
Office Automation with Dyalog Dyalog '09

APL Borealis Inc. • 381 Manor Road East • Toronto • ON • M4S 1S7
Voice: 416-457-7828 • Fax: 416-482-6582 • email: info@aplborealis.com • www.aplborealis.com

Office Automation with Dyalog
Using Excel and other Applications with Dyalog APL

Richard Procter, APL Borealis Inc., Canada
rjp@aplborealis.com

Contents

Terminology and TLAs.. 2

Dyalog APL - Terminology ... 3
References.. 3

Client? Server? and other Options ... 4
Excel - Components and Overview ... 5

Excel's Object-Oriented Structure.. 5
Key Excel Components and Concepts ... 5
APL GUI Programming - 101 (very lite)... 6

Exploring the Excel Object from APL... 7
Some Key Points.. 8
Collection Objects.. 9

APL in Control... 10
Datatypes, Formatting, and Related Issues .. 11

Dates .. 12
Utilities... 13
A Few More Tips & Tricks.. 14
A Few Other Nifty Things... OLE! ... 15

Word .. 15
PowerPoint... 15
OCX Demo .. 15
PDF .. 15
Outlook .. 15

What Else Is New?... 16
Excel in Control ... 17

The Tricks .. 19
A Few Other Issues.. 20
External Object (COM and .Net) Behaviour ... 22
�WX - APL Session Help > Language Help... 23

ADO and Dyalog APL... 24
Epilogue... 24

Office Automation with Dyalog APL 2 Dyalog '09

APL Borealis Inc. - www.aplborealis.com

Terminology and TLAs
We will explore how APL can interact with and use some of these technologies:
OLE - Object Linking and
Embedding

& OLE Automation

sharing the properties and methods of applications by combining and exposing
objects within a standard framework (eg. document)

(Wikipedia:) the formal interprocess communication mechanism based on COM.
It provides an infrastructure whereby applications can access and manipulate (i.e.
set properties of, or call methods on) shared automation objects that are exported
by other applications. It supersedes DDE. The OLE Automation controller is the
"client" and the application exporting the automation objects is the "server".

COM - Component Object
Model

DCOM - Distributed COM

(MS 2000 Automation Help:) an industry-standard technology that applications
use to expose their objects, methods, and properties to development tools, macro
languages, and other applications. (DCOM = COM extended for network apps.)

(Wikipedia:) ...often used in the software development world as an umbrella term
that encompasses the OLE, OLE Automation, ActiveX, COM+ and DCOM
technologies.

OLE Server a usually invisible application which supports the main interface (client)

(MFC:) an Automation server is an application (a type of COM server) that
exposes its functionality through COM interfaces to other applications, called
Automation clients. The exposure enables Automation clients to automate certain
functions by directly accessing objects and using the services they provide.

(Dyalog Help:) The OLEServer object allows you to export an APL namespace
so that its functions and variables become directly accessible to an OLE
Automation client application such as Microsoft Visual Basic or Microsoft Excel.

OLE Client the application interface or application which controls or calls upon the OLE
Server.

ActiveX Control

(or OLE Control)

a usually visible object which user interacts with; may be embedded in another
application.

(Wikipedia:) a Microsoft term that is used to denote reusable software
components that are based on Microsoft Component Object Model (COM).
ActiveX controls provide encapsulated reusable functionality to programs and
they are typically but not always visual in nature.

(Microsoft:) an ActiveX control is implemented as an in-process server (typically
a small object) that can be used in any OLE container.

Object Oriented numerous meanings, but generally: a modular approach, using reusable units
(called object, class, control, etc.) with common design, including properties,
methods, and events; (nouns, verbs, things that happen?)

(APL+Win:) an instance of any class is an object.

consider an everyday example: book

ADO - ActiveX Data
Objects

MS specification for interfacing to databases, using ActiveX/COM structure and
methodology

DAO - Data Access Objects older MS specification for database access, similar to ADO; see:
C:\Program Files\Common Files\Microsoft Shared\DAO\DAO35.hlp

ODBC - Open Data Base
Connectivity

older MS specification for interfacing to databases via SQL queries

Office Automation with Dyalog APL 3 Dyalog '09

APL Borealis Inc. - www.aplborealis.com

Dyalog APL - Terminology

OLEClient - object that enables your APL application to interact with non-APL objects (eg.

Excel)

 - note how the Dyalog OLEClient object is an OLE Server application

OLEServer - created by converting an APL Namespace to an object, which is then referred to
by any non-APL application (eg. Excel)

- requires dyalog.dll to run
- a Dyalog OLEServer object may be called by an OLE Client application

OCXClass used to access non-APL-derived ActiveX controls

(OCX being one of several names associated with this class of objects)

ActiveXControl stand-alone object created by APL, but accessed from non-APL applications;
requires dyalog.dll to run - based on a Dyalog Namespace object

ActiveXContainer "read-only"; used to represent the application that is hosting an ActiveXControl
object, and provides access to its ambient properties (eg. Font, colour) (see:
OLEQueryInterface Method, etc.)

GUI Memory use '#' or '.' (root object), and Áwc, Áwn, Áws, Áwg to identify/explore

GUID or CLSID Globally Unique IDentifier or CLaSs IDentifier - Windows handle

Let's take a glimpse of some of these things,

 '.' Áwg 'PropList' Æ root level properties

 ±C¢'.' Áwg 'OLEControls' Æ Windows registry OLE Controls
 ¸C

 ±S¢'.' Áwg 'OLEServers' Æ Windows registry OLE Server objects
 ¸30¸S

 (ª/'xcel'ÚÍ¸S)Ê¸S Æ Excel objects?

References

� Dyalog session Help > GUI Help

� Dyalog Interface Guide (download .pdf)

� Dyalog Release Notes / Help > Latest Enhancements (especially Version 11)

� Excel Help menu > see: "Table of Contents" > "Visual Basic Reference" > "Excel Object Model"

� Auto2000.chm - Microsoft Office 2000 automation Help file, available at:
http://support.microsoft.com/default.aspx?scid=http://support.microsoft.com:80/support/kb/articles/q260/4/10.asp&NoWebContent=1

� MSDN Reference - Vast Microsoft Archive of developer info, eg.
 http://msdn.microsoft.com/en-us/library/microsoft.office.tools.excel(VS.80).aspx

� MFC - Microsoft Foundation Class Library - and other online resources,
 eg. http://msdn.microsoft.com/en-us/library/d06h2x6e(VS.80).aspx

� APL+Win workspaces and documentation

Office Automation with Dyalog APL 4 Dyalog '09

APL Borealis Inc. - www.aplborealis.com

Client? Server? and other Options

Given all of the above, what do you really want to do? It boils down to a few possibilities:

1) APL as Client - in an APL development session, or an APL-GUI (runtime) application - you write data (eg.

to Excel), and perhaps go on to format and print; do further processing, eg. charts, or you read data into your
APL environment (eg. from Excel).

2) APL as Server - from within another Office application (eg. Excel) you call upon APL functions to perform
calculations, run an existing APL utility, read an APL-driven database etc. and typically return results to the
Office application. Or, you send data to an APL system and perform final processing there only.

3) Other OLE Options - eg. create ActiveX controls using APL; use non-APL ActiveX objects from within
APL; use ADO for database access; etc.

Office Automation with Dyalog APL 5 Dyalog '09

APL Borealis Inc. - www.aplborealis.com

Excel - Components and Overview

Excel's Object-Oriented Structure

In very brief terms, the Excel spreadsheet is a hierarchical collection of objects; objects have properties; most
have methods; and when we interact with these objects - events take place. This is the model we must work with
to program such applications from any point of view, including APL.

Excel Help provides a good visual display of these objects, and an in-depth resource for understanding how to use
these: for starters, try:

"Contents and Index" > "Microsoft Excel Visual Basic Reference" > "Microsoft Excel Object Model"
 (it's Microsoft, so your version may differ!)

This diagram displays the hierarchical relationships between objects. Click on any of these to explore the details
further down the branches of the tree to expand further levels. Notice the top-level object is called "Application".

Key Excel Components and Concepts

Obvious

Menu Windows standard

Toolbars one or more; contain tool buttons, combos, etc.; user may modify

Formula Bar input area

Name Box apply a name to a cell or range

Workbooks collection object containing individual Workbooks, ie. opened *.xls files, each one
being a Workbook object

Worksheets (or Sheets) collection object; tabs at bottom-left; add, delete, move

Rows/Columns A1:Z99 designation; some maximum values; note Rows numeric, Columns alpha;
drag/drop heading areas to resize; Ctrl-down-arrow etc.

Cells contain values or formulas; many properties to consider: datatype, format, font,
behaviour, alignment (text left, num right), display precision, etc.

Office Automation with Dyalog APL 6 Dyalog '09

APL Borealis Inc. - www.aplborealis.com

Not so obvious

Collection special Excel object used to contain other objects, eg. Workbook > Worksheets;
Item and Count properties are useful; special syntax needed in APL

Item Property; collection object unit; demo: select cells, hit Enter key repeatedly

Count Property; collection object unit count

Range ambiguous term: a selection of cells (can you say "array" ?), either contiguous or non-
(may even span Worksheets); note that a "Range Object" is created by using the Range
property of a parent object (eg. Worksheet)

Select/Selection - Method and Property; drag/drop to select one or more contiguous cells, or whole
Rows/Columns/Worksheets; highlight to modify content or format in bulk

- useful to programmatically change a block of cells, for eg.

- also see: Activate method; CurrentRegion; UsedRange, etc.

PrintOut and other Methods; eg. print an object; Open, Close, Quit, Select, Activate, etc.

numerous
sub-objects

various commonly-used objects and nomenclature such as UsedRange, ThisWorkbook,
ActiveSheet, ActiveChart, ActiveCell, etc.

VBA/Macros;
GUI elements

GUI objects and code stored as part of the spreadsheet; macro recording facility; built-
in edit and debug environment

Now, let's go back to APL. First, we need to spend 5 minutes on:

APL GUI Programming - 101 (very lite)

In all APLs, object programming is accomplished with some handy Œ-functions, or more modern
Object1.Object2.Property... syntax.

Dyalog Examples
ÁWC = create
ÁWS = set
ÁWG = get
ÁWN = names
ÁDQ = wait
ÁNQ = invoke

'F'ŒÁWC 'Form'

'F'ŒÁWG 'PropList'

'F'ŒÁWG 'Size' 'Posn'

'F'ŒÁWS 'Caption' 'Hello World'

'F' ÁWS 'BCol' 255 0 0

'F.ED1'ŒÁWC 'Edit'('Posn' 10 10)

'F.B1'ŒÁWC 'Button' 'OK'('Event' 'Select' 'ÎÁEX''F''')

ÁWN 'F'

ÁDQ'F'
and... F.Caption¢'My Really Cool App'

In similar fashion, we can take this methodology, and apply it to the Excel object, or other COM objects.

Office Automation with Dyalog APL 7 Dyalog '09

APL Borealis Inc. - www.aplborealis.com

Exploring the Excel Object from APL

From APL, to use an OLE object as a server, we create an OLEClient object, which is implemented as a
"namespace" in Dyalog APL, and we associate a particular server object with it, eg.:

 ÁWX ¢ 3 Æ or 1, see: "External Object Behaviour" below

 'XL' Áwc 'OLEClient' 'Excel.Application'

This creates an OLEClient object which will interact with an OLE Server, with the ClassName property as
specified from our list of OLEServers, ie. from the Root Object property which examines the Windows Registry.

'XL' becomes a namespace object which we can explore or query and use. Dyalog provides system commands to
enable us to explore a namespace's objects:

)CS XL Æ enter the "XL" namespace
)methods

)events

)props Æ list properties
 Version

 LibraryPath

 Workbooks.Count (vs. eg. Rows.Count ie. see Excel-Help re "Active Workbook"...)

The above can also be accomplished via Áw_ syntax from the root level:

)CS Æ return to root level
 'XL' Áwg 'MethodList'

 'XL' Áwg 'Version' Æ Excel version number (may be important)
 'XL' Áwg 'Visible' Æ is the server visible?
 'XL' Áws 'vIsIBLe' 1 Æ make it so; does case matter?
 'XL' Áws 'Visible' 0 Æ make it not

Dyalog also allows the use of direct object/property naming via "." syntax, eg.

 XL.PropList
 XL.Version
 XL.Visible

 XL.Visible¢1

 XL.visible¢0 Æ suddenly, case matters! (and AutoComplete helps a lot)
 XL.Workbooks.Count

 XL.Rows.Count Æ see Excel-Help re "Active Workbook"...

Interesting diversion...

XL.Speech.Speak º'Are we having fun now? Or what?'

(vs. XL.Speech.Speak 'Are we having fun now? Or what?')
XL.Speech.SpeakIº'wut, in, hail, yoo, thank, yer, dooon, bo ah?'

Also, Dyalog provides the "Workspace Explorer" tool to browse such objects.

Want to find out what any of these properties, methods or events really means? For starters, try searching for the
particular term in the Excel/VBA Help feature.

Office Automation with Dyalog APL 8 Dyalog '09

APL Borealis Inc. - www.aplborealis.com

Some Key Points

• Dyalog implements GUI memory and OLE objects using the namespace concept, hence, use)OBS or ÁNL

to explore these;)CS or the ...object.sub-object... syntax allows us to explore, etc.;)ERASE or ÁEX erases
the object; assignment ¢ is used to set properties; ÁNQ or object.sub-object syntax is used to invoke
methods; even the each operator ¤ can be put to use for implicit looping, etc.

• upper/lower case-sensitivity varies when addressing properties, methods and events (according to the syntax
used?)

• Dyalog AutoComplete - displays object Properties; useful to explore objects to some extent

• Incorrect usage often returns a useful response, eg. Methods are indicated by APL del symbol Õ when invoked
but missing an argument, or in fact an "Exception Error" may appear in a separate "Status" form, eg. try
XL.Workbooks.Open with an invalid path/filename.

• Visibility - is Excel visible in the task bar? Processes in Task Manager? etc.; set the Visible property

• Is Excel already running?
 see: http://apldn.apl2000.com/Discussion+Groups/APL+Win+Interpreter/APL+Interpreter+General/797.aspx.htm
 > alreadyrunningexceldiscussion.htm

• Launch a "New Instance" of Excel, or not?
 see: Dyalog GUI Help > InstanceMode property (of OLEClient)

• Which 'Excel.Application' server object name to use?
 see: "How to run multiple versions of Excel on the same computer"
 http://support.microsoft.com/kb/214388

• ÁWX, main issues are: enclosed arguments and Item vs. [item] - with Version 11+ - External Object
Behaviour see: Language Help > ÁWX > External Object Behaviour

• 3 ÁNQ invokes a method in an OLE Control. The (shy) result of ÁNQ is the result produced by the method.

• Collection Objects - can be confusing, require special syntax, see below

Office Automation with Dyalog APL 9 Dyalog '09

APL Borealis Inc. - www.aplborealis.com

Collection Objects

Consider these definitions from the Excel-Help:

Workbook Object - The Workbook object is a member of the Workbooks collection.

Workbooks Collection Object - A collection of all the Workbook objects that are currently open in the
Microsoft Excel application.

Workbooks Property - Returns a Workbooks collection that represents all the open workbooks. Read-only.

Worksheet Object - Represents a worksheet. The Worksheet object is a member of the Worksheets collection.
The Worksheets collection contains all the Worksheet objects in a workbook.

Worksheets Collection Object - A collection of all the Worksheet objects in the specified or active workbook.
Each Worksheet object represents a worksheet.

See also: ActiveWorkbook; ThisWorkbook; Sheets; ActiveSheet; etc.

In other words, the many objects, levels and similar terms can be confusing. The main points are that collection
objects have a special purpose and syntax, and we may refer to the objects they contain by using the Item
property or equivalent reference via indexing.

Getting Started...
(First, look for this file or equivalent: 'c:\Program Files\Microsoft Office\Office\Library\common.xls', then:)

 'XL' Áwc 'OLEClient' 'Excel.Application'

 XL.Workbooks.Count

 XL.Workbooks.Open º'c:\...\common.xls' (NB: v.11+, ÁWX¢3)

 XL.Workbooks.Count

 XL.Workbooks.PropList

 (XL.Workbooks) ÁWG 'PropList'

 XL.Workbooks.ÁWG 'PropList'

 WBS ¢ XL.Workbooks

 WBS.PropList

 XL.Workbooks[1].PropList (or (XL.Workbooks.Item 1).PropList in v.10)

 XL.Workbooks[1].Name

 XL.Workbooks.Item[1].Name

 WB1 ¢ XL.Workbooks[1]

 WB1.Name

 WB1.Sheets.Count

Collection objects are typically a part of the hierarchy or path to get to the underlying information in the
spreadsheet. The key Collection Objects include: Workbooks, Sheets (Worksheets), Rows, Columns, Range.

NB: Use of indexing via [N] , (or ...Item N) , to select a Collection Object Item depends on Dyalog version and
ÁWX setting. (see "External Object (COM and .Net) Behaviour" - Version 11 Release Notes)

Office Automation with Dyalog APL 10 Dyalog '09

APL Borealis Inc. - www.aplborealis.com

APL in Control
First, look for this file or equivalent: 'c:\Program Files\Microsoft Office\Office\Library\common.xls', then find a
second .xls file on your system to open, then work through these examples:

 'XL' ÁWC 'OLEClient' 'Excel.Application'

 XL.Workbooks.Open º 'c:\... \common.xls'

 XL.Workbooks.Open º 'c:\... \any_other_spreadsheet.xls'

 XL.Workbooks.Count

 XL.Workbooks[1].Name

 WB1¢XL.Workbooks[1] Ï WB2¢XL.Workbooks[2]

 WB1.Name Ï WB2.Name

 WB1 WB2 ÁWG¤º'Name' Ï (WB1 WB2).Name

 DISP WB1.Sheets[°WB1.Sheets.Count].Name

 WB1.Sheets[1].PropList

 WB1.Sheets[1].Range

 WB1.Sheets[1].Range[º'A1:D5'].PropList (without [n] syntax?)

 WB1.Sheets[1].Range[º'A1:D5'].Value2

 WB1.Sheets[1].UsedRange.Cells.Count

 WB1.Sheets[1].UsedRange.Rows.Count

 WB1.Sheets[1].UsedRange.Rows[4].Value2 (or... Columns[4].)

 M¢WB1.Sheets[1].UsedRange.Value2

 ÁNULL × ¤ M

Write to Excel

 WB1.Sheets[1].Range[º'A1:E5'].Value2¢5 5±°25

 WB1.Sheets[1].Range[º'A1:E5'].Value2¢°25 (vs. reshape... above?)

 WB1.Sheets[1].Range[º'A1:E5'].Value2¢99 Æ scalar extension!

Methods: eg. to Create a new Workbook (spreadsheet) and Write to it, Save it, etc. (the basics):

 XL.Workbooks.MethodList

 WB3¢XL.Workbooks.Add 1 (note: returns an object as result)

 WB3.Sheets[1].Range[º'A1:E5'].Value2¢5 5±°25

 WB3.Path

 WB3.SaveAs º'APL2XLdemo1.xls'

 WB3.Path (vs. XL.Path ?)

 WB3.Close 0 (vs. XWB3.Close 1 ? ie. save changes or not?)
 see: MSDN > Workbook.Close Method:
 http://msdn.microsoft.com/en-us/library/microsoft.office.tools.excel.workbook.close(VS.80).aspx

Office Automation with Dyalog APL 11 Dyalog '09

APL Borealis Inc. - www.aplborealis.com

Datatypes, Formatting, and Related Issues

COM objects such as Excel typically have data represented by more datatypes than those available in APL. Excel
datatypes for example include: Boolean, Date/Time, Double, Error, Integer, Long, String, Currency, Variant.

When transferring data back and forth between APL and Excel therefore, we may need to pay attention to the
datatype of our data to make sure it is both stored and represented (displayed) correctly (especially Dates).

• APL provides Ánull (displayed as [Null]) which is used to represent null values which COM methods

often return. Other data conversions for data transferred between systems are automatic.

• Value vs. Value2? (from Excel-Help)
"The only difference between the Value2 property and the Value property is that the Value2 property doesn't use
the Currency and Date data types. Depending on how a cell is formatted (for example, with date, currency, or
other formats), the two properties may return different values for the same cell."

More info - see: http://support.microsoft.com/kb/182812

In some cases?? ...Value seems to require a null argument, eg. this works in V10:
 ((WB3.Sheets[1]).Range'A1' 'E5').Value �

Now, (V11+) - the Value property doesn't seem to work (?).

• IS Functions (from Excel-Help) - use these to determine particular characteristics of cells, eg.

 XL.ISNUMBER XL.Workbooks[1].Sheets[1].UsedRange

This returns a 2-cell result with a boolean array in cell-1, indicating cells with numeric values (presumably of any
of the numeric datatypes?).

Note that not all of the above IS_ functions are available - see XL.MethodList - ie. some Methods are "exposed",
others are not (?); and the list seems to grow as these are used (??).

• Formula vs. Value2? Enter some formulae on a spreadsheet, then compare ...Range.Value2 vs.

...Range.Formula

• APL+Win offers root-object-level query & set functionality for data type and value (see the VT_VV

workspace).

• Under-filling cells results in "#N/A", eg.
 XL.Workbooks[1].Sheets[1].Range[º'D15:F17'].Value2¢2 2±°4

Office Automation with Dyalog APL 12 Dyalog '09

APL Borealis Inc. - www.aplborealis.com

Dates

Dates are stored in Excel as a day-count number (days since 1900-01-01) but typically represented (displayed) in
other ways, such as '13-Sep-09'. Make sure your date information in Excel is numeric and not a character string
that looks like a date. There are several display options, see Format > Cells > Number > Date in the Menu, or In
in Excel-Help, see: "Available Number Formats" > "Display numbers as dates or times" > "Custom date and time
codes".

When calculating day-count values, note that Excel incorrectly counts 1900 as a leap year, hence dates are offset
by 1 between APL and Excel (see DateToIDN Method in Dyalog GUI Help > IDN definition).

Some examples: (open a spreadsheet... enter some dates, numerics and text if not already present...)

 WB1¢XL.Workbooks[1]

 RNG1¢WB1.Sheets[1].Range[º'A1:A7'] Æ choose any appropriate range with dates

 RNG1.NumberFormat

 RNG1.NumberFormat¢'yyyy/mm/dd' Æ or other date formats, view the result in Excel

 RNG1.NumberFormat¢'###.####'

 RNG1.NumberFormat¢'$###.00'

)COPY C:\Dyalog_Folder...\WS\UTIL SM_TS TS_SM DISP

 TODAY¢SM_TS 3¸ÁTS

 WB2¢XL.Workbooks.Add 1 Æ create a new Workbook, write some numbers and dates

 RNG2¢WB2.Sheets[1].Range[º'B3:F7']

 RNG2.Value2 ¢ (TODAY+0,°4),5 4± 0.001¥100?10000

 WB2.Sheets[1].Range[º'A1:A5'].NumberFormat' ¢ 'dd-mmm-yy'

(...and a bit of formatting, etc.)

 RNG2.Font.Size ¢ 14 Ï RNG.Font.Italic ¢ 1

 RNG2.Interior.Color ¢ 256 ´I0 0 255

 RNG2.Interior.ColorIndex ¢ 44 Æ some pre-set colours

 RNG2.ClearFormats

 RNG2.ClearContents

Office Automation with Dyalog APL 13 Dyalog '09

APL Borealis Inc. - www.aplborealis.com

Utilities

Rather than invent most of the wheels...

First, find or create an Excel spreadsheet that has more than one worksheet, and some data (numeric or char or a
mixture) in a few cells. Then:

)LOAD ...\samples\ole\oleauto (in the Dyalog install folder)

 DESCRIBE

Reading a spreadsheet

 ±mat¢XLCONTENTS 'C:\...common.xls'

 ±¤mat (etc., explore the structure of the result)

Examine XLCONTENTS, (or XLCONTENTS1) and note how control structures are used to navigate through
Excel's object hierarchy and collection objects.

 Writing To a Spreadsheet

)ED XLPRINT (modify it to not PrintOut, Close or Quit, and remove EX from the header...

 change name to XLDISPLAY)

 mat2¢10 10±0.1¥100?1000

 1 XLDISPLAY mat2 (note EX object, EX.Visible, etc.)

 From here, you can modify & print the Excel sheet, close it, close Excel,)erase EX

 or from APL, you could do these actions separately under program control, as in:

 EX.Workbook[1].Close 1

 EX.Quit Ï ÁEX 'EX'

Excel Charts?

)ED XLCHART

Office Automation with Dyalog APL 14 Dyalog '09

APL Borealis Inc. - www.aplborealis.com

A Few More Tips & Tricks

ActiveSheet & UsedRange

 XL.Workbooks[1].Sheets[1].Activate Æ "activate" a worksheet, then use "ActiveSheet"

 XL.ActiveSheet.UsedRange.Count Æ count of what?

 XL.ActiveSheet.UsedRange.Address '' Æ ?

 XL.ActiveSheet.UsedRange.Value2 Æ get it all - what about multiple Worksheets?

 XL.ActiveSheet.Range??? Æ select a more specific range?

Note: generally - UsedRange is tricky, ie. affected by what the user does with the spreadsheet, so exact ranges are
more reliable.

Result of Single vs. Multiple Cell Values

 XL.Workbooks[1].Sheets[1].Range[º'C99'].Value2 Æ depends on cell content (empty?)

 XL.Workbooks[1].Sheets[1].Range[º'A1:C3'].Value2

 DISP XL.Workbooks[1].Sheets[1].Range['A1:C3' 'D1:F4'].Value2

Named Ranges (for template-driven output?)

 XL.ActiveSheet.Range[º'E5:H9'].Name ¢ 'MyRng1'

 XL.ActiveSheet.Range[º'MyRng1'].Value2 ¢ mat3 Æ populate known range(s)

 ...create some named ranges in Excel directly, then:

 XL.Workbooks[1].Names.Count

 (XL.Workbooks[1].Names.Item 1).Name (or... Names[1]... or... .Value ?)

 (XL.Workbooks[1].Names.Item¤ΙXL.Workbooks[1].Names.Count).Name

 rngs¢(XL.Workbooks[1].Names.Item¤ΙXL.Workbooks[1].Names.Count).Name

 DISP(XL.Workbooks[1].Sheets[1].Range[rngs]).Value2

Multi-Area Ranges

 XL.ActiveSheet.Range[º'C7:D9,F7:G9'].Name¢'myrng2'

 XL.ActiveSheet.Range[º'myrng2'].Value2¢(3 2±°6)(3 2±100+°6) Æ any result?

 XL.ActiveSheet.Range[º'myrng2'].Value2¢(3 2±°6),(3 2±100+°6)

 XL.ActiveSheet.Range[º'myrng2'].Areas.Count

 XL.ActiveSheet.Range[º'myrng2'].Areas[1].Value2

 XL.ActiveSheet.Range[º'myrng2'].Areas[1 2].Value2¢(3 2±°6)(3 2±100+°6)

 XL.ActiveSheet.Range[º'myrng2'].Value2¢99 Æ scalar extension

 Conclusion: passing data to multi-area ranges is tricky, note the simple vs. enclosed argument usage

Office Automation with Dyalog APL 15 Dyalog '09

APL Borealis Inc. - www.aplborealis.com

A Few Other Nifty Things... OLE!

We can launch other OLE applications and/or create documents from APL.

Word

In similar fashion to Excel, we link APL to the OLE Server object for MS-Word, then set or query its various sub-
objects, etc.

• study the VB code in some of the following: (ie. Google "Word OLE Automation")
• http://vbcity.com/forums/topic.asp?tid=34572 • http://support.microsoft.com/kb/237337
• http://support.microsoft.com/?kbid=250501

• emulate this code in APL and create an APL driver function to send arbitrary text to a Word document

PowerPoint

• find the PowerPoint OLEServer object
• create an OLEClient object which uses the PowerPoint server
• explore the server object properties & methods
• create an APL driver function which will open and run a PowerPoint .pps file

OCX Demo

OCX Controls behave similarly to the OLE Server objects above, except they may need to be associated with a
Form or other container to be useful. These objects are designed to take on some of the properties of their
environment (container).

See: "Loading an ActiveX Control", in the Dyalog Windows Interface Guide (Chapter 11).

• use the 'Microsoft Forms 2.0 TextBox' OLE Control object by building an APL driver function to contain and
present this object

PDF

Similar to the OCX control above, Adobe Acrobat provides an ActiveX control which can be used to display a
PDF document.

• find the Adobe Acrobat ActiveX component needed to display PDF documents
• create an APL driver function which will display a given PDF document

Outlook

MS-Outlook is an OLE-compliant application. APL can be used to send a message, for example.

 ’ OUTLOOKSENDMSG ARG;OL;OLNS;OLM;ŒML;ŒIO

[1] © send an email message via Outlook

[2] © ARG = 3-strings: 'To' 'Subject' 'Body'

[3] © eg. OUTLOOKSENDMSG 'everybody' 'Drinks' 'Drinks are on me tonight...'

[4] © Body may be a CR-delimited string

[5]

[6] ŒIO„1 ª ŒML„0

[7] 'OL'ŒWC'OLEClient' 'Outlook.Application'

[8] OLNS„OL.GetNamespace'MAPI'

[9] OLNS.Logon''

[10] OLM„OL.CreateItem'olMailItem'

[11] OLM.To„1œARG

[12] OLM.Subject„2œARG

[13] OLM.Body„3œARG

[14] OLM.Send

[15] OLNS.Logoff

[16] 'Message Sent, to: ',,•1œARG

[17] OL.Quit

 ’

Office Automation with Dyalog APL 16 Dyalog '09

APL Borealis Inc. - www.aplborealis.com

What Else Is New?

1. ÁWX changes - see Session Help "Latest Enhancements": "Expose Windows Object Properties" and "External
Object Behaviour"

2. ÁNL and COM Objects - see: Session Help "Latest Enhancements", ÁNL, ÁNC and "name-class" definitions

Extensions for more detailed object information.

3. APL Classes based on OLEClient - see:

Office Automation with Dyalog APL 17 Dyalog '09

APL Borealis Inc. - www.aplborealis.com

Excel in Control
Here, we focus on designing the user interface in Excel/VBA. APL may be "plugged into" this application as a
black box, hidden from view normally. APL functions are passed arguments, and return results as with any other
Excel/VBA function. Excel is the client, APL the server (often called "calculation server or engine").

In General

Calling APL functions from within your Excel application involves the following steps:

• create appropriate APL code in a workspace, with some special considerations; test and debug
• create/register the required .dll using this code
• create the Excel spreadsheet, including VBA code which links into APL code
• test and debug

In Dyalog APL, we use a Namespace object to contain the code which Excel will call upon, and Dyalog provides
a special facility to turn that code into a .dll file.

Dyalog APL provides a built-in facility in the session manager for creating the required .dll object which will
deliver APL capability to your Excel application. This is documented in the Dyalog APL "Interface Guide"
(Chapter 12: "OLE Automation Server").

Worth reading in that chapter:
• Rules for Exported Functions
• Out-of-Process and In-Process OLE Servers

Office Automation with Dyalog APL 18 Dyalog '09

APL Borealis Inc. - www.aplborealis.com

Key steps include:

• Create an APL workspace containing a namespace, into which all the relevant code and other objects are
placed

• make the namespace an OLEServer object, eg. Loan.ÁWC 'OLEServer'

•)SAVE the workspace (use a new name if starting with one of the demos)

• Choose File-Export from the menu, and select "In Process Server (*.dll)" or "Out of Process COM Server"
(typically "In Process" - see Dyalog's Interface Guide)

Dyalog APL will automatically package up the namespace contents, "export" those items, and register the
supplied Namespace as a .dll object (and produce a small log/report). This .dll is the object we then refer to in our
Excel/VBA code, using the CreateObject function.

On the VBA/Excel Side

• Create your spreadsheet - typically this will be designed with input areas for data parameters to be passed to

APL, and one or more "controls" (buttons, input boxes, etc.)

• Enter "Design Mode", using the toolbar brought into view by: View > Toolbars > Control Toolbox

• Right-click on controls to choose "View Code" or "Properties"; or enter the VBA Macro editor to modify these

Let's look at the supplied example: ...\samples\ole\loan.xls

Private Sub CBGet_Click() (or use the "Assign Macro" feature)
 Dim APLWS As Object
 Set APLWS = CreateObject("dyalog.NAMESPACENAME")
 ...

Sub Calc()
 Dim APLLoan As Object
 Dim Payments As Variant
 Set APLLoan = CreateObject("dyalog.Loan")
 LoanAmt = Cells(1, 3).Value
 LenMax = Cells(2, 3).Value
 LenMin = Cells(3, 3).Value
 IntrMax = Cells(4, 3).Value
 IntrMin = Cells(5, 3).Value
 APLLoan.PeriodType = 1
 Payments = APLLoan.CalcPayments(LoanAmt, LenMax, LenMin, IntrMax, IntrMin)
 For r = 0 To UBound(Payments, 1)
 For c = 0 To UBound(Payments, 2)
 Cells(r + 1, c + 5).Value = Payments(r, c)
 Next c
 Next r
End Sub

Sub CalcPayments() (alternate coding to above)
...

Office Automation with Dyalog APL 19 Dyalog '09

APL Borealis Inc. - www.aplborealis.com

The Tricks

For Dyalog APL, the following rules and caveats apply at creation time, when creating the .dll through the above
process:

� all functions must be niladic or monadic; no dyadic functions, nor dynamic functions, derived functions or

operators; this could lead to numerous code changes obviously for some existing systems
� any global variables cannot be enclosed arrays
� results (returned to Excel) may be simple or enclosed
� reporting exceptions, errors, etc. back to Excel can be a chore, depending on desired level of detail

from the Interface Guide:

Rule 1: Exported APL functions must be niladic or monadic defined functions; dyadic functions, dynamic functions, derived
functions and operators are not allowed. However, ambivalent functions may be called (monadically) by OLE.
Rule 2: Character arrays whose rank is greater than 1 are passed as 1-byte integer arrays. This means that 1-byte integer
matrices and higher-order arrays will always be converted to character arrays.
Rule 3: An exported APL function may not be called with an empty numeric vector (zilde) as its single argument. Zilde is
used by an APL client to call a non-niladic OLE method with no arguments.
Rule 4: If an exported APL function is called with more than one parameter, its argument will be a nested vector. If it is
called with a single parameter that is a character vector or an array whose rank is greater than 1, the argument supplied to the
APL function will be a simple array. Effectively, a 1-element nested array received from an OLE Client is disclosed.

Valence

Make dyadic functions monadic, by combining the arguments into one:

 R¢„CAT1 arg vs. R¢„arg1 CAT1 arg2

[1] Æ catenate 2 arrays on the 1st axis

[2] ...

Then, change the syntactic use of each function which has changed, eg.

 C¢„CAT1 (A B)

Globals

Create "make" functions instead of globals, and invoke these in a "QUADLX" function which is called by VBA
before calling any other code, or invoke them as needed at the beginning of other processes or functions, eg.

 MAKEÒFrequencies

 Frequencies¢6 2±CUT'/D/DAILY/W/WEEKLY/M/MONTHLY/Q/QUARTERLY/S/SEMI/Y/YEARLY'

 Frequencies¢261 52 12 4 2 1,Frequencies

Error, Exceptions

Error handling can be as (un)sophisticated as you wish, but consider these suggestions:

� do as much input-checking "up front", ie. in Excel, before sending bad info to APL
� modify your APL code to always return a result, being an error message or valid result; ie. let Excel deal with

the result according to content
� return an error code with all results from APL (0 = OK; 1 = not OK, etc.)

Office Automation with Dyalog APL 20 Dyalog '09

APL Borealis Inc. - www.aplborealis.com

A Few Other Issues

1. A hierarchy of Namespaces in your server application?

2. Running your server application on a network?

3. Calling your server asynchronously, see the OLEASYNC workspace, and:

Office Automation with Dyalog APL 21 Dyalog '09

APL Borealis Inc. - www.aplborealis.com

4. Writing ActiveX Controls in Dyalog APL - see Interface Guide, Chapter 13

Office Automation with Dyalog APL 22 Dyalog '09

APL Borealis Inc. - www.aplborealis.com

External Object (COM and .Net) Behaviour
(from: Dyalog Version 11 Release Notes)

Version 11.0 improves the behaviour of COM and .Net objects, but for backwards compatibility it is possible to
select old or new behaviour using ŒWX.

Old behaviour:

a) Character vectors supplied as arguments to external functions, which are defined as String parameters, are
automatically enclosed for you. Similarly, string results are automatically disclosed.

b) Properties that take parameters, such as the Item Property in a Collection, are treated as methods.

c) APL provides lists of the Properties, Methods and Events provided by a GUI object by exposing additional
properties named PropList, MethodList and EventList.

New behaviour:

a) Character vectors supplied as arguments to external functions, which are defined as String parameters, must be
enclosed. Strings are returned as enclosed character vectors.

b) Properties that take indices, such as the �����Property in a Collection, are honoured as Numbered or Keyed
Properties and may be accessed by indexing.

c) PropList, MethodList and EventList are not exposed. Instead, the information is provided by ŒNL ¯ 2, ¯ 3 and ¯ 8
(but alphabetically sorted).

The actual behaviour of a COM or .Net object is now determined by its value of ŒWX. If ŒWX�is 0 or 1, the old
behaviour will apply. If ŒWX is 3, the new behaviour will apply.

The behaviour of COM and .Net objects in existing applications will remain the same (because ŒWX will be 0 or
1) but you may obtain the benefits of the new behaviour by setting ŒWX to 3 at the appropriate level in your
application. Then, everything below that (in the namespace hierarchy) will adopt the new behaviour.

Note that regardless of the value of ŒWX, Version 11 will honour the Default Property of an external object
thereby permitting the direct use of indexing on the object itself.

For example, if ���is an instance of the Excel.Application COM class, the following expression to obtain the

contents of the first Sheet in the first Workbook will succeed, whatever the value of ŒWX.

�

 xl.Workbooks[1].Sheets[1].UsedRange.Value2

Note that it is the value of ŒWX which the object acquired when it was created, rather than the current value of
ŒWX, which decide the behaviour.

Like other system variables, ŒWX is inherited from the environment when a new namespace, class or instance is
created. Classes inherit the value of ŒWX when a class is edited or fixed, unless the class script explicitly sets a
value for ŒWX. In the case of .NET classes, ŒWX is inherited when the class or namespace is loaded from a .NET
assembly. For built-in (GUI) classes, each new instance inherits ŒWX when it is created.

Office Automation with Dyalog APL 23 Dyalog '09

APL Borealis Inc. - www.aplborealis.com

Examples
 ŒWX„1

 'XLW' ŒWC 'OleClient' 'Excel.Application'

 XLW.Workbooks.Add «

 XLW.ActiveWorkbook.Sheets.(Item 'Sheet2').Index

2

 ŒWX„3

 XL„ŒWC 'OleClient' (›'ClassName' 'Excel.Application')

 XL.Workbooks.Add «

 XL.ActiveWorkbook.Sheets[›'Sheet2'].Index

2

Note that it is the value of ŒWX in the object, and not in the calling environment, that decides the behaviour:

 Œwx„3

 Œusing„''

 System.DateTime.Parse›'2006-09-12'

12/09/2006 00:00:00

 Œwx„1

 System.DateTime.Parse'2006-09-12'

LENGTH ERROR

 System.DateTime.Parse'2006-09-12'

 ^

 System.DateTime.ŒWX„1

 System.DateTime.Parse'2006-09-12'

12/09/2006 00:00:00

Note that, if we expunged the System.DateTime class instead of setting ŒWX to 1, and repeated the expression, a
new DateTime class would be created but it would inherit ŒWX from its parent (System), where ŒWX still has the
value 3. Using .NET classes in an application where ŒWX varies within a single APL namespace can therefore
lead to unexpected results. It is recommended that applications only use more than one value for ŒWX as a
temporary measure during a conversion project.

�WX - APL Session Help > Language Help

�WX is a system variable that determines:
a) whether or not the names of properties, methods and events provided by a Dyalog APL GUI object are
exposed.
b) the behaviour of .Net objects that have been created by any means other than �NEW or .New .

The permitted values of �WX are 0, 1, or 3. Considered as a sum of bit flags, the first bit in �WX specifies
(a), and the second bit specifies (b).

If �WX is 1 (1st bit is set), the names of properties, methods and events are exposed as reserved names in
GUI namespaces and can be accessed directly by name. This means that the same names may not be
used for global variables in GUI namespaces.

If �WX is 0, these names are hidden and may only be accessed indirectly using �WG and �WS.

If �WX is 3 (2nd bit is also set) COM and .Net objects adopt the Version 11 behaviour, as opposed to the
behaviour in previous versions of Dyalog APL.

Office Automation with Dyalog APL 24 Dyalog '09

APL Borealis Inc. - www.aplborealis.com

ADO and Dyalog APL

Using DAO (precursor to ADO) Dyalog allows us an easy-to-use facility for exploring SQL-based data sources:

)LOAD c:\...dyalog...\samples\ole\oleauto

 TESTDB¢ 'c:\...\fpnwind.mdb' Æ the MS-Access "NORTHWIND" sample DB

 SEL¢'Select * from Customers where Country = ''Canada'''

 TESTDB SQL SEL

 TESTDB LIST_FIELDS SEL

With time, one could dive into the SQL function code and create new options for more elaborate selections,
update mechanisms, etc.

For databases other than MS-Access and the like, Dyalog offers the ODBC interface tools (Chapter 15 - Interface
Guide) which provide a complete and detailed set of utilities for interacting with any of these data sources. This is
non-trivial in scope.

Epilogue

Bonus Feature: How to solve ALL computer problems

Four engineers are traveling in a car. One is a mechanical engineer, one a chemical engineer, one an
electrical engineer and the other one a software engineer.

The car breaks down.

"Sounds to me as if the pistons have seized. We'll have to strip down the engine before we can get the
car working again," says the mechanical engineer.

"Well," says the chemical engineer, "it sounded to me as if the fuel might be contaminated. I think we
should clean out the fuel system."

"I thought it might be a grounding problem," says the electrical engineer, "or maybe a faulty plug lead."

They all turn to the software engineer who has said nothing so far. They ask him, "What do you think?"

"Well, I think we should close all the windows, get out, get back in, and open the windows again."

