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C H A P T E R   1
[bookmark: _Toc304986442]An APL Window to the Internet
[bookmark: _Toc304986443]1.1  Web Server Fundamentals

Since you’re reading this document, it’s probably safe to assume that you’ve used a web browser to access web pages before. You probably know that a web page is a resource residing somewhere on a computer. When you enter a web address (URL) into your browser’s address field your browser sends a request for that resource to the computer on which the resource should be stored. A process on that computer, called a web server, listens for requests, interprets them, tries to locate the requested resource and finally return it to the browser. 

More specifically, a web server is a process that listens to a TCP/IP port for incoming connection requests. Once a connection has been established between the web server and a client, typically a web browser, communication begins between them according to a set of standards called the Hypertext Transfer Protocol (HTTP). When the server receives a request for a resource, it performs a number of preparations on that resource for transmission, responds back to the browser and closes the connection. If all goes well, the browser displays a web page.

Today’s servers often have a number of other useful capabilities. Servers can track individual clients through the use of sessions and cookies, saving data between requests. This supports features like shopping carts and multi-part forms. Many servers also support interactions with databases, user authentication, and resource specific access restrictions.
[bookmark: _Toc304986444]1.2  Introducing MiServer
MiServer is a web server implemented in Dyalog APL, which allows you to bring the power of APL to the web. It is a workspace with tools to facilitate the development and hosting of web pages from within Dyalog APL. The first version of MiServer was developed by Morten Kromberg, inspired by Stefano Lanzavecchia’s WildServer, which used the object oriented features of Dyalog APL v11.0 to create a highly modular APL web server. The goal of the MiServer project has been to create a simple framework that allows anyone who can write an APL function to build a web front end, without using any components that are not included in a standard installation of Dyalog APL.  

The MiServer project has two main goals.
1. Make it possible for anyone who can write an APL function to turn it into hosted web content without having to learn much about the underlying nuances of web page implementation. That stated, the full breadth of HTML and related technologies remain at the developer’s disposal. 
2. Allow code to be easily organized into modules. This would and form the basis for collaborative software development, specifically an “Open Source” project in APL. The architecture is intended to encourage knowledgeable users to write extensions, like support for additional user-interface “widgets”, database interfaces, or more sophisticated session management. More information about the MiServer Project can be found in Appendix III.

One note, the term “MiServer” is used in a number of contexts, including: 
· The MiServer Project, an open source initiative involving MiServer.
· The MiServer class[footnoteRef:1] which implements the core web server functionality. [1:  MiServer is implemented using the object oriented feature of Dyalog APL. You do not need to know much about OO to develop web sites using MiServer, but if you’re unfamiliar with the terms “class” and “instance”, you can learn more about them in the publication “Introduction to Object Oriented Programming for APL Programmers” which is included in the documentation provided with Dyalog APL.] 

· An instance of the MiServer class, referred to as “a MiServer”
1.3 [bookmark: _Toc304986445]Why MiServer?
There are a number of circumstances where you may want to use MiServer.
· APL is your preferred development environment.
· You want to host your existing APL functionality on a web page.  
· You want to use a web browser as a user interface.  
· You want to merge APL with the vast array of tools available to web developers. 
· You want to integrate almost any Dyalog APL utility within your web content.  Including:
a. SQAPL: which provides access to any ODBC-compliant database
b. SAWS:  which consumes and hosts web services.
c. SharpPlot: a business graphic package included with Dyalog APL.

MiServer is a stable web delivery environment. We expect to add new features in collaboration with the APL community. However, a more “industrial” web server such as Microsoft IIS, Apache, and WebSphere may have features that are currently not present in MiServer. You may opt to use one of these servers in one of these following situations:
· You need to use a third party technology like Adobe Cold Fusion.
· You need to use technology that integrates specifically with another web server.
· You require extensive trace and debugging capabilities.
· You desire to also run an SMTP or FTP server. Conga, Dyalog’s TCP/IP communications tool, contains sample servers of each type, but these are not integrated into MiServer at this time.

An alternative for enabling APL functionality to deliver web content is through ASP.NET as described in the Dyalog .NET Interface Guide. Finally, it should also be noted that it is possible to use the MiServer to deliver content which passes through a commercial web server framework like IIS or Apache, allowing you to combine the lightweight flexibility of APL with management and security features of the commercial web frameworks.
C H A P T E R   2
[bookmark: _Toc304986446]MiServer Architecture 
[bookmark: _Toc304986447]2.1 Web Servers and Sites and Pages, Oh My!
Browsers request resources, which can be almost any file type. If this resource is rendered as a user interface in the browser, the resource is called a web page. When you type a URL into a browser’s address bar, you are accessing a resource on a computer somewhere. A URL, like www.dyalog.com, references the root of a directory of such resources, called a website.  A website can be as simple as a single file in a folder or can be an expansive collection of content and functionality to process and format that content.  As discussed in Chapter 1, a web server hosts web sites and makes them available for request.

[bookmark: _Toc304986448]MiServer Core Functionality 
MiServer is a web server. It has an architecture that is implemented across a number of files, requiring a specific directory structure which is described in Chapter 2.3. 

The files representing the core functionality are found in the SiteRoot/Core/ directory, which contains: 
· the MiServer class – this class implements the core functionality of the server.
· the HTTPRequest class – this class parses the HTTP request and generates the HTTP response.
· the Boot namespace – this namespace contains functionality to start and stop a MiServer.
· the MiPage class – this server as the base class for all MiPages.

[bookmark: _Toc304986449]MiServer Skins
In general, it should not be necessary to modify any of these files. MiServer is designed to make site specific server behaviour easy to implement by exploiting its object oriented nature and having a number of overridable methods which can be redefined by a class derived from the MiServer base class. This is called a MiServer Skin. A MiServer Skin can implement specific session behaviour, usage logging, error handling and an HTML “wrapper” to create a consistent look and feel for your website.

[bookmark: _Toc304986450]The MiSite 
MiServer works by ‘booting’ an instance of itself that is associated with a particular directory. Contained within that directory must be a basic structure, including directories and files that without which MiServer will not work. Because its particular structure is unique to the MiServer environment, we’ve chosen to call these specifically formatted websites MiSites. A description of the MiSite directory structure can be found near the end of this chapter.

[bookmark: _Toc304986451]The MiPage
A MiPage is a .dyalog scripted file that contains an APL class derived from the MiPage base class. MiPages generate Hypertext Mark-up Language from APL code that is used to create webpages.
		
[bookmark: _Toc304986452]2.2 What you’ll need to know to build MiSites
To construct MiSites, you will need an understanding of basic Object Oriented programming concepts. To build MiPages and generate web pages, you will need to understand something about Hypertext Markup Language. Finally, you’ll need to know how to manage and edit APL scripted files. 

[bookmark: _Toc304986453]A Bit of OO
Object oriented (OO) programming is a programming paradigm centered on structures called objects. Objects are independent instances of a class, an object blueprint which describes a set of related functions and/or data. Each object can contain unique data. 

A class may derive from another class, referred to as a base class. The derived class acquires the methods, fields and properties of its base class on top of its own. In OO speak, this is called inheritance. A base class may specify a method as overridable, which means that a derived class can define its own behaviour for a method of the same name.

The elements of OO programming will not be unfamiliar to an APLer, but use different terminology. Functions are called methods. Variables are called either fields or properties. There are additional attributes that are specific to the OO versions of these elements not described here.

For more information on OO, check out the Introduction to OO in the Language Help of Dyalog APL and the Introduction to Object Oriented Programming for APL Programmers found in the documentation supplied with Dyalog APL or at http://docs.dyalog.com.

[bookmark: _Toc304986454]A Bit of HTML 
Hypertext Markup Language (HTML) is the fundamental building block of web content. HTML uses ‘tags’ or key words surrounded by angle brackets to format content. Most tags operate in pairs, with an opening and closing tag surrounding a section of content. Web browsers take these tags and render them into a User Interface.

Here are a few tags that you might find useful as you dive into web development.

	<html> </hmtl>
	Wraps all HTML documents. 

	<head> </head>
	Wraps around the unrendered section of the document that deals with preparations for page load and resource loading.

	<body></body>
	Wraps all HTML marked for page render. 

	<br />
	Inserts a line break

	<a href="http://www.dyalog.com">
Dyalog</a>
	Creates a hyperlink on the text surrounded by the tags.

	<div> </div>
	A tag that has no meaning on its own, a division

	<img src="/images/dragon2011.png" />
	Displays an image stored within your site directory

	<ul>
<li>Item1</li>
<li>Item2</li>
</ul>
	An unordered list.





An HTML tag can be defined by a number of ‘attributes’ contained within the leading tag. These attributes might be widely used among many tags, like the ‘name’ attribute, or specific to the functionality of the tag type, like the ‘size’ attribute of a text, password or file type input tag. 

For more information, a comprehensive list of tags and best practices can be found at the W3 Schools at http://www.w3schools.com.

[bookmark: _Toc304986455]XHTML
All included toolsets which generate HTML conform to a more stringent standard called XHTML. A major issue with HTML how prolific bad code is on the internet. Browsers have to be versatile enough to accommodate a number of poor coding techniques. This generally makes the code difficult to read, and nearly impossible to be parsed by other programs. To deal with these issues, HTML 4.01 was blended with Extensable Markup Language, or XML, to create Extensable Hypertext Markup Language, or XHTML. Unlike HTML, XHTML elements must:
· Be properly nested.
· Always be closed
· Be in lowercase
· Have one root element.
It is important to, once you have a handle on the basics of HTML, to use the XHTML standards.

[bookmark: _Toc304986456]Scripted files			
All of the classes and namespaces that compose MiServer, save the workspace itself, are kept on UTF-8 encoded files with a .dyalog extension. SALT, the Simple APL Library Toolkit, is a utility for importing scripted files. It is intended to provide a mechanism for APL users to develop and share code, which aligns nicely with the goal of MiServer as an open source project.

Any of these scripted files can be edited both from inside an APL session and from a text editor.

To bring a scripted class or namespace into your workspace, use ]Load.

[bookmark: _Toc304986457]	2.3  Directory Structures	

[bookmark: _Toc304986458]MiServer
This is the basic directory structure required of MiServer. While the files contained in SiteRoot\Core\ represent the basic functionality of the web server, the other files provide vital extensions to the server, as well as a number of tools used to in the processing of web pages.

	C:\MiServer\					
	The root directory of MiServer

		Core\
	Contains the core components of MiServer

			Boot.dyalog
	Namespace containing functions to start and stop MiServer

			HTTPRequest.dyalog
	Class which encapsulates all information for an HTTP request

			MiPage.dyalog
	Class which serves as a base class for all MiPages.

			MildServer.dyalog
	Class which implements the MiServer core and serves as a base class for all MiServer Skins.

		Extensions\
	Folder for extensions to MiServer to implement additional functionality.

			SimpleAuth.dyalog
	Implements basic HTTP authentication.

			SimpleSessions.dyalog
	Implements stateful interaction using sessions.

			ContentEncoder.dyalog
	An interface that content encoding schemes, like HTTP compression can be implemented using.

			deflate.dyalog
	Implements the default compression style.

		Documentation\
	Documentation associated with the MiServer.

		ErrorPages\
	The pages sent to the browser during an error.

		Demo\
	A demonstration MiSite.

		MiSiteTemplate\
	A basic MiSite.

		PlugIns\
	Third party plug ins.

			JQuery\
	Files associated with the JQuery JavaScript library.

				css\
	Styles associated with JQueryUI objects.

				development-bundle\
	Contains the files for JQuery and JQueryUI.

				js\
	Contains all JavaScript files used in the current implementation of the JQ namespace.

				index.html
	A test page for JavaScript.

		Utils\
	Utility classes and namespaces useful for generating HTML.

			Base64.dyalog
	Functions for encoding and decoding messages in base 64.

			Dates.dyalog
	Functions dealing with dates.

			DrA.dyalog
	Error logging functions.

			Files.dyalog
	Functions to manipulate files.

			HTML.dyalog
	Functions to assist in the creation of HTML.

			HTMLInput.dyalog
	Functions to assist in the creation of HTML, focused on form and input objects.

			JQ.dyalog
	Functions that integrate the JQuery JavaScript library into your MiPages.

			SQL.dyalog
	Functions that integrate the database interaction capacities of SQAPL into your MiPages.

			SMTPMail.dyalog
	For sending mail messages via SMTP.

			Strings.dyalog
	Functions for the handling of strings.

			XML.dyalog
	Functions to convert XML into namespaces and vice versa.

		mserver.dws
	The MiServer workspace.











































[bookmark: _Toc304986459]MiSite Template
MiServer comes with a sample MiSite in SiteRoot/Demo, this site contains a number of sample MiPages and configuration files to demonstrate some of the more powerful functions of the MiServer.

	C:\YourSiteRoot\
	The root of the site

		Admin\
	Contains .dyalog files that control configuration settings

			EditPage.dyalog
	A page to demonstrate in-browser editing of UTF-8 files

		Code\
	Contains code to modify the server

			Demoserver.dyalog
	A class derived from the ‘MiServer’ class that renders HTML for a web page. In the “Demo” site and the MiSite template, the file is named DemoServer.dyalog

		Config\
	A group of XML files used for site specific server configuration

			Server.xml
	An XML file that sets the site specific configuration settings

			Users.xml
	A list of users and passwords

			Groups.xml
	A list of groups and permissions associated with the groups

		DrA\
	Contains error logs

		Styles\
	Contains Cascading Style Sheets

			error.css
	Cascading style sheet for error pages

			style.css
	General cascading style sheet for the site, referenced in the wrap method of DemoServer.dylog

		TempFiles\
	Where MiServer temporarily stores files

		Index.dyalog
	The default page

		MiPageTemplate.dyalog
	A prototype dynamic MiPage
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[bookmark: _Toc304986460]Getting Started
[bookmark: _Toc304986461]3.1 Installing and Running MiServer
[bookmark: _Toc304986462]Prerequisites
MiServer requires Dyalog APL version 12.1 or later and version 2.2 Conga, Dyalog’s TCP/IP communications tool.

[bookmark: _Toc304986463]Installation
Download the files and unzip them into any directory. In all following demonstrations, MiServer is assumed to have been installed in C:\MiServer.
[bookmark: _Toc304986464]3.2 Server Configuration
When a MiServer is started, it expects to find a number of configuration files in the directory SiteRoot\Config\, including the site specific server configuration file Server.xml. MiServer references Server.xml start up, so any changes to the server configuration will not be applied until it is restarted. Edits can be made to an XML file from most text editors.
Server.xml[footnoteRef:2] [2:  Please note: This is the default configuration and will be used in all subsequent examples.] 


<Server>
    <Name>MiServer Demo</Name>
    <ClassName>DemoServer</ClassName>
    <lang>en</lang>
    <Address>http://localhost:8080</Address>
    <Port>8080</Port>

    <TempFolder>TempFiles</TempFolder>
    <DefaultPage>index.dyalog</DefaultPage>

    <SessionHandler>SimpleSessions</SessionHandler>
    <Authentication>SimpleAuth</Authentication>

    <UseContentEncoding>1</UseContentEncoding> <!-- for HTTP compression -->
    <SupportedEncodings>deflate</SupportedEncodings> <!-- name(s) of class(es) that use ContentEncoder interface -->

    <LogMessageLevel>¯1</LogMessageLevel> <!-- 1-error/important, 2-warning, 4-informational -->
    <TrapErrors>0</TrapErrors><!-- Valid: 0=Trap and Log errors, 1=Crash -->
    <Debug>2</Debug><!-- Valid: 0=No Debug Info, 1=Debug Info, 2=Allow Editing -->
    <MailMethod>NONE</MailMethod> <!-- Valid: SMTP|NET|NONE -->
    <MailRecipient></MailRecipient>
    <SMTP_Gateway></SMTP_Gateway>
</Server>

[bookmark: _Toc304986465]Server.xml Parameters
	Parameter
	Example
	Explanation

	Name
	MiServer Demo
	The name of the server.

	ClassName
	DemoServer
	Valid: MildServer or the class name of a MiServer Skin which is in SiteRoot/Code/.

	Lang
	en
	The language encoding of the majority of content on the site. This is primarily used by websites to determine dictionary and voice settings.

	Address
	http://localhost:8080
	Not currently used.

	Port
	8080
	The port on which the server will listen for incoming connections. 

NOTE:  Port 80 is the default port number used by HTTP servers.  If you don't already have a web server installed you might want to use 80 to avoid having to specify a port number when browsing the site.

	SessionHandler
	SimpleSessions
	The name of the class which will handle sessions. 

	Authentication
	SimpleAuth
	The name of the class which will handle authentication. 

	UseContentEncoding
	1
	1 or 0 - HTTP compression on or off

	SupportedEncodings
	deflate
	The names of the classes that use the ContentEncoder interface, separated by commas in the order of usage preference.

	LogMessageLevel
	1
	A parameter that can be used to determine the types of log messages passed through MiServer.Wrap. -

	DefaultPage
	index.dyalog
	The name of the page to return if no page name is given by the browser.

	TrapErrors
	0
	Valid: 0=Trap and Log errors, 1=Crash

	Debug
	2
	Valid: 0=No Debug Info, 1=Debug Info, 2=Allow Editing

	MailMethod
	NONE
	Valid: SMTP,NET,NONE

	MailRecipient
	
	Email address to send SMTP mail to

	SMTP_Gateway
	
	Address for the SMTP server, if using SMTP to send emails.


[bookmark: _Toc304986466]3.3 Testing MiServer
Load the MiServer workspace and enter the following into the session:

      )load C:\MildServer\mserver.dws
C:\MiServer\mserver saved Tue Sep 20 12:07:45 2011
       Start 'Demo' ⍝ Run the demo
       Start 'Demo' ⍝ Run the demo
MiServer started on port: 8080
Web server 'SRV00000000' started on port 8080
Root folder: C:\MiServer\Demo/

The MiServer Demo is configured with the default Server.xml file. As such, it is set to listen on port 8080 for HTTP requests and will error if there is another program using that port. Also, if you have a firewall installed you may need to grant Dyalog APL internet access.

When the server is booted, open your web browser of choice and enter http://localhost:8080. This directs the browser toward your own computer, targeting port 8080.  

You should see the following page: 

[image: ]

Take a few minutes and look through the sample pages. The bulleted links are MiPages contained within the Demo directory structure that represent some of what MiServer can do.
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[bookmark: _Toc304986467]Your First MiSite
[bookmark: _Toc304986468]4.1 Copying and Configuring the MiSite Template
The folder ServerRoot\MiSiteTemplate/ contains the essential files for a MiSite. Copy and paste the entire directory into any directory on your computer, renaming the root folder as you need it. Anytime we reference your new MiSite, we will assume it to be in C:\MyMiSite\ .

[bookmark: _Toc304986469]You’re ready to go
Start a MiServer on this directory:
 
     )Load 'C:\MyMiSite'
C:\MiServer\mserver saved Mon Sep 12 16:07:54 2011
   Start 'Demo' ⍝ Run the demo  
      
      Start 'C:\MyMiSite'
DrA defaults applied
Web server 'SRV00000000' started on port 8080
Root folder: C:\MyMiSite/
[bookmark: _Toc304986470]4.2 MiPages
A MiPage is a .dyalog script file that contains an APL class derived from the ‘MiPage’ base class. Like we said before, these pages are responsible for generating HTML that is passed to the browser. They are APL code, and as such have the full power of APL at their disposal.

[bookmark: _Toc304986471]Requirements of a MiPage
These are two requirements for a MiPage:

· The class must be specified as derived from the base class ‘MiPage.’
· A Render method must be included in the class. This is a monadic method that is passed the request reference. The method must pass a character string to req.Return. In the default configuration, this will then be passed to the MiServer Skin’s Wrap method for additional formatting, and will then be sent to the browser.

[bookmark: _Toc304986472]The Index Page
When the root directory of a web site is requested, web servers respond with a default resource. MiServer will serve the file listed in the DefaultPage element of Server.xml. If that resource is not present, it will return a 404 error. If you would like to change the name default page file, simply change it in the configuration file. 

[bookmark: _Toc304986473]4.3 Building Your First MiPage
There are two MiPages included with the MiSite Template, the default page, index.dyalog, and a prototype dynamic MiPage, called mptemplate.dyalog. They have been included as templates for basic pages.

[bookmark: _Toc304986474]Building a basic page
When requested, this first MiPage places everyone’s favourite message, ‘Hello World!’, within the <body> tags of the HTML being sent to the browser.

In the example below, we will build this MiPage and save it as a .dyalog file in the site root directory.

Creating helloworld.dyalog
)ed ○helloworld

:Class helloworld : MildPage

∇ Render req;HTML
    :Access Public
    HTML←'Hello World!'
    req.Return HTML
∇

:EndClass

]Save helloworld C:\MyMiSite\

Making sure the MyMiSite server is running, open a web browser and type http://localhost:8080/helloworld into your address bar. You will see this in the body of your web page:

[image: ]


Page Source: http://localhost.8080/helloworld

<HTML><head> 
<title>Demo Server</title> 
<link href="/Styles/style.css" rel="stylesheet" type="text/css"> 
</head> 
<body>Hello World!</body></HTML>

Notice how the character string is placed between the body tags of the HTML. 

[bookmark: _Toc304986475]Where is the extra HTML coming from?
While it is possible to have each page generate all the code necessary, many different content management systems allow you set a theme, or a basic look and feel, across your entire site. MiServer Skins can override the server base class method Wrap to format HTML on its way to the browser after a MiPage has sent it to req.Return.

DemoServer.Wrap
    ∇ Wrap req;head;HTML
 ⍝ Wrap HTML body
      :Access Public Override
     
      HTML←'<head>',NL
      HTML,←req.Response.HTMLHead,NL ⍝ Overwrite with anything the page code set
      HTML,←'<title>Demo Server</title>',NL
      :If ~∨/'rel="stylesheet"'⍷req.Response.HTMLHead ⍝ Add stylesheet if there is none
          HTML,←'<link href="/Styles/style.css" rel="stylesheet" type="text/css">',NL
      :EndIf
      HTML,←'</head>',NL
     	
      HTML,←'<body>',req.Response.HTML,'</body>'
      HTML←'<HTML>',HTML,'</HTML>'
      req.Response.HTML←HTML
    ∇

[bookmark: _Toc304986476]4.4 Getting Tricky
MiPages can do much more than simply stick character vectors between the <body> tags of an HTML document. On top of being APL code, which can consume and manipulate data in ways only limited by your imagination, MiPages can communicate with the browser on the client end. 

We will get into the nuts and bolts of that interaction in a few chapters, right now we are going to get the quick and dirty answers for how to build MiPages that talk with browsers.

Note: You should familiarize yourself with the HTMLInput namespace. The MiPage below uses HTMLInput functions for communicating between the server and the browser.. Appendix I has a functional reference of the namespace

[bookmark: _Toc304986477]Reverse.dyalog
Since you are running MyMiSite, copy C:\MiServer\Demo/reverse.dyalog into your site root directory. Because MiServer dynamically loads the resource on each request, there is no need to restart the server to make the resource available. The file contains the Reverse class, which is derived from the MildPage base class. The class contains two methods, Render and DoAction. Render is a required public class that generates the page HTML and passes it to req.Return. DoAction handles the submission of the page form, which will be explained in a moment. The class has been copied in for your convenience below:
Reverse.dyalog
:Class Reverse : MildPage

:Include #.HTMLInput              ⍝ Useful functions for creating HTML pages

:Field Public Text←''             ⍝ Name of edit field
:Field Public Action←''           ⍝ All action buttons have this name

∇ Render req;html
      :Access Public

      DoAction                    ⍝ If a button was pressed, deal with it

      html←'<br>Enter Text: '
      html,←'Text'Edit Text       ⍝ An "Edit" called "Text" containing the Text
      html,←'<br><br>'
      html,←'Action'Submit'Reverse'   ⍝ A button named 'Action' with Caption 'Reverse'
      html,←'Action'Submit'Clear'     ⍝ ... another button named 'Action’

      html←req('post'Form)HTML      ⍝ Put a 'submit' form around it

      html,←'a href="/"'Enclose'Home' ⍝ A link back to the index page
     
      req.Return HTML
    ∇

    ∇ DoAction
      :Select Action
      :Case 'Clear' ⋄ Text←''
      :Case 'Reverse' ⋄ Text←⌽Text
      :EndSelect
    ∇
    
:EndClass

When this resource is requested, MiServer sends the following HTML to the browser:
Page Source: http://localhost:8080/reverse?Name=Beethoven
<HTML>
<head>
<title>Demo Server</title> 
<link href="/Styles/style.css" rel="stylesheet" type="text/css"> 
</head>
<body>
<form action="/reverse.dyalog" method="post" enctype="multipart/form-data">
<br>Enter Text: 
<input type=text size=10 id="Text" name="Text" value="Beethoven"> 
<br><br>
<input type="submit" name="Action" value="Reverse" > 
<input type="submit" name="Action" value="Clear" >
</form> 
<a href="/">Home</a> 
</body>
</HTML>

When rendered by a browser, the page looks like this:

[image: ]

Click on the reverse button, and it looks like this:

[image: ]

[bookmark: _Toc304986478]Getting Information from the Browser
If you enter text into the text field and click the ‘Reverse’ button, the value changes as we might expect it to. The text reverses. If you pay careful attention, you will notice that the page reloaded after you clicked the button. As you may have figured out from looking at the class, the value of the text type input element is passed to the Text field. Then, the Render method is called and those values change the way the HTML is constructed. 

Remember that HTMLInput contains functions that generate HTML, a number of which are associated with transferring data between the browser and the server. For all those that generate input elements, the name associated with the public field is the left argument, and the value 

'Text' Edit Text       

[bookmark: _Toc304986479]Forms: Quick and Dirty
A little more work is in order to get back your data back to the server. You will need to wrap your input elements in a form, which is described in detail in Chapter 6. Right now, know that input elements on a page must be contained by properly formatted <form> tags to be eligible to have their values sent to the server. 

HTMLInput.Form wraps HTML with those tags. The easiest method of dealing this need is simply to pass the variable that contains your HTML through HTMLInput.Form right before you pass it into req.Return. Use this syntax:

Html←req('post'Form)CharacterVectorOfYourHTML

Finally, you must trigger a new request that contains the form data, called a form submission. The aptly named ‘submit button’ is a basic way to do that. There are two different submit buttons on the example page, each generated with HTMLInput.Submit, which takes the name attribute as a left argument and the value attribute as the right argument. The value that is passed to the server during submission is the text on the button. Because only the value of the pressed submit button is sent to the server, it is a common practice to give each submit button the same name and use a :Select test to determine which was pressed.
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[bookmark: _Toc304986480]Getting Stylish
[bookmark: _Toc304986481]5.1 Styles
Up until now, we have been focused on your MiSite’s functionality, but a website’s presentation can affect its usefulness. You will notice that the HTML we have been writing says very little about the visual representation to be displayed the browser. The <br/> tag creates a line break, but how much space will that be? Moreover, why is the text displayed between the <body> tags a readable size, and not too small or large to be useful? Browsers use properties called ‘styles’ to define how to display HTML elements. Styles control the look of the content of every HTML element.

There are dozens of types of styles, including ones that affect:
· the look of text
· a page’s background
· the thickness of lines in tables 
· the way a text is processed by accessibility programs that read web pages to visually impaired users.

Styling your own document allows you to make content appear to a user the way you want it to be displayed.  Browsers have a set of default styles to render HTML content sensibly which allows documents that don’t define their own styles to be displayed in a generally readable fashion. However, making sure your website, your product, comes across in a recognizable and consistant way may be important to you. 

[bookmark: _Toc304986482]Style Basics
There are three main ways to exercise additional control over the look and feel of your website:
· Using the style attribute within a tag
· Inserting a “cascading style sheet” (CSS) within the <head> tags of an HTML page
· Linking an external CSS document to an HTML page

A style has two parts, a selector, which is a specification of the element you want to style, and one or more declarations, which are property-value pairs. Declarations use a colon to separate the properties and values and always end with a semi-colon.

A few examples of declarations:
· color: green; 
· text-align: right;
· text-decoration: underline; 

[bookmark: _Toc304986483]5.2 In-Line Styles
While not generally recommended, you can insert styles directly into a tag, via the ‘style’ attribute. This bypasses the need for a selector, as it will affect that tag, and its contents, alone.



Examples:	

      'style' 'color:red;' #.HTML.div 'This text will be red'
<div style="color:red;">This text will be red</div>

      'style' 'background-color:blue;' #.HTML.body 'The background within these body tags will be blue'
<body style="background-color:blue;">The background within these body tags will be blue</body>

The use of the in-line styling is frowned upon because it spreads styling over the page and does not have browser compatibility features.

[bookmark: _Toc304986484]5.3 Cascading Style Sheets
Cascading Style Sheets (CSS) are collections of styles that affect an entire page. Each declaration consists of a selector, followed by declarations contained by curly braces.

selector { property: value ; property: value; }

or

selector {
 property: value ;
 property: value; 
}

[bookmark: _Toc304986485]Selectors
CSS selectors reference element names or attributes, associating declarations with them. Styles can be applied to a specific element or a group of elements. A selector might reference every <h1> tag, every <h1> tag with the class attribute “underlined,” or the specific <h1> tag with the id attribute “headline.” Each different type of selector requires a particular syntax.

A few examples of selector syntaxes include:

· h1 {} – a tag selector selects every h1 tag.
· .underlined {} – a class selector selects any element with the attribute  class=“underlined” 
· #headlined {} – an id selector selects the page element with the attribute id= “headline” 

Each of these selectors can be combined with other selectors to pinpoint more specific elements.

For example:
· h1.note {}-  selects all <h1> tags that have the class “note.”

[bookmark: _Toc304986486]Associating CSS with a web page
There are two ways to associate a style sheet with your web page.
· Internal Style Sheets – Wrapping the entire style sheet within <style type=“text/css”></style> tags contained between a page’s <head></head> tags.
· External Style Sheets – Associating a style sheet contained in a separate file with your page by including a <link/> tag within the <head> tags. 

Adding internal style sheets to your page is more powerful and often more convenient than in-line styling. The method collects all the styles in one place and allows for multiple elements to be affected by the same style.

However, changing internal style sheets still means changing the code on the page level. This can get difficult to deal with as your website grows in size. 
Styles Formatted for the <head> tag
	<style type="text/css"> 	
	body { color: blue; }
	#Content { opacity:0.7; }
.center { text-align: center; }
	</style>
Example: An HTML page with CSS in the <head> tags, along with its browser representation.
<HTML>
<head>
<style type="text/css"> 	
body { background-color:lightgray; }
.big { font-size:200%; }
</style>
</head>
<body>
Styling documents is <span class="big">easy</span> and <span class="big">fun</span>.
</body>
</HTML>

[image: ]

[bookmark: _Toc304986487]External CSS Sheets
The industry standard is to keep the CSS in an external document linked to your page. External CSS files allow you to tweak CSS between page loads and even swap whole CSS files for others, which is great for accessibility concerns. Moreover, you can have a standard set of styles that affects your entire site, creating a consistent look and feel.

Simply gather your styles onto a text file with a .css extension. Then, associate that style sheet with your webpage using the <link> tag within the <head> tags. In the MiSite Demo, DemoServer.Wrap inserts the link below into the <head> tag structure of each MiPage.

<link href="/Styles/style.css" rel="stylesheet" type="text/css">

[bookmark: _Toc304986488]5.4 Inserting Styles
By default, the DemoServer template associates each MiPage with SiteRoot/Styles/style.css. This contains some basic formatting and browser compatibility styles. Feel free to edit that file to familiarize yourself with composing CSS and to develop your template.

 If you have a different style sheet you would like to associate with the site, you can do one of three things. 
· Replace style.css with another file of the same name.
· Change the base style sheet path in DemoServer.Wrap.
· Pass the file path of a new style sheet to the Style method of the request object (req.Style). This appends the link for a new style sheet with that path after the style.css link.

It is possible to associate multiple style sheets with a particular page. Note that if there are two different styles affecting the same property on the same element, the style that is furthest down the page will be the value rendered on page load.
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[bookmark: _Toc304986489]Under the Covers
[bookmark: _Toc304986490]6.1 Going Deeper
By this point in the manual, you should already know how to construct basic MiSites and MiPages. You can generate basic text pages or pages which communicate with the server. However, there are a number of behind the scenes factors that you should understand, specifically regarding server-browser communication. Also, this chapter will look at another MiServer resource, HTTPRequest, which is responsible for gathering the HTTP request, parsing it into useful chunks and generating the response.

[bookmark: _Toc304986491]6.2 Browser to Server Communication
[bookmark: _Toc304986492]GET and POST HTTP Requests
In general, browsers communicate with web servers by sending HTTP requests for resources. Data must be sent the same way, along with a request. To allow for different types of communication, there are a few different HTTP request structures. Currently, MiServer only supports GET and POST requests. 

· GET requests are the most common form of HTTP request. These are generated when an URL is entered into an address bar or a link is clicked. It is possible to encode data along with the URL as name-value pairs. As the data is visible in the URL bar, it is generally considered a less secure.
· POST requests are generally used by “forms, and contain name value-pairs in the body of the request. The data transfer happens in the background and is considered more secure.

[bookmark: _Toc304986493]Sending Data Encoded HTTP Requests
Encoded URL Requests
Percent encoded URLs, commonly called encoded URLs, contain data appended to the end of the resource path. A question mark is placed after the path separating is from a number of data pieces, often name-value pairs. Characters that have significance to the browser in the address field (“/” or “:” for example), are represented with a percent and a two digit hexadecimal reference to the UTF-8 character set. A space character, for example, is represented as %20. Each piece of data is separated by an “&”.

A Data Encoded URL:
http://localhost:8080?Name=Beethoven

An HTMLInput.Enclose function generating that page link:

     'a href="http://localhost:8080/reverse?Name=Beethoven"' HTMLInput.Enclose 'Reverse Page With Beethoven in the Edit Field'

<a href="http://localhost:8080/reverse?Name=Beethoven">Reverse Page With Beethoven in the Edit Field</a> 
 
[bookmark: _Toc304986494]Forms
A form is another means to send data back to the server. It is a section of an HTML document surrounded by <form> tags, containing input elements and a control to initiate the submission of an HTTP request containing the form data. 

The form tags specify the resource requested upon submission (action="/reverse.dyalog"), the type of HTTP request (method="post") and the content encoding type, which needs to be specifiend but you fortunately do not need to understand (enctype="multipart/form-data").

Form from Reverse.dyalog page source

<form action="/reverse.dyalog" method="post"    
     enctype="multipart/form-data">
<br>Enter Text: 
<input type=text size=10 id="Name" name="Name" value="Beethoven"> 
<br><br>
<input type="submit" name="Action" value="Reverse" > 
<input type="submit" name="Action" value="Clear" >
</form> 

Input objects
HTML has a number of tags that are recognized as data when within a form during submission. Each of these tags has the attributes name and value, which populate the data portion of the submission. Without input objects, there isn’t any data to send back.  Some of these elements are used to allow for users to submit data to the server. Others are used to store data between submissions. These include, but are not limited to, the <textarea> tag, the <select> tag and all variations of the <input> tag. 

While describing the complete functionality of these elements is outside the scope of this manual, we will make use of the text and submit types of the <input> tag. 

In the case of the <input> tag, the type attribute allows developers to select from a number of different formats of input controls, like text boxes, check boxes or buttons. When type="text" the <input> tag renders as an editable text box. When type="submit", the tag renders as a button.

A text box with the text “Beethoven”
      'Name' HTMLInput.Edit 'Beethoven'       
<input type=text size=10 id="Name" name="Name" value="Beethoven" > 

    [image: ]

A submit button with the text “Reverse”
      'Action' HTMLInput.Submit 'Reverse'       
<input type="submit" name="Action" value="Reverse"> 
 
    [image: ]


[bookmark: _Toc304986495]Submitting a Form
When clicked, a submit button is used to initiate a HTTP request described by the form tags. The browser then gathers the data of all elements that are ‘valid’ for submission. A valid submission has a control name, which is usually its name attribute, is paired with the current value of the element. These are gathered by the browser and sent via the HTTP request.

[bookmark: _Toc304986496]6.3 How MiServer Gets Client Data: HTTPRequest
When MiServer receives a resource request, it creates a new instance of the class HTTPRequest. This class parses the information contained in the request into a number of fields. It is then passed to the MiPage and is used to format the response. 

The data encoded in the request is stored in three possible locations, depending on the method of the HTTP request (remember that a reference to req is always passed to your Render function):

· req.Data - an N x 2array of the pairs sent within the body of a post request.
· reg.Arguments  - an N x 2array of the pairs encoded in the URL of a get request.
· Similarly named public fields - If a MiPage contains a public field with the same name as the first element of a name-value pair in req.Data or req.Arguments, that field will be set to the value of that pair. For example, reverse.dyalog produces an <input> tag with Text is its name attribute. When the server receives the value of that input tag, it sets reverse.dyalog’s public field Text to the element’s value.

HTTPRequest also constructs the HTTP response, a character vector of HTML is passed to req.Return at the end of the Render method, which is stored in req.Response.HTML.  A functional reference of the class is available in Appendix II.
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[bookmark: _Toc304986497]Customizing MiServer Behavior
[bookmark: _Toc304986498]7.1 Adapting MiServer to your Needs.
MiServer was originally designed as a server development environment. It is designed to make modifications easy. Storing the components of MiServer in .dyalog scripted files allows for the associated namespaces and classes to be edited within most text editors and for extensions to MiServer to be easily shared between users. Every piece of the MiServer is available for modification.

The avenues to change the behaviour of MiServer include:

· Editing the files that provide core MiServer functionality (MiServer.dyalog, HTTPRequest.dyalog, Boot.dyalog and MiPage.dyalog)
· Creating a site specific MiServer (index.dyalog)
· Associating additional .dyalog Extensions
· Adding third party plugins (JavaScript)

Editing the core files is self explanatory and not recommended right off the bat. You could make changes to the core components of MiServer, it more likely that you will want to use the MiServer core capacities with some site specific behaviour modifications. It would be a daunting proposition if you had to change the MiServer class itself every time you needed a behaviour change, and it would make the hosting of multiple MiSites with unique specifications difficult. A good deal of MiServer customization can be achieved without editing those files, so we are going to skip ahead.
[bookmark: _Toc304986499]7.2 MiServer Skins: Overriding MildServer Behaviour
The MildServer base class, which represents the core functionality of MiServer, has a number of overridable methods. By creating a class derived from this class, you can override one or all of these methods, which modify the behaviour of your server without touching the core code. Because this class changes the look and feel of the MiServer, we call it the MiServer Skin. 

The following sections are descriptions of the overridable methods, including the behaviours in the MiServer skin, ‘DemoServer’.

[bookmark: _Toc304986500]Session handling
If session handling is enabled, as described in Chapter 7.3, onSessionStart should perform any processing necessary when a new session is created. Similarly, onSessionEnd should perform any processing when a session ends. The session handler packaged with MiServer, SimpleSessions, calls these functions. 

DemoServer.onSessionStart and DemoServer.onSessionEnd produce log entries.

[bookmark: _Toc304986501]HTML Wrapping
Wrap takes the HTTP request object after it has passed through the MildPage and performs final processing on the response. Wrap can be used to implement a consistent look and feel across all pages of your MiSite.

While it is possible to set up a MiSite so that each page generates all HTML necessary to be rendered by a browser, it may be advantageous to use a template to give each page a similar look and feel. 

DemoServer.Wrap takes the page HTML which was passed to the request object at the end of the MiPage’s render method and wraps it with the body tags of an HTML template, as well as creates a common, but overridable <head> tag structure that associates all its MiPages with the default style sheet.

[bookmark: _Toc304986502]Error Handling
Error allows for custom, server error trapping behaviours. MiServer’s error trapping methods call Error.

DemoServer.Error logs errors and posts a server-side error message to the browser.
 
[bookmark: _Toc304986503]Logging
Log captures and organizes log messages. Several methods in the MiServer architecture pass their status messages to Log, which defaults to posting all messages to the session window. 

Log is passed both a character string message and an identifying value. There are four message levels:

1 - error/important  
2 - warning
4 - informational
8 - transaction (GET/POST)

DemoServer also posts its messages to the session, but has a control that determines what levels will be displayed. Server.xml contains a parameter called LogMessageLevel, which is either set to 0 for no messages, ¯1 for all messages, or the sum of all the message levels to be displayed.

[bookmark: _Toc304986504]Cleanup
MiServer.Cleanup is called in the MiServer class destructor. Depending on the functionality of your website, there may be operations you need to perform as the server shuts down, such as untying files, disengaging from a database or even shutting down programs that were turned on to assist the server.

[bookmark: _Toc304986505]A MiServer Skin: DemoServer
Below is the example server included in SeverRoot/Demo/Code. Notice that it does not override MiServer.Error, deferring to the behaviour in the base class.

*********DemoServer.dyalog************

[bookmark: _Toc304986506]7.2 Session Handling
There is no intrinsic way for a server to recognize the origin of any given HTTP request. In this ‘stateless’ environment, a server treats each request as if it came from a unique client. 

Since there is no inherent marker, information must be imbedded in requests and responses that allow for web server extensions to recognize patterns in requests and identify users. These patterns, called sessions, provide a context for data to persist over multiple page loads. Sessions are ideal for sites that require users to identify themselves with a name and password or that have information that must be available during an entire visit, like a shopping cart.

[bookmark: _Toc304986507]Cookies
MiServer includes a basic session handling extension called SimpleSessions. This basic session handler uses a file called a ‘cookie’ to identify a unique session. A cookie is a text file a browser is instructed to make in the ‘Cookies’ header of the HTTP request. The file has four aspects set at this time:
· The name of the cookie
· The value of the cookie
· Which site and site paths the cookie will be sent with
· The amount of time that the file will be allowed to persist, after which it will be deleted

SimpleSessions checks to see if the HTTP request contains a cookie named ‘Session.’ If does not, it commands the browser to create one and with randomly generates an”id” that is associated with a new session. This session will be recognized until it times out (by default, after 10 minutes).

If the extension finds a ‘Session’ cookie, it compares the cookie’s value to the list of values associate with sessions which have not yet timed out. If it finds a match, session’s timeout clock is reset and the session data is copied to the req.Session field. 

Using Cookies in Your MiPages
Cookies can also be used to maintain a user’s status after the MildServer has been shut down, which is why they are often used for tracking user behaviour. Saving information to a cookie can persist information past a page load or even a server restart. 

The request object contains functions that edit the response to include instructions for the browser to create, SetCookie, or delete cookies, as well as a function that returns the Maintaining additional types of state within your MiSite
· req.SetCookie – Adds a command to the HTTP request for the browser to set the name, value and life of a cookie
· req.GetCookie – returns the value of a cookie
· req.DelCookie – tells the browser to delete a cookie by name

[bookmark: _Toc304986508]In-Session Data storage
You can also save data into the session itself by defining a variable in the req.Session.State namespace. Session.State is persisted between requests of the same session using the mechanism described above. However, once the session ends, this data will be lost. 

req.Session.State.ProductNumbers← '1023' '0012' '3104'

[bookmark: _Toc304986509]Access Control and Authentication

SimpleAuth.dyalog is a simple access control extension which can restrict access to site resources based on user credentials.  The configuration file Access.xml can be found in the SiteRoot\Config\ directory. Each Folder element contains a path element and a group element. The path determines the path of the directory being restricted. The Groups element is a comma separated list of all the user groups allowed access to that directory.  “**” is the wildcard for either element.
A Sample Access.xml

<Access>
   <Folder>
      <Path>/Admin</Path>
      <Groups>admin</Groups>
   </Folder>
   <Folder>
      <Path>/LocationOfTheFellowship</Path>
      <Groups>admin, fellowship</Groups>
   </Folder>
  <Folder>
       <Path>/Mordor</Path>
      <Groups>admin, management, ringbearer</Groups>
   <Folder>
      <Path>**</Path>
      <Groups>**</Groups>
   </Folder>
</Access>

When a browser requests a resource from  a restricted directory, the client is prompted to enter a username and password. If the credentials match a user defined in the configuration file, SiteRoot\Config\Users.xml, those user’s credentials are added to the session. Each user is associated with one or more groups in their Groups elements. If the user is associated with one of the groups the associated with the directory, the user is given access. Otherwise, an error page alerts them that they do not have access. 

A Sample Users.xml

<Users>
   <User>
      <ID>gandalf</ID>
      <Pass>youshallnotguessmypassword</Pass>
      <Groups>admin, fellowship</Groups>
   </User>
   <User>
      <ID>fbaggins</ID>
      <Pass>goonwithoutmesam</Pass>
      <Groups>ringbearer, fellowship</Groups>
   </User>
      <ID>gimli</ID>
      <Pass>shortiscute</Pass>
      <Group>fellowship</Group>
   </User>
   <User>
      <ID>Gollum</ID>
      <Pass>precious</Pass>
      <Group>ringbearer</Group>
   </User>	
   <User>
      <ID>sauron</ID>
    	 <Pass>allseeingeye</Pass>
      <Group>management</Group>
   </User>
</Users>
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[bookmark: _Toc304986510]Using Relational Databases on a MiSite
[bookmark: _Toc304986511]8.1 Using External Data Sources
A data enabled page is one that accesses and presents data. A webpage might display today’s weather forecast or show you the history of the value of holdings in your retirement portfolio. A typical data enabled page will obtain data from some source, possibly manipulate it, format it using HTML and present it to the client.

This data can come from a variety of sources including:
· Text files
· Dyalog Component Files
· Relational Databases
· CSV files
· Excel Spreadsheets
[bookmark: _Toc304986512]8.2 Relational Databases
A data driven website needs someplace to store its data. Often, this is in a relational database, such as MySQL, Microsoft Access, IBM DB2, Microsoft SQL Server or Oracle.

[bookmark: _Toc304986513]Interacting with Relational Databases
Open DataBase Connectivity (ODBC) is a cross platform, language independent interface and is the most widely used standard through which programs interacts with databases. SQAPL, which is a standard component of Dyalog APL under Windows and is available as an option extra on other platforms, is Dyalog’s ODBC interface which provides access from Dyalog APL to any ODBC compliant database. You can incorporate SQAPL in your MiPages to interact with databases. 

MiServer contains SQL, a namespace of utility functions that simplifies SQAPL integration.

[bookmark: _Toc304986514]Setting up Datasources.xml
SQL requires an xml configuration file called Datasource.xml, contained in the Siteroot/Config/ directory. The file contains 0 or more datasource elements which are information used by SQL to identify and connect to ODBC compliant databases.

Each datasource element can be defined by five possible elements:
· Name – The name used within MiServer to refer the datasource.
· DriverOptions – SQL driver options
· DSN – Database Source Name
· User – User name for authentication in the database
· Pwd  - Password for authentication in the database, although we do not recommend keeping your password in a text file on your computer

In order to use SQL, you need to define one or more datasource. The Name element is required, along with a way to locate the database. The location information can kept either as a Database Source Name (DSN) as defined in your computer’s datasource administrator in the DSN element, or you can specify how connect to the database if it is a DSN-less connection in the DriverOptions Element. If these concepts are unfamiliar to you, please read the SQAPL manual, which you can find at http://docs.dyalog.com. The datasources.xml file included with the Demo server can be found below, including two properly defined datasources:
Datasources.xml

<Datasources>
  <Datasource>
    <Name>ZipCodes</Name>
    <DriverOptions>DRIVER={Microsoft Access Driver (*.mdb, *.accdb)}; DBQ=c:\MiServer\dyalog2011\data\zipcodes.accdb;ExtendedAnsiSQL=1;MaxBufferSize=2048;</DriverOptions>
  </Datasource>
  <Datasource>
    <Name>SQRTest</Name>
    <DSN>SQRTest</DSN>
  </Datasource>
</Datasources>

When Boot initializes MiServer, looks for data sources defined in Datasources.xml. If there are, and SQA is not copied into MiServer, it copies in and initializes SQAPL.

[bookmark: _Toc304986515]SQL.ConnectTo and SQL.Do 
Once a datasource reference has been established, the SQL namespace makes use of them to bring data to your page. 

If you plan to use SQAPL directly and use Datasources.xml, SQL.ConnectTo will initiate the database connection, taking the Name element of a datasource element as its right argument. After the connection has been established, you’re free to use SQAPL as you please.

SQL.Do is a cover function for SQAPL.Do, which executes SQAPL queries. SQL.Do connects to a database named in the configuration file, performs a query and then closes the connection. When Do queries for data, it returns a namespace, which contains the variables Columns, Data and Return Code. Columns are the column names of the query’s result. Data is the data returned as a result of executing the query. The variable ReturnCode will be 0 if the query was successful, all other results being error numbers described in the SQAPL manual.

Refer to the SQL namespace functional reference in Appendix I for syntax.

A sample page using these commands is included below:

:Class SQLdemo : MildPage

    :Include #.HTMLInput
    :Include #.SQL

    :field Public state←''
    :field States

    ∇ Render req;HTML;form;data;chunk
     :Access Public
      HTML←'h2'Enclose'SQAPL/JQuery Demonstration'
      :If 0∊⍴States
          HTML,←BRA'h3'Enclose'ZipCodes database is not available!  Sorry...'
      :Else
          chunk←BRA'h3'Enclose'Zip Codes by State'
          form←'Select State: ','state'DropDown States state'autofocus="autofocus" onChange="this.form.submit()"'
          chunk,←'action="#"'('post'Form)form
          :If state≢''
              data←Do'ZipCodes' 'select * from ZipCodes where StateAbbr = :a<C2: order by Zipcode' state
              :If 0=data.ReturnCode
                  chunk,←req #.JQ.TableSorter'tab1'(data.Columns⍪data.Data)'' 1
              :Else
                  chunk←'h3'Enclose'Database query failed? RC = ',⍕data.ReturnCode
              :EndIf
          :EndIf
          HTML,←chunk
      :EndIf
      req.Return HTML
    ∇

    ∇ Init;data
      :Implements constructor :base
      :Access public
      States←''
      data←SuperDo'ZipCodes' 'select * from States order by StateName'
      :If data.ReturnCode=0
          States←'' ''⍪data.Data
      :EndIf
    ∇

:EndClass


[bookmark: _Toc304986516]8.2 Displaying Data in your MiPage
Using data received from the browser is simple, as long as you have given a public field the same name as an input elements that are ‘valid’ for submission. These character vectors can simply be added to your HTML vector:

HTML←’Here’s the data from the “text” field: ’,text

Data in accessed from other APL processes may not produce such clean results.There are a few utilities packaged with MiServer that take APL data and turn it into HTML. 

[bookmark: _Toc304986517]Displaying Table Data Using HTMLInput.Table
Let’s face it. A lot of data is rectangular. HTMLInput.Table is used to display a simple matrix of data by enclosing the data within an HTML table tag structure. Because this is done at each page load, it is useful for displaying dynamic data. The first element of the right argument passed to HTMLInput.Table is a matrix of no greater than depth 2.

:Class tablesorter : MildPage

    :Include #.HTMLInput

    ∇ Render req;tabledata;html
      :Access Public
      tabledata←4 2⍴'Names' 'Ages' 'Frodo' 33 'Gollum' 589 'Gandalf' '~2000'
      html←Table tabledata ''  ''  '' 1
       req.Return html
    ∇

:EndClass

[bookmark: _Toc304986518]JQ.Tablesorter
If you are dealing with large chunks of data, you may benefit from sorting and pagination. The JQ namespace contains page elements backed up by client side scripting, as described in the next chapter. JQ.TableSorter is described in detail in the next chapter and in Appendix I.

C H A P T E R   9
Improving your UI with JQuery
[bookmark: _Toc304986522]9.1 JQuery and JQueryUI
JavaScript is a popular client side scripting language that is compatible with most browsers. It can create flashy user experiences with widgets, effects and animations and it can support server side business logic by processing or validate data before it is sent back in a request.  JQuery is a comprehensive, open source JavaScript library that provides extensive control over the document object model (DOM). The DOM is the tree-like representation of the HTML elements in a web page. 

JQuery allows you to search within and manipulate the content of the document object model. For more information about leaning JQuery, visit http://www.jquery.com.

JQueryUI is a library which contains a number of plugins based on JQuery. It is a collection of widgets and other tools used to affect the user interface of a webpage. JQueryUI makes it easy to develop sophisticated users interaction. It is a really powerful library and frankly it’s really cool. If you have a chance, check out http://www.jqueryui.com.
[bookmark: _Toc304986523]9.2 The JQ namespace

We have provided you with utility functions in the JQ namespace to make it easy to integrate several JQueryUI widgets into your MiPages. These include: 

JQ.Accordion
This widget has multiple pages that you can click through.


content←2⍴⊂''
content[1]←⊂'Here is the First Page'
content[2]←⊂'Here is the Second Page'
headers←'The First Page' 'The Second Page'
html←(#.HTML.h2'Accordion'),'style' 'width:200px; height:200px;'#.HTML.div req #.JQ.Accordion'myaccordion' headers content 'fillSpace: true'







[image: ] [image: ]
JQ.TableSorter
This widget is a table that is sortable by column with optional pagination.

data←4 2⍴'Names' 'Ages' 'Frodo' 33 'Gollum' 589 'Gandalf' '2000'
html←req #.JQ.TableSorter'mytable'(data'' '' '' 1)''

[image: ]

JQ.DatePicker
This widget is a text input box that when selected pops up a calendar. 

html←(#.HTML.h2'DatePicker')
html,←BRA'Using Multiple Months and yyyy-mm-dd format'
html,←2 BRA'Date: ',req #.JQ.DatePicker'mydate1'('' 20)'numberOfMonths: 3,showButtonPanel: true,dateFormat: "yy-mm-dd"'
html,←BRA'Using Month and Year Menus and DD, dd MM yyyy format'
html,←'Date: ',req #.JQ.DatePicker'mydate2'('' 30)'changeMonth: true,changeYear: true,dateFormat: "DD, d MM yy"'

[image: ]

[image: ]

	
A P P E N D I X   I
[bookmark: _Toc304986526]Utilities Functional References
MiServer includes a number of utility files, found in ServerRoot\Utils\, designed to assist you MiSite. You are encouraged to look through these files and use the utility functions provided in the generation of your own functions

Currently, there are four main utility namespaces:
· HTML – Functions that generate simple HTML tags.
· HTMLInput – Functions that make more 
· JQ – Functions that make JQueryUI widgets
· SQL –Functions that make interact with SQAPL

[bookmark: _Toc304986527]HTML Namespace Functional Reference
Background
This namespace contains functions that generate HTML. 

[bookmark: _Toc304986528] Functions
HTML.*                                                                    Insert HTML Tags
        html←{attrs} HTML.fn innerhtml

	attrs
	The optional left argument contains any additional attributes for the HTML tags. These can be passed as either an N × 2 matrix of attribute-value pairs, a character vector or as a vector of vectors where each element contains two character vectors representing the name and value and a vector of vectors of depth 2 of alternating name values.

	fn
	The function which produces a tag of the same name.
	a
	div
	h1
	head
	ul
	p

	b
	font
	h2
	html
	li
	pre

	body
	form
	h3
	input
	link
	span


 The currently implemented functions are:


	attributes
	Any additional attributes to be placed in the opening tag. (default is '') 












[bookmark: _Toc304986529]HTMLInput Namespace Functional Reference

Background
The HTMLInput namespace contains a number of more complex functions that create HTML. Originally, this namespace was designed to make working with the dynamic functionality of the <input> tag more APL-like, but has since expanded to include a number of other functions.

[bookmark: _Toc304986530]Functions

HTMLInput.APLToHT ML                           Insert <br/> Tag After HTML
    html←APLToHTML APL

	html
	HTML to insert break tags after.



HTMLInput.BRA                                          Insert <br/> Tag After HTML
    html←{n}BRA html

	n
	the number of tags to insert. (default is1)

	html
	HTML to insert break tags after.



HTMLInput.BR                                         Insert <br/> Tag Before HTML
    html←{n}BR html

	n
	the number of break tags to insert (default is1)

	html
	HTML to insert break tags before.



HTMLInput.Button                                                              HTML Button
r←name Button value {attributes}

	name
	The value of the name attribute.

	value
	The value of the value attribute, displayed as text on the button.

	attributes
	Any additional attributes to be placed in the tag. (default is '')


HTMLInput.Checkbox	HTML Checkbox
HTMLInput.Checkbox wraps a character vector with <input> tags with the type="checkbox" attribute. This renders as a square, selectable box with text defined by the name attribute to its right.


r←name HTMLInput.Checkbox checked {attributes}

	name
	The value of the name and id attributes.

	checked
	This sets the checked status of the checkbox (default 0).   If 1, the checkbox is checked.

	attributes
	Any additional attributes to be placed in the opening tag. (default is '') 


HTMLInput.DropDown                                      HTML Dropdown Menu
r←name DropDown items {value} {attributes} {sort} 

	name
	The value of the name and id attributes.

	items
	An n element vector of the items to be selected from in the dropdown menu.  ('Item1' 'Item2')

	value
	A the value to be displayed when the dropdown box is generated. (default 'Item1')

	attributes
	Any additional attributes to be placed in the opening tag. (default is '')

	sort
	1 or 0 (the default) 
 If 1, and value matches one element of the items, will place the selected tag within the item and move it to the front of the list.



HTMLInput.Edit                                                              HTML Text Field                
r←name Edit value {size} {attributes}

	name
	the value of the name and id attributes

	value
	the text to be displayed in the element (Default is '')

	size
	the maximum character count of the text box (default is 10⌈⍴size)

	attributes
	Any additional attributes to be placed in the opening tag. (default is '')



HTMLInput.Enclose                                                Wrap HTML with Tag
r←attribute Enclose innerHTML
 
	attribute
	The tag that will be enclosing the HTML. This can include any number of additional attributes.

	innerHTML
	A character vector



HTMLInput.File                                                HTML File Upload Button
r←name File size {value} {attributes}
	
	name
	The value of the name attribute and the id attribute.

	size
	The maximum character count of the file box

	value
	A character string that will be displayed in the text field.

	attributes
	Any additional attributes to be placed in the opening tag. (default is '')



Note: This tag is not evenly supported by all browsers.
HTMLInput.Form	   Insert HTML Form    
r←{atts} (method Form) innerHTML

	method
	The type of HTTP request to be sent. A form can only use the GET or POST HTTP request types.

	atts
	Any additional attributes to be placed in the opening tag. (default is '')

	innerHTML
	A character string of the HTML to be wrapped by the tag



Discussion: 
When using the “POST” method, HTMLInput.Form adds ‘enctype=“multipart/form-data”’ to the leading form tag.

HTMLInput.Hidden                                                    HTML Hidden Field
r←name Hidden {value} {attributes}	

	name
	The value of the name and id attributes.

	value
	The value of the value attribute.

	attributes
	Any additional attributes to be placed in the opening tag. (default is '')



HTMLInput.JS	Insert JavaScript
r←JS script

	script
	 A character vector of JavaScript. 



HTMLInput.MultiEdit                               HTML Multiple Row Text Field
r←name MultiEdit  {rows cols} {values} {attributes}

	name
	The value of the name and id attributes.

	rows
	Rows of text field, in characters. (default is 10)

	cols
	Columns of text field, in characters. (default is 40)

	value
	Text displayed in the text field. (default is '')

	attributes
	Any additional attributes to be placed in the tag. (default is '')


HTMLInput.Password                                         HTML Password Field
r←name Password {size} {value} {attributes}	

	name
	The value of the name and id attributes.

	size
	The maximum character count of the password box

	value
	The text value of the password box (default is '')

	attributes
	Any additional attributes to be placed in the opening tag. (default is '')


HTMLInput.RadioButton                                         HTML Radio Button
r←name RadioButton {checked }{value} {attributes}

	name
	The value of the name and id attributes.

	checked
	0, the default, or 1
If 1, the button is checked.

	value
	The value of the value attribute

	attributes
	Any additional attributes to be placed in the opening tag. (default is '')



Note:
Only one radio button can be selected by the user in each form.  However, if multiple radio buttons are created with their checked attribute set to one and the user does not make a radio button selection before form submission, multiple radio buttons will pass a checked value.

HTMLInput.SP                                             Insert Spaces Before HTML
    html←{n}SP html

	n
	the number of spaces to insert (default is1)

	html
	HTML to insert spaces before.


HTMLInput.Submit                                                 HTML Submit Button
r←name Submit  value {attributes}

	name
	The value of the name attribute.

	value
	The value of the value attribute, displayed as text on the button.  Determines button size. (default is 'Push Me!')

	attributes
	Any additional attributes to be placed in the tag. (default is '')


HTMLInput.Table                                      Enclose Array in HTML Table
r←{name}Table  {data} {table_atts }{cell_attribs} {header_attribs} {header_rows}	

	name
	The value of the name and id attributes.

	data
	A matrix with no more than a depth of 2. (default is ‘data’)

	table_atts
	Attributes to be placed in the leading ‘table’ tag

	cell_attribs

	Attributes to be placed in the cells of the table outside of the header. (default is '')

	header_attribs
	Attributes to be placed in the table’s header rows. (default is '')

	header_rows
	Number of rows that will be marked as the table’s header. (default is ⍬)



HTMLInput.TextToHTML                               Preserve Text Formatting
   html←TextToHTML html

	html
	character vector of HTML























[bookmark: _Toc304986531]JQ Namespace Functional Reference
Background
JQ is a namespace designed to simplify JQuery integration into your MiPages. It contains cover functions that add JQueryUI widgets to your MiPages. JQ has implemented only a few of the vast menagerie of JQuery plugins and widgets, but can be considered an example of how to integrate JQuery functionality in an APL envornment.

[bookmark: _Toc304986532]Path Variables
For a JQuery widget to be properly rendered, the page it is on must contain:
1) <script> tags that associate it to 
the JQuery library
the JQueryUI library
and any necessary plugins
2) <link> tags that associate the appropriate cascading style sheets. These links tell the browser where to find the additional files that need to be loaded and generate HTTP requests for those resources.

The resources listed below are all those necessary to support the cover functions in the JQ namespace. If you additionally develop the namespace, you may need to add more.

	Field
	Value
	Description

	JQuery
	'src="/Scripts/jquery-1.6.2.min.js"'                
	JQuery JavaScript

	JQueryUIcss
	'/Styles/redmond/jquery-ui-1.8.16.custom.css'  
	JQuery UI styles

	JQueryUI 
	'src="/Scripts/jquery-ui-1.8.16.custom.min.js"'   
	JQuery UI JavaScript

	JQueryTS 
	'src="/Scripts/jquery.tablesorter.min.js" '   
	TableSorter plugin javascript

	JQueryTScss
	'/Styles/blue/style.css'                       
	TableSorter plugin styles

	JQueryTSPager
	'src="/Scripts/jquery.tablesorter.pager.js"'
	Pager plugin JavaScript

	JQueryDims
	'src="/Scripts/jquery.dimensions.min.js"
	JQuery Dimensions plugin JavaScript



[bookmark: _Toc304986533]Functions
JQ.insertClass          Insert a Class Among HTML Attributes
r←class insertClass attrs

	class
	The name of the class to be inserted.

	attrs
	A character vector of HTML attributes (default is 



Discussion:
JQ.insertClass inserts a class attribute into a list of attributes. If the class attribute already exists among that list, the class passed on the left will be inserted into that attribute in addition to others.
JQ.IncludeJQuery                            Insert JQuery Script Link
JQ.IncludeJQuery creates a <link> tag that references the JQuery file within the page <head> tags, if one does not already exist.

r←IncludeJQuery req

	req
	The HTTPRequest object.



JQ.IncludeJQueryUI                     Insert JQueryUI Script Link
JQ.IncludeJQueryUI creates a <script> tag that references the JQuery-UI file within the <head> tags, if one does not already exist.

r←IncludeJQueryUI req

	req
	The HTTPRequest object.



JQ.JQueryfn                                                 builds JQuery call
r←JQueryfn {JQueryFunctionName HTMLid JQueryFunctionPars JQueryFunctionChain}

	JQueryFunctionName
	The name of the JQuery function. (default is '')

	HTMLid
	The id of the HTML element affected by the JQuery widget. (default is '')

	JQueryFunctionPars
	 The parameters passed to the JQuery function. (default is '')

	JQueryFunctionChain
	The code for any chained functions. (default is '')




[bookmark: _Toc304986534]Cover Functions
The following functions generate calls for JQuery widgets. Each function makes sure the appropriate JQuery files are linked to in the <head> tags.

JQ.DatePicker                                JQuery DatePicker Widget
r←{req} DatePicker (id editpars jqpars)

	req
	The HTTPRequest object.

	id
	The id for the Datapicker.

	editpars
	The Parameters for the text field (see HTMLInput.Edit)

	jqpars
	The Datepicker JQuery parameters.




JQ.TableSorter                             JQuery TableSorter Widget
   r←{req}TableSorter {id tablepars jqpars pager}

	req
	The HTTPRequest object.

	id
	The id attribute of the TableSorter (default is '')

	tablepars
	The parameters for the table (see HTMLInput.Table) (default is ⍬)

	jqpars
	The TableSorter JQuery parameters (default is '')

	pager
	0, the default, or 1 
The use of the Pager plugin, which adds pagination to the table.



JQ.Accordion                                  JQuery Accordion Widget
r←{req} Accordion (id hdrs content jqpars)

	req
	The HTTPRequest object

	id
	The id attribute for the Accordian.

	jqpars
	The Accordion JQuery parameters.

	hdrs
	An n-element array of header names for each Accordion folder. 

	content
	An n-element array of content for each accordion folder.


JQ.Tabs                                                      JQuery Tab Widget
r←{req} Tabs (id tabnames content jqpars)

	req
	The HTTPRequest object.

	id
	The id attribute of the tabs.

	content
	An n x 2 matrix of [;1] tab titles [;2] tab contents.

	jqpars
	The Tabs JQuery parameters.



JQ.Dialog                                               JQuery Dialog Widget
r←{req} Dialog (id title body jqpars)

	req
	The HTTPRequest object.

	id
	The id attribute of the Dialog.

	jqpars
	The Dialog JQuery parameters.

	title
	The title for the Dialog window.

	innerHTML
	The HTML displayed  in the body of the Dialog window.




What’s Needed to Use JQuery?
To use JQuery on a MiPage, you must include a link to the JQuery JavaScript file, which we have included in the ServerRoot\Plugins\JS\ folder. We have included the most recent version of JQuery, 1.6.2. We recommend that you periodically check for updates on the JQuery website. You should copy this file into the SiteRoot/Scripts folder of your MiSite. You will need to include a <script> tag linking to the JavaScript in the <head> tag of your MiPage.

<script type="text/javascript" src="YourJQueryLibrary.js">
</script>

To use JQueryUI, you also need a link to the JQueryUI JavaScript file and a link to a JQueryUI CSS theme. If you decide to include plugins or widgets that are not implemented by JQueryUI, you will also need links to whatever files they require.

[bookmark: _Toc304986535]SQL Namespace Functional Reference
Background
SQL is a namespace designed to simply integrate SQAPL, Dyalog’s ODBC compliant database interaction tool, with your MiSite. The following functions require a properly formatted Datasources.xml file, as described in Chapter 8.

[bookmark: _Toc304986536]Functions
SQL.ConnectTo                                               Connect to a Datasource
r←ConnectTo database

	database
	The name the datasource, from the name element of one of the datasources described in Datasources.xml



SQL.Do                                          Connect to and Query a Datasource
r←SQUAPLDo database sqlstmt {bindvars}

	database
	The name the datasource, from the name element of one of the datasources described in Datasources.xml.

	sqlstmt
	The SQL statement to be executed

	bindvars
	Data for bind variables, if any.



Discussion:
SQL.Do returns a namespace containing two variables:

	ReturnCode
	0 if successful. An error code reference can be found in the SQAPL manual.

	Data
	The matrix of data returned

	Columns
	A vector of column names



Note: SQL.Do, unlike SQA.Do, always fetches all of the data and has no block mode.
SQL.CloseAll                                         Close All SQAPL Connections
r←SQL.CloseAll
A P P E N D I X   II
[bookmark: _Toc304986537]HTTPRequest Reference

[bookmark: _Toc304986538]The Request Object
An instance of the HTTPRequest class, req, is generated at each HTTP request. The request object has a number of fields that contain useful data populated from the request and a number of methods that display and manipulate that data as well as to generate the HTTP response.

[bookmark: _Toc304986539]Parsing the HTTP Request

Each HTTP request is parsed and distributed among the following fields: 

	Input
	The request line of the HTTP request. This includes the type of request, the resource to be requested and the version of the HTTP being used to format the request.

	Headers
	All the headers of the HTTP request

	Command
	The type of request (post or get)

	Page
	The name of the requested resource

	Arguments
	Any name-value pairs passed within the URL are stored in this field as a 2 × N matrix of name-value pairs

	PeerCert
	When using secure communications, the certificate presented by the client

	Data
	When a post request is encoded with data, the data gets stored in this field as a 2 × N matrix of name-value pairs

	Cookies
	A list of the cookies being used by the server



[bookmark: _Toc304986540]Namespaces
HTTPRequest.Session                                         Persists Session Data
Notable Content
	State
	A namespace that persists between page loads in a session. Store session specific variables here.



HTTPRequest.Server                                          Stores Server Settings
Notable Content
	Config
	A namespace of variables generated from the elements of SiteRoot/Config/server.xml.



HTTPRequest.Response                             Stores the HTTP Response 
Notable Content
	HTML
	A variable that contains the all HTML, save that found in the <head> tag structure.

	HTMLHead
	A variable containing the HTML between the <head> tags.

	Status
	The HTTP status code to be returned to the browser.

	StatusText
	The HTTP status message to be returned to the browser.




[bookmark: _Toc304986541]Functions
HTTPRequest.Return                           Passes MiPage HTML to Server
r←{hdrs} Return html

	hdrs
	A character vector to be added between the <head> tags. This is concatenated to Response.Headers

	html
	The character vector of HTML








HTTPRequest.GetCookie                                    Retrieve Cookie Value
r←SetCookie name

	name
	The name of the cookie.



HTTPRequest.SetCookie                                                     Set a Cookie
r←SetCookie {name value path keep}

	name
	The name of the cookie. (default is 'CookieName') 

	value
	The value that will be passed with the cookie. (default is 'CookieValue')  

	path
	The path with which the cookie will be associated. (default is '/')  



HTTPRequest.DelCookie                                               Delete A Cookie
r←DelCookie ctl

	name
	The name of the cookie. (default is 'CookieName')  

	path
	The path with which the cookie is associated. (default is '/')



HTTPRequest.Title                                                        Add a Page Title
r←Title x

	x
	The name to be displayed at the top of the browser.



HTTPRequest.Script                                  Insert Script in <head> Tags
r←{tags} Script x

	tags
	The Attributes of the opening tag. If a type attribute is not included in the list of tags, 'type="text/javascript"' is inserted.

	x
	The character vector of the script.




HTTPRequest.JSPlugIn                                 Insert JQuery Plugin Link
r←JSPlugIn file

	file
	The character vector file path of a JQuery plugin



HTTPRequest.Style                                                         Insert CSS Link 
r←Style file

	file
	The file path of a cascading style sheet





A P P E N D I X   IV
[bookmark: _Toc304986542]The Future of MiServer
[bookmark: _Toc304986543]The MiServer Project
The MiServer Project is an open source project to promote the development of MiServer and serve as a community building exercise for the APL community. We hope that it becomes a focal point for the considerable talents we see every day among our fellow APLers. 

We want people to use, talk about, modify, experiment with, and extend MiServer.

There will be two avenues for this:
· The MiServer page at APLWiki at http://www.APLWiki.com/MiServer will be a repository for community contributed content, as well as where we will distribute the ‘official’ release of MiServer
· We will also publish MiServer on the Dyalog Library

We are excited to see what we can build together.

[bookmark: _Toc304986544]Directions for Development
We are committed to working with the APL community to extend MiServer and will continue to develop it on our own. Currently, there are a number of things on our plate.

Making MiServer easier to deploy and administer:
· Being able to run as a service, either as a Windows Service, or a daemon under *nix operating systems
· Remote management and configuration, such as using a second TCP/IP as a separate path for administration
· Extending the usage and error logging capabilities of MiServer
 
Functionality features visible to the developer:
· Continue to enhance JQuery support
· Add cover functions for more widgets and plug-ins
· Client side form validation
· Provide a means to return data manipulated by JQuery back to the server
· Use XMLHTTP requests to provide AJAX-like functionality
· Extend Datasources.xml to accommodate other types in addition to ODBC
· Implement Digest Access Authentication for better security than Basic Authentication
 
Improve Performance:
· Look at other content encoding schemes, gzip being the most likely
· Profile MiServer performance and address hot spots
· Analyze the trade-off between compression and transmission.  For small requests, the time to compress may exceed the time to transmit
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