
 Day 2: Fourth Generation Dyalog APL – The Internet

165 of 195

Module18: Dyalog.Net Classes

§ 18.1 Writing Dyalog.Net Classes

§§ 18.1.1 Dyalog Namespaces and .NET Namespaces

.NET namespaces are similar to Dyalog namespaces, but unfortunately (for .NET) are not identical.

Nevertheless, when creating a .NET class in Dyalog APL, a Dyalog namespace is destined to become a

.NET namespace (in a .NET assembly) containing the new .NET class.

18.1.1.1

Create a workspace called GENERAL.DWS containing a single namespace called #.Maths.

§§ 18.1.2 Creating a NetTypeNetTypeNetTypeNetType Object

In Dyalog.Net, a .NET class is created through a NetType object. The BaseClass property of a

NetType object may be set to the name of some particular class from which the new class is derived.

 CVec ŒWC'NetType' © Create a new NetType object, with name in CVec

18.1.2.1

In the namespace #.Maths create a Dyalog GUI NetType object called Spectrum.
Hint: See GUI Help or Object Reference for description of NetType object.

§§ 18.1.3 Writing Functions and defining Variables

18.1.3.1
In namespace #.Maths.Spectrum, copy in function ’Fourier’ from distributed workspace

MATH.DWS and write the following two functions:

 ’ R„ft W © Fourier Transform
[1] R„Fourier W
 ’

 ’ R„ift W © Inverse Fourier Transform
[1] R„¯1 Fourier W
 ’

§ 18.2 Exporting Methods and Properties

§§ 18.2.1 Arguments and Result dataTypes

When exporting methods and properties it is necessary to specify the dataTypes of all interface variables.

In order for .NET to interpret correctly the dataTypes being specified it is necessary for the classes

associated with the specified dataTypes to be accessible in APL. The basic dataTypes are to be found in

the core System namespace. They correspond to classes such as System.Int32, System.Int64

and System.Array. These classes inherit from System.ValueType which itself inherits from

System.Object.

To make these basic dataTypes visible to APL when exporting class members it is necessary to assign

ŒUSING to the core System namespace. Were we to do this then the classes would have to be called

Int32, Int64 etc… However, the default names in the .NET properties dialogue are written with the

"System." prefix. Therefore assign ŒUSING to an empty character vector in order to satisfy the default

entries.

 Day 2: Fourth Generation Dyalog APL – The Internet

166 of 195

We can now specify the calling dataTypes of ’ft’ and ’ift’ as the default, System.Array and

identify them as public methods. (Remember, methods may not be dyadic functions.)

18.2.1.1

Assign ŒUSING„'', place the cursor on ft in the Session and right-click the mouse. Select

[Properties][.Net Properties] and set the information as below. Repeat for ift.

Alternatively, it should be possible to assign this information via SetMethodInfo. Also note that we

could have identified the methods as static in which case they would be useable directly from the class

without the need to create an instance of Spectrum before calling them.

§§ 18.2.2 Making an Assembly
18.2.2.1

Select [File][Export] from the Session menu and navigate to the framework directory. Choose a file

name – the default is the name of the workspace with .dll rather than .dws. This will be the name of your

.NET assembly. The Runtime application check box should be checked in order to create a distributable

assembly, otherwise the development .dll (eg dyalog110.dll rather than dyalog110rt.dll) will be bound.

When you hit the Save button, if no problems are identified, then the following message box and status

message dialogue appear.

 Day 2: Fourth Generation Dyalog APL – The Internet

167 of 195

§§ 18.2.3 Checking the MetaData

18.2.3.1
In WS Explorer, load the MetaData of the assembly General.dll. Find the exported methods

and check their entries.

Note that a number of other methods are present in the list. They have been inherited from

System.Object ¢ which is the default BaseClass of a NetType object. It is at the root of every

.NET class and therefore every class has the ToString and GetType methods (although their

constructor syntax may be overridden by any of their descendants).

§ 18.3 Calling Dyalog.Net Classes

§§ 18.3.1 Calling your Dyalog.Net Class from Dyalog APL

To use the .NET class which you have just created, you follow exactly the same procedure as for any

other .NET class. First you have to set ŒUSING to the appropriate value:

 ŒUSING„'Maths,General.dll'
By way of checking that the class is visible to APL, typing its name at this point will print the full

namespace-qualified name of the class in the Session, surrounded by parentheses to indicate a class name.

 Spectrum
(Maths.Spectrum)
An instance of the class is created using the ŒNEW system function:

 S„ŒNEW Spectrum

 Day 2: Fourth Generation Dyalog APL – The Internet

168 of 195

Create an arbitrary rank array of data whose Fourier Transform is to be found.

 Œ„R„2 2 10½400?400
180 95 12 213 350 139 187 273 82 243
150 331 177 34 341 69 371 345 332 28

391 126 301 61 336 319 31 325 254 36
233 263 43 148 246 153 274 333 305 306
Applying the transform followed by its inverse reproduces the original data, now with an explicit zero

imaginary component.

 S.ift›S.ft›R
 180 0 95 0 12 0 213 0 350 0 139 0 187 0 273 0 82 0 243 0
 150 0 331 0 177 0 34 0 341 0 69 0 371 0 345 0 332 0 28 0

 391 0 126 0 301 0 61 0 336 0 319 0 31 0 325 0 254 0 36 0
 233 0 263 0 43 0 148 0 246 0 153 0 274 0 333 0 305 0 306 0

(From Dyalog version 10 onwards it is even possible to display ActiveX controls and .NET classes in the

cells of a Grid object.)

§§ 18.3.2 Calling your Dyalog.Net Class from C# and VB.NET

.NET classes created using Dyalog APL may be called from any .NET language just like any other .NET

class. The assembly .dll file, in this case general.dll, and any supporting .dll files, in this case fftw.dll,

have to be shipped. The only other Dyalog files that have to be shipped to the machine intending to use

the class are bridge110.dll, dyalognet.dll and dyalog110rt.dll, the Dyalog APL runtime engine.

§§ 18.3.3 Complications

We have attempted to give a straight-forward view of .NET from an APL point of view. Many of the

'new' concepts have been part of Dyalog APL since its inception – data encapsulation, method

overloading, exception handling … - and many have already been incorporated in a natural way into

Dyalog APL – namespaces, threads, sockets …

The reality of .NET is not as clear-cut as an APL programmer would wish. There are inevitably a number

of complications. We have neglected at least those we can discern in the belief that the straightforward

picture is the best foundation on which to build.

However, we note here a couple of the grey areas that you will encounter on deeper investigation of

.NET.

• .NET namespaces may be spread over more than one assembly. Excuse me! Why?

• Some C functions do not return their results, but rather they store them in memory at specific

locations indicated by pointers, which they do return. In Dyalog.Net this sad C eventuality is

resolved using ByRef ¢ in Dyalog ñ supplied in bridge110.dll à.

• Classes are not the only members of assemblies. Assemblies also contain Enumerations,

Interfaces and Structs. We have ignored these topics because they do not appear to introduce

anything particularly exciting, but just complicate an already complicated picture.

18.3.3.1

See Dylog.Net Interface Guide chapters 1 to 4 and ..samples\APLClasses\… for further study.

Please ask for the next module ☺.

