Introduction 


This Spring I partnered with an ASP.Net developer on a web application.  We collaborated on the analysis and design.  I wrote data manipulation and analysis components in Dyalog APL.  The ASP developer did all the rest - presentation, communication, callbacks, scripting, etc.  Integrating APL with ASP was remarkably easy.  APL was exported as a dll and used just like any other .Net assembly.

The application is a decision support tool for money managers to analyze portfolio performance.  Portfolio performance is measured by its rate of return.  For money managers, to paraphrase Vince Lombardi, performance is not the most important thing, it is the only thing.  Individual attention is given to accounts in order to optimize its return.  If a portfolio's return is poorer than expected, the manager needs to be aware, understand the cause, and take corrective action.  One important function of the application is the identification of performance outliers.

The nature of the application and the details of the APL code are not important.  The main point is that APL does not need to do everything, that APL can be used just for what it is good at.  Furthermore, there is no difference in programming style and very little to learn about.  Following is a somewhat simplified but complete view of what it takes to write APL components for ASP.





A User Session



A user session is organized into three steps, very loosely described as follows:
1)  Upload a file. 
User selects a file and uploads it.  ASP passes the file to APL.  APL creates a standardized data set.  

2) Select analysis options.
ASP gets bits and pieces of the standardized data set from APL and builds an input form.  User fills in parameters on the form and sends it.  ASP passes the parameters to APL.  APL runs the appropriate analysis and adds the results to the data set.

3) Review the results.
User requests a page of diagnostics.  ASP gets what it needs from APL and builds it.  User navigates to other pages.




A Less Than Brief Intro To APL Objects



I managed to create APL objects without knowing (or learning) much about object-oriented programming.   APL programs and variables are termed methods and fields.  Methods and fields are contained in classes.  There are a few simple rules for writing and using classes.  The Dyalog Language Reference is a good primer for learning OOP.




  The APL Class



There is just one APL class, called UserSession.  There are two essential public methods in the APL class; one creates the standardized data set, the other performs data analysis.  The rest of the public methods are all "get" methods which return items of the standardized data set.

Although it is .Net compliant the APL class works, as is, with a Windows APL front end or from immediate execution. 

Immediate execution mode makes for fast and painless unit and regression testing.  All that's needed are sample data files and a few scripts to exercise the tests.  



   



  What ASP Needs From APL 



The APL workspace is exported (file/export) as a .Net assembly (.dll).

Making APL methods (programs) compliant with .Net requires just one additional statement - Signature.

Every public method needs a signature, which declares data type, e.g. a public APL method called GetGrid with a header of
r←GetGrid (rows columns) 
with a signature of
:Signature String[,]←GetGrid Int32[]  rows , Int32[] columns 

This discloses to .Net that there argument is two items, each, in APL terms, an integer vector, and the result is a nested matrix of text.  In turn the ASP developer can see, in Visual Studio, what all the public methods are in the dll, and the details of the signature of each.  If the cursor hovers over GetGrid the signature is shown, with the names "rows" and "columns".

.Net requires one other statement in a class - the Using statement.  This defines a search path.  It seems that :Using System suffices.





Working In Immediate Execution Mode



First thing is to create an instance of the object:
TestSession←⎕new UserSession
Next is to call Standardize.  Suppose we are working with data from "Source1":
TestSession.Standardize 'Source1' Data
0
The 0 signifies that the call was successful.  So APL can use the UserSession class just like ASP does.  An entirely different front end could be written in Windows for a fat client version.

When UserSession is used under immediate execution,  the :Using and :Signature statements are ignored.  These statements only matter to .Net. 




Conclusions


.Net expands the possibilities of using APL for software and application development.  No more tired excuses about what APL cannot do.

.Net has a tiny footprint in the APL code.  It is very easy to adapt to the constraints of .Net

Very little knowledge of OOP is needed to write APL classes.  One can learn by experimentation.

Immediate execution mode accelerates the learning, development, and testing cycles.




