
OOSTATS – A New Approach to Statistics via APL

Introduction
The advent of Dyalog APL’s interpreter with object-oriented features (Versions ≥11) suggested an
interesting task of investigating how the new facilities could be exploited to provide APL software
for users to perform statistical advantages. The following pages report my part-time efforts during
the last year.

APL rightly has a reputation for being a good language for performing statistical calculations.
Since my first publication (with Jake Ansell) in Quote Quad (Sig APL Conference in Seattle 1985)
I have reported some of my efforts, throughout which I have generally assumed that the data was
nicely sanitised with no missing values. When it comes to dealing with a genuine application, a
good deal of cleaning up has to be done before using APL to produce a statistical report. This can
be a laborious job – moreover, since you don’t want to remove cases unnecessarily, cleaning needs
to be done within the immediate context. (If, for example, you are using regression to predict the
variable y using x1, then you need to remove any cases where there are missing values in y and x1 –
change the model to include a second or different variable x2 and you need to clean from scratch
again.) It follows that a database structure which will handle missing values is essential.

It was clear from the start that an object-oriented approach would be really useful in Statistics
-statistical results need to be self-explanatory to some degree, so a set of variables in a database
requires names, variable descriptors and, where appropriate, labels associated with specific values.
Thinking of these as public fields of a database object was a natural step to take that would also
facilitate dealing with missing values. Gradually a structure materialised:–

• A database object (rectangular database) would be created from a set of user variables.
• This object has methods and fields to expedite database activity
• It also contains ‘statistical methods’
• A statistical method filters out missing values and creates an appropriate statistical object

for the analysis required.

A further design criterion became clear after a little work – whilst being able to incorporate the
statistical tools into a user’s program was clearly paramount, for the routine task of investigating a
data set and trying different models, deleting outliers where appropriate etc, a gui environment is
ideal, and so, from the outset, simple gui tools were developed, e.g. for declaring variable formats
– it was then a small conceptual and structural step to include all the facilities in a gui framework.

The Database Object
The database object is the coding s_db in the workspace oostats. The command:-
 db←⎕NEW s_db(('alan' 'peter')((1.1 2.1 3.1 4.1)(4 3 2 1)))
creates a database of two variables known by the names alan and peter. (An error message
results if variables are of unequal length.)
The database as a formatted matrix is given by:-
 db.Mat
1 1.1 4 1 1
2 2.1 3 1 1
3 3.1 2 1 1
4 4.1 1 1 1
where the first column lists case numbers (useful if a different ordering is used) and the last two
columns indicate the cases selected and the case frequency (see later for a use of the latter).

To select cases:-
 db.SelectCases 'alan>2.2'
Cases selected by alan>2.2
2 cases not selected
 db.Mat
1 1.1 4 0 1
2 2.1 3 0 1
3 3.1 2 1 1
4 4.1 1 1 1
If you want to browse the database as a grid object:-
 db.View

Note that non-selected cases appear in grey.

New variables may be calculated:-
 db.SelectCases 1
Cases selected by numerical expression
0 cases not selected
 db.AddVariable 'claire←alan+2×peter'
Variable claire created by expression 'alan+2×peter' added to database
db.View

Note here that the formula for the new variable would be applied only on those cases where all
variables involved are not missing.

Other database facilities are available, e.g. declaring formats which apply to viewing the data
through the field Mat, ordering the database, deleting a variable and so on. Some of these will be
used later in the exposition, but the facility for dealing with missing values needs special mention.

Missing Values
Missing values fall into two categories – system missing and user-declared missing. Obviously a
⎕null value in a vector is a system missing value – other candidates tend to appear, such as ⊂''
and ⊂⍳0, particularly when importing files from Excel. These are contained in the database field
_SM.

The need for user-declared missing values is particularly clear within the context of survey
databases, where all fields should have a numeric value recorded even when a respondent fails to
enter anything. This is because the analyst may wish to use that field as a predictor – if so, the

numeric value recorded is declared to be a missing value; alternatively if the analyst wished to
explore whether respondents of a certain type are more likely not to have filled in that field, then
cases corresponding to these ‘missing values’ need to be included in the analysis.

Missing values are collected in a nested text vector, so that individual elements of the vector, when
executed, yield a vector of values. This facilitates knowing just exactly what values are there and
adding to them through a grid object:-
 db←⎕new s_db (('alan' 'peter')((1.1 2.1 3.1 4.1)(4 3 2 1)))
 db.MissVals
 (⎕null)(⊂'')(⊂⍬)('') (⎕null)(⊂'')(⊂⍬)('')
To alter or add to these values:-
 db.GetMissVals

Adding (4) to the entry for variable peter and assigning the values would ensure that in any
statistical work done using the variable peter the first case would not be used.

Statistical Methods
The database object code s_db contains a number of statistical methods which can be listed
using:-
 db.StatsMethods
UniqueFrequency
Unistats
Regress
TwoSampleMeans
CrossTabs
MatchedPairs
OneWayAnova
Scatterplot

These represent my ‘base camp’ beyond which I have resisted temptation to move on before
presenting this work and spending time consolidating the basic database code.

Each method creates a sub-database object which is declared public so that its fields and methods
are available to the user. In all but the first method, missing values are filtered out as necessary
before the creation of the sub-object, so that the coding of the sub-objects is free of this obligation!
All such methods have object code beginning with s_, e.g. s_unistats. In terms of functionality,

they represent that part of Statistics which would be included in an introductory course on the
subject, except that Regress includes the functionality of the Generalized Linear Models facility
that I developed at Swansea and which is still used there by students in their final year.

As an introduction to some of these methods, we use the database of house prices that will be
familiar to many an APLer as it is often used by Adrian Smith in demonstrating Rainpro.
 Open 'oostats/housedata.adb'
Object 'db' has been created using s_db from file oostats/housedata.adb
(A database can be saved in an APL component file using the command db.Save filename.)
To list the variables in the database:-
 db.VarNames
 price area beds type age _CSel _CFreq
To find out more about these variables:-
↑ db.VarLabels
Price of house in £1000
Floor area in square feet
Number of bedrooms
Type of house
Age in years

In this case, the variable type has associated value labels:-
 db.ValueLabels[4]
 1 terraced house
 2 semi-detached
 3 detached
 4 bungalow
indicating that the value 1 is for a ‘terraced house’ and so on.

To obtain values for a variable:-
 db.GetVar 'price'
156 55 65 46.95 46.95 47.5 110 65 54 85 70 82.5 78.5 49.95 77 37.5 65 75
96.5 53.95 75 60.5 148 79.95 120 102 145 68 98
Now we create a univariate statistics object for the first variable.
 db.Unistats 'price'
Created object #.price.?
Currently, # cases excluded = 0

Note that this object is created only for those cases selected. (It seemed sensible here to create the
object at the top level – other objects remain within the database object.)
 price.Mean
79.7845
 price.StDev
31.3536
 price.Pctile 25 50 75
25 55
50 75
75 96.5

To see what options are available to us (they may be fields or methods):-
 price.Options
Mean StDev StError Lhinge Median Uhinge Outliers ExtremeOutliers
Ttest NonParTest Pctile FreqTable ConfInt Hist Boxplot

Some of these require a right argument and may also have a potential left-argument – to facilitate
this, all statistical objects have an ‘Explore’ method which helps you to choose the results you
want:-
 price.Explore

Various options have been ticked, a right-argument for the Ttest of 90 has been entered
(overwriting the default value of 0) and a histogram is required with class intervals starting at 0 of
width 25 with a Normal distribution overlay. Text output results:-

Univariate Statistics for price

 Statistic Value
 # cases 29
 Mean 79.78
 StDev 31.35
 StError 5.822

Testing the hypothesis that the true mean is 90

 Statistic Value
 # 29
 Mean 79.78
 Std Error 5.822
 t-Stat ¯1.755
 p-val 0.09027
 lower 95% conf 67.86
 upper 95% conf 91.71

On the histogram form, menu items allow you to view the histogram in full screen mode or to try
an alternative distribution overlay (at present, the choice is between Exponential and Normal
distribution). Note that the title of the variable is automatically included in the value axis label.

The Crosstabs Object
A very useful tool is that of cross-tabulation – a bivariate frequency table is calculated giving the
frequencies associated with each pair of values of two variables. Staying with the housedata
database, we can examine the frequencies associated with the two variables beds and type.
 db.CrossTabs'type' 'beds'
Sub-Object ct created using s_crosstabs
 db.ct.Table
 1 2 3 4 5
 terraced house 1 2 2 2 2
 semi-detached 1 0 9 1 0
 detached 0 0 2 3 0
 bungalow 0 1 3 0 0

Note how the values 1,2,3,4 for the type of house are replaced by their value labels.

Often, the motivation for a cross-tabulation analysis is to investigate whether there is any
relationship between the two variables. If there is no relationship, then the observed proportions in
each row (row frequencies divided by row sums) should be much the same for each row. This
hypothesis is tested by computing the chi-square test statistic for observed frequencies and
expected frequencies calculated assuming the hypothesis of independence. A good example of this
at work is to see whether the degree classifications at a well-known university are independent of
the faculty.
 Open 'oostats/degclass.adb'
Object 'db' has been created using s_db from file oostats/degclass.adb
 db.VarNames
 degree faculty frequency _CSel _CFreq
 db.View

The degree classifications have been recorded as 1,2,3,4 with value labels, and similarly for the
seven faculties. The frequency column gives the frequency of each combination of degree and
faculty, and so the command
 db.CaseFrequency 'frequency'
Case Frequency is user defined by expression frequency
was used prior to the database being saved. (If this declaration was not made, then the cross-
tabulation frequency matrix would have all entries equal to 1.)
 db.CrossTabs 'faculty' 'degree'
Sub-Object ct created using s_crosstabs
 db.ct.Options
 Observed Expected StandResid Table ChiSquareTest FullTable
ViewFullTable TowerChart
To test the hypothesis of independence between the two category variables we use the Chi-square
test:-
 Tab db.ct.ChiSquareTest
 Chi-square Degrees of Freedom p-value
 146.037 18 0
(N.B. the Function Tab merely puts column labels on top of the matrix of results – for reporting
such output later, it is advantageous to have column labels separate from the rest of the table.)

The p-value rounded to zero implies that there is much evidence to suggest that the distribution of
degree classifications depends very much on the faculty in question. To investigate this further:-

db.ct.ViewFullTable

In this full table for each cell in the frequency table, the observed frequency is listed with the
Expected frequency and a standardised residual. Values of the latter greater than 2 are shown in
red, and those less than -2 are shown in blue. It then becomes clear that the Engineering and
Science faculties tend to produce more Firsts and Third/Pass results than the more discursive
faculties where degree results tend to bunch into the Two-one and Two-two categories. (In my
experience, this part of the analysis is almost always excluded from statistical textbooks – a sad
state of affairs as this really is the interesting and important part!)

A Gui Front End
With the structure adopted, it turned out to be relatively painless to wrap the objects with a gui
front end. Technically, a new object s_guidb was constructed inheriting all the methods and
properties of s_db. The design of the front end makes use of tabbed sub-forms to maximise the
use of the screen. A tabbed sub-form is created for any choice of statistical method in s_db that
allows the user to select appropriate variables to define the statistical object. An [Analyse] button
creates the statistical object and then the statistical object’s Explore method provides the grid
object to allow the user to specify the output required. The example below shows the results of
first opening the housedata in gui mode using

 1 Open 'oostats/housedata.adb'
and then:-

• selecting a one-way analysis of variance from the [Analyse] menu
• specifying the price of house as the observation value and the type of house as the grouping

variable
• pressing [Analyse]
• pressing [Do Options] for the default options ticked.

The boxplot gives you some idea what to expect when you see the text output – that the average
price of houses is not the same for each type of house. The text output confirms this:-

Other Facilities
Clearly it is impossible to demonstrate all the functionality of OOStats to date in this report. A
help-file is in construction and should be available shortly. It will give examples of the other
statistical analyses that are currently included in addition to those shown here (e.g. regression, two-
sample means analysis, matched pairs, scatterplot modelling, generalized linear models).

Other facilities not mentioned are:-
• The output from the gui-wrap is saved in an APL component file and the results of a

session may be printed out as a Newleaf report, complete with any pictures generated;
• The ability to edit the data (although I would stress that the editing facilities are basic);
• Formatting of variables allow you to display value labels rather than the values, or both;
• A variable may be coded (unique values are replaced by 1,2,3,… and associated original

values stored as value labels – this is particularly useful for string variables;
• A vector of dates may be declared as a date variable, in which case, the values in the form

dd/mm/yyyy are converted to Julian dates, but you can still see the actual dates if you
require;

• An Excel spreadsheet may be converted using {1} OpenExcel fn

Acknowledgements
I would like to acknowledge the use of Adrian Smith’s software Rainpro and Newleaf (now
supported by Dyalog) which is used for graphical and text output respectively. I would also like to
acknowledge the encouragement of Morten, Gitte and Dan Baronet throughout the work done and
also Vince for answering my gui queries so quickly.

Alan Sykes
September 2008

