
 Day 2: Fourth Generation Dyalog APL – The Internet

183 of 195

Module20: Dyalog APL Classes

§ 20.1 User defined Classes

§§ 20.1.1 The :Class:Class:Class:Class Structure

In modern computer parlance, a class is a blueprint, or scripted template, describing how to build

instances which are created from the class definition. An instance of a class is an object with methods

and properties that is created from the class template.

In Dyalog APL terms, a class is an object created from a script in much the same way as a function is a

program created from a script. Both are editable via �ED, both may be fixed from a character

representation and both may be traced when run.

In a sense there already are classes in Dyalog. The 70+ built-in GUI objects are object factories for those

particular types of objects (Form, Button, Group etc…). However, it is not currently possible to examine

these classes directly. The property named Type is essentially the dataType of the instance.

Dyalog version 11 allows you to write classes of your own and generate instances without replicating

underlying program code. They have a lot in common with pure namespaces, but with extra

functionality. For example, editing and fixing a class, immediately changes all existing instances.

The essence of a class is the class structure in which methods, properties and fields (class members) may

be defined between the opening and closing keywords. (A structure is an essentially multi-line construct

that may or may not be amenable to diamondization, depending on the vagaries of the implementation.)

:Class MyClass¶…¶:EndClass§ © Basic class structure wherein members will be defined

In an analogous manner to)ED �MyFunction, a new class may be edited by keysymbol circle (�).
)ED �MyClass

All class-specific details are defined inside this control structure.

{RefSc}#{BSc}�FIX VecCharVec (Fix a visible (if BSc=default=1) class (with Ref)

Alternatively, like functions through �FX, a complete character representation may be fixed by �FIX.
 �FIX':Class MyClass' .. ':EndClass'

This creates a new object called MyClass, which is reported by the objects and classes commands.

)Classes © Lists all classes in the space

)OBS
MyClass
)CLASSES
MyClass

As yet there are no instances of our class, only the (empty) class definition.

InstRefSc#�NEW ClassRefSc (Creates an instance of a class (with no argument)

New instances of a class may be created (instantiated) with �NEW, and what is more, like �DQ,

YOU CAN TRACE INTO IT!

In this way you can follow the steps in the formation of an instance of a class.

 Day 2: Fourth Generation Dyalog APL – The Internet

184 of 195

 MyInst#�NEW MyClass
)Classes
MyClass
)Obs
MyClass MyInst

InstRefVec#�INSTANCES ClassRefSc (Return all instances of a class

All the instances of a particular class (and their ancestry) are returned by �INSTANCES.
 �INSTANCES MyClass
 #.[MyClass]

 Ρ�INSTANCES MyClass ↳ 1
We can create a vector of instances
 MyInsts#�NEW¨5ΡMyClass

 MyInsts ↳ #.[MyClass] #.[MyClass] #.[MyClass] #.[MyClass] #.[MyClass]
 ΡMyInsts ↳ 5
whose names are reported by the relevant classification.

 �NL 2 ↳ MyInsts
 ;�NL 9 ↳ MyClass MyInst

 OldCharArr#�DF NewCharArr (Sets the display form of the current space

The display form of all objects - namespaces, GUI objects, classes or instances – may be assigned to any

character array, for example,
 MyInsts.�DF 5>2Ρ¨�A

 MyInsts ↳ AA BB CC DD EE

Class definitions may be nested within broader classes, and class definitions may specify other (base)

classes or interfaces from which methods and properties may be inherited.

:Class MyClass : MyBase¶…¶:EndClass © Classes with inherited characteristics from base class

The base class may be a Dyalog user defined class, a .NET class, an interface or a Dyalog GUI class, in

which case the object following the second colon in the first line of the class structure must be surrounded

by quotes as in, for example, :Class MyGUI : 'Form' … . Note that GUI objects may be created with

�NEW in addition to �WC by again surrounding the class name in quotes, eg by �NEW@'Form'.

VecCharVec#�SRC ClassRefSc (Returns a character representation of a class

By analogy with

 'foo'A�FX �CR'foo' ↳ 1
we can write

 MyClassA�FIX �SRC MyClass ↳ 1

RefSc#�THIS (Returns a reference to the current space

This system variable may be defined by

 �THISAC''�NS'' ↳ 1
or

 �THISAC�CS'' ↳ 1

20.1.1.1

Create some instances of a class and investigate the extent to which they mirror the behaviour of

namespace clones.

 Day 2: Fourth Generation Dyalog APL – The Internet

185 of 195

§§ 20.1.2 The :Field:Field:Field:Field Statement

A class is like a namespace, and a field in a class is like an APL variable in the namespace.

  Private   Instance 
 :Field     {ReadOnly} MyField (Defines field called MyField

  Public   Shared 

The keystrings in the field statement may be Private (the default if elided) or Public, Instance (the

default if elided) or Shared. A public field is visible outside an instance or outside a class (if Shared). It

may also be defined as ReadOnly in which case it may behave rather like an ENUM.

The initial value of the field may be assigned in the :Field statement by any APL expression.

 :Field Public MyField#expr (Defines a predefined public field called MyField

This is perhaps the most common form of definition of a field. It is visible outside an instance of the

class in which it is specified, and it is initialised by an assigned expression at the end of the statement.

If the field statement includes the keystring Public and also keystring Shared then the field is visible

from outside an instance of the class and outside the class itself.

20.1.2.1

Write a class definition such as FldClass below and attempt to read and assign the values of the

fields A, B, C and D directly from the class, and from an instance of the class. Find the result of �NL G2 in

the class and in an instance. Is there any operational difference between field A and variable E?

:Class FldClass
 :Field A
 :Field Public B
 :Field Public C„1
 :Field Public Shared D„2

E„3
:EndClass

20.1.2.2

Explain the resulting values of fields C and D after

 RefArr„ŒNEW¨3 3½FldClass
 RefArr.C„3 3½¼6
 RefArr.D„3 3½¼6
 RefArr.A„3 3½¼6
Is RefArr.A above a field? Set the display form of each instance in RefArr individually.

20.1.2.3

In instances of the nested classes below, change the values of both of the fields.

:Class MyClass1
 :Field Public MyField1#1
 :Class MyClass2
 :Field Public MyField2#2
 :EndClass
:EndClass

Make the fields Shared and explore the difference. Is the value of a field in an instance always the same

as that in the corresponding class?

 Day 2: Fourth Generation Dyalog APL – The Internet

186 of 195

§§ 20.1.3 Name sub Classifications of �NC�NC�NC�NC

In Version 11, names are sub classified. Below is a vain attempt to categorise these sub classifications.

The above view of the new classification scheme is not authoritative but may be helpful in gaining a feel

for the relative meanings of the new categories introduced in 3
rd

 and 4
th

 generation APLs. In particular

events are categorised under operators as they essentially take an operand of a user defined (callback)

function. Nameclass 2.6 also applies to external properties, eg properties of OLEClient objects or .NET

instances. (Note that external properties have to be used or accessed first before they become visible.)

As well as by some script editor, categories 3.1 and 4.1 may also be created using ŒFX, and categories 9.1

and 9.4 may also be created using ŒFIX.

20.1.3.1

Examine the differences in, for example, ws ..\samples\OO4APL\Chapter9.dws, between

(ŒNC ŒNL ¼9) and (ŒNC ŒNL -¼9).

Namespaces can be defined in script files too via the :Namespace structure. We first came across this

structure in a .apl script file in §19. This structure can contain all the usual elements of namespaces

including classes and other namespaces.

:Namespace MyNamespace¶…¶:EndNamespace © Basic namespace script structure

Conversely, classes may include namespaces by means of the :Include keyword in a class definition.

 :Include ñ © Makes contents of ñ accessible within a class

Classes that invoke .NET classes may incorporate the :Using keyword as an alternative to the system

variable �USING inside a class definition.

:Using ñ{,ass} (�USING#ñ{,ass}

 Day 2: Fourth Generation Dyalog APL – The Internet

187 of 195

§ 20.2 Methods and Properties in Classes

§§ 20.2.1 The ���� (Method) Structure

An APL function is usually defined inside a class definition between del (�) symbols as in APL 1. It is

also possible to define dynamic functions using braces, or fix a function definition from ŒFX.

 �MyFunctionHeader¶…¶� © Basic function definition structure

  Private   Instance 
 :Access     (Declares the access attributes of a function

  Public   Shared 

A method is a non-dyadic function with public access. Only Public methods can be called from an

instance (and directly from a class if :Access Public Shared).

 �MyFunctionHeader¶:Access Public¶…¶� © Basic method definition structure

20.2.1.1

Show that it is possible to call a Public Shared method such as MyMethod1 below from instances or

directly from the class. Add a field and include it in the method, perhaps as the left argument of iota (Ι).
:Class MyClass1
 � R#MyMethod1 Int
 :Access Public Shared
 R#ΙInt
 �
:EndClass

 MyClass1.MyMethod1 9 ↳ 1 2 3 4 5 6 7 8 9
 (�NEW MyClass1).MyMethod1 8 ↳ 1 2 3 4 5 6 7 8

Classes may be fixed from vectors of character vectors. Controlwords and keystrings are not case

sensitive.
 �FIX':class c1' ':field public shared var#0' '�r#foo w' 'r#w*2' '�' ':endclass'

If a method is to be called from a language other than Dyalog APL then it is necessary to define precisely

the dataType of the arguments and result. This is achieved by the :Signature statement which makes

use of the .NET dataTypes as outlined in §0.

:Signature FunctionSyntax (Signature declaration statement

An example of this is given below. Notice that a :Using statement is required in order to access the

System.Int32 object from .NET.
:class c2
:using System
 :field public shared var#0
 � r#foo w
 :Access public shared
 :Signature Int32#foo Int32
 r#w*2
 �
:endclass

 Day 2: Fourth Generation Dyalog APL – The Internet

188 of 195

When looking into ASP.NET in §19.3, with Dyalog APL as the scripting language, we came across a web

service script, eg1.asmx, that contained a class based on the .NET System.Web.Services.WebService.

The details of this script, in particular the :Signature statement, should now be clear.

20.2.1.2

Load workspace ..\Samples\asp.net\tutorial\fruit.dws and examine the FruitSelection class.
:Class FruitSelection: Page
 :Using System.Web.UI,System.Web.dll
 :Using
 :Access Public
 � Page_Load
 :Access Public
 :Signature System.Void#Page_Load
 :If 0=IsPostBack
 list.Items.Add@'Raspberries'
 list.Items.Add@'Blackberries'
 list.Items.Add@'Grapes'
 list.Items.Add@'Mangoes'
 :EndIf
 �
 � Select args
 :Access Public
 :Signature System.Void#Select System.Object obj, System.EventArgs e
 out.Text#'You selected ',list.SelectedItem.Text
 �
:EndClass

Navigate to http://82.111.24.53/tutorial.net/frintro6.htm. This tutorial example is based on a version of

file ..\Samples\asp.net\tutorial\intro6.aspx which invokes the above class.

<%@Page Language="Dyalog" Inherits="FruitSelection" Src="Fruit.dws" %>

<html>..</html>

Run the tutorial online and study the explanations given. Notice that the class inherits from the .NET

class System.Web.UI.Page. Hence the need for the first :Using statement. The second :Using

statement is needed so that the :Signature statements can locate all dataTypes derived from

System.Object class.

§§ 20.2.2 The :Implements:Implements:Implements:Implements Statement

The Page_Load function is rather special in that, if it exists in the class definition, then it is run

automatically every time the class is instantiated.

Generally, in a user defined class one must declare a Public method to be a constructor function in order

to have the function run on creation of an instance.

:Implements Constructor (Statement declares a method to be run on instantiation

A function which is declared to be a constructor function can not return a result and must be Public. The

function may be niladic as in the case of Page_Load above, or monadic as in the case of MyClass2 below.
:Class MyClass2
 :Field Public MyField2
 � MyMethod2 Int
 :Access Public
 :Implements Constructor
 MyField2#ΙInt
 �
:EndClass

When instantiated with an argument of 5, say, then MyMethod2 sets the value of MyField2 to Ι5.

 (�NEW MyClass2 5).MyField2 ↳ 1 2 3 4 5

 Day 2: Fourth Generation Dyalog APL – The Internet

189 of 195

It is possible to employ the iota symbol as index generator with a numeric vector argument (in which case

the argument will match the shape of the result).
 (�NEW MyClass2 (3 3)).MyField2
 1 1 1 2 1 3
 2 1 2 2 2 3
 3 1 3 2 3 3

This behaviour is called overloading in computerese and in general it requires special treatment such as:
:Class MyClass3
 :Field Public MyField2
 � MyMethod2 Int
 :Access Public
 :Implements Constructor
 MyField2#ΙInt
 �
 � MyMethod3(Int1 Int2)
 :Access Public
 :Implements Constructor
 MyField2#ΙInt1 Int2
 �
:EndClass

Tracing the statement
 Ρ(�NEW MyClass3(5 5)).MyField2

shows that the constructor with 2 arguments is selected in this case

5 5

In this way many monadic constructor functions can be specified in a class definition, each with a

different right argument structure. The one that is actually run in any given situation is determined by the

structure of the given argument. (This is what must happen under the covers of primitive APL functions,

such as the index generator, which encapsulate more than one underlying algorithm.)

20.2.2.1

Write a simple class that has a niladic constructor that initialises the value of a field. Change the

constructor function valence to monadic and initialise the field with the argument given to the constructor

(the second element of the argument given to �NEW).

:Implements Constructor :Base expr (Calls base constructor with argument given by expr

The :Implements Constructor statement can be supplemented with :Base followed by an APL

expression. The result of this expression is taken as the argument to the constructor function of the class

from which the current class inherits its behaviour (following the colon after the class name in the :Class

header line, assuming there is one). The constructor of the base class is immediately run with this

argument.

 Constructor 
:Implements Destructor  (Implements Statements

 Trigger 

A method can contain a :Implements Destructor statement in which case the method is run when the

last reference to an object is expunged.

 Day 2: Fourth Generation Dyalog APL – The Internet

190 of 195

A function can contain a :Implements Trigger Name1,Name2,X statement in which case the function is

executed if any of the variables in the list Name1, Name2,X is changed.

20.2.2.2

Write a simple function with a trigger statement and show that this is run when the trigger variable

is changed. See Dyalog Version 11 [Help][Latest Enhancements] for an explanation of how to access the

old and new values of the variable.

The primitive GUI objects built into Dyalog APL behave very like APL classes except that the name of

the object must be placed in quotes when given as an argument to �NEW, or when referenced as a base

class in a :Class definition.

20.2.2.3

Create an instance of a Form using syntax �NEW 'Form' '' or �NEW @'Form'. Hence rewrite

�makeGrid� on page1 of this course to use �NEW rather than �WC.

20.2.2.4

Create a class based on a Form using syntax :Class MyClass : 'Form'. In the constructor

function create a black Static on the Form. Check the hierarchy using new system function �CLASS.
Hint: ST#�NEW'Static'(@'BCol'(0 0 0))

§§ 20.2.3 The :P:P:P:Propertyropertyropertyroperty Structure

A property is like an adjective that describes some attribute of an object. (A method is like a verb that

specifies some action that an object can perform, and a field (and an object itself) is like a noun, which

has some value.)

 :Property MyProperty…:EndProperty (Property Structure

A property of an object is implemented as a :Property structure. Inside the structure is a :Access
Public statement in order to make the property accessible outside of an instance. Also inside the

structure may be a case insensitive niladic �get� function that returns the value of the property, and a

case insensitive monadic �set� function whose (internal instance) argument contains the new property

value in the field NewValue.

For example, the class definition below bases the simple property MyProp on the value of a hidden

variable XX.

 MyInst#�NEW MyClass
 MyInst.MyProp#Ι9

 MyInst.MyProp ↳ 1 2 3 4 5 6 7 8 9
Of course, any amount of processing could be included in the �get� and �set� functions (whose names

are allowed to be postfixed with other characters).

 Day 2: Fourth Generation Dyalog APL – The Internet

191 of 195

As well as Simple properties (the default if elided), there are Numbered properties and Keyed properties.

In the case of a Numbered property, the property structure normally has a monadic �get� function and a

niladic or monadic �shape� function.

 Simple 

:Property Numbered  Name1{,Name2,X}:Access Public¶…¶:EndProperty (

 Keyed 

The definitions of these types of properties, and the extra Default keystring for Numbered properties

should be explored in the [Help][Latest Enhancements] or in the glorious Object Oriented Programming

for APL Programmers to be found in the file ..\manuals\OO for APL'ers, 2006-06-22.pdf

20.2.3.1

Given a class with the Numbered property on the

right, trace and interpret the results of expressions:

 (�NEW MyClass).MyProp

and
 (�NEW MyClass).MyProp#2 3 4ΡΙ99

20.2.3.2

Create a class having a monadic constructor that takes an argument of a file name and ties the file,

creating it if necessary. Introduce a property that returns or sets the value of the first component of the

file.

 Day 2: Fourth Generation Dyalog APL – The Internet

192 of 195

§ 20.3 Architecture with Class Factories

§§ 20.3.1 Designing an Object Model

When writing an APL function, it is generally a good idea to carefully consider the header line. What

goes in and what comes out and what to call the function and what to call the arguments and result. The

first two questions are most important, and determine the functionality completely. The other questions

are significant in that they facilitate use; I mean you wouldn’t invent a new verb meaning “to tidy up your

garage” and call it xyxy, and you wouldn’t call a new type of garden hose a ttttt, would you? Would you?

So when constructing a new application based on classes it is a good idea to carefully consider what

objects are needed and how they fit together. A good layout for object-related concepts is given in the

Dyalog Object Reference manual. Objects are documented with their potential parent and child types as

well as their properties, events and methods. Once the basic idea of a GUI object has been grasped, a

quick glance at this overview often supplies all the information required to proceed with the application.

For example, let us imagine that we are designing a multi-dimensional application that uses an Index

object to group dimensions into those on pages, those on rows and those on columns, in the manner

shown on the MDI SubForm below.

We wish to use this same Index object in other contexts such as that below, and therefore it makes sense

to build an Index class that can build an entire Index object (made up of SubForms, Buttons, Splitters

etc…) in any suitable context (ie on any valid parent).

Before diving in to write the APL code (which we love writing when we know what we are supposed to

be doing), let us take a little time to specify exactly where we intend to go so that we are less likely to hit

unforeseen design faults and other unnecessary limitations. We could do this by filling in the object

summary below.

 Day 2: Fourth Generation Dyalog APL – The Internet

193 of 195

Index Object
Purpose The Index object is a container for three Dimensions collections. Each

Dimensions collection contains a number of Dimension objects that specify

labels along one axis.

Parents Volume, Variable

Children Dimensions

Properties Type, PageRowSplitPosn, RowColumnSplitPosn, Event, SplitterColours,

PRC, PRCColours

Events SelectPage, SelectRow, SelectColumn, DragPageRowSplitter,

DragRowColumnSplitter

Methods AutoPosnSplitters

Designing systems based on classes introduces this a new discipline that can assist in specifying and

coding applications. This OOP tool of thought is analogous to the familiar arguments and results design

model for functional programming, which can assist with lower level coding.

With these building blocks a top-level model can be constructed that summarises the entire application.

Getting this model ‘right’ is an iterative process.

See the Word and Excel help files such as VBAWRD9.CHM and VBAXL10.CHM for real examples.

 Day 2: Fourth Generation Dyalog APL – The Internet

194 of 195

§§ 20.3.2 Building with Objects

The Dyalog GUI affords some simple examples of GUI objects built from simpler GUI objects (built

from API objects?). Consider for example the Grid object, built from Button and Edit objects.

20.3.2.1

Look at some other Dyalog GUI objects and try to find examples of multi-object constructs. Write a

class definition that instantiates a new multi-GUI-object construct.

The question arises, “Where in the workspace should I place my class definitions?” Should they be in

namespaces in a hierarchy that mirrors the object model? No, because there is no unique position for

objects that are used in more than one context. Should they be on file? Not initially, at least. Then

where? Paul Mansour’s flipdb application (see http://www.flipdb.com) is beautifully designed and

suggests that classes are placed at the root level and simply need a #. in front of their name in order to

invoke them in any part of the application. This seems a very nice simple suggestion – in general classes

have no definite hierarchy until instantiated, therefore put them all at the root level.

§§ 20.3.3 Encapsulating, Inheriting and Morphing

Encapsulation, Inheritance and Polymorphism are said to be the three pillars of Object Oriented

Programming (OOP). APL 1 (core APL) already had significant examples of encapsulation and

polymorphism, and APL 3 (GUI) has fine examples of inheritance. Classes in Dyalog version 11 bring

explicit examples of OOP that are immediately recognisable to C++ and VB programmers.

Encapsulation is the practice of hiding internal workings from external scrutiny and revealing only those

aspects that have been chosen as relevant to the outside world. This concept is most explicit in OOP

where an object reveals its characteristics and behaviour through a set of well-defined ‘members’. The

concept is, however, already well understood in APL 1 where good function definition encourages

localisation of all variables that are irrelevant to the intended use. Even the simple plus sign (+) in any

digital computer language hides the internal binary processes, which usually obscure rather than

enlighten.

Inheritance is a concept indicating that certain characteristics at one level are passed on to the next level.

We have seen how classes may be based on other classes and acquire their members; for example

System.Int32 is based on System.Object. Even in APL 1 we can surmise that matrix divide (Z) is

based on simple division – even the symbol face has a family resemblance! Inheritance gives a new

dimension to encapsulation where functionality of ancestors may be employed by future generations

without the need to replicate the functions behind the behaviour or the data behind the family attributes.

Polymorphism means ‘having many forms’. Dogs (Canis familiaris), for example, take many forms, but

they are all dogs. So a class may be overloaded with many different possible arguments (the second

parameter in �NEW) to produce different objects with related, but not identical, attributes and behaviour.

This is one example of polymorphism in OOP. Even in APL 1 primitive functions such as replicate (/)

and expand (\) may take numeric or character right arguments and give a related, though different, form

of result. This is polymorphism of a sort. It is called operator overloading in C++, but we have inherited

profound operator ‘overloading’ in APL notation +.× _.= `.` … (:-)

As systems grow more complex, computer science borrows more terms from biology. The analogy

between the human brain and computer systems has always been close. Now deeper analogies with life

forms in general are being forged and there seems no end to the abstract correspondence which

computing in general can achieve. APL is a powerful tool of thought with a star-studded history. The

APL language still leads all the best executable notations and continues to solve real problems.

20.3.3.1

Take control of your computing needs with Dyalog APL ☺.

 APL 3 & 4 Third & Fourth Generation Dyalog APL

195 of 195

F E E D B A C K F O R M

 Name . eMail .

 Date . Location .

 Course . Instructor .

 Please indicate your assessment of the following:

poor 1 2 3 4 5 excellent

 Location & Facilities

 Course Content (by module if possible?)

 Course Material (by module if possible?)

 Instructor’s Knowledge (by module?)

 How useful was the course to your role?

 Please suggest improvements to the course.

 Any other critical comments are welcome.

Please give this form to your tutor, or send it to ROBERTSON (Publishing).

