach line [5]. This will initiate 14 new threads and keep them alive for a minute. Explore the results of

ŒTNUMS and ŒTCNUMS.

It is possible to terminate threads, and optionally (and by default) their dependents, under program control

with system function ŒTKILL:

 {Terminated}„{Descendents}ŒTKILL TIDs © Terminate threads/families in TIDs

The Rarg is a simple array of thread IDs (ZArr), Larg is a Boolean determining the fate of descendents

(default is 1, terminate entire progeny). The result is a simple vector of actual terminations (ZVec).

 ╞«−ŒTKILL 0 © the base thread is always present.
If an intermediate thread is terminated then the thread's parent adopts its children.

13.1.3.2

Add new line [2] to the function ’thrd’ and replace the delay with an infinite loop.
 ’ thrd w
[1] Œ„ŒTNAME„(•ŒTID),':',(•w),'@level=',•¯1+½ŒSI
[2] –Œ„'0',þ{ŒML„1 ª ¹¾}(¯1+½ŒSI)½›'Œtcnums¨'
[3] :If (¯1+½ŒSI)<3
[4] thrd&w,1
[5] thrd&w,2
[6] :End
[7] I„0 © I is local to thread
[8] :While 1 © otherwise thread disappears->adoption

 Day 2: Fourth Generation Dyalog APL – The Internet

121 of 195

[9] :If {(¾÷1000000)−˜¾÷1000000}I ©update showTree every 1E6
[10] updateTree w ŒTNAME I
[11] :End
[12] I„I+1
[13] :End’

where the function ’updateTree’ is
 ’ updateTree(W Name I);IDs;Ind
[1] IDs„‡³3 3 3 3‚0 9,(11+¼6),20+¼6 © list possible IDs
[2] Ind„IDs¼›4†w © look for current ID
[3] IDs„F.TV.Items
[4] IDs[Ind]„›Name,' #',•I © build item label
[5] F.TV.Items„IDs
[6] {F.TV.Expanding ¾}¨¼15 © NB can't do 1 ŒNQ... in thread
[7] ’

Run the niladic function ’showTree’. This sets up a TreeView of the coming thread hierarchy.
 ’ showTree
[1] 'F'ŒWC'Form'('Posn' 70 75)('Size' 25 20)
[2] 'F.TV'ŒWC'TreeView'('Size' 100 100)
[3] F.TV.Items„15½›,'-'
[4] F.TV.Depth„0 1 2 3 3 2 3 3 1 2 3 3 2 3 3
[5] F.TV.HasButtons„0
[6] {F.TV.Expanding ¾}¨¼15’

Open the Threads tool and check the [Auto Refresh] item. Run thrd 0thrd 0thrd 0thrd 0 after a)RESET

Watch the tree update every million counts. Notice the update order is not predictable. Hit Ctrl+Break

in the session. Notice the suspended thread is no longer updated. Break again. View the)SI stack.

Experiment with [Restart All], [Pause All], [Resume All], ŒTKILL, [Strong Interrupt] in the System Tray

and [Action][Interrupt] in the Session.

 Day 2: Fourth Generation Dyalog APL – The Internet

122 of 195

§ 13.2 MultiThread Interactions

§§ 13.2.1 Thread Synchronisation with ŒTSYNCŒTSYNCŒTSYNCŒTSYNC

Often it is necessary to wait for the result of a thread before another program can run. This situation is

managed using ŒTSYNC, which takes an argument of a simple array of thread numbers. ŒTSYNC waits

until the thread initiating function has finished and all the results, if any, have been produced. It then

returns an array of the same outer shape as the argument, each thread result (if there is one) being an

enclosed element of the array in the corresponding position.

 {ArrArr}„ŒTSYNC ZArr © Wait for and return results of all threads in ZArr

If a thread is subject to an active ŒTSYNC, the thread result appears as the result of ŒTSYNC rather than

in the session.

If one thread is waiting for another to finish and that one is waiting for another in a cyclic dependency

then a trappable DEADLOCK error (number 1008) is generated. This error is also generated if you attempt

to wait for the base thread to finish by ŒTSYNC 0.

§§ 13.2.2 Holding Tokens with :Hold:Hold:Hold:Hold

When many threads wish to access the same resource then a method of synchronising and controlling

access is needed. Access is controlled by tokens, arbitrary character vectors identifying entry into critical

sections of code.

 :Hold VecCVec ª … ª :Else ª … ª :EndHold © Attempt to acquire tokens

The control structure initiated by :Hold blocks entry into the next segment of code until all the tokens in

the vector of character vectors (VecCVec) have been acquired. If no other :Hold has acquired a token

then it may be acquired by the current thread. The token is released on exit from the structure.

If a :Else clause has been included then execution proceeds into the :Else clause if all the tokens in

VecCVec are not available. Each token may only be held once in the workspace. Trailing blanks are

ignored. Holds may be nested in a cumulative fashion, which gives a further danger of DEADLOCK.

Thus, function below always results in a DEADLOCK. (Note dfns do not support controls structures.)

 ’ foo
[1] :Hold '¼’|' '7896' '#.#.#' ''
[2] :Hold '¼’|'
[3] © never get here
[4] :End
[5] :End’

 foo
DEADLOCK
foo[2] :Hold '¼’|'
 ^
A list of all tokens which have been acquired or requested by a :Hold control structure can be displayed

by the system command)HOLDS.

)HOLDS © Reports all tokens acquired or requested by :Holds

This command displays all the tokens that have been acquired or requested, one per line. The token is

followed by a colon and then the (one and only) thread number which has acquired the token followed by

all the threads which are currently requesting it.

 Day 2: Fourth Generation Dyalog APL – The Internet

123 of 195

For example, given the DEADLOCK in force above,

 –&'foo' ↳ 1
 –&'foo' ↳ 2
)HOLDS
: 0 1 2
#.#.#: 0 1 2
7896: 0 1 2
¼’|: 0 1 2

§§ 13.2.3 Pooling Tokens with ŒTPUTŒTPUTŒTPUTŒTPUT and ŒTGETŒTGETŒTGETŒTGET

Dyalog version 10.1 contains an alternative method for synchronising threads. A pool of tokens is

maintained from which tokens may be acquired, when available, and into which tokens may be deposited.

In this context, a token has a different meaning from that in section 13.2.2. Tokens are no longer

character strings. They are represented by a non-zero integer scalar type, and may optionally have an

arbitrary array value.

The pool may contain up to 2*31 ↳ 2147483648 tokens. They are identified by their type and are

managed in a FIFO (first in first out) fashion and therefore do not have to be unique.

You can put a token, identified by its type and the sequential order in which it was deposited, into the

pool of tokens.

 {TIDs}„{Values}ŒTPUT Types © Puts token Types in pool, freeing threads TIDs

Types (dataType ZVec) is be a vector of token types. Values (dataType VecArr) is an optional vector

of values associated with each corresponding token. The default value is the type itself. The result, if

any, of ŒTPUT is a vector of thread numbers that have been unblocked by the introduction of the new

token(s) into the pool.

Let us put two tokens both of type 29 into the pool:

 «−ŒTPUT 29 ↳ 1
 «−ŒTPUT 29 ↳ 1
The niladic system function ŒTPOOL returns the type of every token in the pool.

 Types„ŒTPOOL © Returns Types of tokens in the pool

Types is a simple integer scalar or vector of token types, or zilde if empty. Thus

 ŒTPOOL ↳ 29 29

The ambivalent system function, ŒTGET, retrieves tokens from the pool and returns their values.

Negative tokens may be retrieved any number of times. Positive tokens are removed from the pool when

they are retrieved.

 {Values}„{TimeOut}ŒTGET Types © Gets token Types out of FIFO pool, when available

Types is a simple integer scalar or vector that specifies one or more tokens. TimeOut is a maximum

time in seconds to wait for a response (dataType NSc). Values is an arbitrary array value in the case of

a single token, or a vector of array values in the case of more than one token being retrieved. ŒTGET

returns only when the tokens are available (or in the event of a timeout in which case zilde is returned).

13.2.3.1

Try to get token type 29 when the pool is empty.

 Day 2: Fourth Generation Dyalog APL – The Internet

124 of 195

 ŒTGET& 29 © try to get token type 29
Note the appearance of a new thread in the Threads tool. Now place a token, type 29, in the pool.

 ŒTPUT 29
Try again and this time give the token a value.

 +°ŒTGET& 29
 ŒA ŒTPUT 29
 ABCDEFGHIJKLMNOPQRSTUVWXYZ
The output came from the ŒTGET and there are now no tokens in the pool. If we had put a negative type

in the pool then it could be retrieved any number of times as a positive type without being removed from

the pool. But getting a negative type removes it from the pool.

All tokens can be removed from the pool by ŒTGETŒTPOOL. Note that ŒTGET 0 can only be stopped by

a [Strong Interrupt] (from the System Tray icon).

13.2.3.2

Experiment with ŒAŒTPUT¯29, +°ŒTGET&29 and +°ŒTGET&¯29. Also experiment with a

request for two such tokens with, for example, +°ŒTGET&-29 29 and ŒAŒAIŒTPUT¨¯29.

Outstanding token requests from calls to ŒTGET in various threads can be found from the result of system

function ŒTREQ.

 Types„ŒTREQ TIDs © Current token requests for all thread identities TIDs

ŒTREQ takes a vector (or scalar) Rarg of thread IDs, and returns a vector of all the requested token

Types (ZVec or zilde) in all threads in TIDs (positive ZVec).

13.2.3.3)RESET to clear the pool. Put 26 tokens into the pool, with values 'A', 'B', .. 'Z'. Note the

contents of the Token Pool, which can be docked in the Threads tool. In thread 1, get all the values of 8 5

12 12 15 in a single ŒTGET request. Use ŒTREQ to examine the outstanding token requests, or look in

the Treq column of the Threads tool. Put another token 12 with value 'L' into the pool.

§ 13.3 General Thread Programming

§§ 13.3.1 Thread Switching

If you execute more than one Dyalog APL thread, a maximum of only one thread is actually running at

any instant; the others are paused. Each APL thread has its own State Indicator, or SI stack. When APL

switches from one thread to another, it saves the current stack (with all its local variables and function

calls), restores the new one, and then continues processing.

Execution may switch from one thread to another only at certain critical points in the code. Generally,

execution may not switch mid-line. But the interpreter may switch to a different APL thread

at the end of every line of code.

Therefore, one very useful way to ensure that two primitive expressions are executed sequentially without

interference from other threads is to place the two expressions on the same line, separated by a diamond

separator (ªªªª).

Global names set on one line of a function might not have the same value on the next line if other threads

access them.

Local names follow the same name scope rules in threads as they do without threads, except that each

thread stack should be viewed as an independent program stack as far as visibility of local names is

 Day 2: Fourth Generation Dyalog APL – The Internet

125 of 195

concerned. Local names created at a point in the code after the thread has been spawned are visible to the

code in that thread thereafter, but are not visible to threads spawned at an earlier stage. (See, for example,

the unlocalised variable I in the function ’thrd[7]’ above.)

If an intermediate thread is terminated, the grandparent adopts the child threads. This can cause names to

change scope and so, generally, all variables should be localised inside functions, especially in multi-

thread environments.

There are other times at which execution may switch from one thread to another. These are points at

which the interpreter is waiting in an idle state for input:

ŒDQ ŒDQ ŒDQ ŒDQ ŒDLŒDLŒDLŒDL ŒFHOLD ŒED ŒSR Œ p :Hold ŒFHOLD ŒED ŒSR Œ p :Hold ŒFHOLD ŒED ŒSR Œ p :Hold ŒFHOLD ŒED ŒSR Œ p :Hold.

Other times when the interpreter might execute code in other threads are: while waiting for input from the

ŒSEŒSEŒSEŒSE session, while waiting for a ŒNAŒNAŒNAŒNA function call to finish, while waiting for an AP function to finish

or while waiting for an OLE function to terminate. Thread interjection can be controlled with :Hold.

§§ 13.3.2 External Threads with ŒNAŒNAŒNAŒNA

Normally a ŒNA call runs in the same C-thread as APL itself. In order to make the call run entirely in the

background it must be run in a separate C-thread. This can be done by placing an & after the name of the

function in the ŒNA definition and calling the external function, so defined, through the spawn operator.

Consider the four different ways of running the external function, Sleep.

1. Calling Sleep in the normal way, for, say, 10 seconds (=10,000 milliseconds), causes the APL session

to completely cease responding for the duration:

 ŒNA'kernel32|Sleep I4' ª Sleep 10000 © EVERYTHING FREEZES

2. Calling Sleep in a separate APL thread the normal way through the spawn operator, for, say, 10

seconds, also causes the APL session to stop responding for the duration and does not continue

processing code until the 10 seconds has elapsed:

 ŒNA'kernel32|Sleep I4' ª Sleep&10000 © EVERYTHING FREEZES

3. Calling Sleep, having defined it in the ŒNA with a trailing &, causes the APL session to be partially

active but again all further processing of APL code is frozen until the 10 seconds has elapsed:

 ŒNA'kernel32|Sleep& I4' ª Sleep 10000 © SOME MENUS ACTIVE

4. Calling Sleep through the spawn operator, having defined it in the ŒNA with a trailing &, causes the

APL session to actively respond and further processing of APL code enabled immediately:

 ŒNA'kernel32|Sleep& I4' ª Sleep&10000 © ALL SESSION ACTIVE

It is not possible to thread the ŒDQ function directly.

 ŒDQ&'msg'ŒWC'MsgBox'
DOMAIN ERROR
This is because ŒDQ can only be run on objects in the same thread. It can, however, be run under cover.

 ŒFX'msg w' 'ŒDQ''msg''ŒWC''MsgBox'''
 msg&1

13.3.2.1

Repeat this with a Form and note that APL is free to continue processing in the parent thread after

the Form has been ŒDQ'ed in a separate thread.

 Day 2: Fourth Generation Dyalog APL – The Internet

126 of 195

In the special case of a MsgBox, and modal dialogue boxes such as a FileBox, all processing in other

APL threads is suspended until the message box has been dismissed.

13.3.2.2

Define a message box external function ’mbx1’ in the normal manner, and a second function

’mbx2’ that will run in a separate C thread.

 'mbx1'ŒNA'I user32|MessageBoxA I <0T <0T I'
 'mbx2'ŒNA'I user32|MessageBoxA& I <0T <0T I'
Call the functions in the four different ways; for example,

 mbx1 0 'call unthreaded' 'NA unthreaded' 1
and note the different responses. In particular note that this enables the special case of a message box to

run in a separate C-thread and free other APL-threads to continue processing.

One significant advantage of multi-threaded DLL calls that are run in separate C thread is the fact that

they, unlike APL threads, can take advantage of multiple processors, if the operating system allows it.

Once a C-thread has been started it is maintained in the APL-thread for subsequent use in that thread and

is discarded when the APL thread finishes. ŒNA calls that are to be run concurrently in separate APL-

threads should be ‘thread-safe’. Note that standard Windows API functions are thread safe.

ŒNA calls that interact with Dyalog GUI objects should generally be run in the same C-thread and

therefore should not be multi-threaded.

§§ 13.3.3 Threading callback Functions

All GUI objects are owned by the thread that created them. The Root object (#) and the Session objects

(ŒSE) are owned by the Base thread (0). If a thread is terminated then any objects that it owns become

owned by the parent object.

All the events generated by an object are reported to the thread that owns the object and cannot be

detected by any other threads. The only exception to this rule is events associated with TCPSocket

objects. Because of the danger of losing TCP events, which should be processed immediately, events

from TCPSockets can be seen in every thread.

There is a special syntax associated with threading callback functions of GUI objects. Ampersand (&) is

simply appended to the name of the callback function when it is associated with the object Event

property, in a similar fashion to that used in threaded ŒNA. This syntax applies equally to niladic callback

functions.

13.3.3.1

Consider a Form with a niladic callback ’draw’ that draws a Poly line on each MouseMove

event. The Form may be created by

 w„'Form'('Coord' 'Pixel')('BCol' 0 0 0)
 w,„('Size' 200 200)('Event' 'MouseMove' 'draw')
 'F'ŒWC w
where the callback function is defined as

 ’ draw;y1;x1;y2;x2 © line, lenght 10, random angle
[1] ŒDL 0.1 © waste some time
[2] y1 x1„?2½200 © random line origin
[3] x2„(?21)-11 © ¯10 ˆ x ˆ10
[4] y2„((10*2)-x2*2)*0.5 © since r2=x2+y2 for a circle
[5] y2 x2+„y1 x1 © add random origin
[6] 'F.'ŒWC'Poly'('Points'(2 2½y1 x1 y2 x2))('FCol'(?3½255))’

 Day 2: Fourth Generation Dyalog APL – The Internet

127 of 195

Using the mouse, drag your sprite over the Form and, at the same time, type in the session at the cursor

position. Note the response. Now define the Form with

 'F'ŒWS'Event' 'MouseMove' 'draw&'

Apply the same procedure again, perhaps with

the Threads tool open. Notice the difference in

both the drawing rate and the responsiveness of

the Session.

Callback functions may be processed by the default Session dequeue mechanism as invoked above, or

explicitly using ŒDQ. ŒDQ'.' will process events from any active visible object owned by the current

thread or created by callbacks from these objects.

13.3.3.2

Give ’draw’ a rarg. This can be useful for identifying the owner of an event when tracing. Trace

 ŒDQ'F'
via Ctrl+Enter. Move the sprite cautiously into the Form. Trace through some of the resulting threads

in the Debugger.

A thread may use ŒNQ to post an event to an object owned by another thread. Any valid Larg except 1

(process immediately) may be used with ŒNQ&.

13.3.3.3

Pass the Session (or any other window) over the Form F to clear the contents (because we used

unnamed Poly objects which are not refreshed). Enqueue the following events (from a separate thread)

and note the effects.

 Day 2: Fourth Generation Dyalog APL – The Internet

128 of 195

 ŒNQ&'F' 'MouseMove' (?200)(?200) 0 0
 0ŒNQ&'F' 'MouseMove' (?200)(?200) 0 0
 2ŒNQ&'F' 'MouseMove' (?200)(?200) 0 0
 1ŒNQ&'F' 'MouseMove' (?200)(?200) 0 0
DOMAIN ERROR
 F.MouseMove&(?2½200),0 0
Discuss the fundamental difference between the last two expressions.

For further information on multi-threading in Dyalog APL, see the Language Reference, Relnotes.hlp for

versions 8.2 and 10.1 and �www.dyalog.com � [Products][Version 10.1].

13.3.3.4

Please ask for the next module on TCP/IP Sockets ☺.

