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Abstract 

One of the challenges currently facing software developers is to take advantage of the parallel 

hardware that is appearing, not only in large data centers, but also on every desktop.  APL is an inhe-

rently parallel notation, which has the potential to make this relatively easy.  At the lowest level, users 

should be able to expect the APL interpreter to distribute computations optimally across multiple 

cores, when evaluating expressions like: 

1 2 3 + 4 5 6 × 7 8 9 

… at least when the arrays are a bit larger. In fact, achieving this is not as simple as it might 

seem, as there are many bottlenecks in multi-processor machines which mean that efficient use of 

multiple cores by a “SIMD Interpreter” (so-called because each Single primitive Instruction works on 

Multiple items of Data) is a significant challenge.  Research also shows that the number of elements 

in arrays passed to primitive functions in commercial applications is typically very small [Ber-

necky1997], which means that parallelism at the level of individual primitive functions is unlikely to 

speed up typical applications very much.  

Bernecky’s proposal is to analyze the data flow, and compile highly efficient code which de-

feats the bottlenecks.  In this paper, we describe an investigation into an alternative mechanism for 

improving parallel throughput on typical hardware available to users today, which relies on the user 

to explicitly identify the sections of application code that represent significant parallel opportunities, 

using a set of user-defined operators which could be implemented as primitives in a future APL inter-

preter. 

These models of potential extensions to an APL interpreter are implemented by starting multiple 

processes which communicate using TCP/IP. They allow us to experiment with the performance cha-

racteristics of parallel execution using multiple cores in one or more co-operating machines, and the 

tuning parameters that may be required to optimize throughput on different hardware configurations. 

So far, experiments suggest that although they may require small changes to application code, the use 

of these operators has the potential to provide significantly more “bang for the buck” than the imple-

mentation of fine-grained parallelization in interpreters. 

Introduction 

In addition to the low-level parallelism embedded in most primitive functions, APL implementa-

tions offer a number of higher-level parallel constructs, which can be used to express parallel execu-

tion of derived or user-defined functions or expressions: 

- The each operator (¨), which is available in virtually all modern systems 

- The rank operator (⍤), implemented in SHARP APL and J (and often emulated using us-

er-defined operators in other APL systems) 
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- The outer product operator (∘.), which is available in all systems    

- The dot in Dyalog APL: when placed between an array of objects on the left and an ex-

pression on the right, dot applies the expression to its right to each of the objects on the 

left. 

Each, rank, outer product and dot are different ways to express the application of primitive, de-

rived or user-defined functions in parallel.  In current APL systems, the multiple calls to user-defined 

functions expressed using code fragments like (f¨data), (f⍤1⊢data) or (objects.f data) are 

executed sequentially.  We have experimented with the implementation of four experimental user-

defined operators named P.Each, P.Rank, P.OuterP and P.Dot, each of which executes calls 

to user-defined functions in parallel.  

Remote Namespaces 

At the core of our model is the notion of a remote namespace; a namespace which is managed 

by a separate process, which might even be running on a separate machine, but which can be refe-

renced to as if it were part of the current workspace.  In a future version of APL, one could imagine a 

primitive called fork (Ψ), which forks the namespace passed as its right argument off as a separate 

process.  The following hypothetical example shows how it might be possible to split a job into two 

separate processes in this future APL system: 

wtdavg←{(data+.⍶⍵)÷⍴data} ⍝ Some hard work to do 
ns1←Ψ #        ⍝ Fork the root (=entire current workspace) 
ns2←Ψ #        ⍝ Fork it again 
input←2 4⍴⍳8   ⍝ Two rows of data 
(ns1 ns2).data←⊂[2]input  ⍝ Distribute a row to each space 
(ns1 ns2).wtdavg 1 ¯1 0 2 ⍝ two parallel wtdavg calls 

In this hypothetical interpreter, the APL system would handle the creation of the forked spac-

es, and the execution of expressions which “dot into” the remote spaces (using the semantics for dot 

applied to namespaces in current Dyalog APL). This would allow APL users to seamlessly access da-

ta and call functions in the remote namespaces.  At present, we have a model implemented in APL, 

where a user-defined function called Y models the Ψ primitive, and a user-defined operator called 

Dot does its best to allow access to the remote spaces.  In the model, the above example (without the 

definitions of wtdavg and input) could currently be written as follows (Y and Dot have been 

placed in a namespace called P for parallel): 

nss←P.Y # #      ⍝ Fork two instances of the root 
(nss P.Dot 'data←')⊂[2]input  ⍝ Assign to data in each space 
(nss P.Dot 'wtdavg')⊂1 ¯1 0 2 ⍝ Call function 

 1.75  3.75 

The syntax of the proposed Ψ function can be modeled very closely, but it is not possible to do 

the magic required to get close to the “seamless access” that a real dot produces using a user-defined 

operator.  As the example shows, parts of the code fragments to be executed need to be quoted, and 

extra care needs to be taken in transferring data between the namespaces.  If the user makes mistakes, 

the resulting errors may be quite confusing.  At the same time, although we believe that the remote 

dot will be a useful tool in its own right which it is available at the primitive level, parallel implemen-

tations of the primitive operators each, outer product and rank are probably more directly applicable 

to parallelizing existing user applications.  For this reason, once we demonstrated that the fundamen-

tal idea of a “remote Dot” was workable, we have only used it as a building block for the other remote 

operators, rather than proposing it as a tool for end users in its current form.  
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General Strategy 

The general strategy employed by the operators is to use P.Y to initialize an optimal1 number 

of remote namespaces (also referred to as “slave tasks”). These namespaces are hidden away from the 

end user in an internal variable. Once the slaves are set up, the operators and other utility functions 

which will be discussed in the following are essentially cover-functions for P.Dot2.   

The operators P.Each, P.Rank and P.OuterP allow the user to express parallel opera-

tions on arbitrarily large arrays – theoretically mapping to an arbitrarily large number of parallel 

processes. In practice, the number of actual slave tasks will roughly correspond to the number of 

available “cores”.  The operators map the problem to the available processes by dividing the argu-

ments up into suitable chunks and repeatedly asking the slaves to execute pieces of the problem until 

all the elements of the arguments have been processed and all elements of the result have been col-

lected. Since the main purpose of the exercise is to maximise performance, we are keen to reduce the 

amount of data transmission and the overhead required to manage the slave tasks. 

In order to reduce the communications overhead, we do not make one call per element.  After 

an initial set of calls which allow us to “calibrate” the problem, we decide on a suitable partition size 

which keeps overhead low, but avoids having to wait too long for lagging slaves to complete work at 

the end of a process (the default target is to have partitions which run for no less than a second). 

As each partial result is received, it is inserted into the correct elements of the overall result.  

If a slave takes “too long” to complete processing of a unit of work, then as other slaves become free 

towards the end of the request,  the slower processes have their work reallocated and a race is allowed 

to complete the task in as short a time as is possible. 

Any result already computed by another slave is ignored, and a quick check at the end ensures 

that all parts of the result have been populated.  Any empty cells in the final result are resubmitted – 

although this case is unlikely, it is built in as a safe-guard. 

Passing Arguments 

It has been very helpful to us to have a handful of real end users who wanted to use our model 

to solve real problems! This helped us understand that two different partitioning strategies should be 

used, depending on which operator is being used: 

1. Linear partition, used by P.Each (¨) and P.Rank (⍤) 

2. Indexed partition, used by P.OuterP (∘.) 

Linear partition is used when each element of the data is processed only once, as in:  

1 2 3 4 5 Foo¨ 6 7 8 9 10 
 

Foo only processes each number once as in: 

 
1 Foo 6 
2 Foo 7 
Etc. 

 

                                                   

1
 In practice, there is little to be gained from starting more parallel tasks than the number of physical cores 

available. Our model allows the user to configure the number of processes to be started on each available machine. 

2
 For reasons of efficiency, we don’t actually use the general-purpose P.Dot operator internally, but the slave 

processes receive the same TCP messages as if we were doing so. 
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In this case it is sufficient to partition each argument into corresponding chunks for each 

call to a slave process. 

 

Indexed partition is used where elements of the data are reused, which is the case for outer 

product: 

  

1 2 3 4 5 ∘.Foo 6 7 8  

 

Each element in the left argument is combined with each element in the right argument: 

 

(1 Foo 6)(1 Foo 7)(1 Foo 8) 
(2 Foo 6)(2 Foo 7)(2 Foo 8) 
Etc. 

 

In this case it turns out that it is generally much more efficient to send the entire left and 

right arguments to all slaves at the start of the process, and then send indices into each array to 

tell the slave which items to process in each partition. 

Global Data and Code 

If the user-defined functions which are called applied with P.Each, P.OuterP or P.Rank 

have no side-effects, it is often sufficient to fork the current workspace and use the operators to make 

function calls and collect the results.  In practice, it may be undesirable to fork the entire workspace, 

which could be very large.  There may also be items of global data (or code) which change between 

one invocation of a parallel operator and the next – where it would be unnecessarily expensive to 

discard the remote namespaces and fork them all over again.  To cater for these situations, a utility 

function called P.Set makes it possible to pass global variables (and functions) to the slave tasks.  

Used monadically, P.Set takes a list of names and transfers copies of the named objects to every 

existing slave task, for example: 

P.Set 'PRICES RATES PriceCalc' 

P.Set can also be called with an array on the left which has as many elements as there are 

active slaves and a single name on the right.  In this case, the variable with that name is set to a 

different value in each slave process.  For example, the following expression would assign distinct 

IDs to the variable SLAVEID in the remote namespaces.  

(⍳P.SlaveCount) P.Set 'SLAVEID'  

Using different values for variables is not recommended for “normal use” of the operators, as it 

has the potential to make results depend on the particular slave which is used for a particular call to 

the user-defined function, something which the user cannot control.  However, it can be useful for 

specialized applications and for debugging. 

If functions have side-effects, such as modifying global variables, the function P.Get can be 

used to retrieve the results.  For example, if we defined a new function which modifies a global log 

and returned the current length of that log: 

     ⍷ r←Foo x                                                       
[1]    r←⍴LOG←LOG,⊂x,' processed by ',⍕SLAVEID                       
     ⍷                
                                                

LOG←''          ⍝ Create empty log 
      P.Set 'Foo LOG' ⍝ Transfer Foo & empty log 
      (⍳P.SlaveCount) P.Set 'SLAVEID' ⍝ Set IDs 



  5 

      'Foo' P.Each ⍳5 ⍝ Call Foo 5 times 
 1  1  2  3  2  
 

... then we can use P.Get to retrieve the contents of the logs: 

 
      ]disp ⍪P.Get 'LOG' 
┌→─────────────────────────────────────────────────┐ 
↓ ┌→─────────────────────────────────────────────┐ │ 
│ │ ┌→───────────┐ ┌→───────────┐ ┌→───────────┐ │ │ 
│ │ │1  done by 1│ │3  done by 1│ │4  done by 1│ │ │ 
│ │ └+───────────┘ └+───────────┘ └+───────────┘ │ │ 
│ ∊──────────────────────────────────────────────┘ │ 
│ ┌→──────────────────────────────┐                │ 
│ │ ┌→───────────┐ ┌→───────────┐ │                │ 
│ │ │2  done by 2│ │5  done by 2│ │                │ 
│ │ └+───────────┘ └+───────────┘ │                │ 
│ └∊──────────────────────────────┘                │ 
└∊─────────────────────────────────────────────────┘ 

P.Get returns one element per slave, containing the value of the named variable, and thus 

allows us to retrieve results which are stored in global variables. With a small amount of recoding, 

our experience is that it is fairly straightforward for an APL application developer to turn almost any 

loop in an existing application program into a suitable combination of fork (P.Y), P.Set, P.Each / 

P.PouterP / P.Rank, and P.Get. 

Implementation Details 

Under Microsoft Windows, slave processes on the local machine are started using the Micro-

soft.Net method Process.Start in the Microsoft.Net  System.Diagnostics namespace. 

This has the advantage that we get hold of a .Net Process object, which allows us to monitor and 

terminate the slave tasks very easily.  The Unix/Linux implementations will use shell commands, or 

in the case that the entire active workspace is forked, processes will be started using 4000⌶, an I-

Beam function which is available in Dyalog APL for Unix and Linux, which forks3 the current 

process into two indentical images, using operating system calls which are unfortunately not available 

under Windows. 

The right argument to the fork function P.Y can be a namespace reference, in which case the 

remote namespace will be initialized as a copy of that namespace. The most common namespaces 

will probably be # (the root – which means a complete copy of the current workspace), and ⎕NS'' 

(the empty space – which is subsequently populated using P.Set). Alternatively, the argument can 

be a character vector which names a workspace that should be copied into the space when the slave 

process starts. 

Initializing a remote namespace from the root is special-cased on all platforms. Under Unix and 

Linux, it will use 4000⌶ (so far, all development and testing has been done under Windows).  Under 

Windows, instead of transferring initial data via a socket, the active workspace is ⎕saved into a 

folder which must be visible to all slaves, and copied by the slaves. 

If multiple machines are to be used then a relay server task must have been started on each re-

mote machine before they can participate.  The only function of this relay server is to start the indi-

vidual slave processes on its machine when requested by the single controlling task, using the me-

                                                   
3
 4000 = four k = fork, geddit? 
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chanisms described above.  Once created, these remote slave processes communicate directly with the 

controlling task in exactly the same manner as the local slave processes that the controlling task has 

created on its own machine.  Apart from starting processes, the relay server is only used to shut un-

responsive slaves down again (this cannot be done by the controlling task, as it is on a different ma-

chine). 

A class called  RNS (for Remote NameSpace), implements the simulation of remote namespac-

es.  Instances of this class are returned by the fork function P.Y, one per process created by fork.  

The namespaces created by fork are taken as an explicit argument to P.Dot, and as implicit argu-

ments to the P.Each, P.OuterP and P.Rank operators. 

Once the slave process is started, a TCP connection is opened using a tool called Conga [Con-

ga20], which is shipped as part of any Dyalog installation.  This package allows APL objects, includ-

ing namespaces, to be transferred via TCP, using secure/encrypted connections if necessary.  The 

slave receives an initialization package which tells it what to place into the remote namespace, and 

reports back that it is ready to do work. 

Conga allows connections to multiple peers, and allows multiple requests to be queued on each 

connection.  At present we only use one request in turn per connection but we do submit multiple si-

multaneous requests across several connections.  The results from these tasks can return at different 

speeds, Conga handles all communications processing and APL is only involved when a complete 

packet has been received. 

Most of the logic described above is encapsulated within a Process class, which contains all 

the logic required to start a process, information about the current state of the slave process, the de-

tails of the Conga connection to it, and the necessary process handles.  A destructor function in the 

Process class ensures that, if the instance of the process should go out of scope (if the variable con-

taining the list of remote namespaces is expunged or emptied), the remote tasks will automatically be 

shut down in a controlled fashion.   Each instance of an RNS contains a corresponding instance of 

Process, which connects it to the actual remote namespace. 

Challenges: Initialization and Unresponsive Slaves  

The biggest hurdle that had to be overcome was the coordination of the different speeds in in-

itialization and setup of the tasks.  Within a single machine with multiple similar cores and very high 

speed intra-machine communication, initialization is straightforward.  However, when machines with 

varying speeds are connected together - and in particular when some network connections are signifi-

cantly slower than others - initialization of the slowest machines can cause a significant reduction in 

overall throughput. 

The first implementation forced all tasks to wait until the slowest was initialized.  This caused 

all the tasks to appear sluggish to start.  Once started, although the slower tasks did not contribute as 

much as the faster processes, they did contribute enough to make their use worthwhile.  However the 

slower tasks also contributed to a sluggish end as the perception was compounded by the need to wait 

until the last task had completed before the final result could be returned.    

A better approach was to allow the faster tasks to go on ahead and allow the slower tasks to 

catch up.  Once the slower tasks had caught up they could then contribute to the processing.  Allow-

ing the faster tasks that had completed to take over the unfinished work from the slower tasks allowed 

the processing to complete even faster.  Towards the end of a parallel operation, this can lead to two 

slaves working on the same task; the system uses whichever result arrives first and ignores duplicates.  

This initialization mechanism has been refined, and is still evolving. We have discovered that 

using shared files to transfer the same initial data to multiple slaves appears to be more efficient than 

multiple TCP/IP transmissions (typically containing identical data) from the controlling task.  
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The second big challenge is to handle failed slave processes elegantly; performance degrada-

tion is unavoidable, but the system should be resilient and not hang if the process can be completed 

with reasonable performance.  A mechanism for enabling and disabling tasks is being prototyped.  

This allows a failed or apparently failed slave to be reset or to be taken out of the processing com-

pletely.  The use of temporary component files as external shared storage allows (re-)initialisation of 

tasks to be done both faster and more easily.   

When tasks run for more than a few seconds, a progress form can be displayed.  This is still 

very functional rather than ergonomic but it suffices for the first set of trials.  It is intended to be 

improved. There are as many rows as there are slave processes.  The buttons cause the tasks to be 

disabled or enabled individually.  The % figure gives the relative usage between tasks or the relative 

work done and the number following gives the actual number of packages processed. 

The last part gives the current state of the task, normally this is “Free” or “Busy” but can 

range from “Disabled”, “Initializing”, “Setting”, etc.  

The final check box to the right of the progress bar allows the entire process to be aborted.  

This results in an error signaled from the P. operator currently running.    

   

 

Errors in User Code 

Failures of the infrastructure, resulting in unresponsive slave tasks, obviously need to be han-

dled as smoothly as possible.  The use of remote namespaces also makes it more difficult for the de-

veloper to deal with errors in his or her own code, as functions may fail on a machine which the user 

has no physical access to.  Even if there is access to the consoles on which slaves are running, a single 

error in user code will typically cause all slave processes to suspend, making the process of debug-

ging and task resumption very difficult.   

The model has a number of options for error handling, and these will undoubtedly need to be 

extended as we gain experience with the use of P.Each and the other operators. Currently, the con-

trolling variable Fork.OnError has three possible settings: 

Stop The default: causes the operator to stop as soon as any slave encounters an error, 

and signals the error to the calling environment. 

Continue Marks all the result elements in the failed partition as invalid and continues 

processing.  Variables P.AllOK and P.Errors make it possible to check 

whether the operation was completely successful, and retrieve error messages for 

failed elements. 
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Repro If an error occurs, the user is offered the option of reproducing the error on the 

client side.  If the response is affirmative, the function call which failed is re-

peated with error traps disabled, in order to allow local debugging of the call that 

failed. An option to transfer patched code to all slaves before resumption of 

processing needs to be added. 

Results 

P.Each and P.OuterP have been used in a couple of real applications4, and the results show 

that very significant speedups are possible using hardware which is easily available. On a dual-core 

laptop, results such as the following are typical:  

 
]cputime {+/1=⍵∨⍳⍵} ¨ ⍳10000 

CPU (avg):  6658 
Elapsed:    6708 

]cputime {+/1=⍵∨⍳⍵} P.Each ⍳10000 
CPU (avg):    32 
Elapsed:    3755 
 

In this example, elapsed time is reduced by nearly 45%: execution is roughly 1.8 times 

faster using two cores when making these 10,000 function calls. Note that the reported CPU time 

drops to almost nothing, as the real work is all being performed in the slave processes. The time 

reported here is the overhead of handling the communications with the slaves (in this case, 

roughly 1% of the total CPU time). 
 

]cputime xx←(⍳1000)∘.{(+/⍳⍺)÷+/⍳⍵} (⍳1000) 
CPU (avg):  31231 
Elapsed:    31613 

 
]cputime yy←(⍳1000){(+/⍳⍺)÷+/⍳⍵} P.OuterP (⍳1000) 

CPU (avg):  1747 
Elapsed:    4724 

 
     xx≡yy 

     1 

The overhead is a significantly higher in this example, probably because the individual tasks 

are very lightweight (a million operations consume less than 5 seconds), and partitioning is more 

complex for outer product.  However, the example shows that significant speedups are possible, even 

for “cheap” function calls.  In fact, the speedup is a bit too high for comfort in this case (6.5x on a 

dual core processor!), and the Dyalog team will need to take a look at the efficiency of the primitive 

outer product operator applied to user-defined functions (the slaves will have been using each on the 

indexed partitions that they receive). 

The Memory Bottleneck 

In theory, n cores should perform a job n times as fast as a single core – but in practice 

this is rarely the case.  In addition to the overhead of managing slave processes and transmitting 

arguments and results, the cores need to share resources – in particular memory and disk storage 

                                                   
4
 P.Rank has been implemented for completeness, as Dyalog is considering adding the rank operator to APL 

in the not-too-distant future - and also because “peach and prank” looked good in the title of the paper . 
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– and network resources.  The fact that disk and network bandwidth might be a bottleneck proba-

bly comes as no surprise, but the impact of sharing memory can also be significant.  In a modern 

multi-core microprocessor, each core has some of its own high-speed cache “on chip”, but all the 

cores share the same main memory (“RAM”) – and some cache levels can also be shared.  If the 

function being executed requires frequent access to off-cache data, the cores will compete for 

main memory access and all slow down.  The bandwidth of main memory access is often only 

just enough to satisfy a single core, if that core is in a loop reading memory. 

 

In some cases, adding processors to a task will actually slow it down.  Machines will have 

significantly different performance profiles when there are resource conflicts. You will need to 

experiment a little to find optimal settings for each task that you need to perform. 

 

To illustrate, consider the following three functions, which are included as part of the test 

suite which is included with the distributed parallel workspace – in the namespace QA (for 

Quality Assurance): 

 

     ⍷ i←LoopTest i 
[1]    :While 0<i←i-1 ⋄ :EndWhile ⍝ No memory, lots of CPU 
     ⍷   
 
     ⍷ r←Mixed n 
[1]    r←n?n 
[2]    r←+/+\+\⍒⍋⍒⍋r ⍝ Some work, but also memory scans 
     ⍷ 

 
     ⍷ r←ThrashMemory n 
[1]    r←+/⍳n ⍝ Lots of generated data, almost no “work” 
     ⍷ 

 

These functions illustrate different points on the “parallelizability scale”. The function 

QA.TestGeneral runs the above functions on a right argument of (⍳500) using both ¨ and 

P.Each and displays a little table which records the speedup that was achieved. You should ex-

pect some variation from one run to the next, but the following numbers are typical on modern 

dual core machines:  

 

2 Tasks / 2 Cores        Each  P.Each  Relative  
  {#.QA.LoopTest 10000}    2916    1458   2.00     

{#.QA.Mixed 100000}      8737    5402   1.62     
{#.QA.ThrashMemory 5E6}  7613    6829   1.11     

 

As can be seen above, the speedup is a factor of 2 for the job which consumes a lot of 

CPU and uses little memory
5
 – but the function which spends most of its time writing integers to 

memory and then adding them up only speeds up very slightly.  If you monitor the system, both 

cores will probably be reported as 100% “busy” in all of the above cases – but when executing 

the last function, a very large amount of time is spent waiting for memory.  In fact, if the system 

was trying to run any other tasks at the same time, overall system throughput will have decreased 

significantly – so throwing multiple cores at a task can in fact be counter-productive. 

 

                                                   
5
 The figure of exactly two which occurred in this particular test run is not going to happen every time. 
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An example of a “successful” use of P.Each is a pension calculation application which 

computes pensions for hundreds of employees.  The calculation for each employee is completely 

independent of the rest (except for reading a small amount of information from a database). Using 

8 processes on an Intel machine with 2 “quad” processors (8 cores), P.Each speeded this appli-

cation up by a factor of 5.  You are unlikely to achieve higher speedups than this without using 

more than one physical machine. 

Conclusions 

The experimental user-defined operators described in this paper have shown that it is practical 

to put multi-core computing “at the fingertips” of APL users. Some work remains in “hardening” the 

tools so that users do not need to understand anything about the plumbing, but we are close to having 

an “industrial strength” implementation that could be used not only by anyone with a dual- or multi-

core system, but also small clusters of “compute servers” on a local area network - or even via the in-

ternet. 

A test suite has been kept up-to-date as changes that are made to the model, and this has been 

an invaluable tool during the entire project.  An example of the use of every feature is included in this 

suite and unintended side-effects introduced by changes are relatively easily detected using the 

QA.TestAll function. In addition to allowing us to make changes with confidence that silly errors 

will be detected, the scripts act as a good source of documentation for how the operators can be used. 

We still have some work to do to refine the failure modes, especially when machines are con-

nected via slow networks, and when a group of machines with very different CPU and network 

speeds are connected together. 

In terms of implementing the operators as primitives, the efficiency of the APL model seems to 

be excellent (overhead roughly 1%), so there is little incentive to rewrite the code in C at this point. 

The parallel workspace will be shipped as a standard component of Dyalog version 13.0, 

and is available for version 12.1 at no cost, on request from support@dyalog.com. 

Acknowlegements 

 Many thanks to Yvo Vermeylen and Brecht Dekeyser at CONAC in Brussels for providing 

the original impulse to get started on this work, and to Yigal Jhirad and Blay Tarnoff at Cohen and 

Steers in New York for helping us understand the need for a fast P.OuterP. 

References  

[Bernecky1997] Bernecky, Robert: APEX, The APL Parallel Executor, pp 14-15. 

[Conga20] Conga v2.0 User Guide, http://www.dyalog.com/documentation/12.1/index.htm 



  11 

Appendix A: Syntax Reference 

In the following, {lv} indicates an optional left argument. 

Current usage syntax is:  

P.Init  n Initializes n tasks ready for use. If n is an empty 

vector, initialized as many tasks as there are cores 

available on local and remote machines. 

P.Set 'ab cd' Transfers ab and cd to each of the tasks, they can 

also be function names 

lv P.Set 'data' Transfers one element of lv into data to each 

slave task. 

Data←{lv} (nss P.Dot expr) rv   Simulates the Dyalog Dot, running the equivalent 

of {lv} expr rv in remote namespaces nss. 

Data←{lv} (foo P.Each) rv   Runs function foo as if  {lv} foo¨var 

Data←lv (foo P.Outer) rv Runs outer product as if  lv ∘.foo rv 

Data←{lv} (foo P.Rank argrk) rv  Runs rank as if  {lv}(foo ⍤argrk) rv 
where argrk is the argument rank of how foo will 

be applied to lv and rv 

(ab cd)←P.Get 'ab cd' Retrieves data for ab and cd from each slave. 
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