
 Day 2: Fourth Generation Dyalog APL – The Internet

129 of 195

Module14: TCP/IP Sockets

§ 14.1 The TCPSocketTCPSocketTCPSocketTCPSocket Object

§§ 14.1.1 IP Addresses and Ports

An Internet Protocol (IP) address uniquely identifies a specific network card on a specific computer.

Associated with an IP address are one or more ports. Communication between computers requires

specification of the IP address and port number of both ends of the connection.

14.1.1.1

To discover the IP address that has been assigned to your computer network card, enter

 #.TCPGetHostID
(Remember [Options][Object Syntax][Expose Root Properties] should be checked.)

A (32-bit) IP address is written as 4 numbers between 0 and ¯ 1+2*8 ↳ 255, separated by dots. For

example, 216.239.39.99 is one of the IP addresses of Google.com.

IP addresses beginning 10. or 172. or 192. are internally assigned within an intranet and are not reachable

from outside your local area network. 127.0.0.1 is the standard IP address used for a loopback network

connection. If you try to connect to 127.0.0.1, you are immediately looped back to your own machine.

A (16-bit) port number can be anything between 1 and ¯ 1+2*16 ↳ 65535. Internet traffic generally uses

port number 80. FTP (File Transfer Protocol) conventionally uses port 21. SMTP (Simple Mail Transfer

Protocol) conventionally uses port 25.

§§ 14.1.2 SocketTypeSocketTypeSocketTypeSocketType and StyleStyleStyleStyle Properties

TCP/IP stands for Transmission Control Protocol/Internet Protocol. It is a fundamental part of the

standard protocol for communications on the internet.

Dyalog APL provides an object called a TCPSocket that enables access to TCP/IP communications by

way of the API functions in winsock.dll.

There are two types of TCP/IP connections, both of which are supported by the TCPSocket object. A

UDP (User Datagram Protocol) socket is like a postal service. A single small package is sent to an

address. Packages may arrive in any order, and sometimes might not arrive at all.

The second more common type of connection is a stream socket, which is like a telephone service.

Someone initiates a call. Once a connection is established, both parties have equal status and either party

can terminate the call at any stage. Packets are received in the order in which they are transmitted. They

are guaranteed to arrive - with automatic error correction.

The equivalent of waiting for a telephone call is creating a listening socket. The minimum information

required to create a listening socket is the local port number that is to be used for communications, and

the name of the new APL object.

 'S0'ŒWC'TCPSocket' ('LocalPort' 123)
The default socket type is stream, the alternative being UDP,

 S0.SocketType ↳ Stream
(Remember to make sure that ├S0.ŒWX.)

The current state of the socket is 'Listening'

 S0.CurrentState ↳ Listening

 Day 2: Fourth Generation Dyalog APL – The Internet

130 of 195

The default Style specifies that character data will be transmitted. This is the standard Style for

internet traffic.

 S0.Style ↳ Char

Alternative Styles are Raw and APL. 'Raw' communication is via integer vectors between ¯ 128 and

255 (negative numbers, such as ¯ 50, are added to 256 and sent as, for example, 256-50=206, making the

range effectively 0 to 255). Style 'APL' communicates via arbitrary APL arrays. The latter is only

suitable for communication between two APL workspaces.

§§ 14.1.3 Workspace to Workspace Communications

In the first instance, we are going to create a listening socket in a workspace on our computer by running

the following function, where function ’show’ is just ŒFX'show Msg' 'Msg' (not show„{¾}).

 ’ listen;w
[1] w„›'Type' 'TCPSocket'
[2] w,„›'LocalPort' 123
[3] w,„›'Style' 'APL'
[4] w,„›'Event' 'All' 'show'
[5] 'S0'ŒWC w
 ’
The Create Event displays immediately (via ’show’) the message

 S0 Create 1
The TCPSocket object has been assigned a socket number

 S0.SocketNumber ↳ 696

which is the Windows handle of the socket. The current state is 'Listening'. The intended final state is

'Server'

 S0. TargetState ↳ Server
as opposed to possible states 'Client' or 'Closed' for a stream socket. Setting the target state to 'Closed' is

the approved method of closing a socket because then APL waits until all data has been sent before

issuing a TCPClose Event.

 S0 . TargetState„'Closed'
 S0 TCPClose

Next we start a new instance of Dyalog APL and use the function below to create a TCPSocket that will

connect to a listening socket on port 123. Again, function ’show’ is just ŒFX'show Msg' 'Msg'.

 ’ connect;w
[1] w„›'Type' 'TCPSocket'
[2] w,„›'RemoteAddr' '127.0.0.1'
[3] w,„›'RemotePort' 123
[4] w,„›'Style' 'APL'
[5] w,„›'Event' 'All' 'show'
[6] 'S1'ŒWC w
 ’
The minimum information required to create a connecting socket, apart from its arbitrary APL name, is

the remote address and the remote port number, which must be set to the number of the listening socket’s

local port. When RemoteAddr and RemotePort properties match the IP address and port number of

any listening socket, the client and server sockets connect. In this simple case we use our own IP address

(found from #.TCPGetHostID) or, equivalently, the standard loopback address 127.0.0.1 .

14.1.3.1

Run ’listen’ in one workspace and ’connect’ in another. After the initial Create event in

the listening workspace, you should get a Create event in the connecting workspace, and

 Day 2: Fourth Generation Dyalog APL – The Internet

131 of 195

simultaneously, a TCPAccept event in the listening workspace. Check that the TCPAccept event is

immediately followed by a TCPConnect event in the connecting workspaces followed by a TCPReady

event in both workspaces.

The sockets, both of Style APL, are now connected through port number 123 (on the listening side).

As with a telephone, once the connection has been established, the communication is peer-to-peer and

neither party monopolises the connection communication resources.

Either party can send arbitrary APL arrays, including arrays that contain ŒOR’s of namespaces, to the

other in a single atomic operation using the TCPSend method. For example, the 'connecting' workspace

can send matrix (3 3½¼9) to the 'listening' workspace by

 2 ŒNQ'S1' 'TCPSend' (3 3½¼9)
which is reported in the 'listening' workspace through the TCPRecv Event as

 S0 TCPRecv 1 2 3 127.0.0.1 1568 19313036
 4 5 6
 7 8 9

Or the 'listening' workspace can send vector ŒA to the 'connecting' workspace by

 2 ŒNQ'S0' 'TCPSend' ŒA
which is reported in the 'connecting' workspace through the TCPRecv event as

 S1 TCPRecv ABCDEFGHIJKLMNOPQRSTUVWXYZ 127.0.0.1 123 1927140

Erasing the socket object on either side (egS1) closes the connection and removes the partner object (S0).

14.1.3.2

Change the last line in ’listen’ and ’connect’ to

 'S..'ŒWC w ª ŒDQ'S…'

By running {listen}&1 in one workspace and {connect}&1 in the other, show that TCP messages

are received independent of the thread which owns the socket. This is intentional as otherwise, if

messages are not processed immediately, there is a chance that they might get lost.

If you try to run ’listen’ and ’connect’in the same workspace but in different threads then you

will get error number 10061 reported by the TCPError event. The interpretation of these error codes is

to be found in many places on the internet, eg http://www.sockets.com/err_lst1.htm. In this case the

connection has been refused because there is a conflict over multiple port allocations for a single process.

14.1.3.3

Write a callback on the TCPRecv event in both workspaces which will execute the linear APL

expression being sent by the other party.
Hint: Include a line like –(3œMsg)~ŒAV[6 9 10]

The distributed workspace REXEC.DWS, described in the Interface Guide, furnishes a much more

sophisticated example of remote execution by a web server.

§ 14.2 A simple character Socket

§§ 14.2.1 Connecting to a server Socket with TCPConnectTCPConnectTCPConnectTCPConnect

14.2.1.1

Create a simple character listening socket in the first workspace, which we shall call the server.

 'S0'ŒWC'TCPSocket'('LocalPort' 123)
In a separate workspace, create another character socket, the client, which will connect to the server

socket

 Day 2: Fourth Generation Dyalog APL – The Internet

132 of 195

 w„'TCPSocket'('RemoteAddr' '127.0.0.1')('RemotePort' 123)
 'S1'ŒWC w ª S1.onTCPConnect„'show'
 #.S1 TCPConnect
Note the immediate response of the TCPConnect event as soon as the two sockets connect. When a

connection succeeds, the CurrentState of the client TCPSocket object changes from 'Open' to

'Connected' and it generates a TCPConnect event.

As you can verify, it is important that the TCPConnect event is active as soon as the socket is created.

If the Event is set on the line after the ŒWC then the response from the server can easily be lost through

sloth of the client and zeal of the server.

§§ 14.2.2 Sending to the server Socket using TCPSendTCPSendTCPSendTCPSend

We may use the connect event on the client to immediately send a request to the server socket. In order

to see the request we set a callback on the server TCPRecv event.

 S0.onTCPRecv„'show'

On the TCPConnect event in the client we put the callback function

 ’ conn Msg
[1] 2 ŒNQ(œMsg)'TCPSend' 'file1'
 ’
This will send the character string 'file1' to the server as soon as the connection is achieved. So the

server begins with

 'S0'ŒWC'TCPSocket'('LocalPort' 123)
 S0.onTCPRecv„'show'
And some time later the client runs

 w„'TCPSocket'('RemoteAddr' '127.0.0.1')('RemotePort' 123)
 'S1'ŒWC w ª S1.onTCPConnect„'conn'

As soon as S1 is created, the server gets the message below, where 1323 is the remote port number.
 #.S0 TCPRecv file1 127.0.0.1 1323

§§ 14.2.3 Receiving from the server Socket with TCPRecvTCPRecvTCPRecvTCPRecv

Having received this message from a client, the server can respond to it by, for example, sending back to

the client the contents of file1.

First we create some native files containing ‘valuable’ information for the client:

 'file1'ŒNCREATE ¯1 ª 'this is file 1...'ŒNAPPEND ¯1 ª ŒNUNTIE ¯1
 'file2'ŒNCREATE ¯1 ª 'THIS IS FILE 2...'ŒNAPPEND ¯1 ª ŒNUNTIE ¯1

Then we replace the TCPRecv callback on the server with function

 ’ recv Msg;t;d
[1] :If 'file1'−3œMsg © did they ask for file1?
[2] t„'file1'ŒNTIE 0 © tie file1
[3] :Else©If 'file2'−3œMsg © did they ask for file2? etc...
[4] t„'file2'ŒNTIE 0 © tie file2
[5] :End
[6] d„ŒNREAD t 82(ŒNSIZE ¯1)0 ª ŒNUNTIE t © read the file
[7] 2 ŒNQ(œMsg)'TCPSend'd © send the contents
 ’

 Day 2: Fourth Generation Dyalog APL – The Internet

133 of 195

One further consideration before this will work is: What will the client do with the requested information

sent from the server? We need at least a basic callback on the client TCPRecv event.

So now the server runs:

 'S0'ŒWC'TCPSocket'('LocalPort' 123)
 S0.onTCPRecv„'recv'
And the client runs:

 w„'TCPSocket'('RemoteAddr' '127.0.0.1')('RemotePort' 123)
 'S1'ŒWC w ª S1.onTCPConnect„'conn' ª S1.onTCPRecv„'show'
On running this last line, the immediate response from the receive event is:

 #.S1 TCPRecv this is file 1... 127.0.0.1 123

Note that the receive event must be set in the ŒWC, or at least on the same line as the ŒWC, in order to

ensure that the incoming message is not lost.

14.2.3.1

Using the appropriate remote address, the remote TCPGetHostID, repeat the above example using

two separate computers rather than two workspaces on the same computer.

§ 14.3 Some Complications

§§ 14.3.1 HTTP and HTML

The above trivial example of a character TCPSocket connection affords a very simple model of how the

Internet is generally used at the socket level. A remote server waits in a listening state for a call. A

browser connects to the server and immediately sends a request for a file – the home page say. The server

receives the request and sends the file contents, which the browser then presents on the screen. The

server then closes the connection.

Details of the question of exactly how the incoming information is formatted on the client screen is

solved by way of HTML plain ASCII text. Server files do not contain arbitrary text strings, but rather

text specified in HyperText Markup Language. This is a method of incorporating format information into

plain text. Browsers such as Microsoft Internet Explorer, Netscape Navigator and Mozilla Firefox all

recognise this format and present text thus expressed in a uniform, precise and detailed fashion.

HTML is constantly developing and the language is described in many places, for example in

http://www.w3.org/TR/xhtml1/. Each page presented on a browser may be viewed, in its approximate

original HTML form, by selecting menu item [View][Source] in the browser.

Not only does an Internet the browser expect HTML text, the information sent between browser (client)

and server must conform to a special protocol, as the title TCP/IP - Transmission Control Protocol /

Internet Protocol – would suggest. Requests and responses between browsers and servers must be

wrapped in Hypertext Transfer Protocol (HTTP). The authoritative guide to HTTP is in the Request For

Comments RFC2616 found, for example, at http://www.w3.org/Protocols/rfc2616/rfc2616.txt.

§§ 14.3.2 Buffering received Data

Data sent using TCPSend may be split into packets and sent sequentially. Similarly, data received from

a server may come in packets. It is therefore necessary to implement a mechanism in TCPRecv that will

reconstitute an entire message. The simplest way to do this is simply to catenate incoming data in the

TCPRecv callback until a TCPClose event is encountered (because the server closed the connection) at

which point the incoming data is assumed to be complete and is saved appropriately.

 Day 2: Fourth Generation Dyalog APL – The Internet

134 of 195

More specifically, HTTP defines the sequence carriage return, linefeed (CRLF) as the end of line marker.

So command lines end with CRLF (ie ŒAV[4 3]). Further, at the end of the message HTTP requires an

empty line followed by CRLF. Therefore the receive callback looks for CRLF CRLF at which point it

knows that the end of the entire message has been reached.

§§ 14.3.3 Servicing multiple Connections

14.3.3.1
In the server workspace, write a function ’listen’ which sends a reply as soon as a message is

received from a client.

 ’ listen;w
[1] w„,›'Type' 'TCPSocket'
[2] w,„›'LocalPort' 123
[3] w,„›'Event' 'TCPRecv' 'recvByServer'
[4] 'S0'ŒWC w
 ’
where the callback on the receive event is

 ’ recvByServer Msg
[1] Œ„3œMsg
[2] 2 ŒNQ(œMsg)'TCPSend' 'Server says, "Goodbye Client!"'
[3] (–œMsg).TargetState„'Closed'
 ’
In the client workspace, write a function ’connect’ which creates a connection socket and

immediately sends a message.

 ’ connect;w
[1] w„,›'Type' 'TCPSocket'
[2] w,„›'RemotePort' 123
[3] w,„›'RemoteAddr' '127.0.0.1'
[4] w,„›'Event' 'TCPConnect' 'conn'
[5] w,„›'Event' 'TCPRecv' 'recvByClient'
[6] 'S1'ŒWC w
 ’
where the connect callback is

 ’ conn Msg
[1] 2 ŒNQ(œMsg)'TCPSend' 'Client says, "Hello Server!"'
 ’
and the receive callback is

 ’ recvByClient Msg
[1] Œ„3œMsg © display message from server
 ’
Run ’listen’ and ’connect’. Note that the messages got through, but that at the end of the brief

conversation all sockets have disappeared. No further communication is possible until the server creates

a new listening socket.

On sending its reply to a request from a client, a server generally sets its TargetState to 'Closed'.

This closes the server socket and terminates the connection. At this point the connection is closed and

further requests from the client must open a new connection. This means that the server should have a

new listening socket available immediately in order to be ready for the next request.

In order to deal with this situation, TCPSockets have a special mechanism to create a new listening

socket as soon as a connection has been made to the current listening socket.

 Day 2: Fourth Generation Dyalog APL – The Internet

135 of 195

The TCPConnect event triggers in the client when the server attempts to connect to the client. The

TCPAccept event triggers in the server when the client actually connects to the server. This event

includes the socket handle in the callback message, and at this point the server has the opportunity to

clone the listening socket. In the TCPAccept callback it is possible to create a new socket which is a

clone of the current socket by setting the SocketNumber property of the new socket to the socket

number reported in the callback. The only other properties that may be set are the Event and Data

properties. This new socket then becomes a new listening socket, thus maintaining the server’s ability to

serve.

14.3.3.2

Add a new line in the ’listen’ function:

 w,„›'Event' 'TCPAccept' 'acc'
where the ’acc’ callback is

 ’ acc Msg;w
[1] w„,›'Type' 'TCPSocket'
[2] w,„›'SocketNumber'(3œMsg)
[3] w,„›'Event'(–œMsg).Event
[4] ©w,„›'Data' (–œMsg).Data
[5] ('S',•1+–1‡œMsg)ŒWC w
 ’
Run ’listen’ and ’connect’ again. Each time a client connects, the callback on TCPAccept

clones the original listening socket with a sequence of new TCPSocket objects using the name S1,

S2,… The server workspace always has a listening socket available and therefore ’connect’ may be

run again and again…

14.3.3.3

Why doesn't connectªconnect work? Fix it by changing the line that creates the client socket:

[6] ('S',•COUNT„COUNT+1)ŒWC w
where COUNT is a suitably initialised global variable.

Details regarding the TCPSocket object and its properties and methods are to be found in the Object

Reference and in the Dyalog 7.3 or 8.1 release notes. Detailed examples of its use can be found in the

Interface Guide, www.dyalog.com [Products][Dyalog for Windows][TCP/IP Support], APL97.RTF

available from www.dyalog.com and example workspaces in ..\samples\tcpip\ .

14.3.3.4

Please ask for the next module on Web Servers.

