DYALOC

64 bit Dyalog APL

A few bits of history
- Benefits

» Interoperabillity
— Sockets
— Component files

— Workspaces
— APs

DYALOC

A few bits of history

Unix

Year 16 bit
1981 Zilog Z8000

DYALOC

A few bits of history

Unix
Year 16 bit 32 bit

1981 Zilog Z8000

1983 Gould
Launched at Washington Conference

DYALOC

A few bits of history

Year 16 bit 32 bt
1981 Zilog 28000
1983 Gould
Launched at Washington Conference
Three Rivers/ICL Perq
Cadmus
Xenix 286
Datalndustria
Altos
Sunl
Apollo
IBM
Masscomp
Apple Lisa
Silicon Graphics
Vax
Pyramid
Ridge
Amdahl
AT&T/3b2

DYALOC

A few bits of history

Unix/Linux Dos/Windows

32 bit 16/32 bit
Opus/Natsemi Opus/NatSemi
32032 32032

SCO Unix 386

DOS/PharLap
Intel 386/387

DYALOC

A few bits of history

Unix/Linux Dos/Windows
32 bit 64 bit 16/32 bit
Opus/Natsemi 32032 Opus/NatSemi 32032
SCO Unix 386
DOS/PharLap Intel
386/387
IBM PC/RT
[BM PS2/AIX
HP/9000

DOS/PharLap Intel
486

Sun/SPARC
IBM/RS6000
DEC workstation MIPS
Silicon Graphics MIPS
Sequent
Windows 3
DEC Alpha Watcom

HP/PA-RISC

DYALOC

A few bits of history

Unix/Linux Dos/Windows Windows
Year 32 bit 64 bit 16/32 bit 32 bit

Windows 3
1992 DEC Alpha Watcom
HP/PA-RISC
1994

1995 Windows 95

1998 Windows 98
MainWin based Unix ports

Solaris/SPARC
IBM AIX/p4
Linux/x86

DYALOC

A few bits of history

Unix/Linux Windows
Year 32 bit 64 bit 32 bit 64bit

1992 DEC Alpha
HP/PA-RISC

1994

1995

1998
MainWin based Unix ports

Solaris/SPARC
IBM AIX/p4
Linux/x86

IBM AIX/p5

DYALOC

Benefits

- Large address space
— Can map many files
— Can load many DLLs

- Large workspace

- Large arrays
— Not with 11.0 but with 11.1
- Large integers
— Not with 11.0 but probably with 11.1

DYALOC

Interoperability

- Some aspects of APL's interaction with
external elements use common code

— APs

— Components

— Sockets with style APL
— DDE between APLs

— Clipboard

DYALOC

Interoperability

- Some mechanisms have encapsulation that
identifies the architecture that wrote the
Information

— Components
— APL style sockets

« These can interact between APL's

DYALOC

Interoperability
Sockets

APL APL

DYALOC

Interoperability
Sockets

windows AlX

SWap

APL APL

swWap

DYALOC

Interoperability
Sockets
APL APL

DYALOC

Interoperability
Sockets

windows AlX
22 bit &4 bit

APL | APL

DYALOC

Component file history

- 1981

— Components were individual files in a directory
— Components had 16 bit header information

» 1985

— New Indexing structure with components inside a
file
— Entirely 32 bit

— Machines with similar architecture could
read/write each others component files

DYALOC

Component file history

e 1992

— DEC Alpha: Entirely 64 bit. Only the Alpha
version could read/write these component files

- 2004

— Extended [[FCREATE to support large files
'large' [[FCREATE 1 64
[IFSIZE 1
11120 1.844674407E19

- Component data still 32 bit but is self conscious

APL '

DYALOC

Component file history

- 2006

— Files are now interoperable

— Individual components may have been written by
different architectures

DYALOC

Interoperability
Components

« 64 bit files vs 64 bit APL

» File size vs Component Size

— Version 10.1 supports large files but not large
components.

— Version 11 supports large components.

- Small files carry architecture information at
the file level

- Large files tag components with architecture

DYALOC

Interoperability
Components (Large files)

- Components are written natively
— A 64 bit APL puts 64 bit data into a component
— A 32 bit APL puts 32 bit data into a component

— A big endian APL (AIX) puts big endian data into
a component

— A little endian APL (windows) puts little endian
data into a component

- Components are translated as they are read

DYALOC

Interoperability
Components (Large files)

» Individual components can come from
different APLs

- The overall indexing structure is defined by
the APL that created the file

- An APL that updates the file maintains the
original index structure

DVYALOC

Interoperability
Components (Small files)

- Components are written traditionally
— A 64 bit APL puts 32 bit data into a component
— A 32 bit APL puts 32 bit data into a component

— |f the file was not of the same endianness as the
APL then the file cannot be updated

— An AIX APL cannot update a Windows small
component file

- Components are translated as they are read
- Components may be translated during write

APL '

DYALOC

Interoperability
Components

» There 1s an update to version 10.1 called
10.1.5

— It can read components written by a 64 bit
different endian APL

— Provided they were written to a large file

- 1.e. A10.1.5 Windows APL can read
components written by a 64 bit AIX APL

« Customers who don't need this can avoid
10.1.5. 10.1.2 will be maintained as well.

DYALOC

Interoperability
Components

File

APL Small
Large

Same Endian Different Endian
10.1.2 same architecture o
10.1.5 <

11.0 o

DYALOC

Interoperability
workspaces

- Workspaces are written natively
- Workspaces are translated as they are read

» GUI objects are silently destroyed
— This 1s consistent with version 10.1

DYALOC

Interoperability
Auxiliary Processors

- The code for exchanging data with APs will
NOT be updated

- APs will have to be re-compiled for 64 bit
« A 64 bit APL cannot use a 32 bit AP
« A 32 bit APL cannot use a 64 bit AP

DYALOC

» Ruthie Foster
- Stages
 track 11

» Church

