

64 bit Dyalog APL

• A few bits of history
• Benefits
• Interoperability

– Sockets
– Component files
– Workspaces
– APs

A few bits of history

UnixWindows

Year 16 bit
1981 Zilog Z8000

A few bits of history

Unix Windows
Year 16 bit 32 bit
1981 Zilog Z8000
1983 Gould

Launched at Washington Conference

A few bits of history
Year 16 bit 32 bit
1981 Zilog Z8000
1983 Gould

Launched at Washington Conference
Three Rivers/ICL Perq

Cadmus
Xenix 286

DataIndustria
Altos
Sun 1
Apollo
IBM

Masscomp
Apple Lisa

Silicon Graphics
Vax

Pyramid
Ridge

Amdahl
AT&T/3b2

A few bits of history

Unix/Linux Dos/WindowsWindows
Year 32 bit 16/32 bit

1985

SCO Unix 386

1985

Opus/Natsemi
32032

Opus/NatSemi
32032

DOS/PharLap
Intel 386/387

A few bits of history
Unix/Linux Dos/WindowsWindows

Year 32 bit 64 bit 16/32 bit
1985

SCO Unix 386

1985

1987 IBM PC/RT
IBM PS2/AIX

HP/9000

1989

1990 Sun/SPARC
1990 IBM/RS6000

DEC workstation MIPS
Silicon Graphics MIPS

Sequent

1992 DEC Alpha

HP/PA­RISC

Opus/Natsemi 32032 Opus/NatSemi 32032

DOS/PharLap Intel
386/387

DOS/PharLap Intel
486

Windows 3
Watcom

A few bits of history

Unix/Linux Dos/Windows Windows
Year 32 bit 64 bit 16/32 bit 32 bit

1992 DEC Alpha
HP/PA­RISC

1994 NT 3.51
1995 Windows 95

NT 4.0
1998 Windows 98

Solaris/SPARC
IBM AIX/p4
Linux/x86

Windows 3
Watcom

MainWin based Unix ports

A few bits of history

Unix/Linux Windows
Year 32 bit 64 bit 32 bit 64bit
1992 DEC Alpha

HP/PA­RISC
1994 NT 3.51
1995

NT 4.0
1998

MainWin based Unix ports
Solaris/SPARC

IBM AIX/p4
Linux/x86

2006 IBM AIX/p5 XP XP64

Benefits

• Large address space
– Can map many files
– Can load many DLLs

• Large workspace
• Large arrays

– Not with 11.0 but with 11.1

• Large integers
– Not with 11.0 but probably with 11.1

Interoperability

• Some aspects of APL's interaction with
external elements use common code
– APs
– Components
– Sockets with style APL
– DDE between APLs
– Clipboard

Interoperability

• Some mechanisms have encapsulation that
identifies the architecture that wrote the
information
– Components
– APL style sockets

• These can interact between APL's

Interoperability
Sockets

Interoperability
Sockets

Interoperability
Sockets

Interoperability
Sockets

Component file history

• 1981
– Components were individual files in a directory
– Components had 16 bit header information

• 1985
– New indexing structure with components inside a

file
– Entirely 32 bit
– Machines with similar architecture could

read/write each others component files

Component file history

• 1992
– DEC Alpha: Entirely 64 bit. Only the Alpha

version could read/write these component files

• 2004
– Extended []FCREATE to support large files

'large' []FCREATE 1 64
[]FSIZE 1

1 1 120 1.844674407E19
– Component data still 32 bit but is self conscious

Component file history

• 2006
– Files are now interoperable
– Individual components may have been written by

different architectures

Interoperability
Components
• 64 bit files vs 64 bit APL
• File size vs Component Size

– Version 10.1 supports large files but not large
components.

– Version 11 supports large components.

• Small files carry architecture information at
the file level

• Large files tag components with architecture

Interoperability
Components (Large files)

• Components are written natively
– A 64 bit APL puts 64 bit data into a component
– A 32 bit APL puts 32 bit data into a component
– A big endian APL (AIX) puts big endian data into

a component
– A little endian APL (windows) puts little endian

data into a component

• Components are translated as they are read

Interoperability
Components (Large files)

• Individual components can come from
different APLs

• The overall indexing structure is defined by
the APL that created the file

• An APL that updates the file maintains the
original index structure

Interoperability
Components (Small files)

• Components are written traditionally
– A 64 bit APL puts 32 bit data into a component
– A 32 bit APL puts 32 bit data into a component
– If the file was not of the same endianness as the

APL then the file cannot be updated
– An AIX APL cannot update a Windows small

component file

• Components are translated as they are read
• Components may be translated during write

Interoperability
Components
• There is an update to version 10.1 called

10.1.5
– It can read components written by a 64 bit

different endian APL
– Provided they were written to a large file

• i.e. A 10.1.5 Windows APL can read
components written by a 64 bit AIX APL

• Customers who don't need this can avoid
10.1.5. 10.1.2 will be maintained as well.

Interoperability
Components

APL
File

Large
Small

10.1.2 same architecture ↔ Х
10.1.5 ↔ ↔ ←
11.0 ↔ ↔ ←

Same Endian Different Endian

Interoperability
workspaces

• Workspaces are written natively
• Workspaces are translated as they are read
• GUI objects are silently destroyed

– This is consistent with version 10.1

Interoperability
Auxiliary Processors

• The code for exchanging data with APs will
NOT be updated

• APs will have to be re-compiled for 64 bit
• A 64 bit APL cannot use a 32 bit AP
• A 32 bit APL cannot use a 64 bit AP

• Ruthie Foster
• Stages
• track 11
• Church

