
 Day 2: Fourth Generation Dyalog APL – The Internet

148 of 195

Module17: Dyalog.Net

§ 17.1 Revealing the .NET Framework

Vade mecum, but be prepared to meet some deeper shades of gray☻.

§§ 17.1.1 Getting Microsoft .NET

The Microsoft .NET Framework is the new low-level platform on which all Windows applications, and,

with the immanent appearance of Windows Vista, even operating systems, are supposed to be built. Once

upon a time Windows was built from DOS, the Disk Operating System software backbone of 80's PCs.

DOS itself was probably (see http://museum.sysun.com/museum/cpmhist.html) modified CP/M. CP/M

was originally developed around 1975 for Intel 8080 and Zilog Z80 on Intel's 8080 emulator under DEC's

TOPS-10 operating system.

Dyadic Systems and Zilog Inc. developed Dyalog APL as a joint venture around 1980 ☺.

By the beginning of the 90's, the Microsoft Windows Application Programmers Interface (API) had

appeared, based essentially on C functions in Dynamic Link Libraries (.DLL files). This was intended to

replace DOS completely as the new basis for application development. Windows and its API slowly

evolved away from DOS. Around the mid 90's, VB/VBA and OLE/COM were introduced as the new

foundations (language cum interface) upon which all user level applications were supposed to be built.

These dreams are still being realised today.

But now the intension is to replace all of these platforms with a new platform, called Microsoft .NET,

which is built ‘over’ the Windows API and is based essentially on libraries of C# functions. Other

languages, such as Dyalog APL, VB.NET, C++, Jscript, COBOL, FORTRAN, Python, RPG, Pascal,

SmallTalk, Perl, Oberon and Eiffel, can also contribute libraries as equal partners because of the common

language specification at the entrance to Microsoft .NET Framework functionality. The .NET base class

libraries, or assemblies, comprising over 30 .DLL files, contain a huge array of functions embedded in

classes, grouped within namespaces by area of application. These functions can all be called through a

highly object-oriented approach by a growing a number of programming languages, including Dyalog

APL. Documentation is found at http://msdn.microsoft.com/netframework/gettingstarted/default.aspx.

The Dyalog APL interface to .NET (Dyalog.Net) has been available from Dyalog version 9.5 onwards.

To run .NET a computer requires Windows 2000 or Windows XP Professional together with the

Microsoft .NET Framework (version 1 + SP1 or version 2). Both are freely installable from Microsoft

downloads at http://www.microsoft.com/downloads/Search.aspx?displaylang=en via dotnetfx.exe. The

.NET platform will be an integral part of the next and subsequent operating systems from Microsoft.

You can check your .NET framework installation level from [Control Panel][Add or Remove Programs],

or from registry entry HKEY_LOCAL_MACHINE\Software\Microsoft\NET Framework Setup\NDP\v1.1.4322\SP,

or by looking in directory ..\WINDOWS\Microsoft.NET\…

§§ 17.1.2 Assemblies (àààà), Namespaces (ññññ) and Classes (¢¢¢¢)

When Microsoft .NET is installed on your computer, you will find, a directory called something like

..\Microsoft.NET\Framework\v1.1.4322\ in your Windows directory. This directory contains about 30

DLLs that together (or in stand-alone subsets) form the substance of the .NET Framework and contain

almost all of the Microsoft-supplied functionality available to .NET programmers.

 Day 2: Fourth Generation Dyalog APL – The Internet

149 of 195

===== ASSEMBLIES (àààà) in the .NET Framework =====

mscorlib.dll
System.dll
System.Configuration.Install.dll
System.Data.dll
System.Data.OracleClient.dll
System.Design.dll
System.DirectoryServices.dll
System.Drawing.dll
System.Drawing.Design.dll
System.EnterpriseServices.dll
System.EnterpriseServices.Thunk.dll
System.Management.dll
System.EnterpriseServices.Thunk.dll
System.Management.dll
System.Messaging.dll
System.Runtime.Remoting.dll

System.Runtime.Serialization.Formatters.Soap.dll
System.Security.dll
System.ServiceProcess.dll
System.Web.dll
System.Web.Mobile.dll
System.Web.RegularExpressions.dll
System.Web.Services.dll
System.Windows.Forms.dll
System.XML.dll
cscompmgd.dll
ISymWrapper.dll
Microsoft.Jscript.dll
Microsoft.VisualBasic.dll
Microsoft.Vsa.dll

All word phrases here in green may be used, in one way or another (in character string arguments, as

methods/functions, as properties/variables, …) in Dyalog.Net code. There are over 14,000 new unique

dot-qualified strings available for inclusion in your programs in Dyalog.Net.

It's like going from the Roman alphabet to Chinese script, or from ŒAV to Unicode,

or from {the set of all letters} to {the set of all phrases}, or from the safe set of

integers, ℤ, all-be-they of infinite number aleph null (0א), to the wild real numbers, ℝ, or the beautiful complex numbers, ℂ, both of aleph one (1א)!

The .NET framework is highly object-oriented. An instance of an object is generally created from a class

which holds the object creation code. A class represents a species of object - like the Dandelion

(Taraxacum officinale) represents all the dandelions in your garden. Essentially, each .NET assembly (a

logical .DLL) contains a number of .NET namespaces that each contains many .NET classes (or object

blueprints). Classes contain members – these members include methods, properties, fields and events.

Here is a list of almost all the .NET namespaces from almost all the DLLs in the Microsoft .NET

Framework (version 1.1). Their content comprises the .NET base class library.

===== NAMESPACES (ññññ) in .NET Framework =====

System
System.CodeDom
System.CodeDom.Compiler
System.Collections
System.Collections.Specialized
System.ComponentModel
System.ComponentModel.Design
System.ComponentModel.Design.Serialization
System.Configuration
System.Configuration.Assemblies
System.Configuration.Install
System.Data
System.Data.Common
System.Data.Odbc
System.Data.OleDb
System.Data.OracleClient
System.Data.SqlClient
System.Data.SqlServerCE
System.Data.SqlTypes
System.Diagnostics
System.Diagnostics.SymbolStore
System.DirectoryServices
System.Drawing
System.Drawing.Design
System.Drawing.Drawing2D
System.Drawing.Imaging
System.Drawing.Printing

System.Drawing.Text
System.EnterpriseServices
System.EnterpriseServices.CompensatingResourceManager
System.EnterpriseServices.Internal
System.Globalization
System.IO
System.IO.IsolatedStorage
System.Management
System.Management.Instrumentation
System.Messaging
System.Net
System.Net.Sockets
System.Reflection
System.Reflection.Emit
System.Resources
System.Runtime.CompilerServices
System.Runtime.InteropServices
System.Runtime.InteropServices.CustomMarshalers
System.Runtime.InteropServices.Expando
System.Runtime.Remoting
System.Runtime.Remoting.Activation
System.Runtime.Remoting.Channels
System.Runtime.Remoting.Channels.Http
System.Runtime.Remoting.Channels.Tcp
System.Runtime.Remoting.Contexts
System.Runtime.Remoting.Lifetime
System.Runtime.Remoting.Messaging

 Day 2: Fourth Generation Dyalog APL – The Internet

150 of 195

System.Runtime.Remoting.Metadata
System.Runtime.Remoting.Metadata.W3cXsd2001
System.Runtime.Remoting.MetadataServices
System.Runtime.Remoting.Proxies
System.Runtime.Remoting.Services
System.Runtime.Serialization
System.Runtime.Serialization.Formatters
System.Runtime.Serialization.Formatters.Binary
System.Runtime.Serialization.Formatters.Soap
System.Security
System.Security.Cryptography
System.Security.Cryptography.X509Certificates
System.Security.Cryptography.Xml
System.Security.Permissions
System.Security.Policy
System.Security.Principal
System.ServiceProcess
System.Text
System.Text.RegularExpressions
System.Threading
System.Timers
System.Web
System.Web.Caching
System.Web.Configuration
System.Web.Hosting
System.Web.Mail
System.Web.Mobile
System.Web.Security

System.Web.Services
System.Web.Services.Configuration
System.Web.Services.Description
System.Web.Services.Discovery
System.Web.Services.Protocols
System.Web.SessionState
System.Web.UI
System.Web.UI.Design
System.Web.UI.Design.WebControls
System.Web.UI.HtmlControls
System.Web.UI.MobileControls
System.Web.UI.MobileControls.Adapters
System.Web.UI.WebControls
System.Windows.Forms
System.Windows.Forms.Design
System.Xml
System.Xml.Schema
System.Xml.Serialization
System.Xml.XPath
System.Xml.Xsl
Microsoft.CSharp
Microsoft.JScript
Microsoft.VisualBasic
Microsoft.Vsa
Microsoft.Win32

Each namespace contains a number of classes that can instantiate objects. Altogether there are over 700

classes in Microsoft .NET. One library of namespaces, mscorlib.dll, contains the core classes from

which many other common classes inherit behaviour and characteristics. The .NET namespaces to be

found in mscorlib.dll are:

===== NAMESPACES (ññññ) in mscorlib.dll Assembly =====

System
System.Collections
System.Configuration.Assemblies
System.Diagnostics
System.Diagnostics.SymbolStore
System.Globalization
System.IO
System.IO.IsolatedStorage
System.Reflection
System.Reflection.Emit
System.Resources
System.Runtime.CompilerServices
System.Runtime.InteropServices
System.Runtime.InteropServices.Expando
System.Runtime.Remoting
System.Runtime.Remoting.Activation
System.Runtime.Remoting.Channels
System.Runtime.Remoting.Contexts
System.Runtime.Remoting.Lifetime

System.Runtime.Remoting.Messaging
System.Runtime.Remoting.Metadata
System.Runtime.Remoting.Metadata.W3cXsd2001
System.Runtime.Remoting.Proxies
System.Runtime.Remoting.Services
System.Runtime.Serialization
System.Runtime.Serialization.Formatters
System.Runtime.Serialization.Formatters.Binary
System.Security
System.Security.Cryptography
System.Security.Cryptography.X509Certificates
System.Security.Permissions
System.Security.Policy
System.Security.Principal
System.Text
System.Threading
Microsoft.Win32

In the entire .NET Framework base class library there are over 30 assemblies, altogether containing over

100 namespaces. These 100 or so namespaces together contain over 700 classes. These 700 or so base

classes (and their instantiated objects) are all immediately available to Dyalog.Net programmers.

The namespaces are organised hierarchically. This avoids name clashes and helps to approximately

categorize the functional (or objective) nature of the contents.

The System.Collections namespace in mscorlib.dll, for example, contains about 25 classes.

 Day 2: Fourth Generation Dyalog APL – The Internet

151 of 195

===== CLASSES (¢¢¢¢) in System.Collections Namespace =====

System.Collections.ArrayList
System.Collections.BitArray
System.Collections.CaseInsensitiveComparer
System.Collections.CaseInsensitiveHashCodeProvider
System.Collections.CollectionBase
System.Collections.Comparer
System.Collections.DictionaryBase
System.Collections.DictionaryEntry
System.Collections.Hashtable
System.Collections.ICollection
System.Collections.IComparer
System.Collections.IDictionary
System.Collections.IDictionaryEnumerator

System.Collections.IEnumerable
System.Collections.IEnumerator
System.Collections.IHashCodeProvider
System.Collections.IKeyComparer
System.Collections.IKeyedCollection
System.Collections.IList
System.Collections.KeyComparer
System.Collections.Queue
System.Collections.ReadOnlyCollectionBase
System.Collections.SortedList
System.Collections.Stack

Classes are used to create objects which have properties and methods. In the interests of application

efficiency, some information about a class is not carried around with the class itself but is kept separately

in its MetaData which is stored in the assembly's corresponding type library, or .TLB file. Typically, a

class itself has no GetMethods method. Instead, you have to use the GetType method to instantiate a

reflection of the original object in order to list the methods. The reflected object may be of ‘dataType’

System.RuntimeType. This object inherits the niladic ToString method that reports the dataType

of the original object as, for example, System.Collections.ArrayList in the case of an instance

of ArrayList. It also has GetMethods, GetProperties and GetFields methods that describe

the members of the original instance of the System.Collections.ArrayList class. These

methods access the MetaData which contains member names, dataTypes and method calling information.

Classes contain Methods, Properties, Fields and Events.

If we create an instance of the System.Object class then the default display form of the instance also

happens to be System.Object, and the dataType of the instance is also called System.Object.

However, these three names are logically distinct. The name of the class need not be identical to the

dataType description of the instance, which need not be identical to the object display form. Thus, for

example, the GetType method of an instance of the ArrayList class returns an instance of an object

of the System.Type class whose dataType is reported as System.RuntimeType and whose display

form is the full class name of the original instance, viz System.Collections.ArrayList. The

ToString method is inherited by most objects. Its result is of type System.String and is returned

to APL as a simple character vector. This is the default display form of an object and often spells out the

 Day 2: Fourth Generation Dyalog APL – The Internet

152 of 195

dataType (or type) of the object. In Dyalog version 11, the display form of an object may be set to any

arbitrary character array via the new System Function ŒDF.

17.1.2.1

What assembly do you think the System.ServiceProcess namespace is probably in? What

namespace contains the System.ServiceProcess.ServiceControllerPermissionEntry

class? (Version 11 has extended ŒNL to facilitate the latter question.)
Hint: Use Google or consult http://msdn.microsoft.com/library/.

§§ 17.1.3 Using ŒUSINGŒUSINGŒUSINGŒUSING

Occasionally namespaces have members that are spread across multiple assemblies. In particular, the

System namespace is spread over mscorlib.dll and system.dll. A .NET namespace is a logical design-

time naming convenience, used mainly to organize classes in a single hierarchical structure. From the

viewpoint of the runtime, there are no namespaces. Nevertheless, treating an assembly as a namespace

receptacle is a welcome convenience. But it is therefore not easy programmatically to get a list of

namespaces from an assembly name and so the namespace name together with its assembly origin must

be specified before it can be utilized.

Dyalog APL contains a new system variable called ŒUSING. It is a bit like ŒPATH which redirects APL

to the location of some function that is in another APL namespace. ŒUSING (closely analogous to the

using directive in C#) redirects APL to the location of some class which is in some particular .NET

namespace which is in some particular assembly.

 ŒUSING„'ñ1,à1' 'ñ2,à2' … © Use .NET namespace ñi from assembly ài

In a new clear workspace ╞ŒUSING−0½›''. APL namespaces and programs inherit their local value of

ŒUSING from the parent space, like ŒPATH. Unlike ŒPATH, the System Variable ŒUSING cannot be

saved in the .DSE Session file.

ŒUSING is a vector of character vectors (APL dataType VecCharVec) each character vector of which

contains two parts separated by a comma. The first part specifies the case-sensitive name of a .NET

namespace, and the second part specifies the name of a DLL file, thus

 ŒUSING„,›'NetNamespace,C:\..\Assembley.dll'
The primary assembly in the .NET framework, containing the most commonly used namespaces, is

mscorlib.dll. The namespace in this assembly with the most commonly used classes is named the

System namespace. Its content is exposed to APL by setting

 ŒUSING„,›'System,mscorlib.dll'
This particular namespace, and only this space, may be exposed by simply typing ŒUSING„'System',

or even just ŒUSING„'' as long as you thereafter prefix everything with "System.". We shall use the

verbose first form for clarity, and because all other namespaces have to be treated this way.

This establishes the basic starting point for Dyalog.Net. If, for example, classes in the namespace

System.Windows.Forms are also to be invoked in Dyalog.Net code then the entry

 ŒUSING,„›'System.Windows.Forms,System.Windows.Forms.dll'
must be added to the local list of namespace paths.

17.1.3.1

Set ŒUSING in such a way that all the classes in .NET namespace System and .NET namespace

System.Windows.Forms may be used directly from Dyalog APL.

 Day 2: Fourth Generation Dyalog APL – The Internet

153 of 195

§ 17.2 Exploring the .NET Interface

§§ 17.2.1 Examining Classes

In the impressive hierarchical structure of .NET there is another level above the assembly level, and

another level beyond that as well as levels below the class level and the object hierarchies generated in a

program. Therefore it is easy to get lost in the framework.

Processes⊃Application Pools⊃AppDomains⊃.NET Threads⊃Assemblies⊃.NET Namespaces⊃Classes⊃Objects⊃Members

We shall occasionally indicate whether something is an assembly by à, a namespace by ñ or a class by ¢.

Consider AppDomain (¢) in System (ñ) in mscorlib.dll (à). This class represents an application

domain, which is an isolated environment where applications execute.

 RSc„AppDomain © Class in System ñ in mscorlib.dll à

The class has a CurrentDomain property that gets the current application domain for the current thread

object. (Thread (¢) in System.Threading (ñ) in mscorlib.dll (à) creates and controls a

thread, sets its priority, and gets its status.)

 RSc„AppDomain.CurrentDomain © Property of AppDomain ¢ returning a domain object

CurrentDomain returns an object of dataType System.AppDomain.

 RVec„AppDomain.CurrentDomain.GetAssemblies © Property returns objects

This object has a GetAssemblies method that returns a vector of objects of dataType

System.Reflection.Assembly representing the assemblies currently loaded in the application

domain, each with a different display form containing a long string of individual information such as

assembly name and version.

 TVec„AppDomain.CurrentDomain.GetAssemblies.GetType›« © Vec of objects

The ubiquitous (inherited) niladic GetType method of Assembly ¢ in System.Reflection ñ in

mscorlib à allows one to discover the dataType of the vector of assembly objects.

 VecRVec„AppDomain.CurrentDomain.GetAssemblies.GetTypes © Mirrors

The niladic GetTypes method of Assembly ¢ in System.Reflection ñ in mscorlib à returns

a vector of vectors of objects (VecRVec) of dataType System.Type which describe all the dataTypes

found in the assembly. So, for example,

 ŒUSING„'System,mscorlib.dll' ↵
 'System.Windows.Forms,System.Windows.Forms.dll'¶
 {(«½½¾)1½¾}AppDomain.CurrentDomain.GetAssemblies
 mscorlib, Version=2.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089
 bridge110, Version=11.0.0.0, Culture=neutral, PublicKeyToken=eb5ebc232de94dcf
 dyalognet, Version=11.0.0.0, Culture=neutral, PublicKeyToken=eb5ebc232de94dcf
 System.Windows.Forms, Version=2.0.0.0, Culture=neutral, PublicKeyToken=b77a5c54e089
 System, Version=2.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089
 System.Drawing, Version=2.0.0.0, Culture=neutral, PublicKeyToken=b03f5f7f11d50a3a

Note the appearance of two Dyalog-specific assemblies. Dyalog APL (version 11) communicates with

the .NET framework via the Dyalog-distributed interface libraries, bridge110.dll and dyalognet.dll.

 ½¨AppDomain.CurrentDomain.GetAssemblies.GetTypes
 2320 178 6 2220 1783 294

 VecRVec„AppDomain.CurrentDomain.GetAssemblies.GetExportedTypes

The related GetExportedTypes method of Assembly ¢ returns six subsets of System.Type

objects containing information about public classes in each of the six assemblies.

 ½¨AppDomain.CurrentDomain.GetAssemblies.GetExportedTypes

 Day 2: Fourth Generation Dyalog APL – The Internet

154 of 195

 1287 35 4 1053 872 186
 3†œAppDomain.CurrentDomain.GetAssemblies.GetExportedTypes
 System.Object System.ICloneable System.Collections.IEnumerable

 VRV„AppDomain.CurrentDomain.GetAssemblies.GetExportedTypes.Module

Each of these objects is of dataType System.Type and has a Module property that returns an object of

dataType System.Reflection.Module whose default display form describes the assembly in

question.
 3†œAppDomain.CurrentDomain.GetAssemblies.GetExportedTypes.Module
 CommonLanguageRuntimeLibrary CommonLanguageRuntimeLibrary CommonLanguageRuntimeLibrary

 ŒCSœœAppDomain.CurrentDomain.GetAssemblies.GetExportedTypes.Module
)NS
#.[System.AppDomain].[System.Reflection.Assembly].[System.RuntimeType].[System.Reflection.Module]

17.2.1.1

Objects of dataType System.Type have some properties that return simple string or Boolean

values. Investigate the properties IsClass, IsPublic, Name, Namespace and FullName. Write

an expression that returns a vector of objects of dataType System.RuntimeType which describe all

the public classes in the first assembly in the current domain.

17.2.1.2

Check that the System.Math class is available for use when ├ŒUSING−''.

Hint: Look at the 'Name Category' (ŒNC) of ›'Math'.

§§ 17.2.2 Examining Methods

In Microsoft .NET there are no functions or variables outside classes. Some methods in some .NET

classes, such as those considered in §§17.2.1, may be used without explicitly creating instances. They

have some public methods and properties accessible directly from the class namespace. System.Math

is such a class. It is a container for some simple mathematical functions which may be called directly

from the class. A few basic mathematical methods and fields are immediately available from the Math

class, assuming that the System namespace is on the ŒUSING path.

 Math.((Sin 0.5)(Asin 0.5)) ↳ 1 ¯1±0.5 ↳ 0.4794.. 0.5235...
 Math.((Log 0.5)(Exp 0.5)) ↳ (µ0.5)(*0.5) ↳ ¯0.6931.. 1.648...
 Math.Abs¨¯5+¼9 ↳ |¯5+¼9 ↳ 4 3 2 1 0 1 2 3 4
 Math.(E PI) ↳ (*1)(±1) ↳ 2.7182.. 3.1415...

Remember that .. and ... were defined as single symbols.

17.2.2.1

Load the MetaData for the Math class and try using some of the methods in the class.
Hint: Right click MetaData in WS Explorer to load the .TLB file

Make sure [View][Type Libraries] in WS Explorer is checked.

Most .NET classes are used by creating an instance of the class. In .NET, to examine programmatically

the information associated with members of a class (methods, properties, etc..), you have to create an

instance of the class and then use the GetType method to create an associated object of dataType

System.Type and examine the results of its GetMethods and GetProperties methods.

Information about the original object-generating class is extracted from the assembly Type Library file

(.TLB) and is reported via a Type object instantiated from the Type class.

In typical OO style, the .NET Framework deals in classes and objects and methods and properties...

(Events may be used as methods via 4ŒNQ … and from version 10.1 onwards it is possible to declare

events on NetType objects created with Dyalog APL.)

 RSc„ŒNEW ¢ … © Create (instantiate) an instance of the class

 Day 2: Fourth Generation Dyalog APL – The Internet

155 of 195

In Dyalog version 11 instances may be created from classes with the ŒNEW system function. This

monadic function takes a class as the first parameter of its argument, followed by a second parameter if

required. For example, assuming the System namespace is visible,

 DT„ŒNEW DateTime (2006 7 4)

creates a new instance specifically relating to Independence Day of the DateTime class. The

MethodList and PropList properties of this instance return a list of its methods and properties. The

list of methods (with further dataType information) may be discovered from MetaData or, equivalently,

from expressions such as

 2†DT.GetType.GetMethods «
System.DateTime Add(System.TimeSpan) System.DateTime AddDays(Double)

17.2.2.2

Find the minimum and maximum dates allowed for a DateTime object.

Returning to the ArrayList class, given that ŒUSING is set appropriately, eg

 ŒUSING„'System,mscorlib.dll' ↵
 'System.Collections,System.Collections.dll'¶
an instance of the ArrayList class may be created by the statement

 AL„ŒNEW ArrayList
and the methods associated with this object may be obtained using its MethodList property.

Alternatively, a more detailed description of each method may be obtained from the GetMethods

method of the reflected object. Unsurprisingly (by now) the GetMethods method returns a vector of

objects. The display form of each object (dataType System.Reflection.RuntimeMethodInfo)

gives information about a method and its syntax.

 2†AL.GetType.GetMethods «
 Int32 get_Capacity() Void set_Capacity(Int32)

Thus each class (object creation program inside its own space) contains a number of methods (functions).

For example, the System.Collections.ArrayList class contains the following methods.

== METHODS in System.Collections.ArrayList Class ==

 System.Collections.ArrayList Adapter (System.Collections.IList)

 Void AddRange (System.Collections.ICollection)

 Int32 Add (System.Object)

 Int32 BinarySearch (Int32, Int32, System.Object, System.Collections.IComparer)

 Int32 BinarySearch (System.Object, System.Collections.IComparer)

 Int32 BinarySearch (System.Object)

 Void Clear ()

 System.Object Clone ()

 Boolean Contains (System.Object)

 Void CopyTo (Int32, System.Array, Int32, Int32)

 Void CopyTo (System.Array, Int32)

 Void CopyTo (System.Array)

 Boolean Equals (System.Object)

 System.Collections.ArrayList FixedSize (System.Collections.ArrayList)

 System.Collections.IList FixedSize (System.Collections.IList)

System.Collections.IEnumerator GetEnumerator (Int32, Int32)

System.Collections.IEnumerator GetEnumerator ()

 Int32 GetHashCode ()

 System.Collections.ArrayList GetRange (Int32, Int32)

 System.Type GetType ()

 Int32 IndexOf (System.Object, Int32, Int32)

 Int32 IndexOf (System.Object, Int32)

 Int32 IndexOf (System.Object)

 Void InsertRange (Int32, System.Collections.ICollection)

 Void Insert (Int32, System.Object)

 Int32 LastIndexOf (System.Object, Int32, Int32)

 Int32 LastIndexOf (System.Object, Int32)

 Int32 LastIndexOf (System.Object)

 System.Collections.ArrayList ReadOnly (System.Collections.ArrayList)

 System.Collections.IList ReadOnly (System.Collections.IList)

 Day 2: Fourth Generation Dyalog APL – The Internet

156 of 195

 Void RemoveAt (Int32)

 Void RemoveRange (Int32, Int32)

 Void Remove (System.Object)

 System.Collections.ArrayList Repeat (System.Object, Int32)

 Void Reverse (Int32, Int32)

 Void Reverse ()

 Void SetRange (Int32, System.Collections.ICollection)

 Void Sort (Int32, Int32, System.Collections.IComparer)

 Void Sort (System.Collections.IComparer)

 Void Sort ()

 System.Collections.ArrayList Synchronized (System.Collections.ArrayList)

 System.Collections.IList Synchronized (System.Collections.IList)

 System.Array ToArray (System.Type)

 System.Object[] ToArray ()

 System.String ToString ()

 Void TrimToSize ()

 Int32 get_Capacity ()

 Int32 get_Count ()

 Boolean get_IsFixedSize()

 Boolean get_IsReadOnly()

 Boolean get_IsSynchronized()

 System.Object get_Item (Int32)

 System.Object get_SyncRoot ()

 Void set_Capacity (Int32)

 Void set_Item (Int32, System.Object)

Names of methods are repeated in this list when dataTypes of argument parameters vary. Each line

specifies one way in which the method may be called. The situation often arises in APL, but behind the

scenes. Consider, for example, the dyadic primitive functions ¼ and ~. Their arguments may be numeric

or character. Under the covers, APL checks which and applies the required algorithm. Dyadic ½ can

accommodate a right argument of many different dataTypes and, as of version 11, the arguments to ^ and

Ÿ may be Boolean or integer. The arguments to ! may be integer or real, etc… Unlike APL (and

VBScript ...), but like most mainstream low-level programming environments such as FORTRAN, VB

and C#, .NET requires us to be more explicit about possible types of arguments to and results of methods.

In fact it might be useful to include in APL documentation the explicit calling options associated with

each primitive function. However, to specify the precise structure of every intermediate array in an APL

application would be a thankless task.

ŒNEW is not the only way in which instances of classes may be created. Classes often have methods that

return instances. For example, the DateTime class has a property (niladic function) called Now. Now

returns an object of dataType System.DateTime.

17.2.2.3

Use the IsLeapYear method of an instance of the DateTime class created by the Today

property to determine whether or not the year 3000 is a leap year.

§§ 17.2.3 Examining Properties

Normally, classes instantiate objects whose methods and properties are then used and changed. Consider,

DateTime ¢, in System ñ, in mscorlib.dll à. This class has a property (niladic function) called

Now. Now returns an object of dataType System.DateTime. (This is dataType as met in Module 0.

In .NET there is a Type class whose purpose is to yield object dataType information.)

 DT„DateTime.Now
DT is an object with about 90 methods and 59 properties,

 ½¨DT.(MethodList PropList) ↳ (,90)(,59)

and whose dataType is discovered from the default display form (see ŒDF) of the object returned by the

(in this case niladic) GetType method (which is inherited ubiquitously from System.Object ¢).

 •DT.GetType ↳ 'System.DateTime'
GetType returns an object of type System.Type. This object has an Assembly property whose

display form contain the name of the assembly from which the current type has come.

 Day 2: Fourth Generation Dyalog APL – The Internet

157 of 195

 8†•DT.GetType.Assembly ↳ 'mscorlib'
(Note that the Type class has a monadic GetType method that takes a String argument.)

The object returned by the Assembly property of the instance of the Type class representing the DT,

 Ass„DT.GetType.Assembly
itself has a GetTypes method that returns a vector of objects (RVec) representing all classes in the

assembly.

 ½All„Ass.GetTypes ↳ 2373
Some of these classes are Enumerations – their principal purpose is to supply alternate names for values

of an underlying primitive instance. All the objects in vector All have a niladic method, IsEnum,

which returns a Boolean value indicating whether the corresponding object in All is an Enumeration.

 ½Enums„(All.IsEnum)/All ↳ 384
Taking the first such type, the GetFields method gets all the field names for the first Enum in the list.

 ½Enums[1].GetFields « ↳ 17
A field is a member of an object or class and represents a variable associated with the object or class. For

example, if the 23
rd

 enumeration is the System.DayOfWeek enumeration

 ├•Enums[23] ↳ � 'System.DayOfWeek'

then the fourth field in the enumeration happens to be the Tuesday public static field.

 •4œEnums[23].GetFields « ↳ 'System.DayOfWeek Tuesday'

17.2.3.1

Use an instance of DateTime ¢ to find the day of the week today.

17.2.3.2

Verify that the object returned by Assembly (of dataType System.Reflection.Assembly)

has a Location property that returns a string containing the directory in which the assembly resides.

17.2.3.3

Find how many classes there are in System.Web.dll.
Hint: Create a new instance of, say, System.Web.UI.Control or System.Web.Mail.MailMessage.

As with object methods, the dataTypes associated with object properties make up an essential part of their

specification. Therefore, in the interests of clarity, we talk about dataType – an adjective describing

what type of data structure an object conforms to. You might think of it as a very sophisticated (albeit

non-existent) version of monadic ŒDR. For simple objects like the number 9, the dataType might be

System.Int16. System.Int16 is actually a value type – a light-weight class which is treated as a

value rather than a full-blown class in most situations. On the other hand, the dataType of a more

complicated object such as an instance of the ArrayList class is usually described in the same words

as the namespace-qualified name of the class itself - System.Collections.ArrayList.

System.Collections.ArrayList is called a reference type – a full-blown object passed around

by reference to it (shallow copy) rather than by making a copy (deep copy).

= PROPERTIES in System.Collections.ArrayList Class =

 Int32 Capacity

 Int32 Count

 Boolean IsFixedSize

 Boolean IsReadOnly

 Boolean IsSynchronized

 System.Object SyncRoot

 System.Object Item [Int32]

Note that the Item property looks different from the others - it seems to take an argument! Properties

are often like shared variables and are accessed through get_.. and set_.. control functions. Fields are

more like simple APL variables. Methods are like locked monadic or niladic functions – sometimes

 Day 2: Fourth Generation Dyalog APL – The Internet

158 of 195

cameleon-like, ie either! Events are treated like methods in Dyalog.Net and cannot as yet be assigned

callback functions.

The GetProperties method returns objects representing the properties of a DateTime object, with

their dataTypes.

 •3œDT.GetType.GetProperties « ↳ 'System.DayOfWeek DayOfWeek'
 ½DTP„{(«½½¾)1½¾}DT.GetType.GetProperties « ↳ 16 1

Thus the DayOfWeek property returns an object of

type System.DayOfWeek, whose display form is

the actual day of the week relating to the instance

date, whereas Day contains a simple integer day

number (Int32 => ZSc) relating to the instance date.

 DT.DayOfWeek.ToString « © CVec
Tuesday
 •DT.DayOfWeek © CVec
Tuesday

 ŒFMT DT.DayOfWeek © CMat
Tuesday

 DT.DayOfWeek © RSc
Tuesday

17.2.3.4

With a new instance of DirectoryInfo ¢ from System.IO ñ, call the GetFiles method

with argument '*.*' to get (objects representing) all the files in a given DOS directory. Then read the

Name and CreationTime properties of the vector of instances, dataType System.IO.FileInfo,

to access the file details.

§ 17.3 Digging into .NET

§§ 17.3.1 Windows Forms

Now that we know how to create instances of .NET classes by ŒUSING the System namespace

 (ŒNEW DateTime(3†ŒTS)).ToString « ↳ '11/04/2006 00:00:00'
and understand that objects may be created with different constructors

 (ŒNEW DateTime(6†ŒTS)).ToString « ↳ '11/04/2006 10:07:21'
and can recognise some different categories of objects

 DI„ŒNEW IO.DirectoryInfo(›'C:\windows')ªŒNC›'DI' ↳ 9.3
and appreciate some of the idiosyncrasies/niceties of .NET and the Dyalog calling syntax

 (œDI.(GetFiles›'*.exe')).FullName ↳ 'C:\windows\alcrmv.exe'
and know how to read syntax from MetaData (but beware of WS FULL for this large assembly), we

should be able to build applications based on .NET classes. The Dyalog supplied workspaces in

..\samples\winforms\ give some excellent examples as does the Dyalog.Net Interface Guide. Here we just

skim the surface.

In order to create a Form in .NET it is necessary to access System.Windows.Forms ñ.

 ŒUSING„'System.Windows.Forms,System.Windows.Forms.dll'
We can then immediately create a Form, and make it Visible

 F„ŒNEW Form ª F.Visible„1

 Day 2: Fourth Generation Dyalog APL – The Internet

159 of 195

 compared with 'F2'ŒWC'Form'

The only visible difference is the default Icon. The differences between Windows GUI and Windows

.NET Forms begin to diverge from this close (guess why) start.

The GUI Form has an OnTop property which becomes TopMost in .NET. The Caption property

becomes the Text property and the Size and Posn properties are each a combination of two properties:

 F.(Height Width)„200 300 © was Size
 F.(Top Left)„100 200 © was Posn
There is also a Location property which has dataType System.Drawing.Size. This is more like

the old Posn property in the sense that it accepts the Top and the Left coordinates in one gollop. But

in order to achieve this we have to create an instance of System.Drawing.Size ¢ via Point ¢.

One way of constructing an instance of System.Drawing.Point ¢ is with a ŒNEW object parameter

of dataType System.Drawing.Size which is what we are trying to create in the first place. Luckily

there is also a constructor with (Int32, Int32) for X and Y.

 ŒUSING,„›'System.Drawing,System.Drawing.dll'
 F.Location

Pt„ŒNEW Point (10 10)
 F.Location„Pt © was Posn

17.3.1.1

Set the Form size in one statement using the ClientSize property.

A Button object, an instance of Button ¢, of dataType System.Windows.Forms.Button and

display form System.Windows.Forms.Button, Text:…, may be created by

 B„ŒNEW Button
.NET does not really have the concept of namespace hierarchies. For naming convenience, namespaces

appear to be arranged hierarchically, but in fact, if a namespace called A.B.C.D exists in .NET then this

does not imply that any of A, A.B or A.B.C has to exist. The .NET way of assigning a parent-child

relationship to the Form and the Button is by way of the Controls property of a Form which

supplies an instance of the class System.Windows.Forms.Control which has an Add method.

 œF.Controls.MethodList ↳ 'Add'
This method takes an object as its argument and adds it to the collection of controls comprising the

children of F.

 F.Controls.Add B

17.3.1.2
Trace the ’scribble’ function below and use MetaData to verify the comments.

 Day 2: Fourth Generation Dyalog APL – The Internet

160 of 195

 ’ scribble;F;GR;PB © Scribble lines on a Form.
[1] ŒUSING„'System.Windows.Forms,System.Windows.Forms.dll' © Initiate System.Windows.Forms
[2] ŒUSING,„›'System.Drawing,System.Drawing.dll' © and System.Drawing namespaces.
[3] F„ŒNEW Form © Create inst.of System.Windows.Forms.Form ¢
[4] F.Visible„1 © and make it visible.
[5] PB„ŒNEW PictureBox © Create instance of ..Forms.PictureBox ¢
[6] PB.Size„F.Size © and make Size same as Form.
[7] F.Controls.Add PB © Add control to Form.
[8] GR„PB.CreateGraphics © Create Graphics obj with CreateGraphics m
[9] GR.{DrawLine(Pens.Gold,¾)}¨‡?100 4½300 © Run DrawLine m of ..Drawing.Graphics ¢
[10] GR.{DrawLine(Pens.Chocolate,¾)}¨‡?100 4½300 © using Chocolate p of System.Drawing.Pens ¢
[11] GR.{DrawLine(Pens.BlueViolet,¾)}¨‡?100 4½300 © to create a System.Drawing.Pen object.
[12] F.Close © Close the Form.
 ’

What class owns the Add method?

17.3.1.3

Trace the ’_Grid2’ function in supplied workspace ..\samples\winforms\winforms.dws.

An Edit object becomes a TextBox class in Dyalog.Net, a Grid object becomes a DataGrid class

but a Label is still called a Label and a StatusBar is still called a StatusBar. ☺

The definitive guide to .NET framework class libraries is MSDN (MicroSoft Dot Net), available on-line

or as a download.

17.3.1.4

Assign a simple ’show’ function to the onClick property of Button B. Trace the line

 Application.Run F
and compare with ŒDQ. Notice that the message argument is a 2-vector of objects.

17.3.1.5

Trace the .NET-laced ’RUN’ function in workspace ..\samples\winforms\gdiplus.dws, watching

out for the Timer ¢ instance.
Hint: Trace Application.Run Form1 rather than using the Session implicit ŒDQ.

17.3.1.6

Play a pretty game of Tetris in workspace ..\samples\winforms\tetris.dws, then trace the

exhibition-quality Dyalog.Net code. Take care with the onTick event and multi-threading when tracing.

 Day 2: Fourth Generation Dyalog APL – The Internet

161 of 195

§§ 17.3.2 Communications

Communications is a big word these days. Once upon a time it might have covered simply the notion of

messages to the user, as in

 ŒUSING„'System.Windows.Forms,System.Windows.Forms.dll'
 MessageBox.Show›'This in itself is the message.'

 Press OK.

OK

‘Communications’ might have included requests for information about the local environment.

 ŒUSING„'System'

 •IO.Directory.GetCurrentDirectory ↳ 'C:\Dyalog\DWS'
which was covered by using ŒNA'kernel32|GetCurrentDirectoryA U4 >0T' or before that

from ŒCMD'cd'. Further ‘communications’ with ‘the system’ could be exemplified with

 •IO.Directory.(GetParent GetCurrentDirectory) ↳ 'C:\Dyalog'
or

 IO.Directory.(GetDirectoryRoot GetCurrentDirectory) ↳ 'C:\'

or

 Environment.CurrentDirectory ↳ 'C:\Dyalog\DWS'

as above (except it does not return an object and it can be assigned), or

 Environment.CommandLine
"C:\Program Files\Dyalog\Dyalog APL 11.0\dyalog.exe"
which is the same as #.GetCommandLine in Dyalog GUI terms, or

 Environment.UserName ↳ 'ADENNY'
giving the same as ŒAN.

But there are many other properties and methods in the Framework Class Library that give information

not readily available in raw APL – although probably accessible via ŒNA.

 Environment.MachineName ↳ 'JCM5032483'

 Environment.(OSVersion Version)
 Microsoft Windows NT 5.1.2600 Service Pack 1 2.0.50215.44
 Environment.GetLogicalDrives
 A:\ C:\ D:\ K:\ L:\ M:\ O:\ P:\ Q:\ R:\ U:\ X:\ Y:\ Z:\
Sometimes APL gives information not directly available from Microsoft .NET such as the inverse of a

matrix, and sometimes APL just is not that concerned:

 †(Int16 Int32 Int64).(MinValue MaxValue)
 ¯32768 32767
 ¯2147483648 2147483647
 -9223372036854775808 9223372036854775807

Once upon a time extraction of data from a file system or database might have been classed as

communications. In .NET the System.Data… namespaces contain facilities for ODBC, SQL…

But we all know that these days communications is bigger and wider than all that. It means radio, TV,

postal services and transport. But in particular for computing it means eMail and the Internet.

 Day 2: Fourth Generation Dyalog APL – The Internet

162 of 195

The .NET Framework has a namespace in the base class library System.dll called System.Net and

another called System.Net.Sockets. These cover most of the TCP/IP functionality available

through Dyalog TCPSocket objects. For example the System.Net.Sockets.Socket class has a

Send method which is similar to the TCPSend method in the Dyalog GUI. But the System.Net

namespace has a lot more functionality. For example, there are classes relating to Authentication, Cookie

control and HTTP handling and a namespace System.Net.Security relating to security issues. The

framework class library also has as a number of other assemblies, such as System.Web.dll, entirely

devoted to Internet issues and System.Web.Mail relating to email issues.

Consider, for example, the TCPGotAddr event of TCPSocket objects in the Dyalog GUI. This event

may be used to report the IP address associated with a host name. Alternatively, the DOS command

C:\WINDOWS\system32\nslookup.exe may be used to find the same information. This information is

retrieved via a Domain Name Server (DNS) located somewhere on the visible network. It is the job of

this server to maintain an up-to-date list of site names (domains) and their IP addresses.

In .NET the System.Net.Dns class is a method called BeginGetHostByName that takes a URL

parameter and returns asynchronously, having made contact with a DNS server, an object containing

information about the URL in question.

 ŒUSING„'System,system.dll'
 URL„'www.google.co.uk'
 RAR„System.Net.Dns.BeginGetHostByName URL(ŒNS'')(ŒNS'')
RAR is a namespace of dataType System.Net.Dns+ResolveAsyncResult. This object is used as

an argument to the System.Net.Dns class method EndGetHostByName. When the URL has been

resolved, this method returns an object of dataType System.Net.IPHostEntry. An instance of

System.Net.IPHostEntry ¢ has properties Aliases, HostName and AddressList that give

some basic information about the domain, including all the related names and addresses.

 IPH„Net.Dns.EndGetHostByName RAR
 3 1½IPH.(Aliases HostName AddressList)
 www.google.co.uk www.google.com
 www.l.google.com
 64.233.183.103 64.233.183.104 64.233.183.147 64.233.183.99

Aliases is of dataType System.String[] which in APL translates into VecCVec. HostName is

of dataType System.String which in APL terms translates into CVec, and AddressList is of

dataType System.Net.IPAddress[] which returns a vector of instances of the

System.Net.IPAddress class.

 Day 2: Fourth Generation Dyalog APL – The Internet

163 of 195

Based on this functionality, Stefano Lanzavecchia has given the dotnet@dyalog.com group, amongst many

other treasures, the following function which determines the IP addresses of all 3-letter .com domains.

 ’ r„ss1;step;name;list;n;ŒUSING;blocks;b;x;t
[1] step„300 © blocksize
[2] ŒUSING„'' ',system.dll'
[3] name„{'www.',¾,'.com'}
[4] list„name¨,œ°.,/ŒA ŒA ŒA
[5] r„list,[1.5]›''
[6] blocks„((½list)½(step†1))›¼½list
[7] t„ŒAI[3]
[8] :For b :In blocks
[9] Œ„'n: '(œb)'/'(½list)
[10] Œ„'elapsed: '(0.001×ŒAI[3]-t)'estimated: '(0.001×(½list)×(ŒAI[3]-t)÷œb)
[11] x„{System.Net.Dns.BeginGetHostByName ¾(ŒNS'')(ŒNS'')}¨list[b]
[12] r[b;2]„{0::« ª (System.Net.Dns.EndGetHostByName ¾).AddressList.ToString}¨x
[13] :EndFor
 ’

17.3.2.1

Create a new instance of MailMessage ¢ in System.Web.Mail ñ. Assign suitable values to

the To, From, Subject and Body properties of the object. Run the Send method belonging to

System.Web.Mail.SmtpMail ¢ with the MailMessage object as its argument.
Hint: See the Dyalog.Net Interface Guide p20.

Note1: Lines in the Body string end in ŒAV[3] (LF) and the Body is terminated with ŒAV[4] (CR).

Note2: You might need to set the name of your SMTP relay mail server via SmtpMail.SmtpServer.

17.3.2.2

Use .NET to retrieve the string contents of a URL web site. Run the Create method of

System.Net.WebRequest ¢ from System.Net ñ in system.dll à with an argument of some

URL string such as 'http://www.dyalog.com'. The GetResponse method returns an object of dataType

System.Net.WebResponse. This object has a method called GetResponseStream that returns

an object of dataType System.IO.Stream. This object may then be used as a parameter when

creating a new instance of System.IO.StreamReader ¢. Finally the ReadToEnd method of this

instance returns a string containing the contents of the URL home page.
Hint: See the Dyalog.Net Interface Guide p21.

Note: You might need to create a suitable instance of WebProxy ¢ and assign it to the Proxy property.

§§ 17.3.3 Generalising APL Primitives

Many facilities in Dyalog Version 9 are replicated in Dyalog.Net. Super-succession has occurred many

times before and in many different contexts. If Microsoft is correct then .NET is here to stay for the

foreseeable future. It will replace the underlying methodology of the Dyalog GUI, Dyalog TCPSocket

objects, APL Threads, ŒNA… , perhaps unnoticeably; like ŒTS changed is clock and ŒAN changed its

data source.

Even primitive APL functions may be supplemented with .NET methods or replaced by .NET equivalents

although the current mathematical offerings of .NET are far less extensive than those in APL 1. One

might hope, for example, that complex arithmetic will be gifted to Dyalog APL through .NET although

neither camp seems particularly interested. However, it is the simple basic grammar of APL and not the

underlying algorithms which distinguish it from all the other less elegant languages.

Although APL originated as a notation for succinctly describing algorithms and was only later

implemented as a computer language, it owes much to other computer languages in its later generations.

For example the concepts of file systems, nested arrays, error trapping, control structures, multi-threading

and the modern GUI interface are derived directly from other computer languages.

 Day 2: Fourth Generation Dyalog APL – The Internet

164 of 195

Error trapping in Dyalog.Net follows the OO style. An error encountered within .NET signals an error

number 90. This error may be trapped in the usual way with ŒTRAP or :Trap. ŒDM contains the usual

diagnostic message but more details may be found from the properties (and display form) from the new

system object, ŒEXCEPTION, which is an instance of System.Exception ¢.

17.3.3.1

Force an error in .NET and examine the properties of the ŒEXCEPTION object.

Many people are developing .NET classes to cover various areas of computing which are not found in the

framework library, eg http://www.extremeoptimization.com/ or http://www.strangelights.com/fsharp/.

Some of these extensions might one day be an intrinsic part of Dyalog APL. Microsoft .NET itself

introduces some methods which extend basic arithmetic and Boolean functions to DateTime objects.

The meaning of adding days to dates or determining whether one date is greater than (after) another are

intuitively clear and so .NET introduces methods such as op_Addition and op_GreaterThan that

apply directly to instances of System.DateTime ¢ and System.TimeSpan ¢. Dyalog has

incorporated some of these 'operators' into primitive functions.

17.3.3.2

Experiment with APL primitives + - = ¬ > ‰ < ˆ as applied to DateTime and TimeSpan

objects and compare with corresponding methods in these classes. Dyalog goes further and provides

natural extensions to primitives “ ” ˜ —. Experiment with derived functions (such as —/) as applied to

dates.
Hint: See the Dyalog.Net Interface Guide p16.

17.3.3.3

Consider joining the dotnet@dyalog.com mailbox group and ask for the next module.

