The tool of thought for expert programming

Dyalog™ for Windows

SAWS ™ User Guide

*Stand-Alone Web Service Framework

Version 1.4

Dyalog Limited

Minchens Court
Minchens Lane
Bramley
Hampshire
RG26 5BH
United Kingdom

_ National (01256) 830030

" International +44 1256 830030
fax: +44 (0)1256 830031

email: support@dyalog.com
http://www.dyalog.com

tel

Dyalog is a trademark of Dyalog Limited

Copyright ©1982-2011 by Dyalog Limited.
All rights reserved.

Version 1.4, Developed for Conga v2.1

First Edition March 2011

No part of this publication may be reproduced in any form by any means without the
prior written permission of Dyalog Limited.

Dyalog Limited makes no representations or warranties with respect to the contents
hereof, and specifically disclaims any implied warranties of merchantability or

fitness for any particular purpose. Dyalog Limited reserves the right to revise this
publication without notification.

TRADEMARKS:

Unix is a trademark of X/Open Ltd.

Linux is a trademark of Linus Torvalds.

Windows is a trademark of Microsoft Corporation.
Intel and Core are trademarks of Intel Corporation

All other trademarks and copyrights are acknowledged.

Contents

WWHAT IS SAWWS? Lottt ettt ettt ettt st st e st e b e bt e s be e s bt e sabeesabeesateesateebeeebaesabeesabeesaseesabeesases aeenbeeen 1
BOCKGIOUNG ...ttt ettt et ettt sttt et e st e st e st e s ste e st enate e seseanane 1
[[Ld oo [V ot [¢ BT U SRPP USRI 1
TESEING SAWVS ...ttt ettt ettt ettt et e e e e e e e e e e s e e e e e aaaaaes 3
WED SEIVICES VI .NET ...ttt e ettt e e e e ettt e e e e e ettt aa s e e st stssaaaaeeesasssasaaaseeaas 3
A BRIEF WEB SERVICE PRIMER .ttttiiiiieieitiiiiites ettt ettt ee et et e e e e et e e e e e ee s e sese s e s e sesesesesssessssssssesesssssen s nsnsnsnsnnnssnssnnns 4
T Lo Ll e I =] IR Y =T 4 ol =2 OSSP 4
SOAP, WSDL, and many OtREr ACrONYIMSccc.vveeeeeeieeecieeesseeaeseeeeseaaesseeasstsseessssaaessssaaasssseaanins 5
LA 3 5
SOAP ettt e et e ———t et e e et r—————teeeaea —————teeaati—————teaeaaai————ateeaati———aterbaraeeeaaarrrans 6
LET'S BUILD A MWEB SERVICE ...uvteeeutieeeeteeeeeitteeeeiteeeeeasseeeessseeesassesaaassssesassseseasssesassesaassssessssesaassesesasseeesassens 7
Steps to BUild aNd RUN G WED SEIVICE........coccceeeeeieeeeeeeeeeeee ettt eeeettteaa e e eetstaa e s e e e e esnsseaaaaeaas 7
A SAIMPIE WD SEIVICE.eeeeeeeeeeeeeeeeeeee e tee e ettt e et ttte e ettt e e et e e et taeaeetsaaestsssaesstssaasassssesssssaaeassnaans 7
INVOKING WEB SERVICES USING SAWS ...ttt e e e e e se s e se s e e e se s e s e s e s s 14
INVOKING WD SEIVICES ...ttt ettt et ee e ettt e e et e et e e e st e e e s staaesastaaesassaasessaaannsees 14
Lo [V Tol [Lo B N A Y O I A S 14
REAAING G WSDL Fil@ ..ottt ettt ettt s e st e st e esaneenseeeaes 15
SAMPIE SOAP REGUEST ...ttt sttt s e sttt e s e ettt eateesessseesneens 18
LEE LNE USEI BEWGIE...........eeeeeeeeeeeeeee ettt e ettt e e e e e ettt a e e e e e ettt saaaeeassstseaaaaesasnsssnaaaseeassnsses 19
PROVIDING WEB SERVICES WITH SAWS ...ttt e e e sesn s e s e s e 20
USING SAWS c RUP oottt sttt sttt ettt e st s et e st a st esse e s teassaesateesasesnses 20
Do ol L=t I =] I Y= 4 Lol=X S 20
RUNNING MUIEIPIE WED SEIVICES ..ottt e ettt e et a st a e et esaaaeesaseeaesnseaaesanees 20
Secure Web Services USiNg SAWS . RUNSECULI @c...eeoueeeeieeeeeeeeeeeeee et 21
INTEGRATING SAWS WITHIN YOUR APPLICATION ..ceveveerreieierereeerereeeeeseseeesesesesesesesesesesessseeeeeeesesesesesesessssseseseses 22
StepPs tO INLEGrate SAWS ...ttt ettt ettt e e ettt et e e e s 22
BUT LAAPT ...ttt e ettt e et e ettt e e ettt e e e tsa e e e tsaaeeatsaseeasssaesstses sreaaans 23
IMPlementing YOUI METROGSoooeueeeeeieeeeeee ettt e et e et e e st e e et a e e aae e e stsaaeesaraaaesannes 25
NAMESPACES PROVIDED WITH SAWS ...ceeieiiiiiiieeee ettt e e s ettt e e e s s satae e e e e s ssaantaaeeessesssssaneeesssnssnssaneaeesas 27
SAWS REFERENCEeiiiiiiieiiieite e e sttt e e e e e sttt e e e s s st ae e e e e e s essaabaeeeeesesssstaaeeeessasssstaeeeessanssssanaeessnnsssneean 28
COMIMON DAEA SEIUCLUIS.....vvvveeeeeieeeieieieteeeeeeetetteeeeeetaee e teteteeaaetataaateaeteaateaeaaaaaeaaaaaaaaeaaaeeeaeaeeeeeeaaeeees 28
L0 ox 1 o K 29
Vo T[] o] =X USSPt 34
A SAMPLING OF PUBLIC WEB SERVICES...cettitiiiiiiiiieitieeteieieteeeeeeeseeeaeaeaeaeaeeeeeaaeaeseseeeeeeeseeessesesssesesesnsesssesesssanans 37
SAMPLE WSDIL 1. i ettt bttt e e aaranan eeeeeeee s 38

DOCUMENT CHANGE LOG . .eeivitiiieeeieeiettiiieeeeeeeetttiteaeeeeesesestannasesesssssannnnssesessssssnnnsesessssssnnnnseseesssssnnnnneeseees 42

CHAPTER 1

What is SAWS?

Background

SAWS is a workspace with tools to help you easily share the functionality you develop
in Dyalog APL with others via Web Services. SAWS hides most of the underlying
complexities of building Web Services, allowing you to focus on solving the problem
at hand and make your results available to others. SAWS uses Congal to communicate
via TCP/IP. The “Web Service” protocol is one of the most widely used mechanisms
for making functionality over the internet, and is supported by a very wide variety of
programming languages and development tools.

Introduction

APL programmers have long built highly functional applications and utilities to
perform various types of analysis, query databases, and a myriad of other tasks.
Sharing the results of these efforts with others, particularly those outside of APL realm,
has often been cumbersome and sometimes problematic. Conversely, incorporating the
results of functionality developed outside of APL has proven to be similarly
challenging. Enter the Stand Alone Web Service (SAWS) framework.

SAWS:

o Enables an APL programmer to easily make results available via Web
Services without having to become an expert in all of the standards and
protocols necessary to develop and deploy Web Services.

o Makes it easy to retrieve the results of Web Services developed by others and
use them in a natural “APL” manner.

SAWS will handle most Web Service needs, but is not intended to be a comprehensive
offering that addresses all of the nuances of very complex Web Services. In particular,
SAWS supports Web Services using the Simple Object Access Protocol (SOAP)
standard and Web Service Description Language (WSDL). At present, SAWS does

1 Please refer to the Conga User Guide for more information on Conga.

2

SAWS

not support REpresentational State Transfer (RESTful) Web Services nor Web API
Web Services.

SAWS

Testing SAWS

To quickly test SAWS on your system, load the SAWS workspace and enter:
SAWS.Test 1
0 Conga ...
Web server 'HTTPSRV' started on port 8080
Handling requests using ##.SAWS.HandleRequest
Running 100 tests...

100 calls in 611 msec = 163.7 calls/sec
Response: 0 Regression 1 RegResult xmlns
http://localhost/MyWebService/

2 CoeffO -0.05

2 Coeffl 2.03

2 Coeff2 0

2 Residual 0.00075

0
Object 'HTTPSRV' has been closed - Web Server shutting down

Web Services Via .NET

In addition to SAWS, Dyalog APL provides a means to build and call Web Services
using .NET. Please refer to the .NET Interface Guide for more information.

4 SAWS

CHAPTER 2

A Brief Web Service Primer

Note: This chapter presents some background information about Web Services. For
those of you who are eager to roll up your sleeves and get to building and using Web
Services, skip to Chapter 3.

What is a Web Service?

A quick search on the Internet for the definition of a Web Service will turn up a rather
large number of results. The W3C defines a web service as “a software system
designed to support interoperable machine-to-machine interaction over a network. It
has an interface described in a machine-processable format (specifically Web Services
Description Language WSDL). Other systems interact with the web service in a
manner prescribed by its description using SOAP messages, typically conveyed using
HTTP with an XML serialization in conjunction with other web-related standards.”

Web Services are modular — a Web Service is self-contained and self-describing.
Everything necessary to invoke a Web Service and interpret its results is a part of the
Web Service itself.

Web Services are accessed via standard protocols ~Web Services can be accessed
over the Internet or an intranet using a web browser or other client.

Web Services are platform independent — Web Service providers and requestors can
communicate effectively without any knowledge of the platform that either is using.

Web Services share data, business logic, or processes — Web Services can deliver a
wide range of function from very simple a query/response service to very complicated
business processes.

SAWS

5

SOAP, WSDL, and many other Acronyms

WSDL

Requestor

SOAP XML Request
Based on WSDL

Service

SOAP XML Response
Based on WSDL

WSDL
Service
Description

The diagram above depicts a typical Web Service interaction. The provider has
developed some sort of service that he wishes to make available. The service is
developed in whatever language or technology the provider chooses. The service
could implement several methods (functions) each with different parameters
(arguments). To make the service available, the provider describes the service, its
methods, their parameters and responses using the Web Service Description Language
(WSDL). WSDL is formatted using XML.

The requestor uses the WSDL Service Description to build a request message using
SOAP2, SOAP is formatted using XML as well. The SOAP message is transmitted
from the requestor to the provider typically using HTTP. HTTPS can also be used
when secure interaction is required. The request will indicate what method is being
requested along with any parameters necessary for the request.

The provider receives the request message and parameters, and if valid, processes the
request and formats the response according to the service description and transmits it
back using HTTP (or HTTPS).

Finally, the requestor receives the response, parses it and uses the information
contained therein.

WSDL uses XML to describe a Web Service. When you want to use a Web Service provided
by someone else, you will need to examine its WSDL to understand how to invoke the service,
what arguments will be passed, and what the results will look like. There are six primary
elements in a WSDL document.

2 SOAP once stood for “Simple Object Access Protocol”, but the acronym was dropped with
Version 1.2 of the SOAP standard.

6 SAWS

SOAP

Element Description
. This is the root element of the document and contains all the

<definition>
other elements.

<types> Describes the data elements and types in the input and output
messages

<message> Describes the messages that will be transmitted.

<portType> Describes the operations that are supported.

<binding> Describes how the messages will be transmitted.

<service> Describes the location of the service.

We’ll take a closer look at how to interpret a WSDL document in order to invoke a
Web Service from APL in Chapter 4.

The request that is sent to a Web Service and the response it sends back use SOAP.
Below is sample request using SOAP 1.1 over HTTP.

POST /stockquote.asmx HTTP/1.1

Host: www.webservicex.net

Content-Type: text/xml; charset=utf-8
Content-Length: length

SOAPAction: "http://www.webserviceX.NET/GetQuote"

<?xml version="1.0" encoding=""utf-8"?>
<soap:Envelope
xmIns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlIns:xsd="http://www.w3.0rg/2001/XMLSchema""
xmlIns:soap=http://schemas.xmlsoap.org/soap/envelope/>
<soap:Body>
<GetQuote xmlns=http://www.webserviceX_NET/>
<symbol>string</symbol>
</GetQuote>
</soap:Body>
</soap:Envelope>

The first part of the message is an HTTP header which describes the location of the
Web Service, the fact that this is a SOAP request, the function that will be invoked,
and how the content is encoded. The second part of the message is an XML message
that contains the SOAP request with the function to be invoked and the parameters that
are passed. There are several ways to invoke Web Services; SAWS uses SOAP 1.1
over HTTP.

SAWS 7

CHAPTER 3

Let’s Build a Web Service

Steps to Build and Run a Web Service

Building a Web Service using SAWS consists of the following steps:
In a namespace,
e Write one or more functions that do something useful, interesting, or amusing.
e Write a function called Bui LdAPI that describe your useful, interesting, or
amusing functions, their arguments, and results.
Then, start the SAWS Server. That’s it.... end of story.

A Sample Web Service

The Web Service3 we’re going to build is a very simple database application. To
simplify things, the database is just a matrix in the workspace, though it could easily be
stored in a file or in a database system like Microsoft SQL Server or MySQL. The
point is, you’ve got some data and you want to share it with others.

ldisplay* DataBase

Apple 15 6.99

Ball 3 14.99

Cactus| 0 9.99

Daisy 19 2.49

3 This Web Service can be found in #.PriceCheck inthe SAWS workspace.

4]display is auser command to display the structure of the result of an APL expression.
For more information on user commands, please visit http://www.dyalog.com/documentation.

SAWS

Our database consists of three columns:
[;1] The Item Name
[5 2] Quantity on Hand
[;3] Item Price

We’re going provide two functions. The first, ListItems, will return the names of
items in the database. The second function, GetItemInfo, will take an item name as
an argument and return the quantity on hand and price.

JNS PriceCheck
#.PriceCheck

)CS PriceCheck
#.PriceCheck

V r«ListItems a;result;noatt
[1] A Implements the ListItems method for the PriceCheck web service
[2] A arg - empty MLS (Markup Language Structure) there are no
arguments to this method

[3] A r[1] - 1 (indicates r[2] is an MLS)

[4] A r[2] - MLS containing the result

[5] A [51] - depth of nesting (origin 1)

[6] 2} [;2] - element name

[7] A [;3] - element value

[8] A [s4] - 2 column attribute name/value pairs
[9] A The result represents a 2 level nested structure of
[10] A ItemList which contains 0 or more ItemNames
[11] A equivalent to the XML:

[12] A <ItemList>

[13] 2} <ItemName>First Item Name</ItemName>

[14] A <ItemName>Second Item Name</ItemName>

[15] A ces

[16] A </ItemList>

[17] noatt«0 2pc'' A no attributes

[18] result«l 4p1 'ItemList' ''noatt ma build the ItemList Level

[19] result;«2,(c'ItemName'),DataBase[;,1],cnoatt A Add the ItemNames
from the database

[20] r<1 result

SAWS

9

(1]
[2]
(3]
(4]
(5]
[e]
[7]
(8]
[91]
[10]
[11]
[12]
[13]
[14]
[15]
[16]
[17]
[18]
[19]
[20]
[21]
[22]

[23]
[24]

[25]
[26]

V r<GetItemInfo arg;ind;name;qty;price;resps;noatt;result

A Implements the GetItemInfo method for the PriceCheck web service
A arg - 1 row Markup Language Structure (MLS)

A [:1] level (1)

A [52] 'ItemName'

A [:3] character vector of the name of the item to retrieve
A [;4] <0 2p'' indicating there are no attributes

A r[1] - 1 (indicates r[2] is an MLS)

A r[2] - MLS containing the result

A [s1] - depth of nesting (origin 1)

A [52] - element name

A [:3] - element value

A [s4] - 2 column attribute name/value pairs

A The result represents a 2 level nested structure of

A ItemInfo which contains information for equivalent to the XML:
A <ItemInfo>{Not }Found

A <ItemName>name</ItemName>

A <ItemQty>quantity</ItemName>

A <ItemPrice>price</ItemPrice>

A </ItemInfo>

name<«(arg[;2]ic'ItemName')>arg[;3],c'' A get the ItemName element

ind«DataBase[;1]icname A look the name up

resp«'ItemName' 'ItemQty' 'ItemPrice',[1.5](DataBasesname &
8)[ind;] A look up item information

noatt«0 2pc'' A no attributes

result«l 4p1 'ItemInfo'('Not Found'i}=4xinds<@ppDataBase)noatt na
ItemInfo level

result;«2,resp,cnoatt A item details

r<i result

10 SAWS

Finally, we’ll define our API (Application Programming Interface) for the Web
Service.

[1]
[2]

[3]

(4]

[s]

(6]

(7]

[8]

[91]

[10]
[11]
[12]
[13]
[14]
[15]
[16]
[17]
(18]
[19]
[20]
[21]
[22]
[23]
[24]
[25]
[26]

[27]

vV api«BuildAPI;method;arg;result;[OML

A Construct the API for the PriceCheck Web Service
A api - vector of method definitions, one element per method in
the Web Service

[1] method description

[2] argument(s) description

[3] result(s) description

This Web Service has 2 methods, ListItems and GetItemInfo
ListItems has no arguments and returns a list of the items in
the database

A GetItemInfo takes the name of an item and returns information
about the item

® ® ® ©® D D

OML<1

api+0pc'"’

A ListItems method definition

method«1l 4p1l 'ListItems' ''(1 2p'documentation' 'List the items

available via this service.')
result«arg«0 4p0 A initialize the ListItems method's argument and
result descriptions
A as there is no argument to this method, arg remains a 0 row

matrix

results;«1 'ItemList' ''(4('minimum' 1)('maximum' 1)) A there is
exactly 1 ItemList result...

result;«2 'ItemName' ''(t('datatype' 'string')('minimum' 0)) a

...which contains 0 or more ItemNames
api,«cmethod arg result A append the ListItems method definition
A GetItemInfo method definition
method«l 4pl 'GetItemInfo' ''(1l 2p'documentation’' 'Get information
about an item')
result«arg«0 4p0 A initialize the GetItemInfo method's argument
and result descriptions

args+1 'ItemName' ''(t('datatype' 'string')('minimum' 1)
('maximum' 1)) A the argument is an ItemName

result;«1 'ItemInfo' ''(t('minimum' 1)('maximum' 1)) A the result
an ItemInfo which contains...

result;«2 'ItemName' ''(t('datatype' 'string')('minimum'
1)('maximum’' 1)) A 1 ItemName

result;«2 'ItemQty' ''(1('datatype' 'integer')('minimum’
1)('maximum’ 1)) A 1 ItemQty

result;«<2 'ItemPrice' ''(4('datatype' 'double')('minimum’

1)('maximum' 1)) A and 1 ItemPrice
api,«cmethod arg result A append the GetItemInfo method definition

SAWS 11

The programming for our Web Service is done. Now all that’s left to do is start up the
SAWS server...

SAWS.Init A Initialize SAWS
0 Conga loaded from: C:\Program Files\Dyalog\Dyalog...

SAWS.Run 8080 1 @ Start service on port 8080 in a
new thread
Web server 'HTTPSRV' started on port 8080
Handling requests using ##.SAWS.HandleRequest

We’re ready to try the service out. Since we started the service locally on port 8080,
the URL for the service is http://localhost:8080/PriceCheck. The SAWS server
includes HTML code to display information about your Web Service.

& PriceCheck - Dyalog, Ltd.

@_/" 4 X |@) http://localhost:8080/PriceCheck V| -)‘

¢ Favorites | & PriceCheck

| PriceCheck

The following operations are supported. For a formal definition, please review the Service Description.

e ListItems

® GetltemlInfo

12 SAWS

Clicking on the Service Description link will display the WSDL that was built by
SAWS for your Web Service.

€ http/flocalhost:8080/PriceCheck?WSDL - Dya

L ‘? X http://localhost:8080/PriceCheck?WSDL
Qs] x[elme
i Favorites | @ hitp://localhost:8080/PriceCheck?WSDL

<?xml version="1.0" encoding="UTF-8" ?>

- «<definitions name="PriceCheck" targetNamespace="http:/ flocalhost:8080/PriceCheck?WSDL/"
xmins:tns="http:/ /localhost:8080/PriceCheck?WsDL/"
xmins:mytypes="http:/ /localhost:8080/PriceCheck/schema/"
xmins="http:/ /schemas.xmlsoap.org/wsdl/" xmIns:xsd="http:/ /www.w3.0org/2001/XMLSchema"
xmins:soap="http:/ /schemas.xmlsoap.org/wsdl/soap/"
xmins:soapenc="http://schemas.xmlsoap.org/soap/encoding/"
xmins:http="http:/ /schemas.xmlsoap.org/wsdl/http/"
xmins:mime="http:/ /schemas.xmlsoap.org/wsdl/mime/">

<types>
- <xsd:schema targetNamespace="http:/ /localhost:8080/PriceCheck/schema/"

elementFormDefault="qualified">
- <xsd:element name="ListItems">
- «<xsd:complexType>

m

Clicking on the Listltems link will display a dialog to invoke the Listltems method.

EEN

\
2§ Google P~

@ PriceCheck: Listitems - Dyalog, Ltd.

@U v ¥ X |§_, http://localhost:8080/PriceCheck/Listitems I >

7¢ Favorites | @ PriceCheck: Listitems |

»

PriceCheck: ListItems

ListItems: List the items available via this service.

Return to main page

m

m

SAWS 13

Clicking on the Submit button will in invoke the Listltems method.

@ PriceCheck: Listitems - Dyalog, Ltd. =&

@u' *3 H¢ Wf.g http://localhost:B080/PriceCheck/Listltems '|-’ L.' Google L -

¢ Favorites | (@ PriceCheck: Listltems

PriceCheck: ListItems I

ListItems: List the items available via this service.

|ItemList
|itemName |Apple

m

[ttemName [Ball
[itemName [cactus

[itemName [Daisy

In less than 30 lines of code, plus comments, we have created a fully functional, albeit
modest, Web Service.

14 SAWS

CHAPTER 4

Invoking Web Services Using SAWS

Invoking Web Services

In Chapter 3 we saw how you can invoke a Web Service using a web browser. Many
Web Services may be invoked in this manner. Using a browser is not an optimal way
to integrate the results from a Web Service into your application or business process.
For this, you use a Web Service client.

Introducing... SAWS . Cal L

SAWS.Cal L is the client function used to invoke Web Services. Before you use
SAWS.Cal Ll or the SAWS server, SAWS .Run, you need to initialize SAWS with:

SAWS.Init

This needs to be done only once in a session. Then, to invoke the Web Service we
built in the previous chapter, you would use:

data<«'localhost' 8080 'PriceCheck' SAWS.Call '' 'GetItemInfo'
('ItemName' 'Cactus')
Jdisplay data

GetItemInfo 1 © 1
1 U xmlns |http://localhost
2 |[ItemName Cactus
E=ml
2 |ItemPrice M c|j |j
€

L=
L=

()
()

L=
L=

SAWS 15

The syntax for SAWS.Cal L3 is:

r<host {port} {page} #.SAWS.Call service method pvm

(Optional)

host The host name for the service, in this case, ‘localhost’. For other
Web Services located on the Internet the host would be of the
form ‘www.domainname.com’.

port The port for the service. Defaults to port 80, the HTTP port.

page
(Optional)

The webpage for the service, or, in the case of SAWS-hosted
service, the namespace name containing the service.

service The name of the service. In many cases, either the page name or
the service name will be ' '.
method The method name to be invoked.
pvm The parameter/value matrix that contains the arguments to the
method.
r r[1] is a return code of O for success, non-zero for failure.

The remaining part of the result can vary based on the particular
Web Service, or where the failure occurred. See Appendix Il for
details on SAWS.Call.

Reading a WSDL File

Building a successful SAWS . Cal L request can involve a bit of research, investigation,
and experimentation. The primary source of information used to divine how to invoke
a Web Service is its WSDL. Some Web Services also publish sample SOAP over
HTTP messages. We’ll start by looking at the WSDL for a public Web ServiceS that
retrieves stock quotes.

1. Atthe top of the file, find targetNamespace attribute in the definitions tag.

<wsdl:definitions

xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmins:tm="http://microsoft.com/wsdl/mime/textMatching/"
xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"
xmins:mime="http://schemas.xmlsoap.org/wsdl/mime/"
xmlins:tns="http://www.webserviceX.NET/"
xmins:s="http://www.w3.0rg/2001/XMLSchema"

5 SAWS.Cal l is fully documented in Appendix II.
6 See Appendix IV for the complete WSDL file listing.

16

SAWS

xmins:soapl2="http://schemas.xmlsoap.org/wsdl/soapl2/"
xmlins:http="http://schemas.xmlsoap.org/wsdl/http/"
targetNamespace="http://www.webserviceX.NET/"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">

The targetNamespace will be the server that is used as the first argument to
SAWS.Cal L. The capitalization and punctuation are significant. Some
targetNamespace tags may have a trailing ' / ' as this one does.

2. Find the service tag near the bottom of the file.

<wsdl:service name="StockQuote">
<wsdl:port name="StockQuoteSoap" binding="tns:StockQuoteSoap">
<soap:address location="http://www.webservicex.net/stockquote.asmx" />
</wsdl:port>

</wsdl:service>

There may be several port tags within the service tag. Locate the port tag
corresponding to SOAP 1.1, in this case its named StockQuoteSOAP. There are
two pieces of information of interest here. The first is the address tag which will
indicate the location and page of the web service. The second is the binding
attribute which will lead us to the definition of the service.

3. Working up the file, find the matching “StockQuoteSOAP” binding tag.

<wsdl:binding nhame="StockQuoteSoap" type="tns:StockQuoteSoap">
<soap:operation soapAction="http://www.webserviceX.NET/GetQuote"
style="document" />

The type attribute of the binding tag (StockQuoteSoap) will point us to the
appropriate portType tag. The soapAction attribute of the operation tag is
useful for debugging Web Service calls; more on this later.

4. Again, working up the file, find the matching portType tag.

<wsdl:portType name="StockQuoteSoap">
<wsdl:operation name="GetQuote">
<wsdl:input message="tns:GetQuoteSoapIn" />
<wsdl:output message="tns:GetQuoteSoapOut" />
</wsdl:operation>

</wsdl:portType>

There may be more than one operation defined. Find the operation you’re
interested in, in this case GetQuote. Within the operation tag, you may find input
and output tags.

5. If an input tag exists, find the matching message tag

<wsdl:message name="GetQuoteSoapIn">
<wsdl:part name="parameters" element="tns:GetQuote" />
</wsdl:message>

SAWS 17

Each part tag names the element that describes the input parameters, in this case
“GetQuote”.

6. Find the matching element tag.

<s:element name="GetQuote">
<s:complexType>
<s:sequence>
</s:sequence>
</s:complexType=>
</s:element>

Here we find that there is one parameter, “symbol” and that it is a string. The
minOccurs and maxOccurs attributes indicate the minimum and maximum
number of occurrences of this parameter.

7. Similar to the input tag, if there is an output tag from Step 4 above, find the
matching message tag.

<wsdl:message name="GetQuoteSoapOut">
<wsdl:part name="parameters" element="tns:GetQuoteResponse" />
</wsdl:message>

8. Find the matching element tag,

<s:element name="GetQuoteResponse">

<s:complexType>

<s:sequence>

<s:element minOccurs="0" maxOccurs="1" name="GetQuoteResult"
type="s:string" />

</s:sequence>

</s:complexType=>

</s:element>

We see that the result is named GetQuoteResult and is a string.

Based on the WSDL file, here is what we know about this Web Service.

Server address www.webserviceX.NET (notice the capitalization matches
the targetnamespace)

Port Unless otherwise specified, port 80 (HTTP) or 445 (HTTPS)

Page Name stockquote.asmx

Service Name None in this case.

Method Name GetQuote

18 SAWS

Input Parameters Name = ‘symbol’

Value = string containing stock symbol of interest
Output Parameters Name = “GetQuoteResult”

Value = string

Sample SOAP Request

A Web Service provider may publish a sample SOAP request and response. The
request is useful to compare to the request that SAWS . Ca L L builds.

POST /stockquote.asmx HTTP/1.1

Host: www.webservicex.net

Content-Type: text/xml; charset=utf-8
Content-Length: length

SOAPAction: http://www.webserviceX_NET/GetQuote

<?xml version="1.0" encoding="utf-8"?>
<soap:Envelope xmIns:xsi="http://www.w3.0rg/2001/XMLSchema-
instance" xmlns:xsd="http://www.w3.0rg/2001/XMLSchema""
xmIns:soap=http://schemas.xmlsoap.org/soap/envelope/>
<soap:Body>
<GetQuote xmlns=http://www.webserviceX_.NET/>
<symbol>string</symbol>
</GetQuote>
</soap:Body>
</soap:Envelope>

You can display intermediate results for both the SAWS client and server by setting
SAWS.TRACE to 1. The HTTP header (hdr) and SOAP request (req) are displayed.
You can examine SOAPAction in hdr to ensure that it matches the soapAction
attribute in the WSDL (see step 3 above), or in the sample SOAP request.

SAWS.TRACE«1
z«'www.webserviceX.NET/' 80 'stockquote.asmx'
SAWS.Call '' 'GetQuote' ('symbol' 'k')

hdr:
POST /stockquote.asmx HTTP/1.1
Host: www.webserviceX.NET
SOAPAction: http://www.webserviceX.NET/GetQuote
Content-Type: text/xml; charset=utf-8
Content-Length: 450
req:
<?xml version="1.0"?><SOAP-ENV:Envelope SOAP-
ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"><SOAP-
ENV:Body><GetQuote

SAWS 19

xmlns="http://www.webserviceX.NET/"><symbol>k</symbol></GetQuote
></SOAP-ENV:Body></SOAP-ENV:Envelope>

Chapter.NET Interface Guide

Let the User Beware

There are free Web Services and there are Web Services that can be subscribed to for a
fee. Be mindful that when you use a free service, the provider is under no obligation to
maintain the service, inform you of changes, or even keep the service running.

20 SAWS

CHAPTER 5

Providing Web Services With SAWS

Using SAWS .Run

SAWS .Run is used to run Web Service(s). It starts a Conga-based web server and
processes SOAP requests.

Dedicated Web Services

Running

When you supply namespace name as the left argument to SAWS . Run, only methods

defined in that namespace are available via the Web Service. In effect, the port you

specify (8080 in this case) is dedicated to running that particular Web Service.
"#.MyWebService' SAWS.Run 8080 1

Web server 'HTTPSRV' started on port 8080

Handling requests using ##.SAWS.HandleRequest

If you want to run multiple dedicated Web Services, you will need to run each in a
separate APL session.

Multiple Web Services

If you don’t specify a namespace, SAWS will search for a namespace that matches the
name in the request. In this way you can offer a number of Web Services from a single
server. Namespaces can be nested.

Consider the following example, we have a namespace hamed WebServices and it
contains three namespaces, PriceCheck, Regression, and Weather, each of
which implements a Web Service.

To run all of these services, use:

SAWS.Run 8080 1
This will start a web server on port 8080 in a new thread. The page name for each
Web Service coincides with the namespace name. Use ‘/” instead of ‘. to delimit the
namespace names.

SAWS 21

Using a web browser, you would specify:
http://localhost:8080/WebServices/PriceCheck/GetltemInfo?ltemName=Apple

Using SAWS . Cal L, you would specify:

‘localhost' 8080 'WebServices/PriceCheck' SAWS.Call "'
‘GetItemInfo' ('ItemName' 'Apple')

///;TwebServices ﬁ\\\\

e N
PriceCheck

VListItems
VGetItemInfo

A A
e N
Regression
VRegression

Weather

VWhatShouldIWear
\)

Secure Web Services Using SAWS .RunSecure

SAWS .RunSecure is an analogous function to SAWS . Run that provides secure Web
Services over HTTPS. Please see the reference for SAWS .RunSecure function
SAWS.TestSecure in the workspace for an example of how to use

SAWS .RunSecure and SAWS.Cal L to provide and consume secure Web Services.

22 SAWS

CHAPTER 6

Integrating SAWS within Your Application

Steps to Integrate SAWS

1.

Have an application. It could be an existing application that you desire to make
available as a Web Service. It could be an application in which you desire to use
functionality available through third-party Web Services. It could be a brand new
application. Or any combination of the above.

Copy the SAWS namespace into your application workspace. SAWS can be
installed in the root or in any namespace. For this discussion we’ll copy SAWS
into the root namespace.

)CS

"#.SAWS' [CY 'SAWS'
If your application already uses Conga, you may want to assign SAWS .DRC to
reference the existing DRC namespace as follows (assuming that Conga is in
#.DRC):

#.SAWS .DRC+#.DRC

In your application initialization code, include the line.
{}#.SAWS . Init

This will initialize SAWS when your application runs.

If you are a Web Service consumer, you’ll use SAWS . Cal L to invoke and retrieve
results from Web Services.

If you are a Web Service provider, you’ll need to write functions for each method
in your Web Service as well as Bui LdAPI to describe your Web Service and then
use SAWS .Run or SAWS .RunSecure to provide access to your WebService.

SAWS 23

Bui ldAPI

Bui LdAPI is the function which returns the description of your Web Service. SAWS
uses Bui LdAPTI to build the WSDL for your Web Service.

The result of Bui LdAPT is a vector with one element per method in your Web
Service. Each element of the vector contains three Markup Language Structure
(MLS)7 elements. These are: a description of the method itself, a description of the
argument(s) to the method, and a description of the result(s) of the method.

Describing the Method

The method description can be as simple as the character vector name of the method.
"ListItems'

Or the method could be an ML Sas follows:
[;1]1
[;2] method name
[:3]"'
[;4] parameter/value matrix (pvm)®

Valid parameters are:
"documentation' character vector description of the service
'pattern’ integer 1,2,0r 4 describing the type of interaction with the
method.
1 — one way, input only
2 — two way, request/response
4 — one way, output only (notification)

method«l 4pl 'GetItemInfo' ''(2 2p'pattern’ 2
'documentation' 'Get information about an item')

Describing the Method’s Arguments and Results

The argument and result descriptions are MLS structures and describe the allowable
structure of the data for each element.
[5117 level - generally 1 for argument elements, but can be used to represent more
complex structures
[;2] element name
[53] "' —notcurrently used
[;4] parameter/value matrix (pvm)

7 See Common Data Structures for more information on the structure of an MLS.
8 See Common Data Structures for more information on the structure of a pvm.

24

SAWS

Valid parameters are:

"documentation' character vector description of the argument or result

"datatype’ generally,one of 'string' 'boolean' 'integer'
or 'double. Itcan also be a data type described by
http://www.w3.org/TR/xmlschema-2/ . If you use one of
these data types, use the prefix 'xsd: ' asin
‘'xsd:dateTime'.

‘minimum’ integer indicating the minimum number of times this element
can occur within its parent element.
"maximum’ integer indicating the maximum number of times this

element can occur within its parent element.

3 2p'datatype’ 'integer' 'minimum' 1 'maximum’' 1
Describes a single required integer element.

1 2p'minimum' 0O
Describes an optional array of any length.

The following code fully describes the GetltemInfo method of the PriceCheck Web
Service:

method«l 4pl 'GetItemInfo' ''(2 2p'pattern’ 2
"documentation' 'Get information about an item')

result«arg<«0 4p0

args+«1 'ItemName' ''(3 2p'datatype' 'string' 'minimum' 1
‘maximum’ 1)

results;«l 'ItemInfo' ''(1 2p'minimum' 0)

result;«2 'ItemName' ''(1 2p'datatype' 'string')

result;«<2 'ItemQty' ''(3 2p'datatype'’ 'integer' 'minimum’
1 'maximum' 1)

results;«2 'ItemPrice' ''(3 2p'datatype’ 'double'
‘'minimum’ 1 'maximum' 1)

api«,cmethod arg result

SAWS 25

Jdisplay s1-api

O
1 [GetItemInfo U
pattern 2

|documentation| |Get information about an item

€

©
! LEEETEETSJ LJ 1datatype| |string|

minimum 1
max imum 1
€

-€

-€

o
ItemInfo LJ
minimum| O
le—— 1

1

o
2 |ItemName [J
2

|datatype1 lstring|

-€

©
@I U |datatype1 lintegerl

minimum 1
max imum 1

|datatype1 1double|

minimum 1
max imum 1

-€

o
2 |ItemPrice [J

[

-€

-€

Implementing Your Methods

SAWS Web Service methods are monadic functions which return a result. The right
argument represents the input message and the result represents the output message.
The input and output messages are each contained in an MLS. These MLS’s
correspond to their descriptions contained in the API.

26 SAWS

Input Message

The input message contained in the right argument is an ML S. It contains elements
representing the arguments for the method where columns [;2] and [;3] are of
particular interest.

[;1] contains the level number, this can be ignored

[527 contains the element name

[5 3] contains the element value

[;4] is not currently used and contains the value 0 2pc" "'
The function getelement in #.WebServices is a useful utility to retrieve
elements. It will return the element value if found, or an empty vector if not found.

getelement«{(al[;2]tcw)>al[;3],c'"'}

Output Message

The result of your function used to implement the Web Service method is a 2 element
array.
result[1] lindicatesthat result[2] contains an MLS
result[2]MLSifresult[1]=1, otherwise it is any APL array

The MLS contains:
[;s 1] contains the level number. This can be used to indicate nesting of data in
the output message/result.
[;2] contains the output message element name
[s 3] contains the output message element value
[;4] is not currently used and contains the value 0 2pc'

The structure below depicts an element called ItemList which contains two ItemName

elements.
Jdis 2>#.PriceCheck.ListItems 0 4p0

e
1 [ItemlList Lj

2 |ItemName| |AppLe|

o
o

[
e

2 |[ItemName Ball

o
o

2 |ItemName| |Cactus|

o
e

2 |ItemName| |Daisy|

o
o

SAWS 27

APPENDIX |

Namespaces Provided with SAWS

ClientSample

Contains a class, WWWeather, which implements a sample world-wide weather dialog
using the SAWS Client, SAWS.Call L.

z<{Inew ClientSample.WWWeather

P World Wide Weather =|E
Country: |United Kingdom |
City: -
CumrentWeather
Location London / Heathrow Airport, United Kingdom (EGLL) 51-25N 000-27W OM
Time Jan 29,2010 - 10:20 PM EST / 2010.01.30 0320 UTC
Wind from the WNW (300 degrees) at 10 MPH (9 KT):0
Visibility greater than 7 mile(s):0
Temperature 0FE10)
Wind Windchill: 21 F (6 C):1
DewPoint 23F(50)
RelativeHumidty | 74%
Pressure 29.41in. Hg (0996 hPa)
Status Success
MyWebService
Contains a sample Web Service which implements a simple regression analysis
service.
PriceCheck
Contains a sample Web Service which implements a simple database driven
application.
SAWS

Contains the functions to invoke and serve Web Services.

WebServices
Contains nested namespaces, each of which implements a Web Service. This is a

sample to demonstrate one way to organize the delivery of multiple WebServices using
a single SAWS server.

28 SAWS

APPENDIX I

SAWS REFERENCE

Common Data Structures

There are two data structures that are used frequently in SAWS. These are:

MLS — Markup Language Structure
[:1] Level

[;2] Element/Tag name

[;3] Element/Tag value

[;4] pvm

MLS’s are used in the result of the SAWS Web Service Bui LdAPI function and as the
result of any functions which return the results of methods within the Web Service.

pvm - parameter/value matrix
[;1] Parameter name
[;2] Parameter value

If no parameters exist, the pvmis 0 2p<''. pvm’s are used within an MLS and
elsewhere in SAWS.

SAWS 29

Functions

SAWS.Call Invoke a Web Service

r<host {port} {page} {soapaction} {SSLparms}
#.SAWS.Call soaprequest|service method arg

Left Argument

host A character vector containing the host (IP address or URI) for the
service, optionally prefixed by http:// or https://.

Examples:

"localhost '
'www.webservice.net '
‘https://www.securews.com'

port The port for the service.

(optional) ¢ port is not specified, the default HTTP port 80 will be used, or
443 if HTTPS is specified in the host parameter.

Ports 80 and 443 are the typical ports for HTTP and HTTPS
services respectively.

page The webpage for the service, or, in the case of SAWS-hosted
(optional) service, the namespace name containing the service.

soapaction If a non-standard SOAPAction is required in the HTTP header, it
(optional) may be specified here as a character vector.

SSLparms If calling a secure Web Service, this element is used to contain the
appropriate Conga parameters in the form:
('X509"' client-certificate)
{('SSLValidation' n)}
where client-certificateisatype DRC.X509Cert
certificate. SSLValidation specifies any optional flags for the
processing of certificates. Please refer to the Conga v2.1 or later
documentation for more information on X509Cert and
SSLValidation.

(optional)

Right Argument

The right argument to SAWS . Ca L L can be either:
e A character vector containing the entire SOAP over HTTP request; OR
e A 3element nested vector

30

SAWS

service

The name of the service. In many cases, this will be either the page
name or the service name will be ' *.

method

arg

The method name to be invoked.

Can be in one of three formats:

e Asimple non-empty character vector containing the XML
SOAP message. No HTTP header information should be
included here

e Anempty vector if the web service method takes no
parameters.

e A nested vector containing the names and values for the
parameters to the web service method in any of the
following formats:

e Depth 2 vector of vectors, for example

('parami' ‘'valuel' 'param2' ‘'value2')

o Depth 3 vector where each element contains a
parameter/value pair. This format is similar to that used
for Dyalog GUI objects.

(('param' ‘'valuel')('param2' 'value2'))

e 2 column matrix of [;1] parameter names [;2]
parameter values

((2,2)p'paraml' ‘'valuel' 'param2' ‘'value2')

Result

r[1] is areturn code of 0 meaning no exception was detected, or
non-zero to indicate that some exception was detected.

If r[1]=0 no exception was detected
r[2] will be a 3 element vector containing

[1] the method name

[2] the method result either in the form of an ML S or arbitrary

APL data

[3] pvm for the attributes applied to the method
Depending on the SOAP response is built by the Web Service, a
return code of 0 may not guarantee success. Additional
examination of the contents of r[2] may be necessary to validate
the response.

If r[1]= 1 the Web Service sent a SOAP Fault response
r[2] avector of vectors containing information about the fault

SAWS 31

If r[1]="1 the SOAP message could not be decoded
r[2] isa 3element vector containing

[1] 'Client.Invalid'

[2] error message

(31 "

If r[1]>1 Congasignalled an exception, then r contains
r[1] exception code
r[2] exception name
r[3] additional exception information, if any

SAWS.Init Initialize SAWS

r<SAWS.Init

r r[1] is O for success, otherwise a Conga exception code
r[2] is a character vector status message
If r[1]=0then r[2] is either:
'Conga loaded..." if Conga has not been previously loaded
'Conga reset' if Conga has been previously loaded

Discussion:

SAWS.Init isused to initialize SAWS. You must call SAWS . Init prior to running
the SAWS client or server, but you need only call it once during your session.

Note:

If Conga is in use elsewhere in your application, you should use that instance of Conga
instead of running SAWS . INIT. This is done by assigning SAWS . DRC to the path of
the DRC namespace. For example, if Conga (the DRC namespace) is in the root you
would assign SAWS . DRC as follows:

SAWS .DRC«#.DRC

SAWS .Run Start a SAWS Server

{r}«<{svc} SAWS.Run {port} {threaded} {srvname} {address}

address The address (domain name or IP address) for the service. This is
used is the WSDL that SAWS generates.
Defaults to “localhost” if empty or not supplied.

32 SAWS

port

The port number for the server (defaults to port 8080)

threaded

1 indicates run the server in a separate thread
0 (the default) indicates run the server in the current thread

srvname

The name to assign to the web server.
If not supplied, Conga will assign the name 'HTTPSRV'

svcC

A reference to the namespace containing the Web Service.

If svc is supplied, the server runs in “dedicated” mode and will
service only requests for the Web Service defined in the namespace.

If svc is not supplied, the server will search for a namespace
matching the Web Service name.

If arg[2] is 1 (run threaded), r is the thread number for the server.

If arg[2] is 0 (run in current thread), r isn’t particularly
interesting.

Description:

SAWS must have been initialized prior to using SAWS .Run. See SAWS.INIT.

The expression:

SAWS.Run &

will start a SAWS server named ‘HTTPSRV’ on port 8080 in the current thread. To
stop a SAWS server running in the current thread, you need to generate a strong
interrupt and the server should interrupt within 10 seconds.

SAWS .RunSecure Start a Secure SAWS Server

{r}«{svc} SAWS.RunSecure {port} {threaded} {srvname}
{address} {rootcertpath} {cert}

address

The address (domain name or IP address) for the service. This is
used is the WSDL that SAWS generates.
Defaults to “localhost” if empty or not supplied.

cert

The server certificate as an instance of DRC.X509Cert. Please
refer to Conga v2.1 or later documentation for information on
X509Cert.

port

The port number for the server (defaults to port 8080)

SAWS 33

r If arg[2] is 1 (run threaded), r is the thread number for the
server.

If arg[2] is O (run in current thread), r isn’t particularly
interesting.

rootcertpath | The path containing the certification authority (CA) certificates to
be used.
(defaults to the result of SAWS . Samples.CertPath)

srvname The name to assign to the web server.
If not supplied, Conga will assign the name 'HTTPSRV'

svc The name of the namespace containing the Web Service.

If svc is supplied, the server runs in “dedicated” mode and will
service only requests for the Web Service defined in the
namespace.

If svc is not supplied, the server will search for a namespace
matching the Web Service name.

threaded Is 1 to run the service in a separate thread, 0 (the default) to run in
the current thread

Discussion:
SAWS .RunSecure is almost identical to SAWS . Run except that it uses SSL/TLS to
provide secure communications.

SAWS must have been initialized prior to using SAWS .RunSecure. See
SAWS.INIT.

cert«DRC.X509Cert.ReadCertFromFile 'c:\mycert.cer'

rootcertpath«'c:\mycertpath’

SAWS .RunSecure 445 1 'HTTPSRV' '' rootcertpath cert
Will start a secure SAWS server named ‘HTTPSRV’ on port 445 in a separate thread
and look in the directory c:\mycertpath for root certificates to use.

SAWS.Stop Stop a SAWS Server

{r}«SAWS.Stop srvname

Svrname The SAWS server name to stop. If empty (8 or ' '), all SAWS
servers will be stopped.

34 SAWS

SAWS.Test, SAWS.TestSecure Test SAWS

{address} SAWS.Test close
{address} SAWS.TestSecure close

Address The address of the web server to use. Defaultsto ' localhost'.

Close Flag to indicate how to run the test.

close=0 just start the SAWS server, do not run tests
close=1 start the SAWS server and run tests
close="1 SAWS server already running, just run tests

Discussion:
SAWS.Test isan easy way to verify that SAWS will function in your environment.
SAWS.TestSecure will perform the same tests securely using HTTPS.

Variables

SAWS .DEBUG Debug Mode Settings

SAWS .DEBUG uses additive powers of 2 to turn on different debugging features.

Mode | Description

1 Controls the server error trapping when executing your Web Service
methods. Normally SAWS will trap any unhandled error in your Web Service
method and return an error code. Setting SAWS . DEBUG to 1 will disable
SAWS’ built in error handling. This is useful for debugging your Web
Service methods, but should not be left on in general.

2 Captures the last request and response pair.

When using SAWS . Cal L, the last request and response pair are stored in
SAWS.LastCallRequest and SAWS.LastCal LResponse.

When using SAWS . Run, the last request and response pair are stored in
SAWS.LastRunRequest and SAWS.LastRunResponse.

These are useful for testing and debugging.

4 Use alternate messages.

When using SAWS . Cal L, you may construct an entire SOAP over HTTP
request and assign it to the variable SAWS . ALtRequest. SAWS will send

SAWS 35

this request to the Web Service rather than the one built from the arguments
to SAWS.Cal L. This is useful when testing for basic connectivity to a Web
Service.

When using SAWS . Run, you may construct a SOAP response and assign it
to the variable SAWS . Al tResponse. SAWS will send this response back
to the client instead of the response built by your application code. This is
useful for testing the interface to new clients to your Web Service.

SAWS.DEBUG«!1 A turn debug mode 1 on
SAWS.DEBUG«3 A turn debug modes 1 and 2 on
SAWS.DEBUG«™1 A turn all debugging on
SAWS.DEBUG«0 A turn all debugging off

36 SAWS

SAWS .SILENT Suppress Session Output

SAWS.SILENT allows you to suppress output that would normally be sent to the
APL session. This is useful when running SAWS in a runtime environment. Tracing
output displayed when setting SAWS . TRACEe1 3 is not suppressed.

SAWS.Silent«1l A suppress session output
Note: All output is funneled through the function SAWS .Output which could be
modified to log SAWS output to a file or some similar use.

SAWS . TIMEOUT Client Timeout Setting

SAWS.TIMEOUT allows you to set the number milliseconds that SAWS.Cal l
should wait for a response from a Web Service before timing out. The default is 10000

(10 seconds).

SAWS.TIMEOUT«15000 A set 15 second timeout

SAWS.TRACE Trace Client and Server

SAWS . TRACE uses additive powers of 2 to turn on different tracing features.

Mode | Description

1 Controls the display of trace information. Setting this value will cause
SAWS to display more detailed information about requests and responses that
it processes.

2 Set terse or verbose mode. As some messages in the trace output can be
rather lengthy, setting this value will truncate the output to the first 65
characters of a message. This is useful for monitoring the flow of requests
and responses within SAWS rather than their detailed content.

SAWS.TRACE«1 A turn verbose tracing on
SAWS.TRACE«3 A turn terse tracing on
SAWS.TRACE<O A turn all debugging off

SAWS.STYLE Cascading Style Sheet for Web Pages

The HTML web pages that SAWS . Run produces are built in the function
SAWS.ServiceHTML. While you could modify this function to change the content,
look and feel of the web pages, most changes can be accomplished by modifying the
variable SAWS . STYLE, which is a Cascading Style Sheet (CSS).

SAWS 37

APPENDIX 111

A Sampling of Public Web Services

This appendix lists some free public Web Services the author happened upon while doing research for

this manual.

www.webserviceX.NET

www.wsdll.com

There are a large number of free web services offered from www.webserviceX.NET
ranging from stock quotations, to weather services, to Bible quotations, to unit
conversions, including... if you ever wondered how many miles are in a parsec... well...
here it is:

35,2 2>'www.webserviceX.NET/' 80 'Astronomical.asmx' SAWS.Call "'
'ChangeAstronomicalUnit' ('AstronomicalValue' '1'
'fromAstronomicalUnit' 'parsec' 'toAstronomicalUnit' 'miles')

19173514177205.121

This is a website that catalogs both free and fee Web Services including:

http://staging.mappoint.net/standard-30/

Microsoft MapPoint Web Services are XML Web services with a SOAP API that
allows you to add location-based functionality to your application that calls on the
high-quality maps, as well as the location finding and routing capabilities of MapPoint
Web Services.

http://river.sdsc.edu/wateroneflow/NWIS/DailyValues.asmx?WSDL

The USGS National Water Information System (NWIS) provides access to millions of
sites measuring streamflow, groundwater levels, and water quality. This Web Service
provides methods for retrieving daily values data, such as discharge and water levels,
from NWIS.

http://ws.cdyne.com/WeatherWS/Weather.asmx?wsdl

Get Weather information by zipcode.
'ws.cdyne.com' 80 'WeatherWS/Weather.asmx' SAWS.Call 'WeatherWS'
'GetCityWeatherByZIP' ('ZIP' '20001")

http://www.nws.noaa.gov/xml/

This is the National Oceanic and Atmospheric Administration’s National Weather
Service National Digital Forecast Database Web Service.

http://www.usgovxml.com/

USGovXML is an index to publically available web services and XML data sources
that are provided by the US government. USGovXML indexes data sources from all 3
branches of government as well as its boards, commissions, corporations and
independent agencies.

38 SAWS

APPENDIX IV

Sample WSDL

This Appendix lists the entire WSDL for the StockQuote Web Service. At the time of
this writing, this file was located at:
http://www.webservicex.net/stockquote.asmx?WSDL

<?xml version="1.0" encoding="utf-8" ?>
<wsdl:definitions xmlIns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmins:tm="http://microsoft.com/wsdl/mime/textMatching/"
xmins:soapenc="http://schemas.xmlsoap.org/soap/encoding/"
xmins:mime="http://schemas.xmlsoap.org/wsdl/mime/"
xmlns:tns="http://www.webserviceX.NET/"
xmins:s="http://www.w3.0rg/2001/XMLSchema"
xmins:soap12="http://schemas.xmlsoap.org/wsdl/soap12/"
xmins:http="http://schemas.xmlsoap.org/wsdl/http/"
targetNamespace="http://www.webserviceX.NET/"
xmlins:wsdl="http://schemas.xmlsoap.org/wsdl/">
<wsdl:types>
<s:schema elementFormDefault="qualified"
targetNamespace="http://www.webserviceX.NET/">
<s:element name="GetQuote">
<s:complexType>
<s:sequence>
<s:element minOccurs="0" maxOccurs="1" name="symbol" type="s:string" />
</s:sequence>
</s:complexType>
</s:element>
<s:element name="GetQuoteResponse">
<s:complexType>
<s:sequence>
<s:element minOccurs="0" maxOccurs="1"
name="GetQuoteResult" type="s:string" />
</s:sequence>
</s:complexType>
</s:element>
<s:element name="string" nillable="true" type="s:string" />
</s:schema>
</wsdl:types>
<wsdl:message name="GetQuoteSoapin">
<wsdl:part name="parameters" element="tns:GetQuote" />
</wsdl:message>
<wsdl:message name="GetQuoteSoapOut">
<wsdl:part name="parameters" element="tns:GetQuoteResponse" />
</wsdl:message>
<wsdl:message name="GetQuoteHttpGetin">
<wsdl:part name="symbol" type="s:string" />

SAWS 39

</wsdl:message>
<wsdl:message name="GetQuoteHttpGetOut">
<wsdl:part name="Body" element="tns:string" />
</wsdl:message>
<wsdl:message name="GetQuoteHttpPostin">
<wsdl:part name="symbol" type="s:string" />
</wsdl:message>
<wsdl:message name="GetQuoteHttpPostOut">
<wsdl:part name="Body" element="tns:string" />
</wsdl:message>
<wsdl:portType name="StockQuoteSoap">
<wsdl:operation name="GetQuote">
<wsdl:documentation
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">Get Stock quote for a
company Symbol
</wsdl:documentation>
<wsdl:input message="tns:GetQuoteSoapin" />
<wsdl:output message="tns:GetQuoteSoapOut" />
</wsdl:operation>
</wsdl:portType>
<wsdl:portType name="StockQuoteHttpGet">
<wsdl:operation name="GetQuote">
<wsdl:documentation
xmlins:wsdl="http://schemas.xmlsoap.org/wsdl/">Get Stock quote for a
company Symbol
</wsdl:documentation>
<wsdl:input message="tns:GetQuoteHttpGetin" />
<wsdl:output message="tns:GetQuoteHttpGetOut" />
</wsdl:operation>
</wsdl:portType>
<wsdl:portType name="StockQuoteHttpPost">
<wsdl:operation name="GetQuote">
<wsdl:documentation
xmins:wsdl="http://schemas.xmlsoap.org/wsdl/">Get Stock
quote for a company Symbol
</wsdl:documentation>
<wsdl:input message="tns:GetQuoteHttpPostin" />
<wsdl:output message="tns:GetQuoteHttpPostOut" />
</wsdl:operation>
</wsdl:portType>
<wsdl:binding name="StockQuoteSoap" type="tns:StockQuoteSoap">
<soap:binding transport="http://schemas.xmlsoap.org/soap/http" />
<wsdl:operation name="GetQuote">
<soap:operation soapAction="http://www.webserviceX.NET/GetQuote"
style="document" />
<wsdl:input>
<soap:body use="literal" />
</wsdl:input>
<wsdl:output>

40 SAWS

<soap:body use="literal" />
</wsdl:output>
</wsdl:operation>
</wsdl:binding>
<wsdl:binding name="StockQuoteSoap12" type="tns:StockQuoteSoap">
<soapl2:binding transport="http://schemas.xmlsoap.org/soap/http" />
<wsdl:operation name="GetQuote">
<soapl2:operation soapAction="http://www.webserviceX.NET/GetQuote"
style="document" />
<wsdl:input>
<soapl2:body use="literal" />
</wsdl:input>
<wsdl:output>
<soapl2:body use="literal" />
</wsdl:output>
</wsdl:operation>
</wsdl:binding>
<wsdl:binding name="StockQuoteHttpGet" type="tns:StockQuoteHttpGet">
<http:binding verb="GET" />
<wsdl:operation name="GetQuote">
<http:operation location="/GetQuote" />
<wsdl:input>
<http:urlEncoded />
</wsdl:input>
<wsdl:output>
<mime:mimeXml part="Body" />
</wsdl:output>
</wsdl:operation>
</wsdl:binding>
<wsdl:binding name="StockQuoteHttpPost"
type="tns:StockQuoteHttpPost">
<http:binding verb="POST" />
<wsdl:operation name="GetQuote">
<http:operation location="/GetQuote" />
<wsdl:input>
<mime:content type="application/x-www-form-urlencoded" />
</wsdl:input>
<wsdl:output>
<mime:mimeXml part="Body" />
</wsdl:output>
</wsdl:operation>
</wsdl:binding>
<wsdl:service name="StockQuote">
<wsdl:port name="StockQuoteSoap" binding="tns:StockQuoteSoap">
<soap:address location="http://www.webservicex.net/stockquote.asmx" />
</wsdl:port>
<wsdl:port name="StockQuoteSoap12"
binding="tns:StockQuoteSoap12">
<soapl2:address location="http://www.webservicex.net/stockquote.asmx" />

SAWS 41

</wsdl:port>
<wsdl:port name="StockQuoteHttpGet"
binding="tns:StockQuoteHttpGet">
<http:address location="http://www.webservicex.net/stockquote.asmx" />
</wsdl:port>
<wsdl:port name="StockQuoteHttpPost"
binding="tns:StockQuoteHttpPost">
<http:address location="http://www.webservicex.net/stockquote.asmx" />
</wsdl:port>
</wsdl:service>
</wsdl:definitions>

42

SAWS

Document Change Log

This section describes the major changes made with each version of this document.

Version Date Description

1.0 Dec 2009 | Original version

11 Jul 2010 | Added address parameter to SAWS .Run/SAWS .RunSecure
Added SAWS .DEBUG

1.2 Aug 2010 | Added SAWS.Cal LSOAP
Added additional modes to SAWS .DEBUG

1.3 Sep 2010 | Removed SAWS.Cal L SOAP and modified SAWS.Cal l
Added additional mode to SAWS . TRACE
Added certificate parameter to SAWS.Cal L

1.4 Mar 2011 | Updated areas addressing secure web services to be compatible with Conga
v2.1

