
Dyalog APL/W Version 9.0
Function Results Edition
Tue Oct 17 16:54:50 2006
clear ws

 © In what follows, note the difference between
 © <naming a function> and <naming its result>:

 dup „ {¾ ¾} © name a D-function

 vis „ {¾ ¾} 20 © name the result of a D-function

 dup © show the D-function
{¾ ¾}
 vis © show the result
20 20
 © In this experimental version of the interpreter,
 © a dyadic function with a missing right argument
 © binds its left argument to form a monadic function.
 © This phenomenon is known as "currying":

 doub „ 2 × © name a doubling function

 doub 5 © apply the function
10
 © Secondly, a D-function can return a FUNCTION,
 © so we can parameterise the above definition.

 © To avoid confusion, we will distinguish function-returning functions
 © with names ending in ‘. The ‘ has no significance for the interpreter.

 mul‘ „ {¾×} © name a function-returning function

 trip „ mul‘ 3 © name a tripling function result
 half „ mul‘ ÷2 © name a halving function result

 half trip doub 5 © apply functions
15
 (mul‘ 6) 7 © return and apply function
42
 doub © show function ---.
2 ×
 trip © show function ---'
3 ×
 half © show function
0.5 ×
 mul‘ © show the function-returning function
{¾×}
 © <uns> is a regular D-function, often used with Œnread,
 © to "cast" an ¸-bit integer array to unsigned numbers:

 uns „ {base„2*¸ ª base|base+¾} © unsigned numbers ---.

 Œ „ nums „ ¯3+¼5 © test sequence ·
¯2 ¯1 0 1 2

 8 uns nums © cast to 8-bit unsigned ·
254 255 0 1 2

 16 uns nums © cast to 16-bit unsigned ·
65534 65535 0 1 2

 © We can bind a special function for any particular word width:·

 uns8 „ 8 uns © bind an 8-bit cast · ---.

 uns8 nums © cast to 8-bit unsigned · ·
254 255 0 1 2

 © Alternatively, we can code an equivalent function-returning function:·

 uns‘ „ {base„2*¾ ª {base|base+¾}} © unsigned numbers ---. ·

 uns8 „ uns‘ 8 © name an 8-bit cast · ---'

 uns8 nums © cast to 8-bit unsigned ·
254 255 0 1 2

 uns8 © show returned function---|
 {base|base+¾} ; base„256

 © <uns8> is a new type of function, called a "closure", ·
 © · which is a function ·
 © · · bound with the local environment ·
 © · · · of the D-function that returned it. ---'
 ©
 © Function ++ Environment => Closure

 © Here is another example: the inverse of <uns‘> is a function <int‘>,
 © which returns a function, which casts to signed integers:

 int‘ „ {base half„2*¾-0 1 ª {(base|half+¾)-half}} © ---.

 int8 „ int‘ 8 © name an 8-bit signed cast ·

 int8 0 127 128 255 © cast to 8-bit signed ·
0 127 ¯128 ¯1

 int8 © show the closure ---. ·
 {(base|half+¾)-half} ; half„128, base„256

 © We say: The function {···}, "where" half is 128 "and" base is 256. ·

 © Here's how it works: · ·

 © When a D-function returns a function, · ·
 © · it binds a copy of its local environment to the result. · ---'

 © When a closure is evaluated, ·
 © · its bound environment is pushed onto the stack, ·
 © · · installing local values and ·
 © · · · shadowing any items of the same name. ---'

 © Some more examples ...

 bkt‘ „ {L„¸ ª R„¾ ª {L,¾,R}} © bracketing function ---. (Dfn)

 brack „ '[' bkt‘ ']' © square-bracketed · (Csr)

 brack'hello' © apply closure ·
[hello]

 brack © show closure ·
 {L,¾,R} ; L„'[', R„']'

 paren „ '(' bkt‘ ')' © round-bracketed ·
 angle „ '<' bkt‘ '>' © angle-bracketed ·

 angle paren brack 'hello' © apply closures ·
<([hello])>

 © We could recode the bracketing function without local variables:

 bkt‘ „ { (¸°,)°(,°¾) } © bracketing function ---'

 arrow „ '…' bkt‘ '„' © arrow-bracketed

 arrow 'world' © apply function
…world„
 arrow © show function
 …°, ° ,°„

 © As there are no local names to bind, <arrow> is just a regular
 © derived function.

 © A closure is a <generalisation> of a regular function,
 © which means that a regular function is just a special case,
 © of a closure with no local names:

 iota „ ¼ © regular (primitive) function ---.

 iota „ {¼} 123 © same as above ---'

 iota © (null environment) ---.
¼
 © Some more examples ... ·

 di0 „ {Œio„0 ª ¼¾} © regular D-function for origin-0 (monadic) iota

 ci0 „ {Œio„¾ ª ¼}0 © closure for origin-0 (ambi-valent) iota ---.

 di0 4 © apply the D-function · ·
0 1 2 3
 ci0 4 © apply the closure · ·
0 1 2 3
 di0 © show the D-function · ·
{Œio„0 ª ¼¾}
 ci0 © show the closure ---' ·
¼; Œio„0

)copy dfns cmpx
C:\dfns\dfns saved Thu Sep 28 17:12:46 2006

 cmpx'di0 4' 'ci0 4' © compare evaluation times ·
 di0 4 1.6E¯6 0% ŒŒ
 ci0 4 6.6E¯7 -59% ŒŒŒŒŒŒŒŒŒŒŒŒŒŒŒŒŒ

 © A closure may be viewed as a "partial evaluation". ---'

 © Here is a handy operator:

 ml‘ „ {Œml„¾ ª ¸¸} © returns ¸¸ where Œml„¾

 list „ ¹ ml‘ 1 © define enlist function

 hello„'hello' 'world' © nested vector

 list hello © apply enlist
helloworld

 list © show enlist
¹; Œml„1

 cmix „ † ml‘ 0 © define mix closure

 cmix hello © apply mix closure
hello
world
 cmix © show mix closure
†; Œml„0

 dmix „ {Œml„0 ª †¾} © define regular mix D-function

 Œvr Œfx 'z„tmix a;Œml' 'Œml„0 ª z„†a' © define a mix trad-function
 ’z„tmix a;Œml
[1] Œml„0 ª z„†a
 ’

 cmpx'tmix « «' 'dmix « «' 'cmix « «' ' † « «' © compare times
 tmix « « 3.0E¯6 0% ŒŒ
 dmix « « 2.4E¯6 -20% ŒŒŒŒŒŒŒŒŒŒŒŒŒŒŒŒŒŒŒŒŒŒŒŒŒŒŒŒŒŒŒŒ
 cmix « « 1.4E¯6 -56% ŒŒŒŒŒŒŒŒŒŒŒŒŒŒŒŒŒŒ
 † « « 8.2E¯7 -73% ŒŒŒŒŒŒŒŒŒŒŒ

 © Here is a D-function, which returns
 © · the next ¾ numbers in sequence,
 © · · by updating a <global> variable:

 N„0 © initialise global variable

 s „ {(¼N+„¾)+N} © next ¾ numbers in sequence.

 s 2 © next 2 numbers.
1 2
 s 3 © 3 more numbers.
3 4 5
 s 2 © 2 more numbers
6 7
 N © value of global variable
7
 © We can make N local to a closure:

 Œex'N' © remove global variable

 s‘ „ {N„¾ ª {(¼N+„¾)+N}} © sequence function

 s „ s‘ 0 © sequence closure

 s © show the closure ---.
 {(¼N+„¾)+N} ; N„0

 s 3 © next 3 numbers ·
1 2 3
 s 2 © 2 more numbers ·
4 5
 s © show the closure ---|
 {(¼N+„¾)+N} ; N„5

 s 2 © 2 more numbers ·
6 7

 s © show the closure ---'
 {(¼N+„¾)+N} ; N„7

 Œnc'N' © look: no global N
0
 © We say: N is a "Persistent Local Variable" of function s.

 © Here is another example of the use of a persistent local variable:

 fib „ {¾¹0 1:¾ ª +/fib¨¾-1 2} © naïve coding for ¾th Fibonacci number

 fib¨ time ¼30 © ··· is rather slow :-(
13.50
)copy demo memo‘
C:\demos\demo saved Sun Oct 22 12:23:30 2006

 memo‘
{ © Memoization operator.
 to fm„¸ ¾ © result values and keys.
 ¸¸{ © ¸¸ is subject function.
 (›¾)¹fm:(fm¼›¾)œto © arg known: corresponding rslt.
 œ«½²fm to,°›„¸¸\¾ ¾ © otherwise: calculate & remember.
 }
}
 fib „ « fib memo‘ « © "memoized" Fibonacci

 fib¨ time ¼100 © ··· is somewhat quicker
00.01
 © Further, we can let memo‘ take care of the base cases of the recursion:

 fib „ {+/fib¨¾-1 2} © naïve coding for ¾th Fibonacci number

 fib „ 0 1 fib memo‘ 0 1 © "memoized" Fibonacci

 fib¨ time ¼1000 © also quick
00.17
 © Closures may be nested ...

 sum „ {a„¾ ª {b„¾ ª {c„¾ ª {a+b+c+¾}}}} © dfn … csr … csr … csr … array

 sum © sum is a D-function,
{a„¾ ª {b„¾ ª {c„¾ ª {a+b+c+¾}}}}

 sum 1 © · which returns a closure,
 {b„¾ ª {c„¾ ª {a+b+c+¾}}} ; a„1

 (sum 1)2 © · · which returns a closure,
 {c„¾ ª {a+b+c+¾}} ; b„2; a„1

 ((sum 1)2)3 © · · · which returns a closure,
 {a+b+c+¾} ; c„3; b„2; a„1

 (((sum 1)2)3)4 © · · · · which returns an array.
10
 © Let's extend our sequence function,
 © · to return a closure,
 © · · which returns a <pair> of sequences:

 ss‘ „ {N n„¾ ª {(¼¨N n+„¾)+N n}} © sequences function

 ss „ ss‘ 100 0 © sequences

 ss 3 2 © next 3 and 2 numbers
 101 102 103 1 2

 ss 3 2 © 3 and 2 more numbers
 104 105 106 3 4

 ss © show closure
 {(¼¨N n+„¾)+N n} ; n„4, N„106

 © Next, let's localise variables N and n in separate closures:

 ss‘‘ „ {N„¾ ª {n„¾ ª {(¼¨N n+„¾)+N n}}} © sequences function function

 ss‘ „ ss‘‘ 0 © sequences function

 ss‘ © show closure ---.
 {n„¾ ª {(¼¨N n+„¾)+N n}} ; N„0

 © Remember how closures work: ·

 © [1] When a D-function returns a function, ·
 © · it binds a copy of its local environment to the result. ·

 © [2] When a closure is evaluated, ·
 © · its bound environment is pushed onto the stack, ·
 © · · installing local values and ·
 © · · · shadowing any items of the same name. ·

 © [2] => ss‘'s bound variable N is local while ss‘ is evaluated ·
 © [1] => and so N is bound to any function returned by ss‘. ·
 © Ergo: closures returned by ss‘ <share> ss‘'s bound N. ---'

 © New variables are created only as D evaluates a „.

 ss‘ © show ss‘ again ---.
 {n„¾ ª {(¼¨N n+„¾)+N n}} ; N„0

 s1 „ ss‘ 0 © sequences ·

 s1 © show closure ---|
 {(¼¨N n+„¾)+N n} ; n„0; N„0

 s1 3 2 © next 3 and 2 numbers ·
 1 2 3 1 2

 s1 © show closure ·
 {(¼¨N n+„¾)+N n} ; n„2; N„3

 ss‘ © s1 shares ss‘'s N ---'
 {n„¾ ª {(¼¨N n+„¾)+N n}} ; N„3

 s2 „ ss‘ 0 © make another sequences

 s2 © show closure
 {(¼¨N n+„¾)+N n} ; n„0; N„3

 s2 2 3 © next 2 and 3 numbers
 4 5 1 2 3

 ss‘ © s2 also shares ss‘'s N
 {n„¾ ª {(¼¨N n+„¾)+N n}} ; N„5

 s1 ª s2 © show both closures
 {(¼¨N n+„¾)+N n} ; n„2; N„5
 {(¼¨N n+„¾)+N n} ; n„3; N„5

 © Closures accumulate incrementally as inner D-functions exit,
 © which means that inner function-returning functions incur
 © a minimum of runtime overhead. Here is a code snippet:
 © {
 © ···
 © fid „ 'c:\tmp\',¾ © local value
 © ···
 © tie„{¾:Œfstie ª Œftie}share © no inner locals => no closure.
 © ···
 © tno„fid tie 0
 © ···
 © }
 © We can display intermediate closures using Œ„

 Œ„{a„¾ ª Œ„{b„¾ ª Œ„{c„¾ ª Œ„{a+b+c+¾} }3 }2 }1 © show closures
{a+b+c+¾}
 {a+b+c+¾} ; c„3
 {a+b+c+¾} ; c„3 ; b„2
 {a+b+c+¾} ; c„3 ; b„2 ; a„1

 © Here is a more concrete example of the use of nested closures ...

)copy demo Q‘‘
C:\demos\demo saved Sun Oct 22 12:23:30 2006

 Q‘‘ © show D-function
{ © Queues.

 Queue„¾ © common buffer.

 { © outer closure.
 'put'Þ¾:{ © inner closure.
 Queue,„›¾ © append value.
 }

 'get'Þ¾:{ © inner closure.
 nxt„¾†Queue © next ¾ items.
 Queue‡þ„¾ © drop ¾ items.
 nxt © return items.
 }
 }
}
 Q‘ „ Q‘‘'one' 'two' 'three' © <trace> queue primed with some vals

 Œnc'Queue' © look: no global Queue variable
0
 Q‘ © show closure
 {··} ; Queue

 get „ Q‘'get' © <trace> generation of getter

 put „ Q‘'put' © <trace> generation of putter

 put¨ 'four' 'five' 'six' © <trace> put some more values

 get 1 © <trace> get first value
 one
 put'seven' © <trace> put another value

 get 3 © <trace> get some values
 two three four

 K‘ „ Q‘‘'en' 'to' 'tre' © <trace> en anden kø med nogle numre

 tag „ K‘'get' © genererer en "tager"

 giv „ K‘'put' © genererer en giver

 tag 2 © <trace> tager de næste numre
 en to

 get 2 © <trace> get some more values
 five six

 giv'fire' © sætter et nummer ind

 put'eight' © put a value

 get 2 © get last two values
 seven eight

 tag 2 © tager de sidste to numre
 tre fire

 © It is often convenient to collect related functions into one capsule.
 © For example, each of the data-packing functions from dfns.dws contains
 © both pack (cmp) and unpack (exp) as sub-functions:

)copy dfns packN
C:\dfns\dfns saved Thu Sep 28 17:12:46 2006

 packN © ¸ selects pack/unpack
{ © Null packing.

 cmp„{
 mask„,¾¬1†0½¾ © mask of non-nulls.
 (½¾)mask(mask/,¾) © shape mask non-nulls.
 }

 exp„{
 shape mask items„¾
 shape½mask\items
 }

 ¸„1 ª ¸:cmp ¾ ª exp ¾ © compress or expand.
}
 © We can get a handle on the inner functions by binding a left argument:

 cmp „ 1 packN © compress function

 exp „ 0 packN © expand function

 © Similarly, operator sbst derives a set of Simple
 © Binary Search Tree (BST) functions: get, put, rem, fmt, ...

)copy demo sbst
C:\demos\demo saved Sun Oct 22 12:23:30 2006

 © sbst uses a left <operand> to distinguish the cases,
 © leaving ¸ and ¾ free for inner dyadic functions:

 sbst
{Œio Œml„0 © Simple Binary Search Trees.

 put„{ © tree ¸ with key=value ¾.
 ¸Þ0:(¾(0 0))0 © null: new node.
 ((nxt _)subs)(key _)„¸ ¾ © node and search key/val.
 nxtÞkey:(¾ subs)0 © match: new value.
 ¸ ’ search ¾ © natch: try subtrees.
 } © :: t _ „ t ’ k v

 get„{ © value for key ¾ from tree ¸.
 ¸Þ0:¸'?' © null: key not in tree: no value.
 ((nxt val)_)(key _)„¸ ¾ © node and search key.
 nxtÞkey:¸ val © match: tree & value.
 ¸ ’ search ¾ © natch: try subtrees.
 } © :: _ v „ t ’ k _

 rem„{ © tree ¸ without key ¾.
 ···
 rrot„{ © right rotation.
 ···
 search„{ © search subtree ¸ for key œ¾.
 ···
 fmt„{ © formatted tree ¾.
 ···
 vec„{ © vector of key=value pairs.
 ···
 chk„{ © tree stats / integrity check.
 ···
 bal„{ © dsw-balancing.
 ···
 cmp„{ © compress of alternate vine sections.
 ···
 list„{ © list (0-vine) from tree ¾.
 ···

 'put'Þ¸¸:œ¸ put ¾ © insert/replace value in tree.
 'get'Þ¸¸:œ²¾ get ¸ 0 © search for value for key.
 'rem'Þ¸¸:œ¸ rem ¾ 0 © remove key=value from tree.
 'fmt'Þ¸¸:fmt ¾ © formatted tree.
 'vec'Þ¸¸:vec ¾ © vector of key=value pairs.
 'chk'Þ¸¸:0 chk ¾ © tree stats and integrity check.
 'bal'Þ¸¸:bal ¾ © balanced tree ¾.
}
 dput„'put'sbst © derive a put function

 tree„(0 dput 2)dput 4 © new tree with nodes 2 and 4

 dfmt„'fmt'sbst © derive a fmt function

 dfmt tree © 2-node tree
2=2.
 '4=4

 dfmt((tree dput 1)dput 3)dput 5 © tree with three more values
 .1=1
2=2|
 | .3=3
 '4=4|
 '5=5

 dfmt tree dput 1 © <trace> tree with extra node
 .1=1
2=2|
 '4=4

)ed sbst © change to closure-returning cbst:

)copy demo fndiff © show changes operator->closure
C:\demos\demo saved Sun Oct 22 12:23:30 2006

 fndiff'sbst' 'cbst'
sbst„{Œio Œml„0 · · · · · · |cbst„{Œio Œml„0 · · · · · ·
· 'put'Þ¸¸:œ¸ put ¾ · · · · |· 'put'Þ¾:{œ¸ put ¾} · · · ·
· 'get'Þ¸¸:œ²¾·get·¸ 0· · · · |· 'get'Þ¾:{œ²¾·get·¸ 0} · · ·
· 'rem'Þ¸¸:œ¸ rem ¾ 0 · · · · |· 'rem'Þ¾:{œ¸ rem ¾ 0}· · · ·
· 'fmt'Þ¸¸:fmt·¾ · · · · · |· 'fmt'Þ¾:fmt · · · · · ·
· 'vec'Þ¸¸:vec·¾ · · · · · |· 'vec'Þ¾:vec · · · · · ·
· 'chk'Þ¸¸:0 chk ¾· · · · · |· 'chk'Þ¾:0 chk · · · · ·
· 'bal'Þ¸¸:bal·¾ · · · · · |· 'bal'Þ¾:bal · · · · · ·

 © compare the two methods of function derivation:

 dput„'put'sbst © <trace> derivation of dput ---.

 cput„cbst'put' © <trace> closure of cput ---'

 dput © show derived put
 put ’sbst

 cput © show put closure
 {œ¸ put ¾} ; Œml„0, Œio„0, put, get, rem, rrot, search, fmt, vec, chk, bal, cmp
 , list

 cfmt„cbst'fmt' © generate a fmt function

 cfmt((tree cput 1)cput 3)cput 5 © tree with three more values
 .1=1
2=2|
 | .3=3
 '4=4|
 '5=5

 dfmt tree dput 1 © <trace> derived functions ---.

)sinl © show stack and local names ·
sbst[34]* wise dir inf lft rgt
sbst[104] list cmp bal chk vec fmt search rrot
 rem get put ŒIO ŒML
 .1=1
2=2|
 '4=4

 cfmt tree cput 1 © <trace> closures ---'

)sinl © show stack and local names
cbst[34]* wise dir inf lft rgt
cbst[104]
; list cmp bal chk vec fmt search rrot rem
 get put ŒIO ŒML
 .1=1
2=2|
 '4=4

 cmpx'((0 dput 1)dput 3)dput 5' '((0 cput 1)cput 3)cput 5' © timings
 ((0 dput 1)dput 3)dput 5 1.7E¯4 0% ŒŒ
 ((0 cput 1)cput 3)cput 5 1.2E¯4 -30% ŒŒŒŒŒŒŒŒŒŒŒŒŒŒŒŒŒŒŒŒŒŒŒŒŒŒŒŒ

 © However, compare creation times:

 defd „ {dput„'put'sbst ª ¾} © derive put function as side-effect
 defc „ {cput„cbst'put' ª ¾} © generate put closure as side-effect

 cmpx'defd 0' 'defc 0' © compare timings
 defd 0 3.1E¯6 0% ŒŒŒŒŒŒ
 defc 0 1.9E¯5 +515% ŒŒ

 ©©©
 © ©
 © We have seen: ©
 © ©
 © Left-argument binding (currying) doub „ 2 × ©
 © ©
 © Function results: · · · · {¾:Œfstie ª Œftie} ©
 © ©
 © Parameterisation of functions: · mul‘„{¾×} ©
 © ©
 © Partial evaluation of functions:· cmix„{Œml„0 ª †}0 ©
 © ©
 © Persistent local variables: · · {N„¾ ª {(¼N+„¾)+N}} ©
 © ©
 © Shared local values: · · · get„Q‘'get' ©
 © put„Q‘'put' ©
 © ©
 © Full display of D-functions:· · {¾ ¾} ©
 © ©
 © Oh, and quieter system names: · {¾:Œfstie ª Œftie} ©
 © ©
 ©©©

 © Pros :-) & Cons :-(
 © ¯¯¯¯¯¯¯¯¯ © ¯¯¯¯¯¯¯¯¯
 © Cute. ©
 © © Increased obfuscation opportunity.
 © Slicker than space-binding. ©
 © © One more d**n thing.
 © Speed through partial evaluation. ©
 © © One less error condition.
 © Attractive to FP programmers. ©
 © © Arguably, distorts the language:
 (refws'demo').food.chain

Food Chain: Classic APL
¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯
 .------Operators
 | ‡
 | | Key: ‡ bind (curry) to produce
 † | ” evaluate (reduce) to return
 '------Functions † are consumed by
 | ”
 | |
 † |
 '------Arrays

Food Chain: Function Results Edition
¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯
 .------Operators
 | ‡
 | .---„----.
 † | |
 '------Functions|
 | ” |
 | '---…----'
 † |
 '------Arrays

Food Chain: Typical Functional Programming Language (max.dws)
¯¯¯
 .------Functions
 | ‡
 | .---„----.
 † | |
 '------Functions|
 | ” |
 | '---…----'
 † |
 '------Lists

 © More thought required:
 © ¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯
 © Default display of multi-line arrays and functions needs more work.
 ©
 © Decide on Œcr details.
 ©
 © A function-returning function applied by the primitive each operator
 © might return an array of functions:
 ©
 © {2|¾:× ª ÷}¨ 1 2 3 4 © odd: × else ÷
 © × ÷ × ÷
 ©
 © WIBNI we could edit a closure with a tabbed edit window.
 © (this technique could also apply to editing derived functions).
 ©
 © For more on closures: Google [Lexical Closures]

 © F:\Closures\demo.pdf © Memory stick: see this session.
 © F:\Closures\setup.exe © Memory stick: install this version,
 ©)load demo © then try these examples.

 (refws'demo').quotes.Wikipedia © [names/variables]

 In programming languag- Closures are commonly
 es, a closure is a used in functional pro-
 function that refers to gramming to defer calc-
 free variables in its ulation, to hide state,
 lexical context. and as arguments to
 higher-order functions.
 A closure typically
 comes about when one A closure combines the
 function is declared code of a function with
 entirely within the a special lexical env-
 body of another, and ironment bound to that
 the inner function function (scope). Clos-
 refers to local vari- ure lexical variables
 ables of the outer differ from global var-
 function. At run time, iables in that they do
 when the outer function not occupy the global
 executes, a closure is variable namespace.
 formed. It consists of They differ from object
 the function code, and oriented member vari-
 references to any vari- ables in that they are
 ables in the outer bound to function in-
 function's scope that vocations, not object
 the closure needs. instances.

 © The End - Whad'ya think?

