DYALOC

Geoff Streeter
Dyalog Ltd

JDYALOC

As befits a corporate minion kowtowing to the
corporate management. Not only have I got the

right background but I have picked a key from a
Danish keyboard.

JDYALOC

t
i
L
l

Now the fact that the key annotation was
arranged as a matrix was purely an artistic
convenience. So I have applied my own artistic
license and re-arranged it.

JDYALOC

AltGR +
Shift

AltGR

1
i
w (L
1

Base

We have to have a way of choosing which
character is chosen when the key is pressed.

AltGR +
Shift

AltGR

Shift

Base

Level 4

Level 3

Level 2

Level 1

h—ir(hﬂv‘rdﬁ

At this point — 1996 — along comes two things.
ISO9995 which is a standard for keyboards that I
really ought to read, but haven't, because I
baulked at the number of Swiss Francs required
to get the PDF.

The other was some work by Erik Fortune of
Silicon Graphics who did the X keyboard
extension using ISO concepts.

The shift states are called “levels”. They are
normally drawn like a lift indicator. Or since the
origin is American an elevator indicator. The
same ancestry presumably also gave the origin 1
nomenclature.

JDYALOC

Level | 2 3 4

We are array people so transposing it is no
problem and makes it easier to manage on a
wide screen.

XKB allows 256 levels. So maybe I need an even
wider screen.

Now why have I left all that space at the top?

JVALOC

Group 1

Level

JDYALOC

Level | 2 3 4

Because ISO9995 and XKB have another trick up
their sleeves.

Groups.

JDYALOC

Level | 2 3 4

We can use another group to introduce APL's
own characters.

There can be four groups. So if you are really
mad you can use 256 levels and 4 groups to put
1024 characters on one Kkey.

JDYALOC

Left
Group 2 Windows

Key

Level | 2 3 4

There are several pre-packaged strategies for
changing groups. On this laptop the most
convenient was the left windows key normally
known in Linux circles as Super L

JDYALOC

Left Alt
Group 2

Level | 2 3 4

In the office I have an old clacky IBM keyboard
with real APL keycaps and on that I choose to
use the left Alt key.

Group Shift Techniques

Locking - press and release - it~ Latching - operative whilst
stays selected. Like Caps Lock. pressed. Like shift.

« If we only have two groups then a
latching policy is preferred

For most APL usage we only want one APL
character at a time so we would definitely
prefer to use a latching policy.

DYALOC

More groups

If we have more than two groups then we
are forced to use some sort of locking
policy. The usual one is that

Right Alt+right shift increases group.

Left Alt+left shift decreases group.

This is OK if you are going to type a word, or a
sentence but is not so nice just to get one
character.

Why use a group?

We can overlay any existing keyboard.
Independent of existing CAPS LOCK policy.

In general we don't have to worry about the
underlying language.

This is not quite true; the French like to move
the a with the A. However they leave the w in
the same place so it now sits on the Z.

What is true is that the variations are small and
easy to code.

We don't want CAPS LOCK to change quad to
squish.

This is actually about a concept called “type”
which I haven't talked about. When we have a
new group we can impose a new key type
independent of the existing key type.

We can add the APL symbols to all of the layouts
in use.

DYALOC

Why not use a group?

GNOME

Sergey Udaltsov is the maintainer for XKB for
Xorg and the maintainer for the XKB interfaces
in Gnome.

JDYALOC

Gnome turns language into
group, why?

Better language switching
Less overhead on the X server

Less bandwidth use between the X server
and the X client

By utilising the well defined ISO9995/XKB
techniques for changing group. The use of the
mouse or keyboard accelerators can be avoided.

Because the whole keyboard configuration is not
changed on a language change there is minimal
cost.

When the keyboard is changed a lot of
information has to be transmitted between the X
server and each of the X clients.

Gnome turns language into
group, why not?

Maximum of four languages

Takes away a key feature

Gnome specific

Imposes a “locking” group switch approach

There is a brick wall with this approach at four
groups. This limits you to four languages.

It restricts you from moving existing, and valid,
XKB configurations from another X-server or
desktop to Gnome.

You have to code your Xorg.conf (or equivalent)
differently in order to accommodate the
approach.

As soon as you have more than two languages
the normal group switch technique is to use the
“locking” approach mentioned earlier. This might
not be a complete no-no. I think it is possible to
define a latching key to go to a specific group
and return to the current group when released.

Does Gnome affect us

If you only use one keyboard layout then
no

If you already use four layouts then you
are stymied. You can't add APL.

Otherwise, probably.

Just one language? Then the same approach of
using a second group just works.

Polyglot? Use another desktop. They are not like
football teams — pick one when you are seven
and support it all your life. More like cars -
choose one that suits your purpose at the time.
You might respect and admire a Lotus Elise but it
is no good for moving a ladder.

Two or three languages, this is quite common. I
use US and GB. You (or me, probably me) will
need to add the code for a group switch which
latches a particular group and APL will need to
be positioned so that it is in that group. As if I
didn't have enough to do.

Enough of Gnome.

The APL keyboard

This is taken straight from the text comments in

the file. The characters were all typed into vi
after I had defined the keyboard.

This is a conservative keyboard. Having
abandoned the underscored alphabet and
abandoned the idea of typing a third alphabet
some of the keys seem to be strangely placed.

Why not place grade up on the same key as
delta?

However, there is more.

JDYALOC

Line graphics can be useful

/1
/1
/1

et
/!

M| F|]
/1

// L| L |
//
//
//

However, I have only implemented one line
thickness.

With the new unicode interpreter we could add
others by using more levels.

JDYALOC

How is it done?

key <AC09> {

type[Group2] = "TWO_LEVEL",
symbols[Group2] = [U2395, U2337] // quad, squish
b

Back to our 'L' key.
The 'A' indicates the area of the keyboard.

The 'C' indicates the row labelling from the
bottom up.

L is the 9™ key on the row.

xkbprint is your friend. Except it's not fully
unicode aware.

“TWO_LEVEL” means a basic key that can be
shifted. CAPS LOCK has no affect.

Unicode code points are given for the generated
characters.

Lots of boring repetition for various keys.
Done.

JDYALOC

Rules

I option = symbols
dyalog:apl_group! = +dyalog_vndr/apl_groupi(ap

(apl
dyalog:apl_group2 = +dyalog_vndr/apl_group2(apl
dyalog:apl_group3 = +dyalog_vndr/apl_group3(apl

(apl

)
)
)
)

dyalog:apl_group4 = +dyalog_vndr/apl_groupk(ap

APL ’

This is where I start to wave my hands about
vaguely.
XKB builds upwards from
geometry — a physical description
keycodes — map scan codes to named keys
types — specifies how keys produce levels
symbols — what a key stroke produces
Xorg builds downwards from
layout
model
options
The rules file ties the Xorg view to the XKB view. It

allows users to chant incantations rather than seek
understanding.

JDYALOC

Rules

I option = symbols

dyalog:apl_group2 = +dyalog_vndr/apl_group2(apl)

=D

So this says: When you see the option

dyalog:apl group2 go and find the file
symbols/dyalog vndr/apl group2.

In that file, find an xkb_symbols section called “apl”.

Add it to whatever you have so far.

DYALOC

xorg.conf

xorg.conf configures an X server
Itis divided into sections.

JDYALOC

Section "InputDevice"
Driver ~ "kbd"
Identifier "Keyboard[0]"
Option ~ "Protocol" "Standard"
Option "XkbLayout" "us,gb,dk"
Option ~ "XkbTypes" "complete"
Option ~ "XkbModel" "pc104"

nn n

Option ~ "XkbGeometry" "pc

Option "XkbCompat" "complete”

Option "XkbOptions" "dyalog:apl_group2,grp:lswitch"
Option "XkbRules" "xfree86"

Option "XkbVariant" "xfree86"

EndSection

=D

This is where we invoke our option. It will add
the APL symbols as group 2 to all of the layouts
specified.

The other option specifies the group switch
strategy. In this case the left alt key.

JDYALOC

So what have we done?

Written one file: “apl_group2”

Putit in a directory “dyalog_vndr”
Added a line to another file “rules/base”
Modified one line in “xorg.conf’

Actually, I added a README and a bash script to
use “sed” to produce the files for the other
groups.

I don't really know if creating a directory called
“dyalog vndr” is the right thing to do. However,
it fits the style of the other things there.

Supporting the other groups actually makes this
four lines.

The “Options” do all sorts of things — like
swapping Ctrl with Caps Lock and choosing
group switch strategies. Using it to add symbols
seems fair.

What doesn't work?

Alt + Shift is not the same as Shift + Alt
Ctrl+Alt+something no longer does things
Only works in an X-Server

It is not there by default in Xsun and AIX

[anticipate that this will cause some initial
frustration but your fingers will rapidly learn.

I haven't found a way to use this positively yet.
Maybe this is part of the answer to fitting 1024
characters on a single key. No — somehow I don't
think so.

However, use the right side of the keyboard and
they all work. So no loss of functionality.

You have to be running X. So you get no support
at all in a raw Linux console.

If you are using Solaris or AIX as a desktop then
getting XKB enabled will require some work — I
don't know how much yet.

What have we achieved?

=)
APL)
y

The keyboard can now talk to the application in
our language.

Note that the other direction is still a little
problematic.

Most of the fonts on the system have not
implemented the APL part of the unicode
character set.

This is not as bad as it might be and it is getting
better. There is Adrian Smith's APL385 font.
There is “Misc Fixed” which is a single font.
However, I don't think it is very pretty. There is a
virtual font called “monospace”. Virtual fonts are
a cascade of real or other virtual fonts. You get
the character from the first font in the list that
supplies it. Most of the APL characters are in
“Cumberland AMT?”, the rest seem to be in
“Nimbus Mono L”.

What have we achieved?

Note that this doesn't just mean we can talk to
Dyalog itself. We can talk to any application. We
can type directly into OpenOffice. Directly into
vi, Inkscape, Scribus ... the lot.

Font support for virtual fonts is a bit patchy.
OpenOffice doesn't support them, which affected
this presentation. However, gnome-terminal
supports them. So I have taken to running
gnome-terminal under KDE to run character
based APL.

I have made input translates and output
translates for UTF8 which can be used for all of
our versions back to 6.2. You don't have to wait
for 11.1 to use this work.

Freedom?

Hostexplorer from Exceed version 6

KEA

Some of our customers have persisted with the
non GUI versions of Dyalog. They have been
constrained to use one of two terminal emulators
to achieve that. The main restriction was that the
emulator had to support the downloadable font
feature of the vt220. Versions of Exceed after 6
were broken in this respect.

Now they can use any terminal emulator that
supports UTF8. If the desktop is Linux then that
is fine and dandy. Windows now seems to be
more of a problem. Running gnome-terminal on
top of Xorg on top of Cygwin is quite a stack just
to support a UTF8 terminal emulator.

JDYALOC

Conclusion

We get our APL characters everywhere.
We only need to designate a shift key.

To some extent I feel that I have put a lot of
negative points into this presentation.

However, I am actually really pleased with what
can be done. We don't have to click icons or use
keyboard accelerators to bring up some IME. Our
characters are just there ready for use.

Some people are going to be really pleased to
just put the APL characters back on the Alt key.

