
APL and CUDA
A Pioneering Approach to Parallel Array Processing in
Quantitative and Mathematical Finance

Yigal Jhirad and Blay Tarnoff
September 16, 2009

Dyalog ’09
Princeton, New Jersey

1

APL/CUDA: Table of Contents

I. The Need For Speed

— Applications - Cluster Analysis

— Speed Enhancements

— Correlation Kernel

— CUDA and Host/GPU Program Structure

— Summary

II. Author Biographies

III. Appendix

DISCLAIMER: This presentation is for information purposes only. The presenter accepts no liability for the content of
this presentation, or for the consequences of any actions taken on the basis of the information provided. Although the
information in this presentation is considered to be accurate, this is not a representation that it is complete or should be
relied upon as a sole resource, as the information contained herein is subject to change.

2

APL/CUDA: The Need For Speed

Portfolio Management, Analytics, and Trade Execution demand increasing amounts of computing speed

— Must Have

— High Frequency Trading

— Risk Management, Market Impact

APL and NVIDIA GPU physics based modeling exploit hardware efficiently

— Array Based Processing paradigm Matrix/Vector thought process is key

— APL leverages CPU’s ability and provides for rapid development of software applications

— CUDA leverages GPU Hardware

Application in Econometrics and Applied Mathematics

— Monte Carlo Simulations — Fourier Analysis

— Principal Components — Optimization

— Cluster Analysis — Cointegration

Neural Networks

— Rapid application development and testing of idea thesis and innovation

3

APL/CUDA: Example - Cluster Analysis

Cluster Analysis: A multivariate technique designed to identify relationships and cohesion

— Factor Analysis, Risk Model Development

Correlation Analysis: Pairwise analysis of data across assets. Each pairwise comparison can be run in
parallel.

— Use Correlation as primary input to cluster analysis

— Apply proprietary signal filter to remove selected data and reduce spurious correlations

4

APL/CUDA: Speed Enhancements

Speed Enhancement of CUDA compared to C without CUDA is significant as the matrix size gets larger

Windows XP 64. Dual Xeon 3.2 GHz. Applications run from Dyalog Apl 64-Bit through a DLL interface.

5

APL/CUDA: Application – Correlation Kernel

Application example – Correlation function removing N/A values

Correlation measures the direction and strength of a linear relationship between variables. The
Pearson product moment correlation between two variables X and Y is calculated as:

For N assets there are unique correlation pairs

Given an N x M matrix A in which each row is a list of returns for a particular equity, return an N x
N matrix R in which each element is the scalar result of correlating each row of A to every other

— Each element of A may be an N/A value

— When processing a pair of rows, the calculation must include neither each N/A value nor the
corresponding element in the other row. This requires evaluating each pair separately.

— As a result the increased computational demand is more effectively implemented through a
parallel processing solution. As the matrix size increases the benefits of parallel processing
become more significant.

6

APL/CUDA: Compute Unified Device Architecture

Host (CPU) initiates program

Copies data from host memory to device memory

Launches Kernels on Graphical Processing Unit (GPU)

Copies result data from device memory back into host memory

Source: NVIDIA

7

APL/CUDA: Host/GPU Program Structure

Code

Host writes N x M matrix A to GPU global memory

Host launches N x (ceil(N/16)) grid of thread blocks

— Each thread block is 16 x 16 threads

— Each row of the thread block processes a single pair of rows of A

– Each row of the thread block reads 16 contiguous elements of each of the pair of rows of A
simultaneously (twice) using coalescing

– Each row of the thread block processes 16 elements at a time in a loop

– Each row of the thread block loops ceil(M/16) times

– Each thread processes every 16th column of A

– Each row of the thread block reads and writes to 16 contiguous elements of shared
memory with no bank conflicts

— Each thread block yields 16 scalar results (one per row) which it writes to 16 contiguous elements of
R simultaneously using coalescing

Host reads N x N matrix R from GPU global memory

8

APL/CUDA: Summary

APL and CUDA provide powerful capabilities in Quantitative Finance

— Powerful synergies in array processing provide an effective framework for amplifying the
impact of APL with CUDA

— Integrating APL with CUDA provides a powerful software and hardware platform with
which to drive applications that demand computing power and speed

Application in Investment Management

— Alpha Generation and Hedging Strategies

— Trading and Execution

— Performance Measurement and Risk Management

9

Author Biographies

Yigal D. Jhirad is a senior vice president at Cohen and Steers. He is a portfolio manager and
director of quantitative and derivatives strategies. Prior to joining Cohen and Steers, he was an
executive director and head of portfolio and derivatives strategies at Morgan Stanley. He was
responsible for developing, implementing and marketing quantitative and derivatives products to
hedge funds, active and passive funds, pension funds and endowments.

Blay A. Tarnoff is a senior project manager and applications developer. He specializes in array
based languages and has developed equity and equity derivatives applications for program trading,
proprietary trading, quantitative strategy and risk management. He was most recently a senior
consultant at Morgan Stanley where he developed quantitative and real time trading and risk
technology.

10

Appendix: Device Architecture

Global, Constant, Texture
Memory

Graphical Processing Unit (GPU)

Streaming Multiprocessors (SM)

— Shared memory

— Register memory

— 8 Scalar Processors (SP)

— Runs blocks of threads

— Schedules Blocks/Warps

Source: NVIDIA

11

Appendix: Execution Model

Launch Kernel on GPU

— Threads run kernel Code
in parallel

Thread Blocks are arrays of
threads grouped into warps

— A warp is a group of 32
threads which execute
simultaneously

— Warps/blocks run in
unpredictable order or
interleaved

— Thread Blocks
Automatically scheduled
by the GPU

— Global vs. Shared
memory

Source: NVIDIA

12

Appendix: Execution Configuration

The problem must be broken down into logical blocks (thread blocks) that will all be handled as
similarly as possible yet independently

Host launches a very large one or two dimensional grid of thread blocks, which are automatically
scheduled by the GPU

— Blocks are small but many can be launched

— Each block should be designed to be as independent as possible from all the others

— Thread block is a small one, two, or three dimensional array of threads, grouped into warps

— Each block should be designed to be small enough in terms of the number of threads and
memory it uses to fit several within the resources provided by each SM yet employ enough
threads to take advantage of simultaneous processing (normally 64 – 256 threads)

13

Appendix: Warps

Warp is a group of 32 threads which all execute simultaneously by SIMT (Single Instruction, Multiple
Thread) process

— Optimal to program warps to read and write to contiguous global memory locations to enable
coalescing

– Coalescing is the process of reading or writing 16 global memory elements simultaneously
in a single instruction

— Optimal to program warps to read and write to contiguous shared memory locations to
eliminate bank conflicts

– Banks are 16 divisions in shared memory to which data can be read or written
simultaneously in a single instruction

— Optimal to minimize code divergence within a warp

– Code diverges when two threads in the same warp take different paths via program
control statements (if, switch, for, etc.)

14

Appendix: Host and GPU Program Structure

Source: Blay Tarnoff

15

Appendix: Host and GPU Program Structure

Source: Blay Tarnoff

16

Appendix: Example of Parallel Thinking

Procedural language algorithm

Sum = 0
For (i = 0 to 15) Sum += Array[i]

Sum now contains sum of Array

This algorithm is inefficient in parallel computing
because each iteration (read: thread) writes to the
same memory location, causing a bottleneck
necessitating 16 instructions to complete

Parallel algorithm

Array[current thread] += Array[current thread + 8]
Array[current thread] += Array[current thread + 4]
Array[current thread] += Array[current thread + 2]
Array[current thread] += Array[current thread + 1]

Array[0] now contains sum of Array

This algorithm is more efficient because it writes to
contiguous banks simultaneously and thus takes
only 4 instructions to complete

Source: Blay Tarnoff

