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Module12: Dynamic Programs 

Dynamic Programming (of functions and operators) is an exciting alternative method of program 

specification to canonical function definition.  Dynamic Programs have advantages and also some 

disadvantages with respect to the usual (canonical) form of programming.  Advantages include; clarity for 

short algorithms, dynamic creation of small localised programs for in-line application, and more direct 

control over the power of pure APL notation.  Disadvantages include decreased semantic density, missing 

features (such as line labels, branching (…), control structures, ŒPATH, ŒCS and ŒMONITOR), partially 

implemented features (such as ŒSTACK, ŒSTATE, ŒREFS and ŒAT) and limited and less intuitive tracing 

facilities.  Some of the gaps narrow with each new version of Dyalog.   

 

In practise, perhaps the most serious disadvantage relates to the limitations encountered in tracing code, 

particularly in programs that have been defined inside canonical programs.  Other irritations relate to the 

inability to use DFns directly as callbacks or the difficulty of calling non-result returning functions 

without causing a VALUE ERROR.  The last point is particularly significant in GUI/OLE programming 

where one has no control over the shyness of the supplied methods.  This limitation can be circumvented 

using execute with a dummy result, as in  sink„–'foo rargª0'  when foo itself returns no result.   

 

§ 12.1 Direct Definition 

In Dyalog APL it is possible to directly define an ambivalent function using function specification or 

direct function assignment.  Thus a name is given to the result of a function expression via the assignment 

arrow („) with a name (eg f) on its left and a function (eg +) on its right.  This syntax implies that 

assignment be in the class of dualistic niladic operator (where the right operand function may be 

ambivalent), if assignment were to be formally classified. 

      f„+   © Session statement (1) 
A monadic call to f will apply the prefix function identity or conjugate (+) and return the Rarg. 

      f 5 ↳ 5 
A dyadic call to f will add the left to the right argument via infix function plus (+). 

      3 f 5 ↳ 8 
Reference to left and right arguments may be totally elided in statement  f„+  because the definition (+) 

is ambivalent and unambiguous in its argument(s).   

 

Some more complex function expressions can be expressed by means of operators.  For example,  

      f„‡°³°† © Used monadically on a vector of vectors 
However, if one wished to express an algorithm involving left and right arguments in arbitrary ways, 

then the limitation of an assigned function expression to the form 

{left arg} (function expression) right arg 

is too restrictive 

 

This restriction could be alleviated by invoking symbols ¸ and ¾ to represent implicit left and right 

arguments to an assigned function.  This interpretation of ¸ and ¾ originates from the models of direct 

definition employed by I.P.Sharp in 2
nd

 generation SharpAPL and from earlier APL publications.  

 

Then the ambivalent definition in statement (1) above could be accomplished by two specifications. 

      f„+¾     © Overwrites any monadic fn definition 
      f„¸+¾    © Overwrites any dyadic fn definition 
 

Subsequently, the dyadic form of f above could be replaced by a new dyadic function 'under'  

      f„¾÷¸    © Divide rarg by larg (cf larg over rarg) 
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And such a function could be called without having to give it an explicit name.   

      4(¾÷¸)3 ↳ 0.75  
 

Bear in mind that any name given to an ambivalent function has to be sufficiently general a term as to be suitable 

for both the monadic and the dyadic context.  (The APL primitives actually change their names in the different 

contexts: eg ╞ 5−+5  is read as "it is necessarily true that five matches identity five" whereas  ╞ 8−3+5 is read as 

".. eight matches three plus five".) 

 

The functions dyadic catRow and monadic justRow could then be defined by direct function 

definition: 

      catRow„†(‡¸),‡¾              © Catenate Rows 
      justRow„(-+/¨' '°=°²¨¾)²¨¾   © Right Justify Rows 
 

§§ 12.1.1 Programming DFns 

Programming DFns (dynamic functions) is very like this, except that the essential function definition 

must be surrounded by braces ({}) thus, dynamic functions can be defined by:  

      catRow„{†(‡¸),‡¾}              © Catenate Rows 
      justRow„{(-+/¨' '°=°²¨¾)²¨¾}   © Right Justify Rows 
 
12.1.1.1

Define a square root DFn, sqrt, such that  

      sqrt ¼4 ↳ 1 1.414213562 1.732050808 2 
 

Consider the rank idiom - the shape of the shape of an array (½½Arr).  rr„½½ gives a 

SYNTAX ERROR because the left-most rho (½) cannot take a function Rarg – the right-most rho (½).  

However the token string 3° is consistent with a right-most rho (½) as in 3°½ because jot is an operator. 

 

We need to construct a genuine function so that function assignment can capture the derived rank idiom.  

      rr„½°½     © Assignment of a function expression 

But function rr is ambivalent and involves a reshape of shape algorithm, so ╞1 1−2 rr ,3.  By 

calling ½°½ the rank idiom it is clear that the dyadic application has been completely overlooked. 

 

The (monadic) rank idiom may be captured in the dynamic function 

      rr„{½½¾}   © Assignment of a monadic dynamic function 
In this case there is, as yet, no dyadic form.  We could define a dyadic form 

      rr„{¸½½¾}  © Assignment of a dyadic dynamic function 
But this overwrites the previous definition, which means there is now no monadic form.  We need a 

mechanism for assigning an ambivalent function. 

 

First note the following features of dynamic function definition. 

 

      0. Let ¾ represent Rarg and ¸ Larg. 

 

1. Any number of diamondized expressions (segments) may be included within the braces 

{..ª..ª..ª..ª…}.   

 

2. The first expression (from left to right) that explicitly returns a result will terminate the function at 

that point and return that result.   

 

3. All variables created in expressions in segments on the way to the final result-bearing segment are 

automatically shadowed prior to assignment. 
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4. A default left arg ¸ may be provided simply by assigning ¸ to a suitable default value.  This 

assignment takes place only if  ├(,0)−ŒNC'¸' , ie if no left argument has been supplied. 

 

Assignment of a default left arg by  ¸„…  provides a way to define an ambivalent function as long as a 

default ¸ can be found which will provide the appropriate monadic form.  The dyadic function has to 

have a natural monadic case such that the dyadic case with some specific Larg leads to the monadic case.  

This is possible for a few primitive functions.  For example divide and reciprocal are such that  

3 {¸„1ª¸÷¾} 4 ↳ 0.75 and  {¸„1ª¸÷¾} 4 ↳ 0.25  , and also power and exponential 

3 {¸„*1ª¸*¾} 4 ↳ 81 and  {¸„*1ª¸*¾} 4 ↳ 54.59815003  , and log and ln 

3 {¸„*1ª¸µ¾} 4 ↳ 1.261859507 and  {¸„*1ª¸µ¾} 4 ↳ 51.386294361  , and .. 

« {¸„²¼½½¾ª¸³¾} 4 ↳ 4 and  {¸„²¼½½¾ª¸³¾} 4 ↳ 4  , and minus and negate 

3 {¸„0ª¸-¾} 4 ↳ ¯1 and  {¸„0ª¸-¾} 4 ↳ ¯4  , and somewhat 

3 {¸„0ª¸+¾} 4 ↳ 7 and  {¸„0ª¸+¾} 4 ↳ 4  , but monadic identity actually applies to non-

numeric data too and therefore  ~╞{¸„0ª¸+¾}Arr↳Arr  so the function could give a DOMAIN ERROR. 

 

The beautiful design of the APL 1 primitive functions is an excellent model for the construction of user-

defined functions.  Primitive functions apply to arguments of various types and various ranks in 

meaningfully related ways, like much basic arithmetic notation applies unchanged in the complex 

domain.  Thus in Sharp APL, and now in Dyalog APL version 11, and (^) and or (Ÿ) have been 

generalised to lcm and gcd because the Boolean cases follow as a natural consequence of the more 

general definitions of lowest common multiple and greatest common divisor (or highest common factor).  

Furthermore, the monadic and dyadic definitions of primitive functions are usually closely related in 

meaning, as in the classic case in arithmetic of negate and minus (-).   

 

The above 4-point scheme for defining dynamic functions is not yet general enough even to model 

ambivalent primitive functions unless we explicitly use execute (–) in a construct such as   

      cross„{–œ(b,~b„(,0)−ŒNC'¸')/'+¾' '¸+¾'} 
 

Even if we add the following 5
th

 point, this limitation is still present. 

 

5. DFns may be nested within dfns in the same way as canonical functions may be nested. eg 

      unwrap„{(¾¬ŒAV[3+ŒIO]){¸\¸/¾}¾}© Replace <LF> with blanks. 
 

Without the ability to jump over diamondized segments, many algorithms become difficult to program.  

Nevertheless we already have a useful new form of function definition that yields some new idioms. 

 
 

      {¾} © Function (dex) which returns the right argument 
 

 
 

      {¸} © Function (lev) which returns the left argument 
 

 
 

      {} © Function (sink) which does not return any result 
 

 

Another useful function idiom for converting a niladic form to a monadic form is simply {niladic}. 

 

Note that the two forms of function assignment – assignment of a function expression and assignment of 

a dfn to a name – are not mutually exclusive, but may be combined into hybrid function expressions  
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      withoutA„{¾~'A'}¨   © Remove character A from each substring in a character array 

      {'[',¾,']'}°•       © Bracket a number 
      {'$',¾,'.00'}¨°•    © Dollarize integer dollars 
      {('F.C',•¾)ŒWC'Circle'(0 0)¾('FCol'(?3½255))}¨ © Draw circles of radii ¾ 
or 

      {_„ŒNA'U4 kernel32|GetDriveTypeA <0T' ª ¾,GetDriveTypeA›¾,':\'}¨ 
 

Beware of unreadable code wherein meaning can be lost due to essentially nameless proliferation of ¸'s 

and ¾'s from different contexts.  Beware of dense strings of tokens without any context-relevant variable 

names – what Stephen Taylor has called semantic density.  It is easy to loose the fundamental meaning of 

an expression when there are no semantic clues in the form of well-chosen user-defined variable names. 

      {}11†²{¸„ŒAª¾††,/,¨°.,\(—(½¸)µ¾)½›¸}1111 
 

In the right dozes, dfns can clarify meaning 

     ’ Suggestions„howSpell TheWord;WD;Words 
[1]    'WD'ŒWC'OLEClient' 'Word.Application' 
[2]    Words„WD.GetSpellingSuggestions TheWord 
[3]    Suggestions„{(Words.Item ¾).Name}¨¼Words.Count 
     ’ 
      howSpell'Helleo' 
 Hello  Helle  Helloes  Heller  Hellion  Halloo  Hellos  Hallo  Hej 
 
12.1.1.1

Show how the functions {¾ŒFAPPEND 1} and {ŒFREAD 1 ¾} may be used to append or read 

many file components in a single operation. 

 

Simple idiomatic algorithms may be expressed neatly, for example in 

      sortVec„{¾[“¾]} 
      getParent„{(-1++/^\²¾¬'.')‡¾} 
      trimCVec„{(~(^\' '=¾)Ÿ(²^\' '=²¾))/¾} 
      justLeft„{(+/^\' '=¾)²¾} 
      getPath„{'\',þ(-(²¾)¼'\')‡¾} 
 

but more complex algorithms deserve more space.  Consider, for example, the marvellous Box-Mueller 

algorithm from Professor Tony O’Hagan, which deserves to be implemented as a new APL primitive 

function plus or minus (±): 
      ±„{¾½†(—(×/¾)÷2){(›(¯2×µ¸{(?¸½¾)÷¾}¾)*0.5)×¨1 2±¨›±2×¸{(?¸½¾)÷¾}¾}¯1+2*31} 

The dyadic form might be such that  ¸±¾ ↳ ¸+±¾  , ie it might have the ambivalent definition 

      ±„{¸„0 ª ¾½†(—(×/¾)÷2){ .. }¯1+2*31} 

 

Clearly we need to break this up if we want to be able to read and understand the function easily. 

 

§§ 12.1.2 MultiLine DFns 

In order to make a long complicated dynamic function definition more readable (and more writable) it is 

necessary to break it into manageable comprehensible chunks.   

 

6. You may break a line in a dfn at any diamond (ª), after a left brace ({) or before a right brace (}).   

 

It is not possible to enter a multi-line dfn in the APL session (although Shift+Enter as opposed to Enter 

could be defined as continue (↵) as opposed to enter (¶).)  You may enter a multi-line dfn in the editor as 

a stand-alone dfn, or as part of a larger canonical function.   
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For example, you could define a function to determine the mean value of a numeric vector in the session 

      mean„{(+/¾)÷½¾}                © arithmetic mean 
or as a 1 line function within a canonical function 

     ’ Variation 
[1]    Nos„,Œ                        © input numbers 
[2]    mean„{sum„+/¾ªnum„½¾ªsum÷num} © arithmetic mean 
[3]    Nos-mean Nos                  © difference from average 
     ’ 
or as a multi-line function within a canonical function 

     ’ Variation 
[1]    Nos„,Œ                        © input numbers 
[2]    mean„{sum„+/¾                 © total 
[3]          num„½¾                  © number of numbers 
[4]          sum÷num}                © arithmetic mean 
[5]    Nos-mean Nos                  © difference from average 
     ’ 
or as a stand-alone multi-line dynamic function 

     ’ mean„{sum„+/¾                 © total 
[1]        num„½¾                    © number of numbers 
[2]        sum÷num}                  © arithmetic mean  
     ’ 
Note that the final comment will be lost unless it is placed inside the outermost brace. 

 
12.1.2.1

Trace each of the above functions, using some arbitrary set of numbers for input.  Check for global 

variables left in the workspace. 

 

As well as completely empty lines or lines consisting entirely of diamonds or comments, it is also 

possible to have lines containing nothing but a single left brace {, or a left brace followed by a right brace 

}{, or a single right brace }.  The following function has a valid header line and a valid closing line: 

     ’ compress„{                    © remove multiple blanks 
[1]        (~'  'º¾)/¾ 
[2]    } 
     ’  
shown in ŒVR form.  Alternatively, the function below is shown in ŒCR form: 

 to„{ŒIO„0                                   © Sequence ¸ .. ¾ 
     from step„1 ¯1×-\2†¸,¸+×¾-¸             © step default is +/- 1. 
     from+step×¼1+0—˜(¾-from)÷step+step=0    © ¸ thru ¾ inclusive. 
 } 
 
12.1.2.2

Trace the line 

        Eigen ?10 10½1000 
where dfn ’Eigen’ is to be found in the distributed workspace ..\WS\MATH.DWS.  Compare this 

function with canonical function ’EV’ in §§ 9.3.3 
 

§§ 12.1.3 Guards and Error Guards 

Imagine that dyadic execute (–) was defined to take a Boolean Larg (BSc) and a character string Rarg 

(CVec) whereby the character string was executed if the Boolean were 1, ie –„{¸„1ª–¸/¾}, then this 

is something like a guard (BSc:Expr) in dynamic programs.  A guard, signified by a single colon (:), is 
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neither a primitive function nor an operator but a new ungrammatical symbol, only available within a 

dynamic program, with the following meaning: 

 
 

      BSc : … :If BSc ª … ª :End 
 

An expression (returning BSc) to the left of the colon (:) does not need to be surrounded by parentheses 

and an expression to the right is not surrounded by quotes, as would be the case with the execute model.   
 

A dfn may then be written as a series of segments each with an opening guard that determines whether or 

not the rest of the segment is executed.  The first segment to be executed may then return the final result.  

For example, by analogy with the (atypical) circle function (±), we could call functions by number: 

     ’ fn„{ 
[1]        ¸=1:+¾  © identity 
[2]        ¸=2:-¾  © negate 
[3]        ¸=3:×¾  © signum 
[4]        ¸=4:÷¾  © reciprocal 
[5]        ¸=5:*¾  © e to power 
[6]        ¸=6:µ¾  © natural log 
[7]    } 
     ’ 

      5 fn 2 fn 3 ↳ *-3 ↳ 0.04978706837 
 
12.1.3.1

Write a single line dfn which discloses (once) an array if it is scalar and enclosed. 
Hint: .. rank zero and depth of magnitude greater than one. 

 

Imagine ŒTRAP had been defined dyadically with the error numbers on the left and the execute cutback 

expression on its right: this is something like an error guard (NVec::Expr) in dynamic programs.   

 

A error guard, signified by a double colon (::), is neither a primitive function nor an operator but a new 

grammatical pair of symbols (going in an unfortunate J direction), only available within a dynamic 

program and with the following meaning: 

 
 

      NVec :: … :Trap NVec ª … ª :End 
 

The expression (returning NVec) to the left of the double colon (::) does not need to be surrounded by 

parentheses (making :: impossible to interpret even as a dualistic niladic operator) and the expression to 

the right is not surrounded by quotes, as would be the case with the ŒTRAP model.   
 

7. Use guard (:) to replace branch (…) or :If, and error guard (::) to replace ŒTRAP or :Trap 

 

The expression to the left of an error guard evaluates to a vector of error numbers.  The expression on the 

right of the error guard is evaluated in the event that one of these errors is generated by subsequent lines 

(or segments of a line).  For example the following function will return ŒDM in the event of any error in 

the second segment.   

      cover„{0::†ŒDMªy¾} 
      cover ?3 3½3 
DOMAIN ERROR                 
cover[] cover„{0::†ŒDM ª y¾} 
                       ^     
Note that the trap is not set when executing the expression immediately to the right of an error guard, 

making trap loops less likely.  As with ŒTRAP it is possible to have a hierarchy of traps set, or a series of 
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traps performing different functions.  The following example attempts to tie a file, and depending on the 

error, performs a different alternative, each alternative still being covered by the traps above. 

 open„{ 
     0::0 
     22::¾ ŒFCREATE 0 
     24 25::¾ ŒFSTIE 0 
     ¾ ŒFTIE 0 
 } 

In this case, the last line is the first to be evaluated.  If a FILE NAME ERROR (22) occurs then an 

attempt is made to create the file.  If any error occurs at this point then the function returns 0. 

 

§ 12.2 Extended direct Definition 

§§ 12.2.1 Programming DOps 

In canonical form, programming operators is very much like programming functions.  Only the header 

line is slightly different with parentheses round the effective derived function.  Likewise, programming 

DOps is similar to writing DFns but there is no header line to distinguish the two sub-classes.  One clue 

as to the program class when examining a dynamic program is given by the colour of the braces.  It is 

possible to select in [Options][Colours][Syntax][Element] either D-Op (dyadic) or D-Op (monadic) – 

what we call dualistic and monistic to distinguish from functional form (see Vector Vol.2 No.2 p118).  

Pairs of braces can take any of three different colours, one for dfn, one for monistic dop and one for 

dualistic dop. 

 

How does the interpreter know what class a program is?  The left operand in a dop is represented by the 

double-symbol ¸¸ and the right operand in a dualistic dop is represented by the double-symbol ¾¾.  If the 

dual symbol ¾¾ exists within the braces (not counting its presence in sub-braces) then the program within 

the braces must be a dualistic operator as only a dualistic operator has a right operand.  If there is an ¸¸ 

but no ¾¾ then the program must be a monistic operator, and if there is no ¾¾ then the program is class 3 

(a function), and the braces are coloured accordingly. 

 
8. Use ¸¸ to represent the left operand and ¾¾ to represent the right operand of a dynamic operator. 

 
So we could define the primitive monistic commute operator (þ) to be  

      comm„{¸„¾ ª ¾ ¸¸ ¸} 
First if there is no left argument to the derived function then it is taken to be the same as the right 

argument.  (Try primitive commute, +þ4 ↳ 8 .)  Then the function left operand (¸¸) is passed the 

arguments ¸ and ¾ in the reverse order - ¸ becomes the right argument and ¾ the left, exactly as required 

by the definition of commutation. 

      4 -comm 3 ↳ 4-þ3 ↳ 3-4 ↳ ¯1 
      10 *comm 3 ↳ 10*þ3 ↳ 3*10 ↳ 59049 
 
Or we could cover the J grammatical concept of hook with the dualistic operator hook: 

      hook„{¸„¾ª¸ ¸¸ ¾¾ ¾} 

      4 *hook- 3 ↳ 4*°-3 ↳ 4*-3 ↳ 0.015625 
 
DOps can be multi-line, and they can have guards, just like functions. 

pow„{                   © Explicit function power. 
     ¸=0:1 
     †{¾}°¸¸/(¼¸),›¾ 
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 } 

 
The derivative operator from elementary calculus takes a single monadic function and returns a monadic 

derived function, the gradient function.  So the operator is monistic and the derived function is monadic.  

The derivative of a function, f(x) is f'(x) where f'(x)=df/dx ≈(f(x+dx)-f(x))/dx, or to a better approximation 

f'(x)=df/dx ≈(f(x+dx)-f(x-dx))/2dx.  This is clearly what we have on line [2] below.  ¸¸ represents the 

function operand f(x) and ¾ represents the function argument (x).  The operator ‘ then models the 

derivative operator d/dx. 

     ’ ‘„{   ©  derivative operator  
[1]        dw„–'1E¯6'  
[2]        ((¸¸ ¾+dw)-¸¸ ¾-dw)÷2×dw  
[3]    }  
     ’  
The derivative of 3x

4
 with respect to x is the function 12x

3
 for all x, for example for x=3, 4 and 5. 

      {3×¾*4}‘ 3 4 5 ↳ {4×3×¾*3}3 4 5 ↳ 324 768 1500 
Symbolically, one could write  

      {a×¾*n} ‘ ↳ {a×n×¾*n-1} 
 
You can see some other examples of dynamic operators in the ..\WS\DFNS.DWS workspace.  You can 

download the latest version of this useful workspace, as well as an article DFNS.PDF by John Scholes, 

from [Download Zone] of www.dyalog.com.  You can also find examples in the Language Reference and 

in the 7.3 or 8.1 new release Help files, downloadable from [Document Download Zone]. 

 
One particularly useful operator is memo which remembers the result of a function as applied to any 

particular argument.  If called again identically through memo then the result is not recalculated, but just 

returned directly from memory.  Functions without side-effects are suitable for memoization.  A second 

example of an operator created by Phil Last, who like John Scholes is a prolific author of fabulous D 

programs, is else which, depending on Boolean ¸, applies the left operand or the right operand to the 

derived function argument ¾. 

 else„{         © Condition f else g ... 
     ¸:¸¸ ¾     © True: apply left operand. 
     ¾¾ ¾       © False: apply right operand. 
 } 

Join the Dyalog dynamic functions mailbox group dfns@dyalog.com for discussions and live examples 

and issues relating to general dynamic programming, led by the main protagonists.   

 

§§ 12.2.2 Idioms and Utilities 

The entire Finnish APL Idioms list, maintained by Veli-Matti Jantunen, with over 500 entries, has been 

rewritten as dynamic programs.  Every canonical idiom has a dynamic counterpart.   

 
12.2.2.1

Give the following idioms meaningful names.  Ask yourself if the word you have chosen reads well 

in the context of its use.  Add some more of your favourite phrases… 

      {¾[ŒAV“¾;]} 
      {¾/¼½¾}  
      {(+/¾)÷½¾}  
      {†(-¼½¾)†¨¾} 

 {ŒAV[(ŒAV¼¾)-48×¾¹ŒA]} 
 

Beware of illegibility like 
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 {     
     mlr„²3½²¾¾,¼(aa„¸¸)/m„0 
     ¸„(aa„{¾}°aa)/m„1 
     l r„-1‡r˜|{¾+r×0>¾}(mlr˜r„3½(½½¾),½½¸)[”m×¼3] 
     †aaš(›[l†¼½½¸]¸),[-0.1-¼1]›[r†¼½½¾]¾ 
 } 
or inscrutable (until §12.3) one-liners like 
      {'*'Ÿ.¬(½¾)†Œ„'*+'/þ¾{(¸+.=¾),¸{+/œ˜/+/¨(›~¸)°.=¨(¸¬¾)°/¨¸ ¾}¾}�:’ ¾} 

 

§§ 12.2.3 Object.Object..Object.Operator Rationale 

DFns may be space qualified either by name, or without a name.  For example, given function  

      plus„{¸+¾} 
then  

      3 #.plus 4 ↳ 7 
and 

      3 #.{¸+¾} 4 ↳ 7 
In this respect dfns are just like user-defined functions, object methods or primitive functions.  All of the 

rules stated in Module 11 apply to dfns as they do to other functions.  

 

The same rules also apply to space-qualified dops.  If we had a natural log dfn (ln) in #  

      ln„{µ¾} 
and a derivative operator ‘ in #.A.B, then whilst in any other space (see ŒSE.CurSpace) we could 

find the derivative of ln(x) at any points x, say at 6 and 7: 

      #.ln #.A.B.‘ 6 7 ↳ ÷6 7 ↳ 0.1666666667 0.1428571429 

This all seems quite natural and useful.   

 
 

      h„f ñD.Ô © Run operator(s) Ô in space(s) ñD with operand…  
 

 
 

      h„f ñD.Ô g © h is space-array of derived functions…  
 

 

The problem from the point of view of rational APL grammar is that any attempt to argue that the dot of 

dot syntax should be considered to be an operator is now confronted with the situation where an operator 

has an operator operand.  This introduces entirely new APL grammar whose implications have been 

explored in New Foundations in Vector Vol.20 No.1.  Either you can accept the pragmatic rationale for 

Object.Operator syntax given above or you may seek a deeper justification elsewhere.  (Note that in 

advanced mathematics, the first derivative operator (d/dx) applied to the first derivative operator (d/dx) 

gives the second derivative operator (d
2
/dx

2
) so there is certainly a precedent in mathematics.) 

 

§ 12.3 Recursion 

§§ 12.3.1 Recursive Functions 

Most problems that can be solved with iteration can also be solved with recursion.  One advantage of 

recursion is that the program often looks more like the original formula.   

 

It has always been possible to write recursive functions in APL by referring to the function itself within 

its own definition.  Thus niladic foo defined by  Œfx'foo' 'foo'  is infinitely recursive, as is 

monadic foo defined by  foo„{foo Œ„¾}.  The essential novelty in recursive dfns is the possibility of 
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writing unnamed recursive functions.  This is implemented simply by using the symbol del (’) (function 

self) inside a dfn to refer to the entire dfn itself.  So the useless monadic infinitely recursive dfn foo 

above may be replaced by the equally useless {’ ¾} which may or may not be assigned an arbitrary 

name.   

 

Many examples of useful recursive dfns are to be found in the supplied DFNS.DWS workspace.  Here are 

a few examples from the workspace.   

 

Power, as in x
y
 where y is a positive integer, is just repeated multiplication; x × x × .. x,  y times.  This can 

clearly be written with a looping solution, or in APL without a loop: 

      ×/4½3 ↳  81 

Alternatively it may be written as a recursive dfn: 

      pow„{¾=0:1 ª ¸×¸ ’ ¾-1} 

      3 pow 4 ↳ 3*4 ↳ 81 
 

Factorial is a classic case of recursion where factorial of an integer, x, may be written as x(x-1)(x-2)..1 

which translates directly into dfn 

     {¾=0:1 ª ¾×’ ¾-1} ↳ {!¾}  
with the added value of 1 for factorial zero which enables the function to end the recursion.  An 

alternative program for factorial may be written  

     {¸„1 ª ¾=0:¸ ª (¸×¾)’ ¾-1} ↳ {!¾}  
This 'tail-recursive' form turns out to be faster because the segment containing the function self returns the 

result of self immediately as the result of the entire function whereas the first algorithm multiplies the 

result of function self by ¾ before returning a result as the result of the entire function, making certain 

internal interpreter optimisations impossible.  To be tail-recursive, the answer ultimately returned by the 

top-level call to the function must be identical to the value returned by the very bottom level call.  The 

ultimate answer, 81, is not the same as the deepest level return value which was 1, so power is not a tail-

recursive function but the second (faster) form of factorial is tail-recursive.   

 

There are many examples of beautiful mathematical functions with an elegant recursive definition.  The 

greatest common divisor may be programmed as  

      {¾=0:¸ª¾ ’ ¾|¸} ↳ {¸Ÿ¾} 
See also algorithms for prime factors or the ancient algorithm for identifying prime numbers first 

espoused by Eratosthenes of Cyrene who lived around 275-195 BC.   

 

One well known recursive algorithm is that for obtaining the determinant of a matrix.  The essence of the 

method is visible in the following multi-line dfn: 

 det„{ŒIO ŒML„0                          © Determinant of matrix ¾. 
     1{                                  © initial accumulator. 
         0 0−½¾:¸                        © null matrix: finished. 
         (¸×œ¾)’ 1 1‡¾-¾[;0]°.×¾[0;]÷œ¾  © accumulator ’ sub-matrix. 
     }¾ 
 } 

Notice how the system variables are automatically localised.  Notice also how subtraction and 

multiplication are at the core of the algorithm, prompting Iverson to propose that the dualistic monadic 

dot operator be introduced such that {-.×¾} be the determinant of a matrix argument.  He further calls 

{+.×¾} the permanent function. 

 



 Day 2: Fourth Generation Dyalog APL – The Internet 

113 of 195 

Nested arrays offer much scope for recursive functions.  It was not a coincidence that the each operator 

was introduced at the same time as nested arrays.  For example, a recursive definition of enlist, which 

may be expressed simply as ������ {ŒML„1ª¹ ¾}, is given in function enlist in the DFNS workspace. 

 

 
 
12.3.1.1

Study the function refs below (also to be found in the DFNS workspace).   

 refs„{                           © Vector of sub-space refs for ¾. 
     ¸„« ª (½,¸)‡¸{               © default exclusion list. 
         1¹¾=¸:¸                  © already been here: quit. 
         ¾.(†’°–þ/²(›¸,¾),‡ŒNL 9) © recursively traverse sub-spaces. 
     }¾                           © for given starting ref. 
 } 

Load distributed workspace WDESIGN.DWS and trace  refs #  with the tracer in 

[Options][Configure][Trace/Edit][Classic Dyalog mode].  Useful examples include: 

      (refs #).Œwx 
      (refs #).ŒNL 2 
      (refs ŒSE).(½°ŒCR¨3†‡ŒNL 3) 
 

Aside: The functions Legendre, Hermite and Laguerre in the distributed MATH.DWS workspace 

represent the sets of (function) solutions to three commonly applicable differential equations.  See, for example, 

http://www.efunda.com/math/Laguerre/index.cfm.  These (infinite) sets of orthogonal functions are the 

eigenfunctions of the corresponding differential operator.  A ‘recurrence relation’ relates each function in a set to 

neighbouring functions.  Thus the three functions above may be replaced by recursive definitions.   

 

§§ 12.3.2 Recursive Operators 

There are two distinct kinds of self reference for recursive D-Ops.  The symbol '’' may be used to refer 

to the current derived function - the operator bound to its operand(s).  When the operands are functions, 

this is the most frequently used form of self reference. However, if the operands are arrays, we often need 

a recursive reference to the operator itself and then we would use the double symbol '’’'.   
 

An example of the first type of recursion within a dop is given by the while operator.  As long as the 

right operand function ¾¾ acting on the argument ¾ returns 1 apply the derived function again to the 

result of the left operand function ¸¸ applied to ¾, otherwise return ¾. 

 while„{             © Conditional function power. 
     ¾¾ ¾:’ ¸¸ ¾     © While ¾¾ ¾: apply ¸¸ ¸¸ ··· ¾. 
     ¾               © Otherwise: finished.} 

A fascinating example of the second type of recursive operator is given in function kt in ..\DFNS.DWS.   

 

The most general second type of operator recursion involves a situation whereby the function operands of 

an operator change at each level of recursion.  A simple example is given by 

 comp„{ 
     ¸=0:¸¸ ¾ 
     (¸-1)¸¸°¸¸ ’’ ¾} 
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A potentially very useful example of operator recursion is given by the function determinant operator.  

Imagine you had a 2 by 2 matrix of functions (whose APL representation is as yet undefined),  

M(x) = p(x) q(x) 
          r(x)  s(x) 
then the function determinant is defined mathematically as  

det(M(x)) = p(x)s(x)-q(x)r(x) 

where multiplication and subtraction are now operators like  

      times„{(¸¸ ¾)×(¾¾ ¾)} 
      minus„{(¸¸ ¾)-(¾¾ ¾)} 
and the essential recursive APL operator would contain a line something like  

      (¸¸ times œ¾¾)’’ 1 1‡¾¾ minus ¾¾[;0]°.times ¾¾[0;] divide œ¾¾  
if ¾¾ was allowed to be a matrix of functions…  For a larger size square matrix of functions, the recursive 

determinant operator would take different function args at each level.   

 
12.3.2.1

The determinant of the function matrix of problem 11.3.2.1 is clearly 1.  Consider how you might 

express this in executable notation. 

 

§§ 12.3.3 Biological Beauties 

Much of the beauty of nature rests on self-similarity - the fact that patterns may be repeated at different 

size scales.  All sorts of natural objects from crystals and sea shells to fern leaves and onions may be 

modelled by recursive functions.  (See Stephen Wolfram's New Kind of Science for an extensive 

monumental computational analysis of self-similarity.) 

 

One of the first discoveries in this vast new subject was made by Gaston Julia in 1918 and developed and 

visualised via computer by Benoit Mandelbrot around 1975.  They found infinite depth in simple iterative 

algorithms.  We can capture in APL the Mandelbrot set using his algorithm, Z=Z
2
+C.  We can picture the 

set of points on the complex plane whose modulus never exceeds 2 under this iteration.  These points are 

connected and produce a line on the plane whose dimension may be considered as not 1 but fractional.   

 

The essential lines are the second, third and last in the recursive function, square, defined below.  The 

second line calculates the square of a complex number and adds the position in the complex plane under 

consideration.  The third line determines whether the modulus is greater than 2 (in which case it will 

diverge and therefore is outside the set.  The last applies the function recursively. 

 
Mandelbrot;r;c;v;ADDR;BITS;Cu2;Zu2;x;y;ŒIO;cmap 
 ŒIO„1 
 Xmin„¯2.5 ª Xmax„1.5 © set X coord limits 
 Ymin„¯1.5 ª Ymax„1.5 © set Y coord limits 
 r c„300 400 © number of rows and cols 
 v„r×c       © number of pixels 
 BITS„v½0    © initial colour black 
 x„Xmin+((Xmax-Xmin)÷r-1)×0,¼r-1 © X range 
 y„Ymin+((Ymax-Ymin)÷c-1)×0,¼c-1 © Y range 
 Cu2„†,x°.,y  © r×c points (2 coords each) on complex plane 
 Zu2„v 2½0    © zero initial value of Z at each point 
 ADDR„¼v      © address in bits vector 
 cmap„³2 2 2‚0,¼7 
 cmap„(127×cmap)®(255×cmap) 
 cmap[8;]„192 
 'FRM'ŒWC'Form'('Size'(r c))('Coord' 'Pixel')('Picture' 'BMP' 2)('OnTop' 1) 
 'BMP'ŒWC'Bitmap'('Bits'(r c½0))('CMap'cmap) 
 1 ŒNQ'FRM' 'Flush' 
 square„{Zu2 Cu2 ADDR BITS„¾ 
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     Zu2„Cu2+((Zu2[;1]*2)-Zu2[;2]*2),[1.5]2××/Zu2  © Z„C+Z*2 
     Œ„+/~OUTu„~2<0.5*þ(Zu2[;1]*2)+(Zu2[;2]*2)     © 2<|Z 
     ^/OUTu:                                       © all outside, QUIT 
     ADDR„OUTu/ADDR                                © remove outside addresses 
     Zu2„OUTušZu2                                  © remove outside values 
     Cu2„OUTušCu2                                  © remove outside points 
     0=½ADDR:                                      © none to update, QUIT 
     BITS[ADDR]„Œ„1+—/BITS                         © increment effective counter 
     cbits„(r c)½256ƒ³cmap[1+15|,r c½BITS;]        © recalculate colour from depth 
     _„–'''BMP''ŒWS''CBits''cbitsª0'               © set new colours 
     ’ Zu2 Cu2 ADDR BITS                           © recurr with subset 
 } 
 square Zu2 Cu2 ADDR BITS                          © go 

 
The result is a beautiful picture, whose beauty is only limited by the graphical capability of the output 

medium.   

 
 
This simple algorithm and the astonishing pictures that it can generate can be applied to the quaternionic 

(or the octonionic) domain with an identical mathematical algorithm.  Prizes have been awarded to some 

fantastic 3D projections and 2D sections of quaternionic fractals.  Many examples can be viewed on the 

internet, eg at http://www.lactamme.polytechnique.fr/Mosaic/images/JU.g2.0.16.D/display.html. 

 

 
 

Such is the power and beauty of recursion by computer.  From an examination of a number of recursive 

models we can extract a fundamental form which is at the heart of many of them.  This recursive operator 

is named CPA from Critical Path Analysis where two distinct functions emerge from network analysis.  

The first is FPA, Forward Path Analysis where the network is analysed in a forward (time) direction.  
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Then there is the BPA, Backward Path Analysis, stage where the network is analysed from the other 

direction.  These two functions together build a comprehensive description of the network. 

 

For our examples below the recursive operator,  

 CPA„{ © Tree„(FPA CPA BPA) Trunk 
     0=½trunks„¸¸ ¾:''¾¾ ¾ 
     trees„(¸¸ ’’ ¾¾)¨trunks 
     ¾ ¾¾ trees 
 } 
reapplies the same function operands ¸¸ and ¾¾ at every level is replaced with the simpler operator 

 CPA2„{ © Tree„(FPA CPA BPA) Trunk 
     0=½trunks„¸¸ ¾:''¾¾ ¾ 
     trees„’¨trunks 
     ¾ ¾¾ trees 
 } 
This operator can form the basis of the analysis of many nested structures in APL.  FPA (or ¸¸) is a 

function which digs down one level into a structure, and BPA (or ¾¾) is a function which builds the final 

result, going backwards one level at a time.   

 

So, for example, we could take ŒWN as the FPA function which digs down into a GUI structure one level 

and use the simple construction {(›¸),›¾} for the BPA, backward pass construction.  Thus 

 

      ½¨¨¨(ŒWN CPA{(›¸),›¾})'Œse' 
                 9  8    9  2    6  11    9  16    0  7 
 
12.3.3.1

Consider the following FPA candidates and attempt to run an example: 

      {ŒCMD'Dir ',¾}  © to examine the directory structure 
      {œ¨¾}           © to examine a nested array 
      ŒREFS           © to examin a function calling tree 
      ¾.ŒNL 9         © to examine namespace structure. 
 

By means of this simple-looking operator many diverse subjects can be investigated and pictured 

(especially beautiful using OpenGL briefly discussed in Module 9): project plans, road systems, trees, 

leaves, lungs, veins and arteries, virtual particles, and other idealized and natural fractals of all sorts. 

 

One of the many great things about APL is that it is usually imagination and not the programming 

language that is the limiting factor.  With APL, what we can conceive we can achieve. 

 
12.3.3.2

Please ask for the next module on multi-threading ☺. 

 


