DYALOC

64 bit Dyalog APL

A few bits of history
- Benefits

» Interoperabillity
— Sockets
— Component files

— Workspaces
— APs
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A few bits of history

Year 16 bit 32 bt
1981 Zilog 28000
1983 Gould
Launched at Washington Conference
Three Rivers/ICL Perq
Cadmus
Xenix 286
Datalndustria
Altos
Sunl
Apollo
IBM
Masscomp
Apple Lisa
Silicon Graphics
Vax
Pyramid
Ridge
Amdahl
AT&T/3b2
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Unix/Linux Dos/Windows

32 bit 16/32 bit
Opus/Natsemi  Opus/NatSemi
32032 32032

SCO Unix 386
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Intel 386/387
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A few bits of history

Unix/Linux Dos/Windows
32 bit 64 bit 16/32 bit
Opus/Natsemi 32032 Opus/NatSemi 32032
SCO Unix 386
DOS/PharLap Intel
386/387
IBM PC/RT
[BM PS2/AIX
HP/9000

DOS/PharLap Intel
486

Sun/SPARC
IBM/RS6000
DEC workstation MIPS
Silicon Graphics MIPS
Sequent
Windows 3
DEC Alpha Watcom

HP/PA-RISC
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A few bits of history

Unix/Linux Dos/Windows Windows
Year 32 bit 64 bit 16/32 bit 32 bit

Windows 3
1992 DEC Alpha Watcom
HP/PA-RISC
1994

1995 Windows 95

1998 Windows 98
MainWin based Unix ports

Solaris/SPARC
IBM AIX/p4
Linux/x86
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A few bits of history

Unix/Linux Windows
Year 32 bit 64 bit 32 bit 64bit

1992 DEC Alpha
HP/PA-RISC

1994

1995

1998
MainWin based Unix ports

Solaris/SPARC
IBM AIX/p4
Linux/x86

IBM AIX/p5
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Benefits

- Large address space
— Can map many files
— Can load many DLLs

- Large workspace

- Large arrays
— Not with 11.0 but with 11.1
- Large integers
— Not with 11.0 but probably with 11.1




DYALOC

Interoperability

- Some aspects of APL's interaction with
external elements use common code

— APs

— Components

— Sockets with style APL
— DDE between APLs

— Clipboard
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Interoperability

- Some mechanisms have encapsulation that
identifies the architecture that wrote the
Information

— Components
— APL style sockets

« These can interact between APL's
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Interoperability
Sockets

APL APL
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Interoperability
Sockets

windows AlX

SWap

APL APL

swWap
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Interoperability
Sockets
APL APL
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Interoperability
Sockets

windows AlX
22 bit &4 bit

APL | APL
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Component file history

- 1981

— Components were individual files in a directory
— Components had 16 bit header information

» 1985

— New Indexing structure with components inside a
file
— Entirely 32 bit

— Machines with similar architecture could
read/write each others component files
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Component file history

e 1992

— DEC Alpha: Entirely 64 bit. Only the Alpha
version could read/write these component files

- 2004

— Extended [[FCREATE to support large files
'large' [[FCREATE 1 64
[IFSIZE 1
11120 1.844674407E19

- Component data still 32 bit but is self conscious

APL '
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Component file history

- 2006

— Files are now interoperable

— Individual components may have been written by
different architectures
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Interoperability
Components

« 64 bit files vs 64 bit APL

» File size vs Component Size

— Version 10.1 supports large files but not large
components.

— Version 11 supports large components.

- Small files carry architecture information at
the file level

- Large files tag components with architecture
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Interoperability
Components (Large files)

- Components are written natively
— A 64 bit APL puts 64 bit data into a component
— A 32 bit APL puts 32 bit data into a component

— A big endian APL (AIX) puts big endian data into
a component

— A little endian APL (windows) puts little endian
data into a component

- Components are translated as they are read
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Interoperability
Components (Large files)

» Individual components can come from
different APLs

- The overall indexing structure is defined by
the APL that created the file

- An APL that updates the file maintains the
original index structure
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Interoperability
Components (Small files)

- Components are written traditionally
— A 64 bit APL puts 32 bit data into a component
— A 32 bit APL puts 32 bit data into a component

— |f the file was not of the same endianness as the
APL then the file cannot be updated

— An AIX APL cannot update a Windows small
component file

- Components are translated as they are read
- Components may be translated during write

APL '
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Interoperability
Components

» There 1s an update to version 10.1 called
10.1.5

— It can read components written by a 64 bit
different endian APL

— Provided they were written to a large file

- 1.e. A10.1.5 Windows APL can read
components written by a 64 bit AIX APL

« Customers who don't need this can avoid
10.1.5. 10.1.2 will be maintained as well.
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Interoperability
Components

File

APL Small
Large

Same Endian Different Endian
10.1.2 same architecture o
10.1.5 <

11.0 o
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Interoperability
workspaces

- Workspaces are written natively
- Workspaces are translated as they are read

» GUI objects are silently destroyed
— This 1s consistent with version 10.1
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Interoperability
Auxiliary Processors

- The code for exchanging data with APs will
NOT be updated

- APs will have to be re-compiled for 64 bit
« A 64 bit APL cannot use a 32 bit AP
« A 32 bit APL cannot use a 64 bit AP
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» Ruthie Foster
- Stages
 track 11

» Church




