

 1

Simple APL Library Toolkit (SALT)
Version 1.26 dated 2008-7-31

Introduction
SALT is a source code management system for Classes and script-based Namespaces in
Dyalog APL. The source code for each object (class or namespace) is stored in a single
Unicode text file with a file extension of “.dyalog”. SALT also supports the loading and starting
of applications from an “application file” with an extension of “.dyapp”.

Classes provide a convenient mechanism for wrapping tools in a way which makes them easy
to share. SALT is intended to provide a common mechanism for APL users to develop and
share code in “Open Source” libraries.

SALT aims to provide the minimum useful set of functionality for a small team of developers,
and provides the following set of functions (in a “likely” order of usage):

Function Modifiers Discussion
List ‘folder|object’ -Folders Only list folders, not individual objects
 -Recursive Recursively list contents below named folder
 -Versions Also list intermediate version copies of object
 -Raw Returns unformatted data
 -Full=1 or -Full

-Full=2
Show full pathnames below root folder
Show complete pathnames

Explore ‘name’ Opens explorer if name is a folder or Notepad
on source if name is an object

 -Mode=Normal|Max in Normal or Maximized window
 -Use= Use specific program to compare
 -Permanent Remember permanently the program to use

Load ‘name’ -Version Loads a particular version
 -Target=Namespace Defines the object in a ns
 -Source Returns the source as a nested vector instead

of defining the object in the workspace
 -NoName Returns a ref to the object but does not “name”

it in ws
 -NoLink

-Disperse

Do not manage the source for the object after
loading it into the workspace
Brings in the objects specified (or all)

New ‘name’ [arg] Same switches as Creates an instance of class ‘name’
 Load (-noname forced) without naming the class in the workspace
Save ‘ref file’ -Version Save particular version number
Compare ‘name’ -Version=n Compare current (last) version with version n

(default is to compare last 2 versions)
 -Version=n1 n2 Compare two particular versions
 -Use= Use specific program to compare
 -Permanent Remember permanently the program to use

 2

if "APL" has -Zone= # of lines to show before and after matches
been specified -Trim Ignore spaces at the ends
RemoveVersions -Version=[<>]n Drop specific version(s) n
 ‘name’ -Collapse keep last version
 -All Forget ALL backup versions
Boot ‘app’ Loads and runs an application from a .dyapp file
Settings'[id [v]]' -reset Reload settings from registry
 -permanent Save settings to registry

The use of text files as a storage mechanism means that SALT and other tools written in APL
can be combined with industry standard tools for source code management. For example,
SALT allows comparison between versions of a class to be done using an external add-on.

SALT is included with a standard Dyalog APL installation for Windows but needs to be
activated before it will be loaded when APL starts. See the section on Configuration below.

Some Implementation Details
File Format
Each version of each source object is stored in a Unicode text file with an extension of
“.dyalog”. The Unicode file format used is known as UTF-8. These files can store text which
uses the “Basic Multilingual Plane” of Unicode, which contains most of the world's languages
and the APL character set. This format is supported by very many applications (including
Windows Notepad).

The source code for SALT is itself “salted”, consisting of two files in the Classes\Dyalog\SALT
folder.

Application files are stored in text files with an extension of “.dyapp”. When Dyalog APL is
installed, it sets up associations for the new extensions:

.dyapp Opens with Dyalog APL, which should Boot the application. Edits with Notepad.
.dyalog Opens with Notepad.

Configuration
The registry key “HKEY_CURRENT_USER\Software\Dyalog\Dyalog APL/W 12.0\SALT” contains
the following values which provide configuration information for SALT:

Value Default Setting Discussion
AddSALT 1 Controls whether SALT is initialized when the

session file is loaded.
CompareCmd apl Specifies how to call a file comparison utility.
SourceFolder [Dyalog]\Classes Specifies folders for source files separated by

";". Default folder is located below the main
Dyalog folder.

EditorCMD notepad.exe Specifies which program to run to edit script
files

SALT will be loaded into the session if the registry string SALT\AddSALT has the value “1”
(the default). If SALT is active, you should not get a VALUE error if you type

⎕SE.SALT

 3

If SALT is not enabled you can enable it using the SALT workspace. Simply type

)LOAD SALT
enableSALT

With V12 you can also use the configuration menu en/disable SALT.

Shaking the SALT
SALT is used to maintain itself, and the source can be found in the “SALTed objects” in the
Dyalog folder SALT\SALT. As mentioned earlier, these files are loaded if the registry entry
SALT\AddSalt has the value “1”. If so, SALTUtils and SALT are loaded into ⎕SE, and the
function SALTUtils.EditorFix is connected to a callback on exit from the Dyalog Editor.

When SALT loads an object, it inserts a special namespace named SALT_Data in it, and
variables inside this namespace contain the source file name, the version number and the last
write time of the file when it was loaded. The last item of information is used to prevent
accidental updates of the same version by two different users or from two different sessions.

SALT Applications
In addition to managing individual source code files, SALT is able to load and run applications
defined by files with an extension of “.dyapp”. The format of these files is documented under
the Boot command. The Version 11.0 installation sets Dyalog APL as the application which is
used to “start” these files, and SALT examines the command line

Comparing Files
Since the source code for each version of an object is stored in a Unicode file, any file
comparison tool which can compare Unicode files can be used. The author did a quick search
on Google and ended up evaluating and subsequently spending $29 on a product called
Compare It! from http://www.grigsoft.com/index.htm (if you download this product, make
sure to get the Unicode-capable version). SALT is able to use any product if it can be launched
using a command which takes the names of the two files to be compared as parameters. The
registry string SALT\CompareCmd tells SALT how to launch the comparer. If using the
above product it should be:

“[ProgramFiles]Compare It!\wincmp3”.

SALT appends the two file names and calls “Compare It!” If such a program is unavailable the
registry entry should be left blank and SALT will use it own primitive comparison code and
show the results in the session.

Versions
SALT files may be versioned. When versioning is switched ON for an object, SALT creates files
which have a version number immediately before the .dyalog extension (for example,
MyClass.3.dyalog). The List function in SALT shows this number as [3].

Each time an object saved in a versioned file is changed, a new file is created. You can quickly
end up with a large number of intermediate versions. You will need to use RemoveVersions to
tidy up.

 4

Using SALT
A standard Dyalog APL installation contains a collection of classes which can be used to
explore object oriented programming. SALT commands allow you to explore and use this
library.

List
The List command takes an object or folder name as its argument. An empty argument will list
the top-level files and folders (immediately below the first folder named in the SourceFolder
registry entry1):

 ⎕SE.SALT.List ''
 Type Name Version Size Last Update
 <DIR> Dyalog 14-05-2006 21:32:54
 <DIR> Samples 11-05-2006 08:21:15

If you get a VALUE ERROR when you try to use SALT functions, check the setting of the
SALT\AddSalt registry string. This string needs to be set to “1” for SALT to be loaded into the
session on startup.

The Dyalog folder contains official Classes Library supported by Dyalog (in version 11.0, they
should be considered experimental). study contains code which is referenced in
documentation, or provided for self-study.

The List function takes a number of modifiers. All SALT functions can be called with a single ‘?’
argument, in which case they remind you of the available modifiers:

 ⎕SE.SALT.List '?'
List pathname Modifiers:
-Full[=1|2] 1 shows full pathnames below first folder found;

 2 returns "rooted" names.
-Recursive Recurse through folders
-Versions List versions
-Folders Only list folders
-Raw Return unformatted date and version numbers

We can get a complete list of class folders as follows:

 ⎕SE.SALT.List '-recursive -folders'
 lib
 SALT
 spice
 study
 study\data
 study\files
 study\GUI
 study\math
 study\OO
 study\OO\QuickIntro
 tools
 tools\DanB

1 the SourceFolder registry entry may contain more than one folder but they must be
separated by a semi-colon. When listing a file or folder the first one found is listed

 5

 tools\SJT

List the contents of the study\OO\QuickIntro folder:

 ⎕SE.SALT.List 'study\OO\QuickIntro'
 Type Name Version Size Last Update
 Product 570 08-05-2006 08:59:45
 Sale 756 05-05-2006 13:15:20

Load
The Load command takes an object name or a pattern as its argument:

 ⎕←⎕SE.SALT.Load'study\files\ComponentFile'
#.ComponentFile
 cf←⎕new ComponentFile 'c:\temp\compfile'
 cf.Count
2
 ⎕←⎕SE.SALT.Load'\myutils\gui*’
guiin guimsg … guiout

Load returns a shy reference to the loaded class(es) or the result of []FX for functions. By
default, Load also gives the loaded class/namespace a "global name" – in this case
ComponentFile. See the description of the New command below for a description of the –
noname option, which allows you to avoid the creation of the global name and use a class
“without loading it into the workspace”.

The -Source modifier will make Load return the source instead.

The–Target modifier allows you to load a class into a particular namespace:

 'MyFiles' ⎕NS ''
 ⎕←⎕SE.SALT.Load'study\files\ComponentFile -Target=MyFiles'
#.MyFiles.ComponentFile

The -Disperse modifier allows to bring in the objects IN the file as opposed to the object itself
into the target namespace. If only specific objects need to be brought in they can be specified
after as in –disperse=obj1,obj2,etc. The result of Load in this case is a global 1 (OK) or 0
(failed). No tracking information is kept in this case (see NoLink below).

 ⎕←⎕SE.SALT.Load'GUIutils -disperse'
1

The –Version= modifier allows you to load a particular version of an object, we’ll show
examples of this a bit later.

Finally, you can use the modifier –NoLink to specify that SALT should not insert tracking
information into the object. If you use –NoLink, editing a SALTed object will NOT cause SALT
to offer to save the source on exit from the editor.

New
The Load command takes a modifier called –NoName allows you to specify that you do not
want the global name created. This allows you to load use a class without giving it a name in
the workspace. The following example defines an unnamed class which is used to open a

 6

component file and return the number of components, but leaves no trace in the active
workspace:

 (⎕NEW (⎕SE.SALT.Load 'study\files\ComponentFile -NoName')
 'c:\temp\compfile').Count
2
 ⎕NC 'ComponentFile'
0

The New command provides a more direct way to instantiate objects from a source file:

 cf←⎕SE.SALT.New 'study\files\ComponentFile' 'c:\temp\compfile'
 cf[1]
 comp 1

New passes the first element of its argument to Load, appending the –noname option, and
then makes a new instance of the loaded class using the rest of the argument.

Explore
As an example of using SALT, we are going to load one of the QuickStart example classes,
modify it and save it under a new name. We need to manually create a new folder to contain
our class, because SALT is not capable of doing this for us. The Explore command can be used
to open Windows Explorer up on a folder, for example:

 ⎕SE.SALT.Explore 'study\OO\QuickIntro'

You should see explorer open up to show the contents of the Dyalog folder:

Move up a level and create a folder called Mine under the SALT folder. If the argument to the
Explore command is an object name rather than a folder name, Explore will start the Windows
Notepad:

 ⎕SE.SALT.Explore 'study\OO\QuickIntro\Product'

This is the class we are going to experiment with:

 7

Load it into the workspace and edit the class, changing its name to MyProd:

 ⎕←⎕SE.SALT.Load 'study\OO\QuickIntro\Product'
#.Product
)ed Product

Save
We are now ready to save our class called MyProd in the folder Mine (which we created in the
previous section). Save returns the full name of the file which was created:

 ⎕SE.SALT.Save 'MyProd Mine\MyProd'
C:\Program Files\Dyalog\Dyalog APL 12.0\SALT\Mine\MyProd.dyalog

Now, edit MyProd again and make a small change – for example to the comment. As you exit
from the editor, you should see a pop-up similar to the following:

Click Yes and use Notepad and Explorer to verify that the file contains the new version of
MyProd2. Experiment with clearing the workspace, loading Mine\MyProd, and verifying that all
the changes you make are being saved in the file.

Versions
By default, SALT maps your class or namespace to a single file, and any change you make to
the object overwrites the file. If you give your object a version number, SALT will start taking

2 There is a way to prevent SALT from asking confirmation each time you edit a
script, see Settings below

 8

backup copies each time you make a change (note that modifiers can be abbreviated, so long
as they are uniquely identified):

 ⎕SE.SALT.Save 'MyProd -ver=1'
C:\Program Files\Dyalog\...\SALT\Mine\MyProd.1.dyalog

When SALT notices that you are giving an object a version number for the first time, it starts
saving the existing class under a similar name that includes a version number.

Each time you change MyProd and update the file, you will see a message confirming the
creation of a new file. Make one or two more changes to MyProd and then call List with the -
Versions modifier :

 ⎕SE.SALT.List 'Mine -ver'
Type Name Version Size Last Update
 MyProd [2] 301 2008/02/02 9:28:30
 MyProd [1] 301 2008/02/02 9:27:05
 MyProd 301 2008/02/02 9:26:08

Imagine that we are now planning a new release of MyProd, which we are going to save under
version 10. We start the version 10 project by saving the new version:

 ⎕SE.SALT.Save 'MyProd -version=10'
C:\Program Files\Dyalog\…\SALT\Mine\MyProd.10.dyalog
 ⎕SE.SALT.List 'Mine'
 Type Name Version Size Last Update
 MyProd 301 2008/02/02 9:29:32

Since we haven't made any changes to MyProd yet, this version is identical to the last one. To
see all versions we need to include the –version switch:

 ⎕SE.SALT.List 'Mine -ver'
Type Name Version Size Last Update
 MyProd [10] 301 2008/02/02 9:29:32
 MyProd [2] 301 2008/02/02 9:28:30
 MyProd [1] 301 2008/02/02 9:27:05
 MyProd 301 2008/02/02 9:26:08

Now, change the constructor function in MyProd so that it sets the display form for the
instance (this will create version 11), for example:

 ∇ New(name price)
 :Access Public
 :Implements Constructor
 Name Price←name price
 ⎕DF'[',(⍕Name,'@',(⍕Price),']'
 ∇

By default, the Load command will load the most recent version of an object. Verify that Load
is loading the latest version by default, but that the other versions are still available:

 ⎕←⎕SE.SALT.Load 'Mine\MyProd'
#.MyProd

 9

 ⎕NEW MyProd ('Widget' 100)
[Widget@100]
 ⎕SE.SALT.New 'Mine\MyProd -ver=1' ('Widget' 100)
#.[MyProd]

If we combine the -version and -noname modifiers, we can in fact work with multiple versions
of the same class at once.

 pclasses←{⎕SE.SALT.Load 'Mine\MyProd -noname -ver=',⍕⍵}¨1 11
 pclasses
 #.MyProd #.MyProd
 pclasses.SALT_Data.Version ⍝ SALT version tags
 1 11
 {⎕NEW ⍵ ('Widgets' 100)}¨pclasses
 #.[MyProd] [Widgets@100]

Compare
The Compare command allows you to compare versions of an object. Note that if you want the
Compare command to use a third party product like the Unicode version of “Compare It!” or a
different file comparison tool, you must use the Settings command OR modify the registry to
show how to call the tool OR use the configuration menu (V12 only). See
“HKEY_CURRENT_USER\Software\Dyalog\Dyalog APL/W 12.0\SALT\CompareCmd”. Typically
the entry will contain a string like "[programfiles]comparetool". If you leave the entry empty
APL will use its own simple comparison function.

By default, Compare shows you the differences between the 2 most recent (highest) versions
of the file given as argument (here MyProd).

 ⎕SE.SALT.Compare'Mine\MyProd'

Should bring up a screen which looks like this if you are using “Compare It!”:

Compare also takes a modifier which allows you to specify exactly which versions you want to
compare. You can compare the code for version 3 to the most recent version using:

 10

 ⎕SE.SALT.Compare 'Mine\MyProd -ver=3'

If you want to compare two non recent versions, you need to provide 2 version numbers, for
example:

 ⎕SE.SALT.Compare 'Mine\MyProd -ver=1 10'

If you want to compare the latest version of a class with a class with the same name IN THE
WORKSPACE you can specify –version=ws:

 ⎕SE.SALT.Compare 'Mine\MyClass -version=ws'

Using a different program
Should you decide to use a program other than the one specified in the registry to perform the
comparison you can use the -use switch to specify which program to use. For example, if you
have 'Beyond Compare', another comparison tool from the Net installed and you just want to
try it you can do

 ⎕SE.SALT.Compare 'Mine\MyProd –use=[ProgramFiles]\BC\BC2.exe'

This will not change your registry entry and subsequent use of Compare will use whatever
setting you currently have set in your session.

RemoveVersions
SALT creates a new file every time you edit a class or namespace. Therefore, you need to
clean up versions occasionally.
This command takes three modifiers, two of which are mutually exclusive:

-Version=n Specifies the version(s) which should be deleted
-All All but the last backup copies should be deleted

For example (version 0 is the original version):

 ⎕SE.SALT.RemoveVersions 'Mine\MyProd -ver=<4'

produces

4 versions deleted.

You can also delete trailing versions. If trailing versions are deleted they can be collapsed into
one using –collapse. For example, suppose you have been working of a script starting at
version 13 and you are happy with the result after you have made many modifications, only
the last of which (version 43) you want to keep. Instead of listing all the versions to remove
as in –ver=14 15 16 17 18 19… you can type

 ⎕SE.SALT.RemoveVersions 'Mine\MyProd -ver=>13 -collapse'

 11

20 versions deleted.
1 version renamed

Versions 14 to 42 are deleted and version 43 becomes version 14.
In any case (-all or -ver=) versioning resumes at the highest number+1 when changes are
made.

Boot
With the Boot command, you can use a script file to describe the loading and initialization of
an application – as an alternative to using a saved workspace. The Boot command reads files
with the extension .dyapp. Each line of a .dyapp script, except the last one, is a SALT Load
command. The final line must start with the work Run, followed by the name of a method to
call.

For example, a .dyapp file might read as follows:

Load study\files\ComponentFile
Load study\files\KeyedFile
Load MyApp
Run MyApp.Main

Note that, if there are dependencies between classes (as above, where KeyedFile derives from
ComponentFile), base classes must be loaded before any classes which derive from them.
SALT does not perform any dependency analysis but you can include statements to tell SALT
to load other classes before. For example, if script A requires script B you should add this
statement somewhere in A:

⍝∇:require path\B

Autostarting SALT Applications
If SALT is active, and APL is started with the name of a .dyapp file on the command line
instead of an APL workspace, SALT initialization will call the Boot command on the named file.
In this way, a .dyapp file can be used to auto-start APL applications which are based on SALT.
Note that the whole application does not need to be “salted”: Once started, the application can
use ⎕CY or other mechanisms to bring in additional source code.

Platform independence
SALT should perform the same way under Windows® and *nix platforms. To avoid confusion
for people dealing with both environments SALT will accept SALT pathnames (only) using
either / or \ as folder separator.

 12

Under Unix there exist a version without GUI, which works in “terminal” mode. Under that
system SALT must be enabled manually through the workspace ‘salt’. Simply)LOAD salt and
use <enableSALT>.
The workspace can also be)LOADed at startup time, just like any other workspace, by issuing
the apl startup command followed by the path of the salt workspace as in
startapl ws/salt

If another workspace must be)LOADed afterwards or if a .dyapp file must run after simply put
it in between, e.g.:
startapl myws ws/salt

Settings
Some commands require global parameters. For example, the Compare command needs to
know which program to run to perform the comparison. This information is taken from the
registry and loaded into SALT at boot time. It becomes a session parameter and can be
modified using the Settings command.
In some cases Settings can also be specified on the line with the command using the –USE=
switch only for the duration of the command.
For example if the default Explore program is not satisfactory and you want to try another
one, say, vi.exe, then you can specify it on the command with –use=\myprogs\vi.exe
If you find this is useful you may want to make the setting for the duration of the session by
entering

 ⎕SE.SALT.Settings 'editor \myprogs\vi.exe'

Should this prove unacceptable you can enter

 ⎕SE.SALT.Settings 'editor -reset'

to reload the value from the registry. On the other hand if those values are quite acceptable
and you wish to make them permanent you can issue

 ⎕SE.SALT.Settings 'editor -permanent'

and the registry will be altered accordingly.

To see the list of all settings enter

 ⎕SE.SALT.Settings ''

Other settings are workdir and edprompt.

workdir allows you to have multiple working directories separated by semi-colon. To add a
directory use comma, to remove one use ~, like this:

 ⎕SE.SALT.Settings 'workdir ,\proj\p1' ⍝ add \proj\p1

from then on files are stored under \proj\p1 but retrieved from where they are first found in
the list of directories. SALT's files are always assumed in [Dyalog]\SALT even if that path
has been removed.

edprompt determines whether you are prompted for confirmation to overwrite the file each
time you make a modification to a script. The default of 1 prompts you each time.

 13

Conclusion
The Simple APL Library Toolkit (SALT) provides basic source code management features for
APL classes and namespaces stored in Unicode script files. By themselves, Classes provide
new ways to make code sharing easier within the APL community. However, we believe that
the full benefit of Classes will only be felt by the community if it also has a common source
code management system, or at least a common file format which can be manipulated by a
family of tools.

We hope that SALT will prove to be powerful enough that many users of Dyalog APL will
decide to use it in real applications – at least as a tool to load shared utilities - and that it can
be the beginning of a simple common source code management system which will provide the
required platform for APL users to share utility classes and namespaces more effectively than
they have been able to do so in the past.

