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Module11: Advanced Dot Syntax 

§ 11.1 Object Variables 

§§ 11.1.1 Stranding Object Properties 

§§§ 11.1.1.1 Stranded Vectors 

Since the advent of floating array second generation APLs, which we have described generically as APL 

2 in APL1_2.PDF, variables (and unnamed parenthesised expressions) may be stranded together to form 

nested vectors of enclosed elements - simply by juxtaposing array expressions.   

 

Strand (Vector) Notation: A series of two or more adjacent array expressions results in a vector whose 

elements are the enclosed arrays resulting from each expression. (See Language Reference p12.) 
 

Aside:  In fixed array second generation APLs, pioneered by Ken Iverson in SharpAPL and J, strand notation is entirely 

avoided.  Instead a new canonical primitive function, link (;), is introduced which encloses the Larg and catenates the result 

to Rarg, enclosing Rarg if it isn't already a vector of enclosed elements.  In fixed notation, enclosing a scalar is meaningful. 

 
Given three variables f for first, s for second and t for third,  

      f„43564              © Numeric scalar (NumSc) 
      s„'sdgg' 'sg' 'sgsg' © Vector of character vectors (VecCharVec) 
      t„3 3½1              © Numeric matrix (NumMat) 
      f s t                © Strand (VecEncArr) 
43564   sdgg  sg  sgsg   1 1 1  
                         1 1 1  
                         1 1 1  
 

Strand notation has been generalised to strand assignment.  The above 3 assignments can be achieved in 

one single statement: 

      f s t„43564('sdgg' 'sg' 'sgsg')(3 3½1) 
      DISPLAY f s t        © Display view of strand 
.…-------------------------------------. 
|       .…-------------------. .…----. | 
| 43564 | .…---. .…-. .…---. | ‡1 1 1| | 
|       | |sdgg| |sg| |sgsg| | |1 1 1| | 
|       | '----' '--' '----' | |1 1 1| | 
|       '¹-------------------' '~----' | 
'¹-------------------------------------' 
 
The varChar view of this strand is: 
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The resulting display clearly shows that the strand results in a three element nested vector of which the 

first element is a simple numeric scalar, the second element is a vector of character vectors and the third 

element is a simple numeric matrix.   

 
11.1.1.1

Produce the example below in varChar and describe the elements of the six element stranded 

vector.  Experiment with other strands. 

      (›››,f)(9 9 9)s(2 2½5)t(¼9)      
 

 
 

Since object properties are essentially variables in the object space, we should be able to strand these into 

vectors of properties, and indeed we can.   

 
11.1.1.2

Create a Form, F, and enter F-space.  List its properties.  Strand some of its properties, eg  

      ½Œ„Accelerator AcceptFiles Active AlphaBlend AutoConf 
 0 0  0 1 256 3 
5 
Assign a new Posn and Size in a single expression. 

 

It often happens, especially in a C code environment, such as in ŒNA function calls, that arguments to and 

results of functions consist of amorphous strands of disparate variables.  This general scenario is such a 

common occurrence in application code that, as of Dyalog version 10.1, it is possible to use extended 

function header syntax.  With this syntax, the header line of a function may use strands of variable 

names in place of single names for arguments and results.  For example a function that takes a date Rarg 

and returns the next day's date could have header line: 

      ’(Day Month Year)„nextDay(Day Month Year)’ 
 

§§§ 11.1.1.2 Vectors of .. Vectors of Stranded Name Vectors 

 

      §V‥V„SV‥VArr © Assigns nested array SV‥VArr to a compatible strand 
 

Assignment is extended to pervade nested strands of names (§V‥V) to the left of the arrow.  This allows 

multiple naming of parts of a structure in a single assignment.  This name structure (§V‥V) is entirely 

constructed of lists of names.  The depth of the overall vector structure (V..V) is determined by the 
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positions of parentheses.  We give this new form of name-structure the generic symbol, §V‥V, to indicate it 

is a vector name strand structure of arbitrary depth. 

 

The conformability rules are similar to those for scalar (pervasive) dyadic primitive functions such as ‘+’. 

If a b c and d are stranded names to left of an assignment arrow then the data on the right of the 

assignment arrow must either be a scalar, in which case it is extended to fit the stranded structure, or a 

vector whose structure reflects the stranded structure of the names on the left. 

      ((a b)(c d))„(1 2)(3 4)⇒ ((a„1)(b„2))((c„3)(d„4)) 
      ((Œio Œml)vec)„0 Œav   ⇒ ((Œio„0)(Œml„0))(vec„Œav) 
      (a(b(c d)e)f g)„1(2(3 4)5)6 7 ⇒ a b c d e f g„¼7 
      (a(b(c d)e)f g)„1(2((3 3)(4 4))(›3 3½5))6 7 
 

If a simple scalar is encountered at an earlier stage in the correspondence, then that scalar is extended to 

cover the structure beneath it, as is the case below: 

      (a b)(c(d(e f)))„1 (3 4) 
This is a way of creating named arrays from a structure corresponding to vectors of .. vectors of names. 

      ((first last) sex (street city country))„DATA 
 

Each name in the structure may be space-qualified so we can step from  

      (first last)„'Ken' 'Chakahwata' 
to 

      (A.first A.last)„'Ken' 'Chakahwata' 
where 

      A.first↳'Ken' 
      A.last ↳'Chakahwata' 
This is another step in the logical extension of second to third generation APL notation. 

 

§§§ 11.1.1.3 Name Strands in :For:For:For:For Loops 

The :For loop control structure allows multiple control variables using distributed assignment. 
 

:For §V‥V :In VecCSV‥VArrª‥§…ª:End © Do ‥§… for element C of VecCSV‥VArr 
 

In this case the :For statement loops round once for each of the C elements of VecCS
V‥VArr.  C 

symbolises the notional loop counter.  (VecCS
V‥VArr is ravelled if it is not already a vector.)  The 

structure of each element (SV‥VArr) should be compatible with the name strand structure §V‥V, in which 

the (V..V) indicates an arbitrary depth vector of vectors .. of vectors.  So the vector structure of names §V‥V 
reflects the vector structure of each element of vector VecCS

V‥VArr .  The expression or expressions 

within the :For loop will most probably make reference to some of the names from the nested structure 

of names §V‥V and this likely scenario is indicated symbolically by ‥§… . 

 

For example, 

:For a b c :In (1 2 3)(3 4 5)(5 6 7)(7 8 9)   © In this case C=4 

     a b c    © on first loop ├a b c−1 2 3  
:EndFor 
or 

:For a(b(c d)) :In (1(2(3 4)))(5(6(7 8)))(15(16(17(2 2½18)))) © C=3 

     a b c d  © on first loop ├a b c d−1 2 3 4 
:End 
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Alternatively, 
 

:For §V‥V :InEach SV‥VVecCArr ª‥§…ª:End © Do ‥§… for each C in SV‥VVecCArr 
 

In this case, on the C
th

 loop a strand consisting of the C
th

 element of each of the vectors in SV‥VVecCArr 

should have a structure compatible with the structure of the vector of vectors .. of vectors of names in 

§V‥V.  (In this version of the :For loop, each element in the data vector is more likely to have a uniform 

structure.) 

 

:For a b c :InEach (1 3 5 7)(2 4 6 8)(3 5 7 9)  © In this case C=4 

     a b c  © on first loop ├a b c−1 2 3 
:EndFor 

 

Formally, the alternatives may be presented as a table: 

:For § :In VecCArr 

:For §V :In VecCS
VArr 

:For §V‥V :In VecCS
V‥VArr 

:For § :InEach VecCArr 

:For §V :InEach SVVecCArr 

:For §V‥V :InEach SV‥VVecCArr 

 

A corresponding table of examples may be written: 

:For aa :In A1 A2 …   ⇒   aa„Ai on ith
 loop round 

:For aa bb :In (A1 B1)(A2 B2) …   ⇒   aa bb„Ai Bi  

:For aa(bb cc) :In (A1(B1 C1))(A2(B2 C2)) … 

:For aa :InEach A1 A2 …   ⇒   aa„Ai on ith
 loop round 

:For aa bb :InEach (A1 A2 …)(B1 B2 …) ⇒   aa bb„Ai Bi 

:For aa(bb cc) :InEach ((A1 A2 …)((B1 B2)(C1 C2)…)) 

where aa bb and cc are valid variable names and A1 B2 etc.. are arrays to be assigned. 

 
11.1.1.3.1

If aa bb cc are replaced by Posn, Size and Caption properties of a Form, compare the data 

required in :In and :InEach loops. 

 

§§ 11.1.2 Stranding Objects 

§§§ 11.1.2.1 Pure Vectors of Namespace Objects 

GUI objects are namespaces but namespaces are not necessarily GUI objects.  The term namespace, or 

space, covers both flavours.  Spaces are like variables – they can be arguments and results of functions. 

 

In Dyalog APL we have numeric variables, character variables, and object variables.  The strand  
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      ½Œ„# ŒSE 
 #  ŒSE  
2 
exemplifies a simple 2 element pure vector of spaces.  Notice that with the introduction of vectors of 

objects naturally comes the subtle generalisation of the primitive function shape (½). 

 
 

      IntVec„½RVec  © Shape of vector containing references to spaces 
 

 
11.1.2.1.1

Create a 3 element strand of GUI objects. 

 
11.1.2.1.2

Write a dummy function such as  

      ’ enterMouse Msg   
[1]    Msg ’    
Attach it to the MouseEnter Event of a Form either by  

      Event„'onMouseEnter' 'enterMouse' 
or better by 

      onMouseEnter„'enterMouse' 
but not by superseded statements such as 

      'F'ŒWS'Event' 'onMouseEnter' 'enterMouse'  
      'F'ŒWS'Event' 'MouseEnter' 'enterMouse'  
or 

      Event„'MouseEnter' 'enterMouse' 
Verify by tracing into the callback that (œMsg) is an object reference (dataType RSc).  Notice the 

natural generalisation of pick (œ) to apply to a vector containing refs. 

 
 

      RSc„œRVec © Discloses first element (given ├ŒML<2)  
 

 

Use of the event prefix "on", as described in §§2.2.2, causes the first element in the message (Msg) that 

miraculously automatically appears for the right argument to any callback, to be a ref to the object rather 

than a character vector containing the name of the object.   

 

The distinction between the name of an object and a ref to the object is clearly important.  The distinction 

between the name of an array and the array itself is also important in understanding the data 

representation system function ŒDR.  ŒDR applies to the array itself.   

 

An object may have many named references to itself and so the real name of the object becomes a moot 

point.  The question is similar to the Platonic question as to which is the real number 1, A or B, in the 

expression A„B„1.  Indeed, is A numeric, or just a named reference to a number?  Is a named ref less 

valid than the name given to an object in ŒWC?  We argue that it should not be. 

 
Notice that Msg appears to be a normal APL 2 nested vector, but actually two out of three of its elements 

are objects. (Msg contains dataTypes RSc CVec RSc.)  APL 3 vectors can be composed of numbers, 

characters and refs.  Henceforth we shall consider a named reference to be a proper name of an object. 

 

The following lines place 100 Buttons on a Form, position them and set their Captions individually. 

      'F'ŒWC'Form' 
      FV„–¨('F',¨(›'.B'),¨•¨¼100)ŒWC¨›'Button' 
      FV.Posn„,45×¼10 10 
      FV.Caption„‡100 3½ŒA 
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11.1.2.1.3

Take the following simple vector of Forms, RVec, given by 

      −RVec„–¨ŒÁŒWC¨›'Form'↳1 
and create a Button on each.  Assign a different Caption to each Button.  Delete all the Forms. 

 
11.1.2.1.4

Look up monadic ŒWC in the Language Reference or in [Help][Language Help] and convert the 

vector of namespaces, RVec, below into a vector of Forms. 

      −RVec„–¨ŒAŒNS¨›''↳1 
 

§§§ 11.1.2.2 Mixed Vectors 

11.1.2.2.1
Check that the expressions # 65 'a' and F'a'F'b'F'c' are simple vectors.  What happens if 

you replace 'b' with 'b '?   
Tip: Use varChar to get it clear. 

 

Now we have not just a single variety of (simple) mixed arrays in Dyalog APL, but the 1 original variety 

(numeric scalars mixed with character scalars) plus 3 exotic varieties; numeric and object, object and 

character, and all three - numeric, character and object.  There are 3 ways of selecting 2 combinations 

from 3 basic types of array, and 1 way of selecting 3 combinations from 3 basic types.  So the total 

number of varieties is four since  

      +/2 3!3↳4 
 

Actually there are now eleven varieties of mixed arrays in Dyalog APL because in version 10.0 a new 

scalar Null item was introduced through the niladic system function, ŒNULL.  ŒNULL returns a new type 

of scalar item, display form [Null], which may be catenated to any simple APL vector to give another 

simple APL vector.  This means that there are eleven different varieties of simple mixed arrays in Dyalog 

APL version 10. 

      +/2 3 4!4↳11 
 

Note that the ŒOR of a function is a scalar, but, anomalously, it has depth 1 and therefore must be 

enclosed before it can be catenated to a simple vector.  The resulting vector (Vec) is therefore 

necessarily, non-simple and ������╞1<|−Vec 

 

The depth of the following vector is 1 implying that it is a simple vector. 

      −1E¯14 'A'(ŒNS'')#.Á #.Â ŒNULL↳1 
However the depth of the next example implies that the vector is thoroughly nested. 

      −¯1.797693135E308 'A'(›3 3½ŒAŒNS¨›'')(2 2 2½ŒÁŒWC¨›'Form')↳¯4 
 

§§§ 11.1.2.3 Control Structures with Objects 

Monadic use of the ŒNS system function with an empty Rarg returns a ref to a "vanilla" namespace. 
 

      RSc„ŒNS() © Creates an empty ‘unnamed’ namespace.  NB ╞������()−« 
 
Note that the Rarg of monadic ŒNS can be an array of names (or the ŒOR of a namespace), in which case 

these objects are copied into the new namespace. 

 
Making a new ref to an unnamed namespace does not make a new copy but simply points to the original 

one.  However, one unnamed namespace is not the same space as another. 

      (ŒNS'')=ŒNS''↳0 because ╞(ŒNS'')»ŒNS'' 
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      NS=NS„ŒNS''↳1   because ╞NS−NS„ŒNS'' 
 
11.1.2.3.1

Are the 3 spaces created by������� (ŒNS¨3½›'')��� identical or just similar (isomorphic)? 

 
The :With control structure accepts a ref, RSc (which can be a collection), or a string, CVec, containing 

the name of a space.  It also, therefore, accepts an unnamed namespace.  This can be useful for localising 

more or less complex lines of code. 

:With ŒNS'' 
    CVec„'This string is ephemeral.' 
:End 

 
:For also applies to collection objects as found, for example, in Word and Excel.  Collection objects 

encourage irregular syntax in VB because they always have an Item method and this method name may 

be elided in VB code.  Thus Application.Workbooks.Item(1) is the same as 

Application.Workbooks(1) in VBA.  This syntax is emulated in :For as applied to a collection in 

which each Item in Count is automatically instantiated sequentially in the loop.  (Dyalog version 11.0 

goes much further in incorporating this VB anomaly.) 

:For It :In Documents © Documents is a Word Collection Object 
     It.Name 
:End 

 

:For Sh :In Sheets    © Sheets is an Excel Collection Object 
     Sh.Name 
:End 

 

§§ 11.1.3 Arrays of .. Arrays of Objects 

§§§ 11.1.3.1 Reshaping Object Vectors 

Generalisations of the APL primitive function pick (œ) to select an object from a nested vector, or shape 

(½) to obtain the shape of a vector of refs are natural extensions that can go almost unnoticed.   

 

Object spaces are essentially a new type of scalar since 'F'ŒWC'Form'ª«−½F↳1 (but ŒNC'F'↳9!). 

We can now assign objects to names, G„F , including strands, FGF„F G F , and then ŒNC'FGF'↳2 

which is more comprehensible than name class 9.   

 
 

      NAME„RArr © Creates name for object reference array 
 

Beware that assignment cannot change the class of an existing variable (although this is ameliorated in version 11) and 

therefore if G had already existed as a class 2 object then G„F would have given a SYNTAX ERROR. 

 

The extension of dyadic reshape (½) is harder to miss than that of monadic shape because it allows you to 

generate matrices and higher rank arrays of objects.  Indeed, you can make arbitrary nested arrays of 

arrays of .. arrays of object spaces, numbers and characters. 
 
 

      RArr2„IVec½RArr1 © Reshapes array containing references to spaces 
 

For example, consider the matrix 

      FF„5 5½F G F # 3 'a'    © Simple mixed RefArr 
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In varChar, FF displays as shown.  Notice that 

the display form of G is #.F.  This is the case 

even after F has been erased.  F and G are 

references to the same object.    

 
11.1.3.1.1

By creating a variable inside F-space, and 

examining the contents of G-space, demonstrate 

that F and G are not separate objects.  Expunge 

the Form by expunging all references to it. 

 
Aside: There could be 11 different colour codings for the 

different types of mixtures.  Currently, varChar just picks 

the first available exotic colour for exotic mixtures. 

 

  

Another definition that is hard to ignore is that of that of dyadic ŒNS with an empty right argument.   

 
 

      CVec2„CVec1ŒNS() ©  Returns the full name of space, named in CVec1 
 

Note ╞ ������ ()−« 
11.1.3.1.2

Create a rank 3 array of named namespaces. 

 

Unless an unnamed namespace (or array of unnamed namespaces such as 2 2½ŒNS¨›'') is used 

immediately then it evaporates to nothing at the end of the expression.  If space are named by some 

reference, RA„2 2½ŒNS¨›'', or individually by  

      2 2½'ABCD'ŒNS¨›'' 
 #.A  #.B  
 #.C  #.D 
then, like GUI spaces which are usually named on creation as in, for example, 

      ½¨'EFGH'ŒWC¨›'Form'↳ 3  3  3  3 
they do not evaporate until explicitly expunged by some particular action or mechanism. 

 

§§§ 11.1.3.2 Generalised Primitives 

A number of other primitive and system functions have been extended to handle space arrays.  Where 

appropriate, they take arguments of arrays containing spaces and return arrays containing spaces. 

 
 

      CArr„•RArr © Returns CArr of character display forms 
 

 

 

      RArr2„IArrœRArr1 © Picks from array (according to ŒIO) 
 

 

 

      EncSc„›RArr © Encloses array containing references to spaces 
 

 

 

      VecEncRArr„BVec›RArr © Vector of enclosed arrays of refs (given ├ŒML<3) 
 

 

 

      RArr2„†RArr1 © Mixes nested array to higher rank (given ├ŒML<2) 
 

 

 

      RArr2„IntVec†RArr1 © Takes (not yet overtakes) from array containing refs  
 

For overtake, we would need an identity element, eg @, for the take function when applied to spaces.   
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      RArr2„‡RArr1 © Splits nested array to lower rank 
 

 

 

      RArr2„IntVec‡RArr1 © Drops (not yet overdrops) from array containing refs 
 

 

 

      RArr2„²RArr1 © Reverses array containing references to spaces 
 

 

 

      RArr2„IArr²RArr1 © Rotates according to simple integer array, IArr 
 

 

 

      RArr2„´RArr1 © Reverses array RArr along first axis 
 

 

 

      RArr2„IArr´RArr1 © Rotates RArr along first axis according to IArr 
 

 

 

      RArr2„³RArr1 © Transposes all axes of RArr1 
 

 

 

      RArr2„IVec³RArr1 © Transposes RArr1 according to axis positions IVec  
 

 

 

      VecRArr„,ArrRArr © Ravels arbitrarily nested array to vector 
 

 

 

      RArr3„RArr2,RArr1 © Catenates conformable arrays along last axis 
 

 

 

      RArr3„RArr2®RArr1 © Catenates conformable arrays along first axis 
 

 

 

      ISc„−RArr © Depth of array containing references to spaces 
 

 

 

      BSc„RArr2−RArr1 © Whether arrays of refs all point to the same spaces 
 

 

 

      BSc„RArr2»RArr1 © Whether refs don't all point to the same spaces 
 

 

 

      BArr„RArr2=RArr1 © Pervasive scalar equality of elements 
 

 

 

      BArr„RArr2¬RArr1 © Pervasive scalar inequality of elements 
 

 

 

      RArr2„IVec/RArr1 © Replicates array containing references to spaces 
 

 

 

      RArr2„IVecšRArr1 © Replicates along first axis 
 

 

 

      RArr2„IVec\RArr1 © Expands array containing references to spaces 
 

 

 

      RArr2„IVec™RArr1 © Expands along first axis 
 

 

 

      RVec2„RVec1~RArr © RVec1 without elements in ,RArr 
 

The extension of primitive without (~) is implemented in Dyalog APL version 11. 

 
 

      IArr„RVec¼RArr © Index of RArr in RVec 
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      BArr„ArrºRArr © Finds Arr in RArr 
 

 

 

      RArr2„RArr1[Index] © Elements from RArr1 according to Index spec. 
 

The Index specification may be simple indexing, choose indexing or reach indexing.  The three 

corresponding flavours of indexed assignment also apply to arrays containing references to objects. 

 

The operators reduce (/), reduce first (š), scan (\), scan first (™), each (¨), compose (°), and the axis 

operator ([]) have all been generalised to deal with arrays containing references to objects.  It could be 

argued (see § 3.3 and New Foundations in Vector Vol.20 No.1 p132) that the product operator (.) has also 

been generalised. 

 
11.1.3.2.1

Check the structure of matrix ���(# ŒSE)°.,(# #). 
 

As with the introduction of nested arrays in APL 2, the introduction of arrays containing references to 

objects is so natural that it is obvious how to generalise the definition of many primitive APL functions 

and operators, especially the structural functions.  There remain some candidate functions such as type 

(¹¾), membership (¸¹¾), unique (q¾), union (¸q¾) and intersection (¸r¾), which are not yet 

implemented but which would seem to have natural generalised definitions.  There are others, such as 

take (¸†¾), drop (¸‡¾), without (¸~¾) and find (¸º¾), which have been partially generalised and are still 

to be fully generalised.  

 

§§§ 11.1.3.3 Generalised System Functions 

A number of system functions have also been generalised to accommodate object references. 

 
 

      CVec„ŒCS RSc © Changes to space RSc from space named in CVec 
 

 

 

      MsgVec„ŒDQ RVec  © Dequeues events associated with objects in RVec 
 

 

 

      Arr„IntScŒNQ RSc CVec … © Enqueues event or method in CVec of object RSc 
 

 

 

      CMat„ŒFMT RArr © Character matrix of display forms 
 

 

 

      RArr ŒFAPPEND Tie  © Appends RArr, which can include ŒOR of space  
 

 

 

      RArr ŒFREPLACE(Tie Cpt) ©  Replaces RArr, which can include ŒOR of space 
 

 

Further generalisations of system functions and variables will appear in later versions of Dyalog.  For 

example, ŒNS, ŒNSI and ŒPATH are candidates.  Even ŒCT could be generalised to soften equality of 

namespaces, for example by ignoring the contents of column 2 of the result of ŒAT.  And ŒWC is 

challenged by ŒNEW, to be described in Module20.  

 
The question naturally arises as to how to make a deep copy of a space.  Direct assignment only creates a 

shallow copy, ie it creates a pointer or ref to the single copy.  A deep copy of a namespace may be 

created using a combination of ŒOR and ŒWC. 

 
 

      CVec2 ŒWC ŒOR CVec1 © Clone space named in CVec1 to name in CVec2 
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For example, given 

      a„Œns''ª a.x„33   © Create a namespace containing variable x 
 
      'b'Œwc Œor 'a'    © Clone the namespace containing variable x 

      b.x↳33              x in b is 33 

      a.x↳33              as is x in a 

      b.x„4             © Assign x in b to 4 

      a.x↳33              x in a is still 33 

      b.x↳4               but x in b is now 4 

 
11.1.3.3.1

Experiment with some of the above generalisations on mixed and nested arrays containing refs. 

 

§ 11. 2 Understanding  (…).(…) 

§§ 11.2.1 Expanding Array.Strand 

§§§ 11.2.1.1 New Rules 

 

Rule 4:  Dots bind tighter than strands.  (Strands bind tighter than indexing brackets…)  (Indexing 

brackets bind tighter than rational primitive functions…)…    
 

 

Rule 4 helps one to interpret correctly the order of execution of 3
rd

 generation APL statements involving 

dot syntax.  The rule may be expressed simply as the order of precedence of dot binding w.r.t. strand 

binding.  APL 1 claimed no special hierarchy of binding strengths amongst functions, nor, separately, 

amongst operators.  There were, however, some anomalous cases like °. and [] brackets which should 

be eliminated (see K.E.Iverson, Rationalised APL, IPSA Research Report No.1).  Instead anomalous 

cases have been replicated and others have been introduced, moving APL ever closer to standard multi-

rule 'evolved' computer programming languages like FORTRAN, C, VB, VB.NET and C
#
.   

 

This rule allows one to take a next step and rewrite 

      A.first A.last„'Andy' 'Shiers' 
as 

      A.(first last)„'Andy' 'Shiers' 
both of which imply that  

      ├A.first↳'Andy' 
      ├A.last↳'Shiers' 
This is another step in the logical extension of second to third generation APL notation.  Rule 4 implies 

that parentheses are required above because  

      A.first last„'Kai' 'Jaeger' © That other hero! 
implies that  

      ├A.first↳'Kai' 
      ├last↳'Jaeger' 
Therefore we do need parentheses around the name strand first last if we expect both variables to be 

in namespace A.  

 

Exactly the same applies to GUI objects and properties.  According to Rule 4, dots bind tighter than 

strands and therefore 

      F.Accelerator AcceptFiles↳(F.Accelerator)(AcceptFiles) 
which is probably not ����what we want because the parent of F probably does not even have an 

AcceptFiles property.  Instead we must write 
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      F.(Accelerator AcceptFiles)↳(F.Accelerator)(F.AcceptFiles) 
Then, for example, 

      F.(Accelerator AcceptFiles Active AlphaBlend AutoConf) 
 0 0  0 1 256 3 
 

Syntax rules (ie parsing rules) of the APL language should be clearly distinguished from the semantics 

associated with specific symbols or tokens.  The semantic details regarding execution of symbols 

representing primitive functions and operators are the algorithms that define the meaning of the symbols.  

This should be kept distinct from grammatical rules.  We therefore define the rules for expanding the 

various forms of dot syntax in terms akin to the definition of a new dualistic niladic dot operator. 

 
 

      SDS
V‥VArr„ñD.§V‥V © Variable strand pervades deep space nesting 

 

If to the left of a dot is an array of refs, ñD, of arbitrary depth, D, and to the right is a stranded vector of 

vectors .. of names, §V‥V, then the name strand pervades the array of refs so that the structure of the result 

is the structure of the array of refs (SD) and, within that, the structure of the name strand (SV‥V), with the 

value (Arr) of each name returned at that point in the nesting.   

 
11.2.1.1.1

Check that the structure of the result of ���((# #)°.,(# #)).Type is consistent with ñ2.§. 

      
 

Here is a final rule which helps one to read and write 3
rd

 generation APL statements involving dot syntax 

and which we have inadvertently assumed above.   

 
 

Rule 5: The parenthesised expression in  F.(F.(F.(F.(…………))))  is executed in FFFF-space.    
 

As with strand notation, this rule seems natural in many circumstances, but it is extra to APL 1 & 2.  But 

note that ├ #.1»#.(1).  

 

The expression (…) may not return a result.  This causes a VALUE ERROR in the case of a niladic 

function such as F.(Detach).  In this particular case the error can be avoided by using F.Detach.   

 

If dot had been treated as a dualistic niladic operator (with a valid right operand (...)), then Rules 4 and 5 

might both have been unnecessary.  See New Foundations in Vector Vol.20 No.1 for discussion of a 

rational alternative.  Henceforth we shall consider new issues involving the interpretation of execution of 

dot syntax structures as intrinsic properties of the dot symbol rather than as new APL syntax rules.   

 

Nevertheless, this new rule (Rule 5) is a valuable and profoundly useful addition to Rules 1 & 2.  It is 

very useful to be able to execute arbitrary expressions in a distant space.  For example;  

      ŒSE.(ŒIO ŒML„1 0) 

      ├(½¨ŒSE.(ŒCR¨‡ŒNL 3))−(12 40)(19 102) 
and also 
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      #.FORM1.GROUP2.SUB2.TotalSLP<#.FORM1.GROUP2.SUB2.TotalGMP 
simplifies to  

      #.FORM1.GROUP2.SUB2.(TotalSLP<TotalGMP) 
 

Properties and methods of GUI objects are just special cases of variables and functions and as such almost 

everything that is said about variables and monadic functions w.r.t. dot syntax applies equally to 

properties and methods.   

 
11.2.1.1.2

Use varChar to examine the properties of a Calendar on a Form by way of expressions like 

      4 10½#.F.CAL.(–¨PropList) and #.F.CAL.(CircleToday Border) 
 
The object to the left of the dot might not be a simple scalar object, but may instead be an arbitrary pure 

(ie not mixed) array of objects.  In this case the expression to the right of the dot pervades the nested 

array of refs to its left.  When an array of refs is dotted with a variable name or object property name 

then the name pervades the array. 

      (X Y).ŒIO ↳ (X.ŒIO)(Y.ŒIO) 
which is the obverse, or complement, of  

      X.(ŒIO ŒCT) ↳ (X.ŒIO)(X.ŒCT) 
which follows from Rule 5. 

      (2 3½U V W X Y Z).ŒIO   © matrix of space origins 
1 1 1 
1 1 1 

      ½(F.(C D E)).Type↳3    © get 3-vector of object Types 

 
      (F1.(B1 B2) F2.(B3 B4)).Caption © get 4 Button Captions 
  Salt  Mustard    Vinegar  Pepper 
 

When an array of refs is dotted with a strand of variable names or a strand of object property names 

then the strand pervades the array.  We need parentheses in order to strand the 2 variables V1 and V2, and 

then this strand pervades X and Y  

      (X Y).(V1 V2)↳(X.(V1 V2))(Y.(V1 V2))↳(X.V1 X.V2)(Y.V1 Y.V2) 
 
11.2.1.1.3

Create two Forms F and G and examine the structure of the results of expressions such as  

(2 2½#.F).(Type State) or ((F F)(G G G)).(Size (Posn Caption)) 

Aside: We might have thought that these would be outer products written SDS
V‥VArr„ñD°.§V‥V?  Discuss. 

 

§§§ 11.2.1.2 Parsing Rules 

We are going way beyond the usual VB dot syntax in the APL direction.  But before we explore the full 

generality of APL dot syntax, let us recapitulate the evolution of APL syntax as encapsulated in our list of 

grammatical rules extracted from key language ingredients.   

 

As was regrettably the case with strand notation and Rule 3 in APL 2, the simple grammar of APL 1 is 

considerably complicated by the introduction of dot notation in APL 3.  Beautifully simple formal syntax 

rules such as Rule 1 relating to function parsing interpretation, and Rule 2 relating to operator parsing 

interpretation, are supplemented by other ad hoc heuristic rules of precedence defining the order of 

execution of special new unclassified tokens in a line.  The opportunity to completely obviate strand 

notation caused a split in the APL community in the mid 1980's.  An opportunity to rationalize APL dot 

notation by way of a strict interpretation of dot as a dualistic niladic operator, which would reduce Rule 4 

to Rule 2, has also been lost, as have other opportunities to rationalize along the way.  In this regard J 

from Jsoftware is probably the most rational (and, unfortunately, most illegible) dialect of APL today.  
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In seeking a rule-based view of APL, many irrational and extraneous features of APL have been ignored 

in an attempt to present a simple unified view.  Let us for a moment consider in a long list some other 

rules we might have considered to be essential. 
 
 

Rule 0:  System commands begin with a right parenthesis (as what else could?) and do their own thing (but this is 

not APL proper…).    
 

 
 

Rule 0.1:  Enter numeric vectors by using standard number formats and spaces between elements, or enter 

character vectors by surrounding a string in single quotes.  This is the real beginning and is very natural.    
 

 
 

Rule 1:  Function sequences execute from right to left.  (This is the usual APL Rule and follows advanced maths.)    
 

Perhaps because Indo-European languages are read from left to right, most infix mathematical functions (such as minus) 

are left-associative; that is, a series of functions of the same precedence is evaluated from left to right.  However, prefix 

operators (such as power) are usually right-associative.  APL adopts right-asociativity universally for all functions. 
 

Rule 1.1:  There are a number of rules for function header syntax (and for the del (’) or other function editors…).    
 

’Niladic ’R„Niladic 
’Monadic W ’R„Monadic W 
’A Dyadic W ’R„A Dyadic W 

And rules for shyness and ambivalence and name strands… 

 
 

Rule 1.2:  There are rules for semicolon (;) indexing and indexed assignment (ameliorated by squish-quad (¦) 

indexing function in IBM APL2 and Dyalog version 11)…    
 

 
 

Rule 1.3:  Indexing brackets bind tighter than rational primitive functions.      
 

hence ����� 7 8[1]×2 ↳ 14  and not a SYNTAX ERROR 
 

Rule 1.4:  Right arrow (…) can be used niladically and monadically.  (This breaks the metagrammatical rule that 

symbols may be employed both monadically and dyadically (ambivalently), but not either of these and niladically.)      
 

Otherwise �� for example ++7  would be ambiguous as the + on the left might be interpreted monadically or niladically. 
 

Rule 1.5:  Labels are immediately followed by a colon (:) and may be used at the beginning of a program line to 

hold dynamically line numbers as class 1 variables.    
 

 
 

Rule 1.6:  Comments (©) at the end of a line may be used to hold arbitrary text (partially obviated by the 

introduction of lev (�) and dex (����) in SharpAPL).    
 

Ken Iverson himself seemed to enjoy using pure APL to add comments in the following manner (even prior to lev): 

        3+4,0½'Here we add 3 to 4.'↳7 
 

Rule 1.7:  Diamonds can be used on a line (and in execute strings) to separate statements.     
 

11..2.1.2.1
Try expressions such as that below. This can make APL programs uncompilable. 

        –ŒAV[16½254 81 88 245]   © ├ŒIO−1 
   98 
   98 
   98 
   98 

 

Rule 2:  Operator sequences execute from left to right.    
 

It is easy to find non-associative functions (eg ~╞((A-B)-C)−A-(B-C) where eg A B C„?3½›3 3½100). 
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Non-associative operators are also possible.  They reveal the default order of execution of operator sequences. 

        ~╞(A(-.×).×C)−A-.(×.×)C © Notice that this sentence is known to be true because there is no error. 

        ╞(A(-.×).×C)−A-.×.×C    © Similarly, notice that this sentence needs no ‘explanatory’ result. 

 
 

Rule 2.1:  There is a special rule for outer product (°.) syntax.  Rationalisation is compounded by introduction of 

the jot (°) operator.  (Jot could have been defined as enclose zilde, for example.)    
 

 
 

Rule 2.2:  Slash (/) and slope (\) can be both functions and operators.  (This breaks the meta rule that symbols 

may be either functions or operators but not both.)    
 

 
 

Rule 2.3:  There are a number of rules for operator header syntax (and for the del (’) or other editor…).    
 

’(f MonisticMonadic) W ’R„(f MonisticMonadic) W 
’A (f MonisticDyadic) W ’R„A (f MonisticDyadic) W 
’(f DualisticMonadic g) W ’R„(f DualisticMonadic g) W 
’A (f DualisticDyadic g) W ’R„A (f DualisticDyadic g) W 

And rules for shyness…  Neither nihilistic operators nor operators that return niladic derived functions figure in 2
nd

 

generation APLs.  (See APL Linguistics in Vector Vol.2 No.2 for a classification scheme.) 
 

Rule 2.4:  The axis operator has special rules, similar to those for bracket indexing (see Rules 1.2 and 1.3).    
 

 
 

Rule 2.5:  Then there are all the individual rules surrounding the syntax for the (multiply-classified) assignment 

arrow, including choose assignment, modified assignment and function assignment…    
 

 
 

Rule 3:  Strands bind tighter than indexing brackets.    
 

 
 

Rule 3.1:  There are different rules for different control structures, but all of them have to start with a colon 

followed by a keyword, take an arbitrary number of lines, and end with an :End(optionally immediately followed 

by the initial keyword).    
 

 
 

Rule 3.2:  Special uses of symbols ¯EŒy†¸¾‘{_ (apart from those already mentioned above  )°©ª;:’.).    
 

 
 

Rule 4:  Dots bind tighter than strands.    
 

 
 

Rule 4.1:  There are many new rules associated with the definition of DFns and DOps in Module12, including 

proliferation of paired symbols, as in ## above.    
 

 
 

Rule 5: The expression inside the parentheses in  F.(F.(F.(F.(…………))))  is executed in FFFF-space.    
 

 
 

Rule 5.1:  There are new 'rules' associated with the expansion of dotted structures.    
 

 

As rules proliferate their identification becomes harder.  Ultimately it is the parser code that determines 

the rules and therefore there should be a move to focus on the details of the Dyalog APL parser to identify 

exactly what the rules are.  Nevertheless it has been considered very important to explicitly enunciate the 
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major rules of APL because the reader, not just the machine, has to be able to parse a line accurately if 

(s)he is to understand it.   

 
11.2.1.2.2

In which spaces are k, l and m most likely to be found in the expression 

      #.A[k].B[l].C[m] 
Compare  

      #.A.B C.D 
      #.A.B C[2] 
      #.A.(B C).D 
 

§§§ 11.2.1.3 Generalised Strand Assignment 

Assignment into an array of refs dotted with a variable name or object property name requires either a 

scalar argument, which experiences scalar extension, or an array of conformable shape and structure to 

the shape and structure of the array of refs.  Assignment is pervasive. 

      (X Y).ŒIO„0   ↳ (X.ŒIO„0)(Y.ŒIO„0) 

      (X Y).ŒIO„0 1 ↳ (X.ŒIO„0)(Y.ŒIO„1) 

      (F1 F2).Caption„'F1' 'F2'    © Set both Form Captions. 
 

Assignment into an array of refs dotted with a stranded structure of variable names (or object property 

names) requires either a scalar argument, which experiences scalar extension, or an array of conformable 

shape and structure to the shape and structure of the array of refs dotted with the strand.  The whole strand 

structure pervades each element of the ref array.  Strand assignment is totally pervasive. 

      F.(Caption OnTop)„'The End' 1 
      (X Y).(first last)„('Søren' 'Kierkegaard')('Dan' 'Baronet') 
Scalar extension can occur at various levels depending on the structure of the data array. 

      (X Y).(ŒIO ŒML)„0            © Scalar extension of scalar 0. 
      (X Y).(ŒIO ŒML)„›0 0         © Scalar extension of scalar ›0 0. 
      (X Y).(ŒIO ŒML)„2½›0 0       © No scalar extension required. 
 
 

      ñD.§V‥V„SDSV‥VArr © Strand assignment pervades deep space nesting 
 

If an array of refs, ñD, is to the left of a dot and a stranded vector of names, §V‥V, is to the right then the 

name strand pervades the array of refs.  Data assigned to the expanded set of names given by ñD.§V‥V 
must have a structure that mirrors the structure of (V‥V) within an outer structure of depth D, SDS

V‥V…  

Each element within this container structure may be any arbitrary enclosed array.  So the structure of the 

data, SDS
V‥VArr, has the structure of the array of refs ñD, and within that the structure of the name strand 

§V‥V, with the value of each name assigned to the corresponding arbitrary data array Arr in SDS
V‥VArr at 

that point.  If a scalar is encountered in the data at an earlier stage in the correspondence, then that scalar 

is extended to cover the structure beneath it, as is the case in ordinary strand assignment without ref 

arrays: 

      (a b)(c(d(e f)))„1 (3 4) 
 

Note there is no resulting difference between the following two assignments 

      F1.(Posn Size)„(55 40)(25 58) 
      F1.(Posn Size„(55 40)(25 58)) 

However, a significant general difference between ñD.§V‥V„‥§… and ñD.(§V‥V„‥§…) lies in the space 

location, or locations, of names (§) in expression ‥§… .   
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The following 8 distinct spaces   

      ((8†ŒA)ŒNS¨›«)↳ #.A  #.B  #.C  #.D  #.E  #.F  #.G  #.H  
can be organised using strand notation in an arbitrarily complex nested vector structure, for example   

     −RArr„(A(B C(D E))) 
¯3  

 
 

Scalar assignment  RArr.V„99  pervades the nested array of refs.  It has the effect of 

      (A(B C(D E))).V↳99(99 99(99 99)) 
We can assign a set of numbers having this structure 

      (A(B C(D E))).V„(99(1 2(55 66))) 

      (A(B C(D E))).V↳(99(1 2(55 66))) 
Or each element in the data structure can be an enclosed array. 

      (A(B C(D E))).V„(99(1 2((2 4½55) (5 1½66)))) 
      D.V 
55 55 55 55 
55 55 55 55 
 
11.2.1.3.1

Create a 3 by 4 array A consisting of 3 distinct unnamed namespaces. Assign variable A.a 
to some numbers. Assign B to a matrix with elements containing A.  Check B.a.  

 
11.2.1.3.2

Create an object vector of 26 Forms each with a Button,   

      RVec„–¨ŒA ŒWC¨›'Form' 
      (ŒA,¨›'.B')ŒWC¨›'Button' 
      (25†RVec).Posn„50+20×,¼5 5 
Change all the positions, sizes and captions in a single expression such as: 

      RVec.B.(Posn Size Caption)„26½((0 0)(20 20)'hello')↵ 
                                 ((10 10)(20 20)'hello2')¶ 
Display cc where 

      cc„RVec.B.(Posn(Size Caption)) 
 

 
 
11.2.1.3.3

Redesign (not rewrite) your address book application STORE using namespaces such that data for 

the first individual in the list is found in 

      Persons[1].(Name Address Text) 
Invert the design such that variables in the namespace become namespaces, and what was a namespace 

becomes an element in a variable eg 

      (Names Addresses Text).Person[1] 
  Is this design better?  Maybe both is best? 
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§§ 11.2.2 Expanding Array.Array 

§§§ 11.2.2.1 Expansion Rule 

 

      ñD1_D2„ñD1.ñD2 © Expand deep space arrays to depth D2 within D1 
 

Given a pure ref array ñD1 and another pure ref array ñD2 containing child objects of the corresponding 

elements of the first array, the result of dotting them together ñD1.ñD2 is a pure ref array of combined 

depth D2 within D1 such that the number of elements of the result is the product of the number of elements 

in each (operand) array.   

 
11.2.2.1.1

Create a vector of references to 26 vanilla spaces.  

      RVec1„–¨ŒA ŒNS¨›'' 
Then create a vector of references to 26 vanilla spaces in each of these. 

      RVec1.(RVec2„–¨ŒAŒNS¨›'') 
Use the WS Explorer to investigate the hierarchy.  Notice the variable RVec2 in every space in RVec1.  

Use varChar to assign and view the structure of the ref array expansion, for example, zoom out of  

      (5 5½RVec1).(5 5½RVec2) 
 

The space arrays on the left and right of the dot (the operands) may be replaced by expressions that return 

space arrays.  Therefore 

      ├(–¨‡Œnl 9).(–¨‡Œnl 9) − RVec1.RVec2 
because  

      ├RVec1.(–¨‡Œnl 9) − RVec1.RVec2 
by Rule 5, and  

      ├RVec1−–¨‡Œnl 9 
Notice that dot binds tighter than primitive function match (−), as one would expect of an operator. 

 

Successive dot expansions follow Rule 2 as one would expect of an operator.  The left-most expansion is 

performed first, followed by the next left-most expansion, etc…  Thus the final number of spaces in 

expression RArr1.RArr2.RArr3 is the product of the number of refs at each level. 

 

For example, the expression  

      (–¨‡ŒNL 9).(–¨‡ŒNL 9).(RVec3„–¨ŒAŒNS¨›'') 

involves 26*3↳17576 spaces.  And 

      ½œ,/œ,/RVec1.RVec2.RVec3↳17576 
 
11.2.2.1.2

What is the result of  ½œ,/œ,/œ,/RVec1.RVec2.RVec3.(ŒIO ŒCT) 

or, using enlist (¹),  ½¹RVec1.RVec2.RVec3.(ŒIO ŒCT)  assuming  ├ŒML‰1  

 

§§§ 11.2.2.2 New Idioms 

We are now able to perform using APL primitives many new structural and data manipulations of arrays 

of spaces.  We can, for example, set properties of arrays of GUI objects in succinct expressions such as 

      (F1 F2).(B1 B2).Caption„›'OK' 'Cancel'© Set 4 Button Captions 
or we can dynamically create objects and manipulate their properties in the single expression: 

      (–¨'ABCD'ŒWC¨›'Form').(–¨'ÁÂÃÇ'ŒWC¨›'Group')↵ 
               .(–¨'abcd'ŒWC¨›'Button').Dragable„1¶ 

Notice the wrapping (↵,¶) 

Having created these spaces and sub-spaces, we can construct arbitrary space structures like that produced 

by expression  (3 1½A B C).(2 2½Á Â).(a b c (››,d)) from which we find 



 Day 2: Fourth Generation Dyalog APL – The Internet 

95 of 195 

      ½¨ ¨ ¨ ¨ ¨(3 1½A B C).(2 2½Á Â).(a b c (››,d)) 
                       1                          1      
                       1                          1      
                       1                          1      
                       1                          1      
                       1                          1      
                       1                          1      
We can assign a value (more than once – eager as opposed to lazy evaluation?) to variable V in every leaf 

space in 

      (A B C°.,B C D).(Á Â Ã°.,Â Ã Ç).(a b c°.,b c d).V„42 
or 

      (3 1½A B C).(2 2½Á Â).(a b c(››,d)).X„3 1½9 7 4 
giving 

      (3 1½A B C).(2 2½Á Â).(a b c(››,d)).X 
  9 9 9    9     9 9 9    9      
  9 9 9    9     9 9 9    9      
  7 7 7    7     7 7 7    7      
  7 7 7    7     7 7 7    7      
  4 4 4    4     4 4 4    4      
  4 4 4    4     4 4 4    4      
 

As seemed the case when APL 1 appeared, and again when APL 2 appeared, the new possibilities are 

endless.  Two new idioms should be mentioned: 

 
 

      RSc„(–ŒCS'').## © Returns scalar ref to parent space 
 

 
 

      RSc„@.## © Returns scalar ref to current space 
 

Remember ╞ ������ @≅ŒNS() where ╞ ������ ()−« . 

 
11.2.2.2.1

Rewrite expression  (# #).(# #).(# #)  in 5 different ways without using dots. 

 

§§§ 11.2.2.3 Generalised Modified Assignment 

An arbitrary dotted variable (or stranded variable) structure may be used in a modified assignment.   

 
 

      ñD.§V‥Vf2„SDSV‥VArr © Modified strand assignment of dotted variable structure 
 

In this case ñD.§V‥Vf2„SDSV‥VArr ⇒ ñD.§V‥V „ ñD.§V‥V f2 SDSV‥VArr 

 

If X1, Y1 and Z1 are variable names then an arbitrary name strand may be modified by a dyadic function 

and an array argument of suitable form.  For example, 

      (X1 Y1 Z1)+„1 2 3  © X1+„1 ª Y1+„2 ª Z1+„3 
or 

      (X1(Y1 Z1))+„1 2  © X1+„1 ª Y1+„2 ª Z1+„2 
If these names are in space N1, then Rule 5 suggests that it should be possible to write  

      N1.(X1(Y1 Z1))+„1 2  © N1.X1+„1 ª N1.Y1+„2 ª N1.Z1+„2 
from outside space N1.  Generalising further, we would expect that  

      (N1 N2).(X1(Y1 Z1))+„1 
should increment variables X1, Y1 and Z1 in both N1 and N2 by 1, or that 
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      N0.(N1 N2).(X1(Y1 Z1))+„(1(2 3))(4(5 6)) 
would be equivalent to 

      N0.N1.(X1 Y1 Z1)+„1 2 3 ª N0.N2.(X1 Y1 Z1)+„4 5 6 
 

This is indeed the case in Dyalog version 11.0.  Further than this, selective modified assignment has been 

partially extended in a natural way to selective modified assignment. 

 

Create 2 Forms each with 2 Buttons 

      (–¨'FG'ŒWC¨›'Form').(–¨'B1' 'B2'ŒWC¨›'Button') 
and in the space of each button create 2 variables, a and b, with assigned values 

      (F G).(B1 B2).(a b)„‡‡2 2 2½¼8 
Then, selection can apply to the namespace references in access and assignment: 

      (1 0/F G).(0 1/B1 B2).(a b)↳,›,›3 4 
      (1 0/F G).(0 1/B1 B2).(a b)„,›,›9 10 

      (1 0/F G).(0 1/B1 B2).(a b)↳,›,›9 10 
The ref array may be any shape and structure, 

      zz„(1 1 1½F G).(1 1 1½B1 B2) 

 
as long as the shapes and structures correspond with that of the assigned data, 

     (1 1 1½F G).(0 1/B1 B2).(a b)„1 1 1½›,›33 34 

     (1 1 1½F G).(0 1/B1 B2).(a b)↳1 1 1½›,›33 34 
However, the implementation is not yet finished for one would expect the following to work 

      X„(1 1 1½F G).(0 1/B1 B2).(a b) 
      (1 1 1½F G).(0 1/B1 B2).(a b)„X 
      (1 1 1½F G).(0 1/B1 B2).(a b)+„X 
RANK ERROR 
although modified assignment with scalar extension works already 

      (1 1 1½F G).(0 1/B1 B2).(a b)+„1 
      (1 1 1½F G).(0 1/B1 B2).(a b+„1) 
 
11.2.2.3.1

Discuss with your friends these and further generalisations of assignment and the class of the 

assignment arrow. 

 

§§ 11.2.3 Expanding Array.Function 

§§§ 11.2.3.1 Array.Niladic 

A niladic function may be dotted with an array of object references, in which case the function is 

executed in every leaf in the array of references. 

 

For example, we can create a non-simple ref array  

      ŒAŒWC¨›'Form' 

     −RArr„(A(B C(D E)))↳¯3 
and execute niladic system function ŒWA on each Form.   

      RArr.ŒWA 
100758844  100758556 100758540  100758368 100758352 
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or 

      (A B).ŒWA ⇒ (A.ŒWA)(B.ŒWA) 
or 

      ½RArr.ŒTS↳2 
 

When such a structure (RArr) is dotted with a variable name or niladic function, the variable name or 

function name pervades the namespace structure and the structure of the result reflects the structure of the 

namespace array.  

 

 
 

A function in a namespace executes within that namespace; and normally only sees other functions and 

variables in that same namespace. 
 
 

      RD„ñD.f0 © f0 pervades nested structure ñD 
 

A nested array of namespace references, ñD (depth D and dataType RArr) is pervaded by a niladic 

function in an analogous way to the way in which the primitive scalar functions pervade their nested 

arguments. 

 

§§§ 11.2.3.2 Array.Monadic 

A monadic function dotted with a space array pervades the space array structure in the same way as a 

niladic function or an arbitrary array expression does.  The arguments, on the other hand, are distributed 

to spaces according to the space structure in the way that data is distributed to each space in the single 

name assignment ñD.§„SDArr where no strand expansion takes place. 

 
 

      RD„ñD.f1 WD © Run f1 in space ñx with argument Wx  
 

In the general case of ñD.(…) where (…) is a function expression that evaluates to a monadic 

function, the items of its argument array(s) are distributed to each referenced function.  The structure of 

the argument WD mirrors the namespace structure ñD (and also reflects the argument rank of the function 

f1).  The structure of the result RD also reflects the namespace structure ñD (and the structure of the result 

when f1 is applied to a typical argument – ie the result rank of f1). 
 

For example, a monadic scalar function, dotted with a vector of refs, may take a vector argument.  The 

function is then applied to element I of the argument in element I of the space vector: 

      R1 R2„(N1 N2).f1 W1 W2 ⇒ ╞(R1−N1.f1 W1)^(R2−N2.f1 W2) 
 

Note that variables WD and RD are taken to exist in the covering space, whereas f1 is assumed to exist in 

all leaf spaces in ñD.  If the arguments and results are to exist in the leaf spaces, then the expression 

ñD.(R„f1 W) could be used. 

 
11.2.3.2.1

Examine the depth and structure of the results of  

  ŒSE.(cbbot cbtop mb popup tip NumEd).ŒNL 2 
  ŒSE.(cbbot cbtop mb popup tip NumEd).ŒNL 3 
  ŒSE.(cbbot cbtop mb popup tip NumEd).ŒNL›2 3 
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  ŒSE.((cbbot cbtop mb)(popup tip NumEd)).ŒNL››2 3 
  ŒSE.(cbbot cbtop mb popup tip NumEd).(ŒNL¨)›2 3 
and 

  (#.F #.G).GetTextSize 'ab' 
  (#.F #.G).GetTextSize 'abc' 
  (#.F #.G).GetTextSize›'abc' 
in the case where F and G are GUI Forms on the Root. 

 

§§§ 11.2.3.3 Array.Dyadic 

A dyadic function dotted with a space array pervades the space array structure in the same way as a 

niladic function, monadic function or an arbitrary array-expression does.  The arguments, on the other 

hand, are distributed to spaces according to the space structure in the way that data is distributed to each 

space in the single name assignment ñD.§„SDArr where no strand expansion takes place.  This 

distribution takes place for both left and right arguments.  

 
 

      RD„AD ñD.f2 WD ©  Run f2 in space ñx with arguments Ax and Wx 
 

In the general case of ñD.(…) where (…) is a function expression that evaluates to a dyadic function, 

the items of its argument array(s) are distributed to each referenced function.  In the dyadic case, there is 

a 3-way distribution among: left argument, reference array and right argument. 

 

For example, a dyadic scalar function, dotted with a vector of refs, may take vector arguments.  The 

function is then applied to element I of both arguments in element I of the space vector: 

      R1 R2„A1 A2(N1 N2).f2 W1 W2 ⇒ ╞(R1−A1 N1.f2 W1)^(R2−A2 N2.f2 W2) 
 
11.2.3.3.1

Consider 2 Forms in a CLEAR WS. 

      'FG'ŒWC¨›'Form' 
Create a Button and a Label on each Form via a dyadic, space-qualified use of ŒWC  

      'BL'(F G).ŒWC¨›'Button' 'Label' 
Set the Captions on the child objects with space-qualified property assignment 

      (F G).(B L).Caption„('FB' 'FL')('GB' 'GL') 
Change the positions of all the children using modified assignment 

      (F G).(B L).Posn×„(.5 .4)(.3 .2) 
Set the Dragable property on all leaf objects 

      (F G).(B L).Dragable„1 
Create 8 vanilla spaces in every leaf 

      (2½›2½›ŒAV[17+¼8])(–¨‡ŒNL 9).(–¨‡ŒNL 9).(ŒNS¨)2½›2½›8½›'' 
Compare this with expression 

      (–¨‡ŒNL 9).(–¨‡ŒNL 9).((ŒAV[17+¼8])ŒNS¨8½›«) 
 
11.2.3.3.2

Experiment with dyadic ŒNL in place of plus (+) in expressions like 

      (1 2)3 4(W(X Y)Z).+1 2(3 4) 
using expressions like  

      'A'(W(X Y)Z).ŒNL 2 3  
      'Aa'(W(X Y)Z).ŒNL¨2 3 
where the ŒNL arguments have appropriate type, shape and rank.   
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§ 11.3 Arrays of Programs 

§§ 11.3.1 Interpreting  ...(…)....(...).f1 

We can now interpret an arbitrary dot-syntax expression.  Having identified the dot-syntax sequence sub-

expression, starting from the right we consider the rightmost token or parenthesised expression in 

...(.(.(.(…)))) .  This parenthesised name or expression preceded by a dot, is to be evaluated in the space 

preceding the dot.  So the token or parenthesised expression in  ...((((…).).).).…  must evaluate to a scalar ref 

or an array of refs.  If there is a dot to the left of this then the token or parenthesised expression in  

...(.(.(.(…).).).).…....…  must evaluate to a ref array,.. and so on until the left-most token or parenthesised 

expression is encountered.  Only now can anything be evaluated.  First the left-most term is evaluated in 

the current covering space to a space ref or array of space refs..  The next term is evaluated inside each of 

these spaces to give a set of sub-spaces .. and so on until the right-most term is revisited in the backward 

pass analysis.  The right-most term can finally be evaluated because the space or spaces in which it is to 

be evaluated are now known.  The result of this final term in the dot sequence may evaluate to a numeric, 

character, ref or mixed array if it is an array expression, or a function if it is a function expression, or any 

type of named object if it is a single token.   

 

This is rather similar to the VB analysis of the line ActiveSheet.Range'A1:A2'.Rows.Count 

which is read left to right and where Range'A1:A2' returns an unnamed object reference.  The APL 

equivalent, however, requires parentheses round the Range expression from Rules 4 & 5, as in  

      ActiveSheet.(Range'A1:A2').Rows.Count  
or 

      ActiveSheet.(Range'A1:A2').Cells.(Item 1).Value2 
or 

      Documents.(Open'C:\MyWord.doc').Activate 
 

This procedural proscription in the analysis of a dotted sequence, together with the rules for expansion of 

terms, is sufficient to obtain the (derived) result of the dot sequence.  If the result is a function then the 

rules for distribution of arguments must be applied in order to obtain the final (array) results of the entire 

(array) expression. 

 
11.3.1.1

Create a Calendar within a Group on a Form. 

      'F' 'F.G' 'F.G.C'ŒWC¨'Form' 'Group' 'Calendar' 
Write a niladic function goo in F-space which returns a ref to the Group space, then trace the expression  

      F.goo.C.DateToIDN 3†ŒTS 
Do the same for F and C and check the order of execution of foo.goo.coo . 

 
11.3.1.2

Create namespaces a b c and d within Á Â Ã and Ç within A B C and D. Use varChar to zoom and 

view the structure of derived spaces such as 

      œœ(A B C).(Á Â).(a b c d) 
or 

      (3 1½A B C).(2 2½Á Â).(a b c (››,d)) 
Notice that it has a 3 by 1 outer shape, then a 2 by 2 , then a 4 vector, the last element of which is doubly 

enclosed.  

 

If, in particular, the final term in a dot-syntax expansion resolves to a monadic function then a function of 

that name (if it has a name) is assumed to exist in every leaf namespace found to the left of the final dot.   
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11.3.1.3
Interpret, or otherwise explain, the following lines: 

      (N.+).×             © wrong 
  #.N .+ .× 
      N.(+.×)             © right 
 #.N . +.× 
      3 4(N.+).× 5 6      © should error 
39 
      3 4 N.(+.×) 5 6     © 3 4 +.× 5 6 
39 
 

§§ 11.3.2 Arrays of .. Arrays of defined Functions 

Motivation:  Physics deals with arrays of functions.  The position of a particle is a 3-vector.  Generally the 

position is a function of time – a 3-vector of functions  r(t) = ( x(t) , y(t) , z(t) ).  Even if the particle position is 

constant in one frame of reference, it is not necessarily constant in a different frame of reference.  Since the laws 

of physics have to hold in all (inertial) frames of reference, the fundamental equations, eg F = m a,  generally have 

to deal with arrays of functions. 

 

Dyalog APL does not have notation to represent arrays of functions directly.  However, there are ways in 

which arrays of functions can be represented.  For example, functions can be represented as data via ŒOR. 

 

Consider the function expressions 

      R„³°²  © rotation 90° anticlock 
      H„´    © reflection 
then 

      ŒOR¨'RH' 
 ³°²  ´ 
 

These functions could be combined into a 2 by 2 matrix M of (ŒORs of) functions by snippet 

M„2 2½›'' 
 :For r c :In ¼½M 
     –'M',(•r),(•c),'„',('HR'[r]),'°','HR'[c] 
     M[r;c]„›ŒOR'M',(•r),(•c) 
 :End 
which in varChar looks like this: 

 
 

This technique could be applied to canonical functions to produce arrays that can be indexed and 

individual functions ŒFXed and executed with appropriate arguments.   

 

Alternatively, an array of functions may be implemented more directly using an array of namespaces each 

of which contains a different function of the same name.   

 

For example, if the position vector as a function of time t was given by r(t) = ( t
-1

 , 2t , 3t
2
 ) then this 

could be implemented as 
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      S„ŒNS¨3½›'' 
      S[1].r„1°÷ 
      S[2].r„2°× 
      S[3].r„3°×°(2°(*þ)) 
then the positions at the first 5 time points are given by the vector function S.r acting on each time: 

      †S.r¨0,¼4 
0            0  0 
1            2  3 
0.5          4 12 
0.3333333333 6 27 
0.25         8 48 
 
11.3.2.1

Make a matrix function of a scalar angle ¾, Rot¾ representing the rotation matrix in 2 dimensions: 

         Cos ¾ -Sin ¾ 
         Sin ¾  Cos ¾ 
Use it to rotate the 2 element vector (2,3) clockwise through π/2 radians.   

 

If Dyalog APL is to be a language suitable for scientific programming then it needs complex numbers.  

These can be modelled but would be better built into the interpreter as is done in APL2, SharpAPL and J.  

 

Many other mathematical features could be built into the language, such as a monadic determinant 

function of a matrix for which Iverson has suggested notation -.×¾, or the exponential function of a 

matrix defined by the power series expansion 

      ((½¾)½(1+œ½¾)†1)+œœ+/(+.×/¨(¼¸)½¨››¾)÷!¼¸ 
by analogy with the usual scalar definition 

      1+œœ+/(×/¨(¼¸)½¨››¾)÷!¼¸ 
where ¸ is the number of terms in the power series and ¾ is the square matrix to be exponentiated. 

 
Aside: Really big steps in mathematics are from scalar arithmetic to vector algebra and from vector algebra to 

tensor calculus.  Linear vector spaces play a most fundamental role in mathematics, and in APL.  If APL could 

efficiently and neatly handle arrays of functions then this would be another big step along the road of executable 

maths. For example, scientists habitually deal on paper with the determinant of matrices of functions, such as the 

Jacobian determinant, and even with the exponential of matrices of functions.  With the new possibility of space-

arrays of functions, some of these higher mathematical constructs start to become visible in APL. 

 

§§ 11.3.3 Arrays of .. Arrays of defined Operators 

The same technique as we used to model arrays of functions can be employed to model arrays of 

operators.  (In 3D vector analysis, the gradient and curl operators are vector operators.  See New 

Foundations in Vector Vol.20 No.1 for some more discussion of operators in APL.) 

 

Consider the simple derivative operator that returns the gradient function 
df

/dx of a given function f(x).  
d
/dx could be defined in APL as operator ‘ where  

      f ‘ ↳ ((f x+ŒCT)-f x)÷ŒCT 
or better as 

      f ‘ ↳ ((f x+1E¯6)-f x-1E¯6)÷2×1E¯6 
 

With this operator we can find the gradient function g(x)=
dy

/dx of , for example, the function y=x
2
 with 

      g„2°(*þ)‘ 
and apply this function, which should be g(x)=2x, at the points x=1..9 to get 

      g ¼9 
2 4 6.000000001 8 10 12 14 15.99999999 17.99999999 
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This operator (‘) may be placed in 3 different spaces, with just a small difference in each, to yield a 

model of a gradient vector operator that takes the partial derivatives in the x, y and z directions. 

 

      D„ŒNS¨3½›'' 
      ŒCS #.D[1] 
     ’ R„(f ‘)W;dW 
[1]    dW„3†–'1E¯6'    © (dx 0 0) 
[2]    R„((f W+dW)-f W-dW)÷2×–'1E¯6'  
     ’ 
      ŒCS #.D[2] 
     ’ R„(f ‘)W;dW 
[1]    dW„3†¯2†–'1E¯6' © (0 dy 0) 
[2]    R„((f W+dW)-f W-dW)÷2×–'1E¯6'  
     ’ 
      ŒCS #.D[3] 
     ’ R„(f ‘)W;dW 
[1]    dW„¯3†–'1E¯6'   © (0 0 dz) 
[2]    R„((f W+dW)-f W-dW)÷2×–'1E¯6'  
     ’ 
      ŒCS # 
 
11.3.3.1

Test this vector operator on a scalar function of a vector (x
-1

+2y+3z
2
), ie fn, 

     ’ R„fn W                       
[1]    R„(÷W[1])+(2×W[2])+3×W[3]*2  
     ’ 
Show that the gradient function (fn D.‘) at 3 vector points (x,y,z) gives the expected answer. 

      †fn D.‘ ¨(1 2 3)(2 3 4)(4 5 6) 
¯1             2.000000002 18          
¯0.2499999994  2.000000002 24          
¯0.06249999984 1.999999995 36.00000001 
This agrees well with the analytic solution (-x

-2
, 2, 6z) at (x,y,z). 

 
11.3.3.2

Please ask for the next module on Dynamic Functions – it's shorter and easier �! 

 

 

 

 

 

 

 

 

 
Comment: If an operator can be dotted with an operator one might expect that +.× should be the equivalent of 

#.+#..#.×, or (#.+)(#..)(#.×), but these latter expressions, unsurprisingly, cause a SYNTAX ERROR 

because #.. is hard to interpret even if operators can take operator operands.  Actually, no primitive operators 

may be space-qualified, but derived functions such as #.(+.×),  #.(°.×) and even #.(/) can be.  This 

is not a limiting factor as primitive operators (. ° / \ etc ) are identical in every space and so it should never 

matter from which space they were called.  User defined operators, on the other hand, may be space-qualified.  

(Perhaps a bold version (•) of the relatively new and subtle addition ŒAV[94+ŒIO], (·), should have been 

used instead of (.) for dot syntax.) 


