
Automation 2000

Your Guide to
�i�ro
o�t ���i�e ����

��tero�er��i�it�

Recommended Reading

Microsoft Office 2000/Visual Basic : Programmer's Guide (Microsoft

Professional Editions)

by David Shank, Mark Roberts, Tamra Myers

With detailed technical information delivered straight from the Microsoft Office

2000 documentation team, this practical and precise guide offers hands-on

detail for everything from planning and developing Office 2000 solutions,

working with data, designing multiuser solutions, and distribution.

Paperback - 800 pages (May 1999)

Microsoft Press; ISBN:1572319526

Microsoft Office 2000 Automation

Page 2

Contents

What is Automation? .. 4
An Example of Using an Application Recorder ... 5
How to Reference an Automation Object... 7

The CreateObject Function... 7
The GetObject Function.. 7
The New Keyword.. 7
Using References .. 7
Early Binding.. 9
Benefits of Early Binding ... 9
Late Binding.. 10
Using Object Libraries and the Object Browser ... 10
OLE Programmatic Identifiers.. 12
Destroying Automation Sessions.. 15
Troubleshooting Error 429 When Automating Office Applications .. 16

ACCESS: The Microsoft Office Database Management System.. 17
Detect if Access is Installed.. 18
Creating an Instance of Microsoft Access .. 18
Referencing a New Instance of Microsoft Access.. 19
Referencing an Existing Instance of Microsoft Access .. 19
Terminating an Instance of Microsoft Access .. 20
NewCurrentDatabase Method Example ... 20
Output an Access Report .. 21
Opening a Secured Database through Automation... 22
Import a Text File into Access.. 23
Sending the Current Record to Word.. 24
Using Automation with the Run-Time Version of Microsoft Access 26
User Control and Visible Hints...27
Using API calls to Bring Microsoft Access into View... 27

Microsoft Binder... 30
Adding Documents to the Binder ... 30
Delete Sections From a Binder ... 31

EXCEL: The Microsoft Office Spreadsheet .. 32
Microsoft Excel... 32
Differences From Earlier Versions of Microsoft Excel.. 33
Determining if You Should Close the Instance of Microsoft Excel ... 34
Destroying an Instance of Microsoft Excel .. 35
Using a Pre-Existing Instance of Microsoft Excel.. 36
Making an Instance of Microsoft Excel Visible ... 37
Opening a Microsoft Excel Workbook... 38
Adding a New Worksheet to an Existing Microsoft Excel Workbook..................................... 39
Using the Range Object With Microsoft Excel .. 39

Microsoft Office 2000 Automation

Page 3

Adding a Named Range to a Workbook... 40
Selecting a Specific Location on a Microsoft Excel Worksheet... 41
Editing a Microsoft Excel Workbook... 42
Populating a List Box with Data From Excel. .. 43
Opening a CSV file with Microsoft Excel - from Microsoft Access.. 44
Copy Formulas.. 46
Use Automation to Transfer an Array of Data to a Range on a Worksheet: 46
Use Automation to Transfer an ADO Recordset to a Worksheet Range.................................. 47

GRAPH... 49
Changing a Graph's Data Marker's Shape... 49
Changing a Microsoft Graph Chart Type ... 49
Changing the Border Properties of a Graph.. 49
Changing the Line Texture on a Graph... 50
Changing the Range of an Axis .. 50
Manipulating a Graph's Legend.. 51

OUTLOOK: The Microsoft Office E-mail and Personal Information Manager 52
Printing Messages From Outlook. .. 52
Creating a New Folder in Microsoft Outlook ... 53
Sending an Outlook Message With an Attachment. ... 54
Adding Notes to Microsoft Outlook ... 55
Adding Tasks to Microsoft Outlook ... 56
Starting a Session of Microsoft Outlook With a Different Profile ... 56
Import Outlook Items from an Access Database .. 57

POWERPOINT: The Microsoft Office Presentation Graphics Program 59
Run a Microsoft PowerPoint Presentation.. 59
Creating a PowerPoint Slide Containing a Graphic.. 60

PROJECT: Build a Project Plan .. 61
Build a Project File from a Database .. 61

WORD: The Microsoft Office Word Processor .. 63
Automate Word with the New Keyword .. 63
Create a Word Document.. 64
Closing the Microsoft Word Document.. 65
Access a Word Document...65
Inserting Data into a Microsoft Word Document ... 66
Find a Bookmark in an Embedded Microsoft Word Document ... 67
Sending the Current Record to Word.. 68

Microsoft Office 2000 Automation

Page 4

What is Automation?

Automation (formerly known as OLE Automation) is a feature of the Component Object Model (COM), an

industry-standard technology that applications use to expose their objects, methods, and properties to

development tools, macro languages, and other applications. For example, a spreadsheet application

might expose a worksheet, chart, cell, or range of cells ---each as a different type of object. A word

processor might expose objects such as an application, document, paragraph, bookmark, or sentence.

When an application supports Automation, the objects the application exposes can be accessed through

Visual Basic. You can use Visual Basic to manipulate the objects by invoking methods or by getting and

setting properties of the objects.

In order to understand automation, it is necessary to understand some basic concepts and terminology:

Object

Any item that can be programmed, manipulated or controlled. For example,

objects include a textbox, combo box, command button, Word document and

more. Microsoft Office 2000 applications include over 500 objects.

Object

Property

A property is a characteristic of an object (an adjective). For example, properties

of a textbox include: Name, Visible, ForeColor and more.

Object

Method

An action that you can take on an object (a verb). For example, a method of an

Access form is Close.

Automation

Server
The Automation Server is the application that exposes the automation object(s).

Automation

Client

The "Automation Client" is the application that decides which objects to use and

when to use them. The "Automation Client" is also referred to as "Automation

Container." For example, if a button is clicked on an Access form, and a letter

prints in Word:

• Automation Server = Word

• Automation Client = Access

Binding Setting the object type to the object variable.

Late Binding
Late Binding occurs when you declare object variables with a specific class and

the binding occurs when the code runs (slower).

Early Binding
Early Binding occurs when you declare object variables with a specific class and

the binding occurs when you compile the code (faster).

Microsoft Office 2000 Automation

Page 5

An Example of Using an Application Recorder
This demonstrates how to record a new macro in Microsoft Word 2000, and then how to take the

generated code and convert it into Automation code for use in Microsoft Access 2000.

1. Start Microsoft Word and select Tools, Macro, Record New Macro.

2. Name the macro "MyMacro" and click OK. You will now see a toolbar appear with a Pause button

and a Stop button. We will use this toolbar later when we want to stop recording.

3. From the File menu, click New.

4. Select Blank Document and Click OK. This will open a new blank document.

5. Type in "This is a Macro Recording Test."

6. From the Edit menu, click Select All.

7. Change the font of the selected text to Arial.

8. Click the Stop button on the Macro toolbar.

9. From the Tools menu, click Macro and then click Macros.

10. Click MyMacro and click Edit. This will invoke the Visual Basic Editor and display your recorded
macro.

Sub MyMacro()

'MyMacro Macro
'Macro recorded on 12/20/98 by John Smith
'
 Documents.Add Template:="", NewTemplate:= False, DocumentType:=0
 Selection.TypeText Text:="This is a Macro Recording Test."
 Selection.WholeStory
 Selection.Font.Name = "Arial"

End Sub

11. Copy the code and close the Visual Basic Editor.
12. Close Microsoft Word and do NOT save changes to the document.

13. Start Microsoft Access and create a new module.

14. From the Tools menu, click References and add a reference to the Microsoft Word 9 Object

Library.

15. Paste the code into the module. Now all we have to do is change the code so that it will

automate Word.

16. We now must add an object variable and use it to create an instance of Microsoft Word. Then,

we take the object variable and append to the beginning of each line from the Word macro, as

shown below.

Sub MyMacro()
'
'MyMacro Macro
'Macro recorded on 12/20/98 by John Smith
'
 'Add the following 3 lines of code to create the instance of
Microsoft
 'Word and make the instance visible
 Dim wordApp As Word.Application

 Set wordApp = CreateObject("Word.Application")
 wordApp.Visible = True

 'Now append the object variable to each line of code which uses a

Microsoft Office 2000 Automation

Page 6

 'Microsoft Word command.
 With wordApp
 .Documents.Add Template:="", NewTemplate:= False, DocumentType:=0
 .Selection.TypeText Text:="This is a Macro Recording Test."
 .Selection.WholeStory
 .Selection.Font.Name = "Arial"
 End With

End Sub

That's it! You're ready to run your Automation procedure from Access.

Microsoft Office 2000 Automation

Page 7

How to Reference an Automation Object
The following are two functions that can be used to reference an automation object:

• CreateObject — Creates a reference to a new automation object.

• GetObject — Activates an object that has been saved in a file or references a server application

that is already running.

The CreateObject Function

The following code uses "CreateObject" to start the Word application and create an instance of the Word

application:

Dim wordApp as Object
Set wordApp = CreateObject ("Word.Application")

The GetObject Function

The GetObject function activates an object that has been saved to disk or references a server application

that is already running.

Example to activate a saved file:

'Activate a saved file
Dim xlApp as Object
Set xlApp = GetObject("C:\My Documents\MyFile.xls", Excel.Sheet")

Example to activate an application that is already running:

Activate an application that is already running
Dim xlApp as Object
Set xlApp = GetObject(,"Excel.Application")

The New Keyword

New is a Keyword that enables implicit creation of an object. If you use New when declaring the object

variable, a new instance of the object is created on first reference to it, so you don't have to use the Set

statement to assign the object reference.

' create a new instance of a Word document object
Dim wordApp as New Word.Document

It is not recommended to use the New Keyword when automating Word and Excel. For more information,

please download the Knowledgebase article, Q213702 XL2000: Cannot Use New Keyword to Create

Workbook Object from http://support.microsoft.com/support/kb/articles/q213/7/02.asp.

Using References

The References dialog box can be used to add or remove libraries from your Visual Basic for Applications

project. For instance, if you want to use Automation code to control Microsoft Excel with Early

Binding,you would reference the Microsoft Excel 9.0 object library. To view the objects, methods, and

properties of this library, you would use the Object Browser.

Microsoft Office 2000 Automation

Page 8

Microsoft Office 2000 Automation

Page 9

Early Binding

Early binding declares a variable as a Programmatic Identifier (ProgID) rather than as an Object or a

Variant. The variable is initialized by using the CreateObject or GetObject functions; or with the New

keyword if both the Automation server and controlling applications support it.

Sub ProcessFile()

 Dim xlApp As Excel.Application
 Dim xlBook As Excel.Workbook

 Set xlApp = CreateObject("Excel.Application")
 xlApp.Visible = True
 Set xlBook = xlApp.Workbooks.Open(Filename:="E:\Test\TestFile.CSV")
 xlBook.SaveAs Filename:="E:\Test\TestFile.XLS",
FileFormat:=xlWorkbookNormal
 xlBook.Close
 Set xlSheet = Nothing
 Set xlBook = Nothing
 xlApp.Quit
 Set xlApp = Nothing

End Sub

Early binding is the friendly name for what C programmers call Virtual Function Table Binding, or V-Table

binding. In order to use Early binding, the controlling application must establish a reference to a type

library(.TLB) , object library(.OLB) , or dynamic-link library(.DLL) which defines the objects, methods, and

properties of the server application.

Benefits of Early Binding
• Performance: Depending on what your code is doing, early binding may significantly improve the

speed of your code.

• Compile-time syntax checking: Syntax errors that you make in Automation code will fail at

compile time rather than at run time.

• Code readability: When you declare object variables as specific types, you can simply glance at

those declarations to determine what objects a particular procedure uses.

• Viewing objects: When you've set a reference to an application's type library, its objects and their

properties and methods show up in the Object Browser. To find out what properties and methods

are available for a particular object, just check the Object Browser.

• Getting help: You can get help on another application's object model from the Object Browser,

rather than having to launch the application itself.

Microsoft Office 2000 Automation

Page 10

Late Binding

Late binding declares a variable as an Object or a Variant. The variable is initialized by calling the

GetObject or CreateObject functions and specifying the Automation Programmatic Identifier (ProgID). For

example:

Sub ProcessFile()

 Dim xlApp As Object
 Dim xlBook As Object

 Set xlApp = CreateObject("Excel.Application")
 xlApp.Visible = True
 Set xlBook = xlApp.Workbooks.Open(Filename:="E:\Test\TestFile.CSV")
 xlBook.SaveAs Filename:="E:\Test\TestFile.XLS",
FileFormat:=xlWorkbookNormal
 xlBook.Close
 Set xlSheet = Nothing
 Set xlBook = Nothing
 xlApp.Quit
 Set xlApp = Nothing

End Sub

Late binding was the first binding method implemented in Automation controller products. Late binding is

the friendly name for what C programmers call IDispatch-based binding. It uses a lot of overhead and is

faster than Dynamic Data Exchange (DDE), but slower than Early binding. Late binding is available in all

products capable of being an Automation controller.

Using Object Libraries and the Object Browser

When writing automation code, make sure that you add object libraries with the References dialog box.

For example, if you want a button in an Access form to create a letter in Word, set a reference to the

Microsoft Word 9.0 Object Library. To do this, open a code module in Access. Under the Tools menu,

choose References. Click the checkbox for Microsoft Word 9.0 Object Library.

After setting a reference, you can use IntelliSense technology, which provides developers with drop-down

menus within the code window for simplified code writing

The Object Browser allows you to view all objects, methods, properties, events, and constants of an

Automation server whose type library you have referenced under Tools, References in your Visual Basic

for Applications module.

The topmost drop-down list box shows all available libraries you listed in the References dialog box.

These libraries allow you to use Early Binding with those Automation servers. The second drop-down list

box shows any keywords you have searched on. You can also type a word into this box, and then click

the "binoculars" button to search the available libraries for that word. The list box shown immediately

under this displays the search results, if any. The list box in the lower left of the dialog box displays all

objects in the library. The list box in the lower right of the dialog box displays all methods, properties,

events, and constants associated with the selected object in the left list box. The bottom of the dialog

displays other information about the currently selected item, such as what kind of object it is, its data

Microsoft Office 2000 Automation

Page 11

type, what arguments it may take and its membership.

Microsoft Office 2000 Automation

Page 12

OLE Programmatic Identifiers

You can use an OLE Programmatic Identifier (sometimes called a ProgID) to create an Automation object.

The following tables list OLE programmatic identifiers for ActiveX controls, Microsoft Office applications,

and Microsoft Office Web Components.

ActiveX Controls

Microsoft Access

Microsoft Excel

Microsoft Graph

Microsoft Office Web Components

Microsoft Outlook

Microsoft PowerPoint

Microsoft Word

ActiveX Controls

To create the ActiveX controls listed in the following table, use the corresponding OLE programmatic

identifier.

To create this control Use this identifier

CheckBox Forms.CheckBox.1

ComboBox Forms.ComboBox.1

CommandButton Forms.CommandButton.1

Frame Forms.Frame.1

Image Forms.Image.1

Label Forms.Label.1

ListBox Forms.ListBox.1

MultiPage Forms.MultiPage.1

OptionButton Forms.OptionButton.1

ScrollBar Forms.ScrollBar.1

SpinButton Forms.SpinButton.1

TabStrip Forms.TabStrip.1

TextBox Forms.TextBox.1

ToggleButton Forms.ToggleButton.1

Microsoft Office 2000 Automation

Page 13

Microsoft Access

To create the Microsoft Access objects listed in the following table, use one of the corresponding OLE

programmatic identifiers. If you use an identifier without a version number suffix, you create an object in

the most recent version of Access available on the machine where the code is running.

To create this object Use one of these identifiers

Application Access.Application, Access.Application.9

CurrentData Access.CodeData, Access.CurrentData

CurrentProject Access.CodeProject, Access.CurrentProject

DefaultWebOptions Access.DefaultWebOptions

Microsoft Excel

To create the Microsoft Excel objects listed in the following table, use one of the corresponding OLE

programmatic identifiers. If you use an identifier without a version number suffix, you create an object in

the most recent version of Excel available on the machine where the code is running.

To create

this object

Use one of

these identifiers
Comments

Application
Excel.Application,

Excel.Application.9

Workbook Excel.AddIn

Workbook
Excel.Chart,

Excel.Chart.8

Returns a

workbook

containing

two

worksheets;

one for the

chart and

one for its

data. The

chart

worksheet

is the active

worksheet.

Workbook
Excel.Sheet,

Excel.Sheet.8

Returns a

workbook

with one

worksheet.

Microsoft Office 2000 Automation

Page 14

Microsoft Graph

To create the Microsoft Graph objects listed in the following table, use one of the corresponding OLE

programmatic identifiers. If you use an identifier without a version number suffix, you create an object in

the most recent version of Graph available on the machine where the code is running.

To create

this object

Use one of these

identifiers

Application
MSGraph.Application,

MSGraph.Application.8

Chart
MSGraph.Chart,

MSGraph.Chart.8

Microsoft Office Web Components

To create the Microsoft Office Web Components objects listed in the following table, use one of the

corresponding OLE programmatic identifiers. If you use an identifier without a version number suffix, you

create an object in the most recent version of Microsoft Office Web Components available on the machine

where the code is running.

To create this object Use one of these identifiers

ChartSpace OWC.Chart, OWC.Chart.9

DataSourceControl
OWC.DataSourceControl,

OWC.DataSourceControl.9

ExpandControl
OWC.ExpandControl,

OWC.ExpandControl.9

PivotTable
OWC.PivotTable,

OWC.PivotTable.9

RecordNavigationControl
OWC.RecordNavigationControl,

OWC.RecordNavigationControl.9

Spreadsheet
OWC.Spreadsheet,

OWC.Spreadsheet.9

Microsoft Outlook

To create the Microsoft Outlook object given in the following table, use one of the corresponding OLE

programmatic identifiers. If you use an identifier without a version number suffix, you create an object in

the most recent version of Outlook available on the machine where the code is running.

To create

this object

Use one of these

identifiers

Application
Outlook.Application,

Outlook.Application.9

Microsoft Office 2000 Automation

Page 15

Microsoft PowerPoint

To create the Microsoft PowerPoint object given in the following table, use one of the corresponding OLE

programmatic identifiers. If you use an identifier without a version number suffix, you create an object in

the most recent version of PowerPoint available on the machine where the code is running.

To create

this object

Use one of these

identifiers

Application
PowerPoint.Application,

PowerPoint.Application.9

Microsoft Word

To create the Microsoft Word objects listed in the following table, use one of the corresponding OLE

programmatic identifiers. If you use an identifier without a version number suffix, you create an object in

the most recent version of Word available on the machine where the code is running.

To create

this object

Use one of

these identifiers

Application
Word.Application,

Word.Application.9

Document

Word.Document,

Word.Document.9,

Word.Template.8

Global Word.Global

Destroying Automation Sessions

An Automation object variable normally is destroyed when it loses scope. For instance, if you declare a

local variable to a procedure and set it to an Automation object, that object is destroyed when the

procedure ends because the variable's scope was limited only to the procedure. Likewise, an Automation

object variable is not destroyed with a Public variable unless that variable is either reinitialized or is

explicitly destroyed.

To explicitly destroy an Automation object variable, set it to the keyword 'Nothing' as demonstrated

below.

Public accessApp As Object

Sub DestroyIt()

 Set accessApp = CreateObject("Access.Application")

 ' do something important...

 ' destroy the object
 Set accessApp = Nothing

End Sub

Microsoft Office 2000 Automation

Page 16

Note that with some Automation Servers, setting an object variable to Nothing doesn’t necessarily close

the server application. If you're using the CreateObject function to create an instance of an Automation

Server, be sure to use a method defined by the Server to quit it if possible and then set the object

variable to Nothing. If not, your code may be leaving multiple sessions of the Automation server open.

This is very common when automating Microsoft Excel, for instance.

To close the application, use the Quit method prior to setting the object variable out of scope as

demonstrated below.

Public xlApp As Object

Sub DestroyIt()

 Set xlApp = CreateObject("Excel.Application")

 ' do something important...

 ' quit the application object
 xlApp.Quit

 ' destroy the object
 Set xlApp = Nothing

End Sub

Troubleshooting Error 429 When Automating Office Applications

When using the New operator or CreateObject function in Visual Basic to create an instance of an

Office application, you may get the following error:

Run-time error '429': ActiveX component can't create object

This error occurs when the requested Automation object could not be created by COM, and is therefore

unavailable to Visual Basic. The error is typically seen on certain computers but not others.

Unlike some errors in Visual Basic, there is no one cause to an error 429. The problem happens because

of an error in the application or system configuration, or a missing or damaged component. Finding the

exact cause is a matter of eliminating possibilities. If you encounter this error on a client computer,

download the Knowledgebase article, Q244264 Troubleshooting Error 429 When Automating Office

Applications from http://support.microsoft.com/support/kb/articles/Q244/2/64.ASP.

This article provides some troubleshooting tips to help you diagnose and resolve common problems that

are known to cause this error.

Microsoft Access

Microsoft Office 2000 Automation

Page 17

ACCESS: The Microsoft Office Database Management
System
Microsoft Access 2000 makes it easy to get the information you need and provides powerful tools that

help you organize and share your database so you and your team make better decisions. Quickly find

answers that count, share information over intranets, and build faster and more effective business

solutions.

Build Powerful Business Solutions More Easily and Find Answers Faster

Enable Web collaboration and improve productivity with new tools in Access 2000. Make data

immediately available to any coworker. Update sales figures from the road or quickly check on customer

details. Customize your views and formats to show precisely the information you need. And use built-in

Microsoft SQL Server™ integration to create a scalable database that can grow with your business.

Microsoft Office 2000 Automation

Page 18

Detect if Access is Installed.

As Access is not included in Office Standard or may not be present the user's machine, it may be useful

to test for the existence of Access before you launch into your code.

Sub existenceCheck()
 Dim objApp As Object
 Dim strNotFound As String
 Const ERR_APP_NOTFOUND As Long = 429

 strNotFound = "Access is not installed on this machine. " _
 & vbCrLf & "Unable to automate Access."

 On Error Resume Next
 ' Attempt to create late-bound instance of Access application.
 Set objApp = CreateObject("Access.Application")

 If Err = ERR_APP_NOTFOUND Then
 MsgBox strNotFound
 Exit Sub
 End If
 With objApp
 ' Code to automate Access here.
 .Quit
 End With
 Set objApp = Nothing
End Sub

For applications where you wish to offer the user the functionality of Access Reports, you may wish to

utilize the Snapshot viewer if there is the possibility that the user doesn't have Access installed. For more

information on the Snapshot viewer see the Knowledgebase article, Q175274 which is located at

http://support.microsoft.com/support/kb/articles/Q175/2/74.ASP

Creating an Instance of Microsoft Access

In order to manipulate Microsoft Access objects through Automation, you must create an instance of the

Microsoft Access Application object.

You can do this either through Late binding or Early binding.

Late Binding:

 Dim accessApp As Object
 Set accessApp = CreateObject("Access.Application")

Early Binding:

 Dim accessApp As Access.Application
 Set accessApp = CreateObject("Access.Application")

Early Binding with the 'New' Keyword;

You can also use the 'New' keyword with early binding to create an instance of Microsoft Access. The

Microsoft Office 2000 Automation

Page 19

'New' keyword allows you to dimension your variable as a new instance of Microsoft Access without

having to use either the CreateObject or GetObject functions. As soon as any method or property of the

object variable is referred to, the instance is created. For instance,

 Dim accessApp As New Access.Application
 accessApp.Visible = True

Referencing a New Instance of Microsoft Access

When using Automation to create a new instance of Microsoft Access, refer to the Application object.

For information on how to reference an existing instance of Microsoft Access, see Referencing an Existing

Instance of Microsoft Access.

To open a database in the new instance use the OpenCurrentDatabase method. To create a new

database use the NewCurrentDatabase method.

Dim accessApp As Access.Application

Sub OpenNorthwind()
 Set accessApp = CreateObject("Access.Application.9")

 With accessApp
 .OpenCurrentDatabase("C:\Program Files\Microsoft
Office\Office\Samples\Northwind.mdb")
 End With

End Sub

Referencing an Existing Instance of Microsoft Access

Sometimes it is useful for your code to refer to an already existing instance of Microsoft Access rather

than creating a new one. For information on how to reference a new instance of Microsoft Access, see

Referencing a New Instance of Microsoft Access. Thus, what is the best way to determine if an instance

of Microsoft Access is already running? The best way to determine that is to use the GetObject function

with no PathName argument and "Access.Application" as the Class argument.

If an instance of Access exists, then the object variable will refer to the Application object of that

instance. If more than one instance of Access exists, one is chosen at random.

If there are no instances of Access, a trappable run-time error will occur. Error handling should be used

in your code in case an instance of Access does not exist. Once the reference is created, you can

determine which database is open, if any, and use the CloseCurrentDatabase, OpenCurrentDatabase, or

NewCurrentDatabase methods as needed.

Sub StartAccess()
 On Error Resume Next
 Set objAccess = GetObject(, "Access.Application")

 If Err.Number <> 0 Then
 MsgBox "No instance of Access available. Starting" _

Microsoft Office 2000 Automation

Page 20

 & vbCrLf & "a new instance..."
 Err.Clear
 Set objAccess = CreateObject("Access.Application")
 Else
 MsgBox "There is an instance of Access available."
 End If

End Sub

Terminating an Instance of Microsoft Access

Normally, the instance of Access is terminated when the object variable that refers to the instance is set

to Nothing or loses scope. However, if a table, query, form, or report is still open in normal view or a

table is open in design view, the instance will not be terminated when its object variable is set to Nothing

or loses scope. In this case, the instance will terminate only after the user closes the opened objects and

the instance's UserControl property is false. In any case, if the UserControl property of the instance is

true, the instance will not be terminated when its object variable is set to Nothing or loses scope. You

must use the Quit method if these conditions exist and you want to terminate the instance. For example:

 accessApp.Quit
 Set accessApp = Nothing

However, the Quit method should not be used if the instance is a "special" instance, as described in

Calling Microsoft Access Built-in Functions and your application may continue to make direct calls to

Access functions. For example, if GetObject retrieves an existing instance of Access that was created

automatically by the client because the client application made a direct call to an Access function, that

"special" instance of Access should not be terminated by using Quit.

If the instance is terminated by using Quit and the client application makes another direct call to an

Access function, the client will generate an "OLE Automation error" if it cannot find the special instance.

Use the Quit method only if you're sure the instance is not a special instance or if the application will not

continue to make direct calls to Access functions. Note: When the object variable that points to a special

instance is set to Nothing or loses scope, it will not terminate the special instance, regardless of its

UserControl setting. A "special" instance will be terminated automatically by the client when the client

application is closed or reset.

Tip: To prevent an instance of Access from terminating when its object variable loses scope, use a

module- or public-level variable to reference that instance of Access rather than a procedure-level

variable.

NewCurrentDatabase Method Example

The following example creates a new Microsoft Access database from another application through

Automation, and then creates a new table in that database.

You can enter this code in a Visual Basic module in any application that can act as a COM component. For

example, you might run the following code from Microsoft Excel, Microsoft Visual Basic, or Microsoft

Access.

When the variable pointing to the Application object goes out of scope, the instance of Microsoft Access

that it represents closes as well. Therefore, you should declare this variable at the module level.

Microsoft Office 2000 Automation

Page 21

' Include following in Declarations section of module.
Dim appAccess As Access.Application

Sub NewAccessDatabase()
 Dim dbs As Object, tdf As Object, fld As Variant
 Dim strDB As String
 Const DB_Text As Long = 10
 Const FldLen As Integer = 40

 ' Initialize string to database path.
 strDB = "C:\My Documents\Newdb.mdb"

 ' Create new instance of Microsoft Access.
 Set appAccess = CreateObject("Access.Application.9")

 ' Open database in Microsoft Access window.
 appAccess. NewCurrentDatabase strDB

 ' Get Database object variable.
 Set dbs = appAccess.CurrentDb

 ' Create new table.
 Set tdf = dbs.CreateTableDef("Contacts")

 ' Create field in new table.
 Set fld = tdf. CreateField("CompanyName", DB_Text, FldLen)

 ' Append Field and TableDef objects.
 tdf.Fields.Append fld
 dbs.TableDefs.Append tdf
 Set appAccess = Nothing
End Sub

Output an Access Report

This function outputs a report in the format specified by the optional lngRptType argument. If

lngRptType is specified, the report is automatically opened in the corresponding application. lngRptType

can be any of the following constants defined by Enum opgRptType in the Declarations section of the

module:

Enum opgRptType
 XLS = 1
 RTF = 2
 SNAPSHOT = 3
 HTML = 4
End Enum

Where

• XLS = output to Excel

• RTF = output to Rich Text Format

• SNAPSHOT = output to Access snapshot report format

• HTML = output to HTML

If lngRptType is not specified, the report is opened in Access and displayed in Print Preview.

Microsoft Office 2000 Automation

Page 22

Function GetReport(Optional lngRptType As opgRptType) As Boolean

 Dim acApp As Access.Application
 Dim strReportName As String
 Dim strReportPath As String

 Const SAMPLE_DB_PATH As String = "c:\program files\" _
 & "microsoft office\office\samples\northwind.mdb"

 strReportName = "Alphabetical List of Products"
 strReportPath = Options.DefaultFilePath(wdDocumentsPath) & "\"

 ' Start Access and open Northwind Traders database.
 Set acApp = GetObject(SAMPLE_DB_PATH, "Access.Application")
 With acApp
 ' Output or display in specified format.
 With .DoCmd
 Select Case lngRptType
 Case XLS
 .OutputTo acOutputReport, strReportName, _
 acFormatXLS, strReportPath & "autoxls.xls", True
 Case RTF
 .OutputTo acOutputReport, strReportName, _
 acFormatRTF, strReportPath & "autortf.rtf", True
 ' Snapshot Viewer must be installed to view snapshot
 ' output.
 Case SNAPSHOT
 .OutputTo acOutputReport, strReportName, _
 acFormatSNP, strReportPath & "autosnap.snp", True
 Case HTML
 .OutputTo acOutputReport, strReportName, _
 acFormatHTML, strReportPath & "autohtml.htm", _
 True, "NWINDTEM.HTM"
 Case Else
 acApp.Visible = True
 .OpenReport strReportName, acViewPreview
 End Select
 End With
 ' Close Access if this code created current instance.
 If Not .UserControl Then
 acApp.Quit
 Set acApp = Nothing
 End If
 End With
 GetReport = True
End Function

Opening a Secured Database through Automation

This function opens a secured Access database from Automation.

It takes the following arguments:

• strDbPath = full path to the secured database

• strUser = name of the user account to open the database

Microsoft Office 2000 Automation

Page 23

• strPassword = password of strUser

• strWkgrpPath = full path to the workgroup information file that contains strUser account

Function GetSecureDb(strDbPath As String, _
 strUser As String, _
 strPassword As String, _
 strWrkgrpPath As String) As Boolean

 Dim acApp As Access.Application
 Dim strCommand As String

 Const APP_PATH As String = "c:\program files\microsoft
office\office\msaccess.exe"

 ' Build Access command line to pass to Shell function.
 strCommand = """" & APP_PATH & """" & " " & """" & strDbPath & """" _
 & " /User" & strUser & " /Pwd " & strPassword _
 & "/NoStartup" & " /Wrkgrp " & strWrkgrpPath

 ' Pass command line to Shell function. If this succeeds, pass
 ' the database path to the GetObject function and loop until
 ' the acApp object variable is initialized.
 If Shell(strCommand) Then
 Do
 On Error Resume Next
 Set acApp = GetObject(strDbPath)
 DoEvents
 Loop Until Err.Number = 0
 End If

 ' Sample command to open an Access form named "Categories".
 acApp.DoCmd.OpenForm "Categories"

 GetSecureDb = True

 ' Quit and destroy object variable.
 acApp.Quit
 Set acApp = Nothing
 End Function

Import a Text File into Access

The TransferText method is used to import a text file into Access. In this instance the database that we

will import the file, d:\data\empTest.txt, into is d:\access2000\northwind.mdb. The parameter that

follows acImportDelim is the File Specification. If the file is the default text file, that is, comma-separated,

it is acceptable to omit the specification.

Sub newAccess()
 Dim objAccess As Access.Application
 Set objAccess = New Access.Application

 With objAccess
 .OpenCurrentDatabase "d:\access2000\northwind.mdb"
 .DoCmd.TransferText acImportDelim, , "Emp02", "d:\data\empTest.txt",

Microsoft Office 2000 Automation

Page 24

True
 .CloseCurrentDatabase
 .Quit
 End With
 Set objAccess = Nothing
End Sub

Sending the Current Record to Word.

The following example uses bookmarks in a Microsoft Word document to mark the locations where you

want to place data from a record on a Microsoft Access form.

Creating a Microsoft Word Document

1. Start Microsoft Word and create the following new document:

First Last

Address City, Region, PostalCode

Dear Greeting,

Northwind Traders would like to thank you for your employment during the past year. Below you will find

your photo. If this is not your most current picture, please let us know.

Photo

Sincerely,

Northwind Traders

2. Create a bookmark in Microsoft Word for the words "First," "Last," "Address," "City," "Region,"

"PostalCode," "Greeting," and "Photo":

a. Select the word "First."

b. On the Insert menu, click Bookmark

c. In the Bookmark Name box, type "First," (without the quotation marks) and then

click Add.

d. Repeat steps 2a through 2c for each of the remaining words, substituting that

word for the word "First" in steps 2a and 2c.

3. Save the document as C:\My Documents\MyMerge.doc, and then quit Microsoft Word.

Sending Data to Microsoft Word from a Microsoft Access Form

1. Start Microsoft Access and open the sample database Northwind.mdb.

2. Set a reference to the Microsoft Word 9.0 Object Library. To do so, follow these steps:

a. Open any module in Design view.

b. On the Tools menu, click References.

c. Click Microsoft Word 9.0 Object Library in the Available References box. If that

selection does not appear, browse for Msword9.olb, which installs by default in

the C:\Program Files\Microsoft Office\Office folder.

d. Click OK.

e. Close the module.

3. Open the Employees form in Design view.

4. Add a command button to the form and set the following properties:

Command Button:
Name: MergeButton

Microsoft Office 2000 Automation

Page 25

Caption: Send to Word
OnClick: [Event Procedure]

5. Set the OnClick property of the command button to the following event procedure.

NOTE: In the following sample code, you must remove the comment from one line of code as indicated,

depending on your version of Microsoft Access.

Private Sub MergeButton_Click()
 On Error GoTo MergeButton_Err
 Dim objWord As Word.Application
 ' Copy the Photo control on the Employees form.
 DoCmd.GoToControl "Photo"
 DoCmd.RunCommand acCmdCopy
 Start Microsoft Word.
 Set objWord = CreateObject("Word.Application")
 With objWord
 ' Make the application visible.
 .Visible = True
 ' Open the document.
 .Documents.Open ("c:\my documents\mymerge.doc")
 ' Move to each bookmark and insert text from the form.
 .ActiveDocument.Bookmarks("First").Select
 .Selection.Text = (CStr(Forms!Employees!FirstName))
 .ActiveDocument.Bookmarks("Last").Select
 .Selection.Text = (CStr(Forms!Employees!LastName))
 .ActiveDocument.Bookmarks("Address").Select
 .Selection.Text = (CStr(Forms!Employees!Address))
 .ActiveDocument.Bookmarks("City").Select
 .Selection.Text = (CStr(Forms!Employees!City))
 .ActiveDocument.Bookmarks("Region").Select
 .Selection.Text = (CStr(Forms!Employees!Region))
 .ActiveDocument.Bookmarks("PostalCode").Select
 .Selection.Text = (CStr(Forms!Employees!PostalCode))
 .ActiveDocument.Bookmarks("Greeting").Select
 .Selection.Text = (CStr(Forms!Employees!FirstName))
 ' Paste the photo.
 .ActiveDocument.Bookmarks("Photo").Select
 .Selection.Paste
 End With
 ' Print the document in the foreground so Word
 ' will not close until the document finishes printing.
 objWord.ActiveDocument.PrintOut Background:=False
 ' Close the document without saving changes.
 objWord.ActiveDocument.Close SaveChanges:=wdDoNotSaveChanges
 ' Quit Microsoft Word and release the object variable.
 objWord.Quit
 Set objWord = Nothing
 Exit Sub

MergeButton_Err:
 ' If a field on the form is empty
 ' remove the bookmark text and continue.
 If Err.Number = 94 Then
 objWord.Selection.Text = ""
 Resume Next
 ' If the Photo field is empty.
 ElseIf Err.Number = 2046 Then
 MsgBox "Please add a photo to this record and try again."

Microsoft Office 2000 Automation

Page 26

 Else
 MsgBox Err.Number & vbCr & Err.Description
 End If
 Exit Sub
End Sub

6. Save the Employees form and open it in Form view.

7. Click the Send To Word button to start Microsoft Word, merge data from the current record on

the form into MyMerge.doc, print the document, and then close Microsoft Word.

NOTE: When you use this method of inserting text into a Word Document, you are deleting the bookmark

when you insert the record field content. If you need to reference the text that you entered into the

document, you mustbookmark it. You can use the following sample to add the bookmark "Last" to the

text inserted from record field "LastName."

 .ActiveDocument.Bookmarks("Last").Select
 .Selection.Text = (CStr(Forms!Employees!LastName))
 ' add this line to reapply the bookmark name to the selection
 .ActiveDocument.Bookmarks.Add Name:="Last",Range:=Selection.Range

Using Automation with the Run-Time Version of Microsoft Access

To control a run-time installation of Access through Automation, there are special considerations to be

aware of when the retail version of Microsoft Access is not installed:

1. To start a run-time instance of Microsoft Access (when one is not already running), you must use

the Shell function and specify the path to Msaccess.exe and also a database to launch. This is

because a run-time instance of Access cannot start without a database.

2. After starting the run-time instance, use the GetObject function to refer to the instance.

(GetObject will only work with a run-time instance if the instance is already running.)

3. Only bring the instance into view when a database is open. If a database is not open in the run-

time instance and you attempt to bring it into view, the instance will briefly display on the screen

and then become minimized.

4. If you want to terminate a run-time instance, you must use the Quit method. For example,

objAccess.Quit.

This procedure sets a module-level variable, objAccess, to refer to an instance of Access. The code first

tries to use GetObject to refer to an instance that might already be open and contains the specified

database (dbpath). If the database is not already open in an instance of Access, a new instance of the

full version of Access is opened. If the full version of Access is not installed, the Shell function starts a

run-time instance of Access. Once the instance is opened, you can use the CloseCurrentDatabase and

OpenCurrentDatabase methods to work with other databases.

Sub OpenRunTime()
 Dim accpath As String, dbpath As String
 On Error Resume Next
 dbpath = "C:\Program Files\MyApp\MyApp.mdb"
 Set objAccess = GetObject(dbpath)
 If Err <> 0 Then
 If Dir(dbpath) = "" Then
 'dbpath is not valid
 MsgBox "Couldn't find database."
 Exit Sub
 Else 'The full version of Microsoft Access is not installed.
 accpath = "C:\Program Files\Microsoft

Microsoft Office 2000 Automation

Page 27

Office\Art\Office\Msaccess.exe"
 If Dir(accpath) = "" Then
 MsgBox "Couldn't find Microsoft Access."
 Exit Sub
 Else Shell pathname:=accpath & " " & Chr(34) & dbpath &
Chr(34),windowstyle:=6
 Set objAccess = GetObject(dbpath)
 End If
 End If
 End If
End Sub

User Control and Visible Hints

When an application is launched by the user, the Visible and UserControl properties of the Application

object are both set to True. When the UserControl property is set to True, it is not possible to set the

Visible property of the Application object to False.

When an Application object is created using Automation, the Visible and UserControl properties of the

Application object are both set to False.

If UserControl is True and an invalid command is passed to the instance of Access, Access will not

suppress its own alert message and the instance of Access will not be terminated when its object variable

is set to Nothing or loses scope.

Although you cannot directly change the UserControl property using code (it is read-only), Microsoft

Access may change the UserControl property to True if the instance is brought into view using means

other than setting the Application object's Visible property to True. However, if Visible was already True

before the instance was brought into view, UserControl and Visible do not change. For example, suppose

you have a public object variable, objAccess, that refers to an instance of Access. There is currently no

code that is manipulating the instance and its UserControl and Visible properties are False. If the user

then activates that instance of Access (by clicking on it from the TaskBar), its UserControl and Visible

properties become True. The UserControl property of the instance will remain True until the user

terminates it (by clicking File Exit, for example). After the user terminates the instance, it will become

minimized instead of actually being terminated since objAccess still refers to it. Now, its UserControl and

Visible properties become False again.

Understanding the UserControl property and whether the instance may have been created by the user is

important because this affects how the instance is brought into view and how it is terminated. For

example, when UserControl is True or the instance was created by the user, you cannot set its Visible

property to bring the instance into view. Also, if you want to terminate an instance whose UserControl

property is True, you must use the Quit method. For more information, see Using API calls to Bring

Microsoft Access into View and Terminating the Instance of Access.

Using API calls to Bring Microsoft Access into View

To bring a new instance of Microsoft Access into view, you can set its Visible property to True. However,

you cannot set the Visible property of an existing instance of Microsoft Access, or an instance of Microsoft

Access whose UserControl property is True. The Visible property is read only when the UserControl

property is True.

Microsoft Office 2000 Automation

Page 28

The UserControl property is True if the user started Microsoft Access manually, outside the context of

your code. Even if the instance was created using Automation and its UserControl property is False,

setting its Visible property to True will not bring the instance into view if its Visible property was already

True and the instance was minimized by the user.

To reliably bring an existing instance into view, use the SetForegroundWindow or ShowWindow API calls.

With the ShowAccess procedure, you pass it the object variable that refers to an instance of Access and it

will bring the instance into view. It works whether the instance is new or existing and also allows an

optional window "size" argument (e.g. to show the instance maximized)

Option Explicit

'The following Declare and Const statements are for the ShowAccess procedure.

Declare Function SetForegroundWindow Lib "User32" (ByVal hWnd As Long) As
Long
Declare Function ShowWindow Lib "User32" (ByVal hWnd As Long, ByVal nCmdShow
As Long) As Long
Declare Function IsIconic Lib "User32" (ByVal hWnd As Long) As Long

Const SW_NORMAL = 1 'Show window in normal size
Const SW_MINIMIZE = 2 'Show window minimized
Const SW_MAXIMIZE = 3 'Show window maximized
Const SW_SHOW = 9 'Show window without changing window size

Dim objAccess As Access.Application

Sub ShowAccess(instance As Access.Application, Optional size As Variant)
 'Brings the instance of Access referred to by "instance" into view.
 'Size can be SW_NORMAL(1), SW_MINIMIZE(2), SW_MAXIMIZE(3), or

 'SW_SHOW(9).

 'If size is omitted, the size of the Access window is not changed
 '(SW_SHOW).
 'Calling example:
 '
 'ShowAccess instance:=objAccess, size:=SW_SHOW

 Dim hWnd As Long, temp As Long
 If IsMissing(size) Then size = SW_SHOW
 On Error Resume Next 'temporary error handler

 'Note: An error in the client occurs if you try to set the visible
 'of an instance of Access created by the user, regardless of its

 'UserControl setting. This is the reason for the temporary error
 'handling for the following line:

 If Not instance.UserControl Then instance.Visible = True
 On Error GoTo 0 'turn off error handler

 hWnd = instance.hWndAccessApp

 temp = SetForegroundWindow(hWnd)
 If size = SW_SHOW Then 'keep current window size

Microsoft Office 2000 Automation

Page 29

 If IsIconic(hWnd) Then temp = ShowWindow(hWnd, SW_SHOW)

 Else
 If IsIconic(hWnd) And size = SW_MAXIMIZE Then temp = _
 ShowWindow(hWnd, SW_NORMAL)
 temp = ShowWindow(hWnd, size)
 End If
End Sub

Sub StartAccess()
 Set objAccess = CreateObject("Access.Application")
 objAccess.OpenCurrentDatabase _
 ("C:\Program Files\Microsoft Office\Office\Samples\Northwind.mdb")
 ShowAccess objAccess, SW_MAXIMIZE
End Sub

Microsoft Office 2000 Automation

Page 30

Microsoft Binder
By default, the Microsoft Binder is marked 'Not Available' in Office 2000 Setup, and won't be installed on

first use. To run the procedures in this section, re-run Setup, click Add or Remove Features, and then

under Office Tools, select Microsoft Binder.

After installing Microsoft Binder, on the Tools menu use the References command to establish a reference

to the 'Microsoft Binder 9.0 Object Library.'

Adding Documents to the Binder

This procedure demonstrates adding a Word document, a Worksheet, a Chart and a PowerPoint Show to

a new Binder file using the New keyword. The error handler provides a clean exit from the procedure if

the Binder file already exists.

Sub AddDocsToBinder()

 Dim bindApp As OfficeBinder.Binder

 On Error GoTo AddDocsToBinder_Err

 Set bindApp = New OfficeBinder.Binder

 With bindApp
 .Visible = True

 ' Add documents to binder.
 With .Sections
 .Add Type:="Word.Document"
 .Add Type:="Excel.Sheet"
 .Add Type:="Excel.Chart"
 .Add Type:="PowerPoint.Show"
 End With

 ' Save changes to the binder and close.
 .SaveAs "C:\My Documents\NewDocs.obd"
 .Close
 End With

 AddDocsToBinder_End:
 Set bindApp = Nothing
 Exit Sub

AddDocsToBinder_Err:

 Select Case Err.Number
 Case 6546
 MsgBox "File already exists."
 Case Else
 MsgBox "Error: " & Error.Number & " " & Error.Description
 Resume AddDocsToBinder_End
 End Select

End Sub

Microsoft Office 2000 Automation

Page 31

Delete Sections From a Binder

This procedure will delete all the documents from an existing binder.

Sub DeleteDocsFromBinder()

 Dim bindApp As OfficeBinder.Binder
 Dim intSectionCount As Integer

 Const ERR_FILE_EXISTS As Long = 6546

 On Error GoTo DeleteDocsFromBinder_Err

 ' Create new hidden instance of Binder.
 Set bindApp = New OfficeBinder.Binder

 With bindApp
 ' Make Binder visible and open binder created with
 ' AddDocsToBinder procedure.
 .Visible = True
 .Open ("C:\My Documents\NewDocs.obd")

 ' Loop through each section and delete it.
 For intSectionCount = .Sections.Count To 1 Step -1
 .Sections(intSectionCount).Delete
 Next
 .Save
 .Close
 End With

DeleteDocsFromBinder_End:
 Set bindApp = Nothing
 Exit Sub

DeleteDocsFromBinder_Err:
 Select Case Err.Number
 Case ERR_FILE_EXISTS
 MsgBox "File already exists."
 Case Else
 MsgBox "Error: " & Error.Number & " " & Error.Description
 Resume DeleteDocsFromBinder_End
 End Select
End Sub

Microsoft Office 2000 Automation

Page 32

EXCEL: The Microsoft Office Spreadsheet
Discover better ways to analyze data and find solutions using Microsoft Excel 2000 and its streamlined

spreadsheet creation tools, enhanced analysis tools, and powerful Web integration. Whether you are an

expert or a novice, Excel will help you work more efficiently, turning your data into answers you can

count on.

More Than Numbers

Excel 2000 provides comprehensive tools to help you create, analyze, and share spreadsheets. Create

rich spreadsheets more easily than ever using enhanced formatting features. Analyze your data with

charts, PivotTable® dynamic views, and graphs. And post your results to the Web for universal viewing

and collaboration.

Microsoft Excel

The approach most commonly used to transfer data to an Excel workbook is Automation. Automation

gives you the greatest flexibility for specifying the location of your data in the workbook as well as the

ability to format the workbook and make various settings at run time. With Automation, you can use

several approaches for transferring your data:

• Transfer data cell by cell

• Transfer data in an array to a range of cells

• Transfer data in an ADO recordset to a range of cells using the CopyFromRecordset method

• Create a QueryTable on an Excel worksheet that contains the result of a query on an ODBC or

OLEDB data source

• Transfer data to the clipboard and then paste the clipboard contents into an Excel worksheet

There are also methods that you can use to transfer data to Excel that do not necessarily require

Automation. If you are running an application server-side, this can be a good approach for taking the

bulk of processing the data away from your clients. The following methods can be used to transfer your

data without Automation:

• Transfer your data to a tab- or comma-delimited text file that Excel can later parse into cells on a

worksheet

• Transfer your data to a worksheet using ADO

Microsoft Office 2000 Automation

Page 33

Differences From Earlier Versions of Microsoft Excel

The CreateObject and GetObject methods of Automation work differently when controlling Microsoft Excel

97 than they do when controlling earlier versions of Microsoft Excel. This is due to a design change in the

Microsoft Excel object model. This topic explains the differences in behavior and offers some suggestions

for making Automation code work with Microsoft Excel 97 and earlier versions of Microsoft Excel.

Behavior in Different Versions of Microsoft Excel

When you use CreateObject or GetObject in a macro to work with a Microsoft Excel sheet object, such as

"Excel.Sheet" or "Excel.Sheet.8," the type of object the procedure returns is different for different

versions of Microsoft Excel.

Version Type of object returned

Microsoft Excel 97 Workbook

Microsoft Excel 5.0, 7.0 Worksheet

You can demonstrate the change in behavior by running the following Automation code from any Visual

Basic for Applications client application such as Microsoft Access, Microsoft Word, or Microsoft Excel:

Sub ShowTypeName()

 Dim xlApp As Object

 Set xlAppj = CreateObject("Excel.Sheet")
 MsgBox TypeName(xlApp)
 xlApp.Quit
 Set xlApp = Nothing

End Sub

In Microsoft Excel 97, when you run the procedure, a message box that displays "Workbook" appears. In

earlier versions of Microsoft Excel, the message is "Worksheet."

This change in behavior may cause a problem if your code uses properties and methods that are specific

to the type of object to which the procedure references.

This following procedure works correctly with earlier versions of Microsoft Excel, because the Parent

property of xlApp (a Worksheet object) is a Workbook object; and the Close method applies to

workbooks:

Sub DemonstrateProblem()

 Dim xlApp As Object

 Set xlApp = CreateObject("Excel.Sheet")
 MsgBox TypeName(xlApp)
 xlApp.Parent.Close False
 Set xlApp = Nothing

End Sub

However, this procedure fails when you run it in Microsoft Excel 97, because the Parent property of

xlApp (a Workbook object) is an Application object, and the Close method does not apply to the

Application. When you run the procedure, you receive the following error message:

Run-time error '438':

Microsoft Office 2000 Automation

Page 34

Object doesn't support this property or method

Making your Code Work in All Versions of Microsoft Excel

If you want to use Automation with Microsoft Excel, but you do not know which version of Microsoft Excel

is running, you can modify your code to work correctly with any version of Microsoft Excel.

One way to do this is to check the version of Microsoft Excel from the procedure, and then store the

version number in a variable. To do this, use the following line of code:

ExcelVersion = Val(xlApp.Application.Version)

where "xlApp" is the name of the Microsoft Excel object.

The value of "ExcelVersion" is either 5, 7, or 8 for Microsoft Excel 5.0, 7.0, or 97 respectively.

After you determine the version of Microsoft Excel you are using, modify the procedure to work correctly

with that version of Microsoft Excel. For example, you can make the procedure in this article work

correctly by adding a few lines of code. The following example illustrates how to change the procedure:

Sub FixedProblem()

 Dim xlApp As Object
 ExcelVersion As Integer

 Set xlApp = CreateObject("Excel.Sheet")
 MsgBox TypeName(xlApp)
 ExcelVersion = Val(xlApp.Application.Version)
 If ExcelVersion = 8 Then 'For Microsoft Excel 97
 xlApp.Close False 'Close the workbook object.
 ElseIf ExcelVersion < 8 Then 'For Microsoft Excel 5.0 or 7.0
 xlApp.Parent.Close False 'Close the workbook object.
 End If
 Set xlApp = Nothing

End Sub

This procedure works correctly with Microsoft Excel 5.0, 7.0, or Microsoft Excel 97. The procedure also

works correctly when you run it from Microsoft Visual Basic, Microsoft Word 97, or any other program

(including Microsoft Excel) that supports Visual Basic or Visual Basic for Applications.

Determining if You Should Close the Instance of Microsoft Excel

One of the most important things to consider is if your code should close the instance of Microsoft Excel.

The general rule is that if your code created the instance, it should also close the instance, unless you

want the user to close it manually. If your code did not create the instance, then it should not close the

instance; since it will affect other workbooks created by your users. If you want your code to always use

an existing instance if possible, see Using a Pre-Existing Instance of Microsoft Excel.

Here's an example of how you could use the IsExcelRunning() function described in the above topic to

determine if the code should close Microsoft Excel or not.

Sub SendDataToXL()
 Dim xlApp As Excel.Application
 Dim xlBook As Excel.Workbook
 Dim ExcelRunning As Boolean

Microsoft Office 2000 Automation

Page 35

 ExcelRunning = IsExcelRunning()
 If Not ExcelRunning Then
 Set xlApp = CreateObject("Excel.Application")
 Else
 Set xlApp = GetObject(, "Excel.Application")
 End If

 xlApp.Visible = True
 Set xlBook = xlApp.Workbooks.Add()
 xlBook.Worksheets(1).Cells(1, 1).Value = "Hello"
 xlBook.SaveAs "C:\Book1.xls"

 'If we started the instance, our code uses the
 'Quit method to close the instance
 If Not ExcelRunning Then xlApp.Quit
 Set xlBook = Nothing
 Set xlApp = Nothing

End Sub

Destroying an Instance of Microsoft Excel

When manipulating Automation servers, it is very important to destroy any object variables associated

with the instances as well as to close the instance if your code created it. If not, your code could be

opening instances of the server without closing them, and if run repeatedly, could eventually consume

too many resources (such as memory) on the user's machine resulting in performance degradation. This

topic will demonstrate how to correctly close an instance of Microsoft Excel and destroy any object

variables associated with it. For more information about destroying object variables, see Destroying

Automation Sessions.

When Will an Instance of Microsoft Excel Close Automatically During Automation?

An instance of Microsoft Excel will close automatically when its object variable loses scope, or is set to the

keyword Nothing if there are no workbooks open, and the Application object's UserControl property is set

to False.

How do I Close an Instance of Microsoft Excel?

There are two different methods for closing the instance of Microsoft Excel your code is automating.

Regardless of which method you choose, your code should be responsible for destroying any object

variables by setting them to the keyword Nothing. For information on whether your code should close the

instance of Microsoft Excel, see Determining if You Should Close the Instance of Microsoft Excel.

Method 1: Use the Application Object's Quit Method

Option Explicit
Dim xlApp As Excel.Application

Sub CloseExcel()

 Set xlApp = CreateObject("Excel.Application")
 'Other Automation code here

Microsoft Office 2000 Automation

Page 36

 xlApp.Quit
 Set xlApp = Nothing
End Sub

Method 2: Closing All WorkBooks and Setting the UserControl Property to False

Option Explicit
Dim xlApp As Excel.Application

Sub CloseExcel()

 Set xlApp = CreateObject("Excel.Application")

 'Other Automation code here

 xlApp.WorkBooks.Close 'Close all open workbooks
 xlApp.UserControl = False
 Set xlApp = Nothing

End Sub

Using a Pre-Existing Instance of Microsoft Excel

To use a pre-existing instance of Microsoft Excel with Automation, use the GetObject function and specify

"Excel.Application" as the Class type. If an instance of Microsoft Excel already exists, the GetObject

function will return a reference to the instance. If an instance of Microsoft Excel does not already exist,

your code will cause a trappable run-time error, and you can use the CreateObject function to create one.

You can use the following function to determine if an instance of Microsoft Excel is running.

Function IsExcelRunning() As Boolean
 Dim xlApp As Excel.Application
 On Error Resume Next
 Set xlApp = GetObject(, "Excel.Application")
 IsExcelRunning = (Err.Number = 0)
 Set xlApp = Nothing
 Err.Clear
End Function

And then, your code can determine whether it needs to create a new instance or not…

Sub ExcelInstance()
 Dim xlApp As Excel.Application

 Dim ExcelRunning As Boolean

 ExcelRunning = IsExcelRunning()
 If ExcelRunning Then
 Set xlApp = GetObject(, "Excel.Application")
 Else
 Set xlApp = CreateObject("Excel.Application")
 End If
 'Other automation code here...

 If Not ExcelRunning Then xlApp.Quit

Microsoft Office 2000 Automation

Page 37

 Set xlApp = Nothing
End Sub

Making an Instance of Microsoft Excel Visible

If a new instance of Microsoft Excel is created using Automation, it will be invisible by default. To display

the newly created instance of Microsoft Excel, it is sometimes necessary to set the Visible property of the

Application object to True. In previous versions, if you wished to use the Active property, you would

need to make sure that the workbook's window was visible. With Office 2000 applications, it is necessary

to set the Visible property to True if you intent to use any part of the server application's user interface.

For example, if you attempt to use Automation to print preview a range without first setting the Visible

property of the workbook's window to True, the process may hang or produce a run-time error. The line,

xlApp.Visible = True, allows Excel to display the Print Preview window.

Option Explicit

Sub printPreview()

 Dim xlApp as Excel.Application
 Set xlApp = CreateObject("Excel.Application")

 xlApp.Visible = True

 xlApp.Workbooks.Add
 xlApp.Sheets(1).Cells(1.1).Select
 xlApp.ActiveCell.Value = 10

 ' this line will cause the code to fail if Excel is not visible.
 xlApp.ActiveCell.PrintPreview

 xlApp.Quit
 Set xlApp = Nothing

End Sub

In this example, the code will run successfully without having to make Excel visible. In previous versions

of Excel, if you wanted to use ActiveCell or ActiveSelection, it was necessary to set the visible property to

True:

Option Explicit

Sub selectRange()

 Dim xlApp as Excel.Application
 Set xlApp = CreateObject("Excel.Application")

 xlApp.Workbooks.Add
 xlApp.Sheets(1).Cells(1.1).Select
 xlApp.ActiveCell.Value = 10

 xlApp.Quit
 Set xlApp = Nothing

Microsoft Office 2000 Automation

Page 38

End Sub

Opening a Microsoft Excel Workbook

This example demonstrates how to use the CreateObject function through Automation to open an

existing Microsoft Excel workbook and display it to the user. Note that Microsoft Excel remains open even

after the object variable has lost scope. See Destroying an Instance of Microsoft Excel for more

information.

Sub OpenXLWorkBook(Path As String)

 Dim xlApp As Excel.Application

 'Check to see if the file name passed in to
 'the procedure is valid
 If Dir(Path) = "" Then
 MsgBox Path & " isn't a valid path!"
 Exit Sub
 Else
 Set xlApp = CreateObject("Excel.Application")

 'You do not need to make the application object visible
 'if you close the file and quit the application
 'later in your code in order to remove these objects
 'from memory.

 xlApp.Visible = True
 xlApp.Workbooks.Open Path
 End If

End Sub

This example demonstrates how to open an existing Microsoft Excel workbook through Automation using

the GetObject function. Notice there are some differences in the code used with the GetObject function

than with the CreateObject function. The primary difference is that we have to unhide the Window which

contains the WorkBook, and set the WorkBook's Saved property to True to prevent Microsoft Excel from

prompting the user to save changes upon exiting. See Differences in the GetObject and

CreateObject Functions with Microsoft Excel for more information.

Sub OpenXLWorkBook(Path As String)

 Dim xlApp As Excel.Workbook
 Dim xlWindow As Excel.Window

 'Check to see if the file name passed in to
 'the procedure is valid
 If Dir(Path) = "" Then
 MsgBox "'" & Path & "' isn't a valid path!"
 Exit Sub
 Else
 Set xlApp = GetObject(Path)

 'Show the Excel Application Window
 xlApp.Parent.Visible = True

 'Unhide each window in the WorkBook
 For Each xlWindow In xlApp.Windows

Microsoft Office 2000 Automation

Page 39

 xlWindow.Visible = True
 Next

 'Prevent Excel from prompting to save changes
 'to the workbook when the user exits
 xlApp.Saved = True
 End If

End Sub

Note: Both of these examples are called from other procedures. You are not required to use the Call

keyword when calling a procedure. However, if you use the Call keyword to call a procedure that

requires arguments, argumentlist must be enclosed in parentheses. If you omit the Call keyword, you

also must omit the parentheses around argumentlist. If you use either Call syntax to call any intrinsic or

user-defined function, the function's return value is discarded. For example:

Sub Main()
 OpenXLWorkBook "c:\My Documents\test.xls"
End Sub

Sub Main()
 Call OpenXLWorkBook("c:\My Documents\test.xls")
End Sub

Adding a New Worksheet to an Existing Microsoft Excel Workbook

This example demonstrates how to use Automation to open an existing Microsoft Excel workbook and

add a new worksheet to it. For information on opening Microsoft Excel workbooks through Automation,

see Opening a Microsoft Excel Workbook. Note the use of the Quit method and the Nothing keyword to

close the instance of Microsoft Excel and destroy its object variable. For information, see Destroying an

Instance of Microsoft Excel.

Sub AddNewSheet()
 Dim xlApp As Excel.Application
 Set xlApp = CreateObject("Excel.Application")
 With xlApp
 .Workbooks.Open ("C:\Book1.XLS")
 .ActiveWorkbook.Sheets.Add
 .ActiveSheet.Name = "pivot"
 .ActiveWorkbook.Save
 .Quit
 End With
 Set xlApp = Nothing
End Sub

Using the Range Object With Microsoft Excel

To automate Microsoft Excel, you establish an object variable that usually refers to the Excel Application

or Workbook object. Other object variables can then be set to refer to a Worksheet, a Range, or other

objects in the Microsoft Excel object model. When you write code to use an Excel object, method, or

property, you should always precede the call with the appropriate object variable. If you do not, Visual

Basic establishes its own reference to Excel. This reference might cause problems when trying to run the

Microsoft Office 2000 Automation

Page 40

automation code multiple times. Note that even if the line of code begins with the object variable, there

may be a call to an Excel object, method, or property in the middle of the line of code that is not

preceded with an object variable.

This example demonstrates how to use Automation to refer to a Range in Microsoft Excel, and then set

the value of it. Note the following line of code from the sample:

• xlSheet.Range(xlSheet.Cells(1,1), xlSheet.Cells(3,3)).Value = 1000

Common practise referencing a range within Excel may lead you to enter the code as:

• xlSheet.Range("A1:C3").Value = 1000

This syntax causes Visual Basic to establish a reference to Excel because the part of the Range object has

not been qualified with an Excel object variable, in this case, xlSheet. Visual Basic does not release this

reference until you end the program.

To use this example, create a workbook named Book1.xls in C:\My Documents. Note that the instance of

Excel will not be visible to the user.

Sub usingRange()

 Dim xlApp As Excel.Application
 Dim xlBook As Excel.Workbook
 Dim xlSheet As Excel.Worksheet

 Set xlApp = CreateObject("Excel.Application")
 Set xlBook = xlApp.Workbooks.Open(filename:="c:\My Documents\Book1.xls")

 'Set reference to Worksheet object
 Set xlSheet = xlBook.Sheets("Sheet3")

 'Puts 1000 in cells A1 through C3 of Sheet3 in Book1.xls
 xlSheet.Range(xlSheet.Cells(1,1), xlSheet.Cells(3,3)).Value = 1000

 xlBook.Close savechanges:=True

 'Close Microsoft Excel and destroy object variables
 xlApp.Quit
 Set xlSheet = Nothing
 Set xlBook = Nothing
 Set xlApp = Nothing

End Sub

Adding a Named Range to a Workbook

This example demonstrates how to use Automation to open a Microsoft Excel workbook and determine

the address of the current region. The current region is a range bounded by any combination of blank

rows and blank columns. The subroutine then gives that range a name. This procedure assumes you

have already created a new Microsoft Excel workbook which contains data.

Sub SetRange(Path As String)
 Dim xlApp As Excel.Application
 Dim rng As String

 'Check to see if the file name passed in to

Microsoft Office 2000 Automation

Page 41

 'the procedure is valid
 If Dir(Path) = "" Then
 MsgBox Path & " isn't a valid path!"
 Exit Sub
 Else
 Set xlApp = CreateObject("Excel.Application")
 xlApp.Visible = True
 xlApp.Workbooks.Open Path
 xlApp.ActiveSheet.Range("a1").Select
 rng = xlApp.Selection.CurrentRegion.Address
 xlApp.ActiveWorkbook.Names.Add "DataRng", "=sheet1!" & rng
 End If
End Sub

Selecting a Specific Location on a Microsoft Excel Worksheet

This example demonstrates how to use Automation to select a specific range of cells in a Microsoft Excel

worksheet. This example uses the Range method to select the desired cells. See Using the Range Object

With Microsoft Excel for more information.

Sub SelectCells()

 Dim xlApp As Excel.Application
 Dim xlBook As Excel.Workbook
 Dim xlSheet As Excel.Worksheet

 Set xlApp = CreateObject("Excel.Application")
 Set xlBook = xlApp.Workbooks.Open(FileName:="c:\My Documents\Book1.xls")
 Set xlSheet = xlBook.ActiveSheet
 xlApp.Visible = True

 With xlSheet
 ' insert range selection example code here
 End With

End Sub

Selects cells B1:F7, then makes cell D2 the active cell.

 .Range(xlSheet.Cells(1, 2), xlSheet.Cells(7, 6)).Select
 .Range("D2").Activate

Selects an area named "MyArea"

 .Range("MyArea").Select

Selects the last cell in the used range on the ActiveSheet

 .Cells.SpecialCells(xlCellTypeLastCell).Select

Selects all the cells that contain formula.

 .Cells.SpecialCells(xlCellTypeFormulas).Select

For more information on the SpecialCells method, search Microsoft Visual Basic Help for SpecialCells.

Microsoft Office 2000 Automation

Page 42

Editing a Microsoft Excel Workbook

When using Automation to edit a Microsoft Excel workbook, keep the following in mind.

Creating a new instance of Microsoft Excel and opening a workbook results in an invisible instance of

Microsoft Excel, and a hidden instance of the workbook. Thus, if you edit the workbook and save it,

the workbook is saved hidden. The next time the user opens Microsoft Excel manually, the workbook will

be invisible and the user has to select Unhide from the Window menu to actually view the workbook.

To prevent this, your Automation code should unhide the workbook before editing it and saving it. Note

that this does NOT mean Microsoft Excel itself has to be visible, so the user will never actually see it.

Consider the following example.

Sub usingRange()

 Dim xlApp As Excel.Application
 Dim xlBook As Excel.Workbook
 Dim xlSheet As Excel.Worksheet

 ' set reference to Application object
 Set xlApp = CreateObject("Excel.Application")

 ' set reference to Workbook object
 Set xlBook = xlApp.Workbooks.Open("C:\BOOK1.XLS")

 ' set the reference to Worksheet object
 Set xlSheet = xlBook.WorkSheet(1)

 ' puts 1000 in cells A1 through C3 of Sheet1 in Book1.xls
 xlSheet.Range(xlSheet.Cells(1,1), xlSheet.Cells(3,3).Value = 1000
 xlBook.Close savechanges:=True

 ' close Excel and destroy object variables
 xlApp.Quit
 Set xlSheet = Nothing
 Set xlBook = Nothing
 Set xlApp = Nothing

End Sub

The above example opens an existing workbook in a new, hidden instance of Microsoft Excel, edits the

workbook, and then saves and closes it. Since the workbook was opened in an invisible instance of

Microsoft Excel and was never unhidden, the code has now saved the workbook as a hidden workbook.

To avoid this problem, modify the example to unhide the workbook before editing it as shown below.

Sub usingRange()

 Dim xlApp As Excel.Application
 Dim xlBook As Excel.Workbook
 Dim xlSheet As Excel.Worksheet

 ' set reference to Application object
 Set xlApp = CreateObject("Excel.Application")

Microsoft Office 2000 Automation

Page 43

 ' set reference to Workbook object
 Set xlBook = xlApp.Workbooks.Open(" C:\BOOK1.XLS ")

 ' set the reference to Worksheet object
 Set xlSheet = xlBook.WorkSheet(1)

 ' unhide the workbook. Note that this does NOT
 ' unhide the instance of Microsoft Excel
 xlApp.Windows(1).Visible = True

 ' puts 1000 in cells A1 through C3 of Sheet1 in Book1.xls
 xlSheet.Range(xlSheet.Cells(1,1), xlSheet.Cells(3,3).Value = 1000
 xlBook.Close savechanges:=True

 ' close Excel and destroy object variables
 xlApp.Quit
 Set xlSheet = Nothing
 Set xlBook = Nothing
 Set xlApp = Nothing

End Sub

Populating a List Box with Data From Excel.

The following function uses Automation to retrieve a list of countries from a Microsoft Excel worksheet.

The list is then used to populate a list box bound to the Country field of the Suppliers table in the sample

database Northwind.mdb.

1. Start Microsoft Excel and create a new worksheet with the following data:

2. Save the worksheet as C:\My Documents\Country.xls.

NOTE: If you change the name or location of this file, be sure to change the sample code to

reflect this change.

3. Open the sample database Northwind.mdb and create a new module.

4. Type the following lines in the Declarations section:

Option Explicit
Dim Countries(3) As String

5. Type the following subroutine:

Sub OLEFillCountries()
 Dim i%
 Dim XL As Object
 Dim WrkBook As Object

Microsoft Office 2000 Automation

Page 44

 Set XL = CreateObject("Excel.Application")
 Set WrkBook = XL.Workbooks.Open("C:\My Documents\Country.xls")
 For i% = 0 To 2
 Countries(i%) = WrkBook.Sheets(1).Cells(i% + 1, 1).Value
 Next i%
 XL.Quit
 Set WrkBook = Nothing
 Set XL = Nothing
End Sub

6. Type the following function:

Function OLEFillList(fld As Control, id, row, col, code)
 Select Case code
 Case 0 ' Initialize.
 Call OLEFillCountries
 OLEFillList = True
 Case 1 ' Open.
 OLEFillList = id
 Case 3 ' Get number of rows.
 OLEFillList = 3
 Case 4 ' Get number of columns.
 OLEFillList = 1
 Case 5 ' Force default width.
 OLEFillList = -1
 Case 6
 OLEFillList = Countries(row)
 End Select
End Function

7. Save the module as "OLE Fill list box" (without the quotation marks).

8. Create a new form based on the Suppliers table.

9. Create a list box with the following properties:

Object: List Box
ControlSource: Country
RowSourceType: OLEFillList

10. Open the form in Form view.

Note that the list box contains the values entered in the spreadsheet.

Opening a CSV file with Microsoft Excel - from Microsoft Access.

This example demonstrates opening and formating a Comma Separated Values (CSV) file using Microsoft

Access as the Automation Client and Microsoft Excel as the Automation Server.

Sub ProcessFile()

 Dim xlApp As Excel.Application
 Dim xlBook As Excel.Workbook
 Dim xlSheet As Excel.Worksheet
 Dim xlSelection As Range
 Dim rowCounter As Integer
 Dim varTemp As Variant

 Const CSVFILE = "C:\My Documents\CSVTest.csv"
 Const NEWFILE = "C:\My Documents\Test.xls"

Microsoft Office 2000 Automation

Page 45

 Set xlApp = CreateObject("Excel.Application")
 xlApp.Visible = True
 Set xlBook = xlApp.Workbooks.Open(filename:=CSVFILE)

 Set xlSheet = xlBook.ActiveSheet
 Set xlSelection = xlSheet.Range(xlSheet.Cells(1, 1), xlSheet.Cells(1,
1).End(xlToRight))

 With xlSelection
 With .Interior
 .ColorIndex = 15
 .Pattern = xlSolid
 End With
 End With

 Set xlSelection = xlSheet.Range("A1").CurrentRegion

 With xlSelection
 With .Borders
 .LineStyle = xlContinuous
 .Weight = xlThin
 End With
 .Columns.AutoFit
 End With

 rowCounter = 2
 Set xlSelection = xlSheet.Cells(rowCounter, 1)
 varTemp = xlSelection.Value
 rowCounter = rowCounter + 1
 Set xlSelection = xlSheet.Cells(rowCounter, 1)

 Do While xlSelection.Value <> ""
 If xlSelection.Value = varTemp Then
 xlSelection.Value = ""
 xlSelection.Borders(xlEdgeTop).LineStyle = xlLineStyleNone
 Else
 varTemp = xlSelection.Value
 End If
 rowCounter = rowCounter + 1
 Set xlSelection = xlSheet.Cells(rowCounter, 1)
 Loop

 On Error Resume Next
 Kill NEWFILE
 On Error Goto 0
 xlBook.SaveAs filename:=NEWFILE, FileFormat:=xlWorkbookNormal

 xlBook.Close
 Set xlSheet = Nothing
 Set xlBook = Nothing
 xlApp.Quit
 Set xlApp = Nothing

End Sub

Microsoft Office 2000 Automation

Page 46

Copy Formulas

This example opens a workbook and, after selecting all the formulas on the worksheet, copies all of the

worksheet formulas from the ActiveSheet to Sheet 2.

Sub CopyFormulas()
 Dim xlApp As Excel.Application
 Dim xlBook As Excel.Workbook
 Dim xlSheet As Excel.Worksheet
 Dim rangeItem as Range
 Set xlApp = CreateObject("Excel.Application")
 Set xlBook = xlApp.Workbooks.Open(FileName:="c:\My Documents\Book1.xls")
 Set xlSheet = xlBook.ActiveSheet
 xlApp.Visible = True
 With xlSheet
 .Cells.SpecialCells(xlCellTypeFormulas).Select
 For Each rangeItem in Selection
 ' copy formula from the active sheet to Sheet2
 xlBook.Worksheets("Sheet2").Range(rangeItem.Address) =
rangeItem.Formula
 Next rangeItem
 End With
End Sub

Use Automation to Transfer an Array of Data to a Range on a Worksheet:

An array of data can be transferred to a range of multiple cells at once:

Sub bulkTransfer()

 Dim xlApp As Excel.Application
 Dim xlBook As Workbook
 Dim xlSheet As Worksheet

 'Start a new workbook in Excel
 Set xlApp = CreateObject("Excel.Application")
 Set xlBook = xlApp.Workbooks.Add

 'Create an array with 3 columns and 100 rows
 Dim aryData(1 To 100, 1 To 3) As Variant
 Dim intCount As Integer

 For intCount = 1 To 100
 aryData(intCount, 1) = "ORD" & Format(r, "0000")
 aryData(intCount, 2) = Rnd() * 1000
 aryData(intCount, 3) = aryData(intCount, 2) * 0.7
 Next

 'Add headers to the worksheet on row 1
 Set xlSheet = xlBook.Worksheets(1)
 xlSheet.Range(xlSheet.Cells(1,1),xlSheet.Cells(1,3)).Value = Array("Order
ID", "Amount", "Tax")

 'Transfer the array to the worksheet starting at cell A2

Microsoft Office 2000 Automation

Page 47

 xlSheet.Range("A2").Resize(100, 3).Value = aryData

 'Save the Workbook and Quit Excel
 xlBook.SaveAs "C:\My Documents\ArrayDump.xls"
 xlApp.Quit
 Set xlSheet = Nothing
 Set xlBook = Nothing
 Set xlApp = Nothing

End Sub
If you transfer your data using an array rather than cell by cell, you can realize an enormous

performance gain with a large amount of data. Consider this line from the code above that transfers data

to 300 cells in the worksheet:

 xlSheet.Range("A2").Resize(100, 3).Value = aryDatay
This line represents two interface requests (one for the Range object that the Range method returns and

another for the Range object that the Resize method returns). On the other hand, transferring the data

cell by cell would require requests for 300 interfaces to Range objects. Whenever possible, you can

benefit from transferring your data in bulk and reducing the number of interface requests you make.

Use Automation to Transfer an ADO Recordset to a Worksheet Range

Excel 2000 provides a CopyFromRecordset method that allows you to transfer an ADO (or DAO) recordset

to a range on a worksheet. The following code illustrates how you could automate Excel 2000 and

transfer the contents of the Orders table in the Northwind Sample Database using the

CopyFromRecordset method.

Remember to set the reference to the current Microsoft ActiveX Data Objects Library.

Sub transferRecordset()

 'Create a Recordset from all the records in the Orders table
 Dim sNWind As String
 Dim conn As New ADODB.Connection
 Dim rs As ADODB.Recordset

 sNWind = "C:\Program Files\Microsoft Office\Office\Samples\Northwind.mdb"
 conn.Open "Provider=Microsoft.Jet.OLEDB.4.0;Data Source=" & sNWind & ";"
 conn.CursorLocation = adUseClient
 Set rs = conn.Execute("Orders", , adCmdTable)

 'Create a new workbook in Excel
 Dim xlApp As Object
 Dim xlBook As Object
 Dim xlSheet As Object

 Set xlApp = CreateObject("Excel.Application")
 Set xlBook = xlApp.Workbooks.Add
 Set xlSheet = xlBook.Worksheets(1)

 'Transfer the data to Excel
 xlSheet.Range("A1").CopyFromRecordset rs

 'Save the Workbook and Quit Excel

Microsoft Office 2000 Automation

Page 48

 xlBook.SaveAs "c:\My Documents\ADOExample.xls"
 xlApp.Quit

 'Close the connection
 rs.Close
 conn.Close

End Sub

For more information on ADO see Microsoft ActiveX Data Objects. For more information on DAO see

Microsoft Data Access Objects.

Microsoft Office 2000 Automation

Page 49

GRAPH

Changing a Graph's Data Marker's Shape

Using Automation, it is possible to change the shapes of data markers on a Microsoft Graph chart. You

can emphasize individual data points with various graphical marks. You can use the MarkerStyle property

to change the appearance of this graphical mark.

NOTE: The MarkerStyle property only applies to graphs of type "Line" and "Scatter". If the foreground

and background colors are the same, then some of the shapes above will appear as filled squares. If the

MarkerStyle property is set to Automatic (-4105) then the colors will be reset also.

Function SetMarkerStyle(GraphObj As Object)

 Dim SeriesCount As Integer

 With GraphObj
 ' loop through each data series and change the marker
 ' style to a circle. For a list of other constants
 ' to use with the MarkerStyle property, view the
 ' Microsoft Graph object library in the Object Browser
 For SeriesCount = 1 To .SeriesCollection.Count
 .SeriesCollection(sCount).MarkerStyle = xlMarkerStyleCircle
 Next
 End With

End Function

Changing a Microsoft Graph Chart Type

Using Automation, it is possible to set or retrieve the type of a Microsoft Graph chart. To do this, you

must set the Type property of the Graph object. Be aware that changing a graph from one type to

another automatically resets properties of the graph that do not apply to the new graph type. For

example, trend lines apply to a two dimensional Column graph but do not apply to a Pie chart. Therefore,

changing the type from a Column to a Pie will drop the trend lines.

Function SetChartType(GraphObj As Object)

 ' set Chart type to three-dimensional column.
 ' for a list of other constants to use with the
 ' ChartType property, view the Microsoft Graph object
 ' library in the Object Browser
 GraphObj.ChartType = xl3DColumn

End Function

Changing the Border Properties of a Graph

Using Automation, it is possible to change the border weight, color, and linestyle of a Microsoft Graph

chart. Use the Weight property to set the thickness of the border, the Color property to change the

Microsoft Office 2000 Automation

Page 50

border's color, or the LineStyle property to change the border styles (i.e. a solid line, dashed line, etc...).

The following example sets the border line style to a dashed dot line, the border weight to thick, and the

border color to red:

Function SetBorderStyle(GraphObj As Object)

 'For a list of other constants to use with these
 'properties, select the Microsoft Graph object
 'library in the Object Browser and search on the
 'property name

 With GraphObj.ChartArea.Border
 .LineStyle = xlDashDot
 .Weight = xlThick
 .Color = 255
 End With

End Function

Note: To remove a border from a graph, set the LineStyle property to xlLineStyleNone.

Changing the Line Texture on a Graph

It is possible through Automation to change the texture of lines on a Microsoft Graph chart. Some graphs

contain lines contecting the data points being graphed. These lines can appear jagged. Use the Smooth

property to remove some of the jagged edges. Note that the Smooth property applies to Line and Scatter

graphs only.

The following example toggles the first series between smoothed and normal lines:

Function ToggleSmoothProperty(GraphObj As Object)

 Dim SeriesCount As Integer

 With GraphObj

 ' loop through each data series in the chart
 'and toggle the Smooth property of the Series

 For SeriesCount = 1 To .SeriesCollection.Count
 .SeriesCollection(SeriesCount).Smooth = _
 Not .SeriesCollection(SeriesCount).Smooth
 Next

 End With

End Function

Changing the Range of an Axis

It is possible through Automation to change the range of an axis on a Microsoft Graph chart. Some

graphs contain an X or Y axis that display a scale by which the data points can be measured. These

scales usually begin at the value 0 and extend to a value sufficient to measure the largest point being

graphed.

Microsoft Office 2000 Automation

Page 51

The MinimumScale and MaximumScale properties allow a graph to alter the range of this scale. This

property applies only to the "value" axis which is axis "2".

Function SetMinMaxScale(GraphObj As Object)

 With GraphObj

 .Axes(2).MinimumScale = 30
 .Axes(2).MaximumScale = 90

 End With

End Function

Manipulating a Graph's Legend

With Automation, it is possible to show, hide, and position the legend of a Microsoft Graph chart. The

HasLegend property can be used to determine if the graph is currently displaying a legend as well as

changing the legend's visibility. The Position property can be used to place the legend in various

locations.

The Position property only sets the location of a graph's legend. Use the HasLegend property

to ensure the legend is visible. Attempting to change the Position property while the HasLegend property

is set to False will result in a run-time error. The graph size may shrink to accommodate the change in

the legend's position.

The following example demonstrates how to create a legend with a red border, place it at the bottom of

the graph, set the Font name and size, and add a Shadow to it.

Function SetLegend(GraphObj As Object)

 With GraphObj

 'Create a legend
 .HasLegend = True

 'Set the position of the legend. For other
 'constants you can use with the Legend property,
 'view Graph object model in the Object Browser.
 .Legend.Position = xlLegendPositionBottom
 .Legend.Font.Name = "Arial"
 .Legend.Font.Size = 14
 .Legend.Shadow = True

 End With

End Function

The following example demonstrates how to toggle the graph legend on and off:

Function ToggleLegend(GraphObj As Object)

 GraphObj.HasLegend = Not GraphObj.HasLegend

End Function

Microsoft Office 2000 Automation

Page 52

OUTLOOK: The Microsoft Office E-mail and Personal
Information Manager
Information management is a vital task for computer users today who must juggle everything from

electronic mail and calendars to contacts and task lists. The Microsoft Outlook® 2000 messaging and

collaboration client helps you organize all this information and improve communication and collaboration

across your enterprise. And because it works like the rest of Microsoft Office, Outlook 2000 is easy to

learn and use.

One Window to Your World of Information

helps you organize and manage all your information from a single location. And in today's workplace,

more efficient information management means increased productivity—and better bottom-line results.

Printing Messages From Outlook.

This example demonstrates how to loop through all messages in the Inbox and print each one.

Sub printMessages()

 Dim olookApp As Outlook.Application
 Dim olookMsg As Object
 Dim olookSpace As Outlook.NameSpace
 Dim olookFolder As Outlook.MAPIFolder

 Set olookApp = CreateObject("Outlook.Application")
 Set olookSpace = olookApp.GetNameSpace("MAPI")
 Set olookFolder = olookSpace.GetDefaultFolder(olFolderInbox)

 ' loop through each message in the Inbox and print it.
 ' each message will be printed in a separate print job.
 For Each olookMsg In olookFolder.Items

Microsoft Office 2000 Automation

Page 53

 olookMsg.PrintOut
 Next

 Set olookFolder = Nothing
 Set olookSpace = Nothing

 ' quitting Outlook will close the instance that the user may
 ' currently be using.
 olookApp.Quit
 Set olookApp = Nothing

End Sub

Creating a New Folder in Microsoft Outlook

This example demonstrates how to create a new Microsoft Outlook folder using Automation. To create a

new folder, you must first reference the folder object you want to create the folder in. In this example,

we use the GetDefaultFolder method of the NameSpace object to refer to the Inbox folder. However,

since we do not want to create the new folder as a subfolder under the Inbox, we must use the Parent

property to refer to the parent of the Inbox. Thus, the new folder gets created on the same level as the

Inbox.

Sub addFolder()

 Dim olookApp As Outlook.Application
 Dim olookSpace As Outlook.NameSpace
 Dim olookInbox As Outlook.MAPIFolder
 Dim olookFolder As Outlook.MAPIFolder

 Set olookApp = CreateObject("Outlook.Application")
 Set olookSpace = olookApp.GetNamespace("MAPI")

 'Must reference the folder we wish to create the new folder in.
 Set olookInbox = olookSpace.GetDefaultFolder(olFolderInbox).Parent

 'Use the Add method of the Folders collection of the MAPIFolder
 'object returned in the above statement.
 Set olookFolder = olookInbox.Folders.Add("MyNewFolder")

 Set olookFolder = Nothing
 Set olookInbox = Nothing
 Set olookSpace = Nothing
 Set olookApp = Nothing

End Sub

Microsoft Office 2000 Automation

Page 54

Sending an Outlook Message With an Attachment.

There are six main steps to sending a Microsoft Outlook mail message by using Automation, as follows:

1. Initialize the Outlook session.

2. Create a new message.

3. Add the recipients (To, CC, and BCC) and resolve their names.

4. Set valid properties, such as the Subject, Body, and Importance.

5. Add attachments (if any).

6. Send the message.

To send a Microsoft Outlook mail message programmatically, follow these steps:

1. Create a sample text file named Customers.txt in the C:\My Documents folder.

2. Launch an Office application and open the Visual Basic Editor.

3. Create a module and type the following line in the Declarations section if it is not already there:

Option Explicit

4. On the Tools menu, click References.

5. In the References box, click to select the Microsoft Outlook 9.0 Object Library, and then click OK.

NOTE: If the Microsoft Outlook 9.0 Object Library does not appear in the Available References

box, browse your hard disk for the file, Msoutl9.olb. If you cannot locate this file, you must run

the Microsoft Outlook Setup program to install it before you proceed with this example.

6. Type the following procedure in the new module:

7.
8. Sub sendMessage(Optional AttachmentPath)
9.
10. Dim olookApp As Outlook.Application
11. Dim olookMsg As Outlook.MailItem
12. Dim olookRecipient As Outlook.Recipient
13. Dim olookAttach As Outlook.Attachment
14.
15. ' create the Outlook session.
16. Set olookApp = CreateObject("Outlook.Application")
17.
18. ' create the message.
19. Set olookMsg = olookApp.CreateItem(olMailItem)
20.
21. With olookMsg
22. ' add the To recipient(s) to the message.
23. Set olookRecipient = .Recipients.Add("Christopher Wyke")
24. olookRecipient.Type = olTo
25.
26. ' add the CC recipient(s) to the message.
27. Set olookRecipient = .Recipients.Add("Robert Dil")
28. olookRecipient.Type = olCC
29.
30. ' set the Subject, Body, and Importance of the message.
31. .Subject = "This is an Automation test with Microsoft Outlook"
32. .Body = "Last test - I promise." & vbCrLf & vbCrLf
33. .Importance = olImportanceHigh 'High importance
34.
35. ' add attachments to the message.
36. If Not IsMissing(AttachmentPath) Then
37. Set olookAttach = .Attachments.Add(AttachmentPath)

Microsoft Office 2000 Automation

Page 55

38. End If
39.
40. ' resolve each Recipient's name
41. For Each olookRecipient In .Recipients
42. olookRecipient.Resolve
43. If Not olookRecipient.Resolve Then
44. olookMsg.Display ' display any names that can't be

resolved
45. End If
46. Next
47. .Send
48.
49. End With
50. Set olookMsg = Nothing
51. Set olookApp = Nothing
52.
53. End Sub
54. To test this procedure, type the following line in the Immediate window, and then press ENTER:

SendMessage "C:\My Documents\Customers.txt"

To send the message without specifying an attachment, omit the argument when calling the

procedure, as follows:

SendMessage

Adding Notes to Microsoft Outlook

This example demonstrates how to add a new note to Microsoft Outlook using Automation.

Sub addNote()

 Dim olookApp As Outlook.Application
 Dim olookNote As Outlook.NoteItem

 Set olookApp = CreateObject("Outlook.Application")
 Set olookNote = olookApp.CreateItem(olNoteItem)

 With olookNote
 .Body = "Body of my note."

 ' set the color of the note.
 ' Can be one of the following OlNoteColor constants:
 ' olBlue(0), olGreen(1), olPink(2), olWhite(4), or olYellow(3).

 .Color = olBlue
 .Save
 .Display
 End With

 Set olookNote = Nothing
 Set olookApp = Nothing

End Sub

Microsoft Office 2000 Automation

Page 56

Adding Tasks to Microsoft Outlook

This example demonstrates how to add new tasks to Microsoft Outlook using Automation.

Sub addTask()

 Dim olookApp As Outlook.Application
 Dim olookTask As Outlook.TaskItem

 Set olookApp = CreateObject("Outlook.Application")
 Set olookTask = olookApp.CreateItem(olTaskItem)

 With olookTask
 .Subject = "This is the subject of my task"
 .Body = "This is the body of my task."
 .ReminderSet = True

 'Set to remind us 2 minutes from now.
 .ReminderTime = DateAdd("n", 2, Now)

 'Set the due date to 5 minutes from now.
 .DueDate = DateAdd("n", 5, Now)
 .ReminderPlaySound = True

 'Add the path to a .wav file on your computer.
 .ReminderSoundFile = "C:\Windows\Media\Ding.WAV"
 .Save
 End With

 Set olookTask = Nothing
 Set olookApp = Nothing

End Sub

Starting a Session of Microsoft Outlook With a Different Profile

Normally, instantiating a session of Microsoft Outlook will cause you to use the default Outlook profile

which is located under the following key in the Windows registry:

HKEY_CURRENT_USER\Software\Microsoft\Windows\CurrentVersion\Windows Messaging
Subsystem\Profiles

However, sometimes it is useful to create an instance of Microsoft Outlook using a different profile. This

example demonstrates how to use a different profile when creating a new instance of Microsoft Outlook

through Automation.

Sub StartOutLook(ProfileName As String)

 Dim olookApp As Outlook.Application
 Dim olookSpace As Outlook.NameSpace

 Set olookApp = CreateObject("Outlook.Application")

Microsoft Office 2000 Automation

Page 57

 Set olookSpace = olookApp.GetNamespace("MAPI")
 olookSpace.Logon ProfileName

 ' use the Display method to actually show the Outlook
 ' session and view the Inbox folder.
 olookSpace.GetDefaultFolder(olFolderInbox).Display>

 Set olookSpace = Nothing
 Set olookApp = Nothing

End Sub

Import Outlook Items from an Access Database

This example provides the sample code for creating Microsoft Outlook contacts from information stored in

a Microsoft Access database. Establish a reference to the Microsoft Outlook 9.0 Object Library and to the

Microsoft DAO 3.6 Object Library.

Sub exportAccessContactsToOutlook()

 Const DBLOCATION = "olookContact:\Program Files\Microsoft Office" _
 & "\Office\Samples\Northwind.mdb"

 ' set up DAO Objects.
 Dim db As DAO.Database
 Dim rst As DAO.Recordset
 Set db = OpenDatabase(DBLOCATION)
 Set rst = db.OpenRecordset("Customers")

 ' set up Outlook Objects.
 Dim olookApp As New Outlook.Application
 Dim olookSpace As Outlook.NameSpace
 Dim olookFolder As Outlook.MAPIFolder
 Dim olookContact As Outlook.ContactItem
 Dim olookUserProp As Outlook.UserProperty

 Set olookSpace = olookApp.GetNamespace("MAPI")
 Set olookFolder = olookSpace.GetDefaultFolder(olFolderContacts)

 With rst
 .MoveFirst

 ' loop through the Microsoft Access records.
 Do While Not .EOF

 ' create a new Contact item.
 Set olookContact = olookApp.CreateItem(olContactItem)

 ' specify which Outlook form to use.
 ' change "IPM.Contact" to "IPM.Contact.<formname>" if you've
 ' created a custom Contact form in Outlook.
 olookContact.MessageClass = "IPM.Contact"

 ' create all built-in Outlook fields.
 If ![CompanyName] <> "" Then olookContact.CompanyName =

Microsoft Office 2000 Automation

Page 58

![CompanyName]
 If ![ContactName] <> "" Then olookContact.FullName = ![ContactName]

 ' create the first user property (UserField1).
 Set olookUserProp = olookContact.UserProperties.Add("UserField1",
olText)

 ' Set its value.
 If ![CustomerID] <> "" Then olookUserProp = ![CustomerID]

 ' create the second user property (UserField2).
 Set olookUserProp = olookContact.UserProperties.Add("UserField2",
olText)

 ' set its value and so on....
 If ![Region] <> "" Then olookUserProp = ![Region]

 ' save the contact.
 olookContact.Save

 .MoveNext
 Loop
 End With

 ' clean up
 Set olookUserProp = Nothing
 Set olookContact = notheing
 Set olookFolder = Nothing
 Set olookSpace = Nothing
 Set olookApp = Nothing

 Set rs = Nothing
 db.Close
 Set db = Nothing

End Sub

Microsoft Office 2000 Automation

Page 59

POWERPOINT: The Microsoft Office Presentation Graphics
Program
Microsoft PowerPoint® 2000 makes it easier to organize, illustrate, and deliver your ideas professionally.

Whether you're conducting a meeting, presenting at a conference, or delivering your message over the

Internet, the Microsoft PowerPoint 2000 presentation graphics program provides the tools you need to

make your point—powerfully.

It's Easier to Make Your Point—Anywhere

Organize and illustrate your ideas faster using the professional design techniques and familiar Microsoft

Office tools in PowerPoint 2000. And use real-time Internet technology to collaborate and communicate

with impact to a wider audience than ever before.

Run a Microsoft PowerPoint Presentation

This example demonstrates how to open and run a Microsoft PowerPoint presentation using Automation.

This example assumes that you have created a Microsoft PowerPoint presentation named "C:\My

Documents\pptPresentation.ppt".

Sub runPowerPointPresentation()

 Dim ppApp As PowerPoint.Presentation

 Set ppApp = GetObject("C:\My Documents\pptPresentation.ppt")
 pr.SlideShowSettings.Run

End Sub

Microsoft Office 2000 Automation

Page 60

Creating a PowerPoint Slide Containing a Graphic

This example demonstrates how to use Automation to create a new PowerPoint slide containing a graphic

image.

Sub CreateGraphicOnSlide()

 Dim ppApp As PowerPoint.Application
 Dim ppPres As PowerPoint.Presentation
 Dim ppShape As PowerPoint.Shape
 Dim ppCurrentSlide As PowerPoint.Slide

 Set ppApp = CreateObject("PowerPoint.Application")
 ppApp.Visible = True

 Set ppPres = ppApp.Presentations.Add(msoTrue)
 Set ppCurrentSlide = ppPres.Slides.Add(Index:=1, Layout:=ppLayoutText)

 With ppCurrentSlide
 'Set the text of the text frames on the slide
 .Shapes(1).TextFrame.TextRange.Text = "PowerPoint Programmability"
 .Shapes(2).TextFrame.TextRange.Text = "Sixteen Point Star"

 'Bring the text frames to the front, so the
 'graphic doesn't hide them
 .Shapes(1).ZOrder msoBringToFront
 .Shapes(2).ZOrder msoBringToFront

 'Add the 16 point star graphic shape
 Set ppShape = .Shapes.AddShape(_
 Type:=msoShape16pointStar, _
 Left:=50, _
 Top:=50, _
 Width:=500, _
 Height:=500)

 .Shapes(3).Fill.PresetTextured msoTextureWovenMat

 'Send the graphic to back so we can see the
 'text frames
 .Shapes(3).ZOrder msoSendToBack
 End With

 'Save the presentation and exit Microsoft PowerPoint
 ppPres.SaveAs "c:\My Documents\pptExample2", ppSaveAsPresentation
 ppApp.Quit
 Set ppApp = Nothing

End Sub

Microsoft Office 2000 Automation

Page 61

PROJECT: Build a Project Plan
Microsoft Project 2000 is a powerful, flexible tool designed to help you manage a full range of projects.

Schedule and closely track all tasks—and use Microsoft Project Central, the Web-based companion to

Microsoft Project 2000, to exchange project information with your team and senior management.

Microsoft Project 2000 helps you get started by creating a working schedule with information you provide

on tasks, resources, and costs.

Powerful new features include custom outline codes that allow you to create a project outline structure

tailored to your company's work breakdown structure.

Build a Project File from a Database

This example requires a Microsoft Access database with one table containing four fields:

• intTableID

• strTaskName

• dtmStartDate

• strDuration

Sub ProjectTest()
Dim db As DAO.Database
Dim rst As DAO.Recordset
Dim fMoreThanOne As Boolean
Dim tempTask As String
Dim tempStartDate As String
Dim tempFinishDate As String
Dim objProject As MSProject.Application

' use this constant to hold the pathname for the Project file
Const PROJECTFILE = "C:\My Documents\TestProject.mpp"

Microsoft Office 2000 Automation

Page 62

 ' remove the previous example file
 If Dir(PROJECTFILE) <> "" Then
 Kill PROJECTFILE
 End If

 Set db = CurrentDb
 Set rst = db.OpenRecordset("TestTable", dbOpenSnapshot)

 Set objProject = CreateObject("MsProject.Application")
 objProject.FileNew False

 ' as this is a brand new file we know that there are no
 ' existing tasks
 fMoreThanOne = False

 Do Until rst.EOF

 With rst
 tempTask = !strTaskName
 tempStartDate = CStr(!dtmStartDate)
 tempDuration = !strDuration
 End With

 With objProject

 ' SelectTaskCell uses relative positioning when the
 ' Row argument is used; don't use Row for the first task
 If fMoreThanOne = True Then
 .SelectTaskCell Row:=1
 Else
 .SelectTaskCell
 fMoreThanOne = True
 End If

 ' enter the name for the summary line
 .SetTaskField Field:="Name", Value:=tempTask

 .SetTaskField Field:="Start", Value:=tempStartDate
 .SetTaskField Field:="Duration", Value:=tempDuration

 End With
 rst.MoveNext
 Loop
 rst.Close
 db.Close
 Set db = Nothing

 ' save the baseline before attempting to save the file
 objProject.BaselineSave All:=True
 objProject.FileSaveAs Name:=PROJECTFILE, FormatID:="MSProject.MPP.8"
 objProject.Quit
 Set objProject = Nothing

End Sub

Microsoft Office 2000 Automation

Page 63

WORD: The Microsoft Office Word Processor
Microsoft Word 2000 gives you the tools to more easily create professional-quality documents and share

information—in print, e-mail, and on the Web.

The World's Best-Selling Word Processor for Microsoft Windows® Is Now Better Than Ever

Word 2000 combines streamlined document creation with powerful Web functionality so you can work

more efficiently and communicate your ideas more effectively. Advanced integration with the rest of

Office 2000 enables you to easily include text, data, and graphics from other Office applications to create

high-impact documents.

Automate Word with the New Keyword

This is the basic code to create an instance of Word using the New keyword.

Sub automateWord()

 Dim wordApp As Word.Application

 ' Create new hidden instance of Word.
 Set wordApp = New Word.Application
 ' Show this instance of Word.
 wordApp.Visible = True

 With wordApp
 ' Code to automate Word here.
 End With

 wordApp.Quit
 Set wordApp = Nothing
End Sub

Microsoft Office 2000 Automation

Page 64

Create a Word Document

The following code creates a document and records its creation date.

Sub createDoc()

 Dim wordApp As Word.Application
 Dim wordDoc As Word.Document
 Dim wordRng As Word.Range
 Dim wordPara As Word.Paragraph

 Set wordApp = CreateObject("Word.Application")

 With WordApp

 .WindowState = wdWindowStateMaximize
 .Documents.Add
 Set wordDoc = wordApp.ActiveDocument
 Set wordRng = wordDoc.Range

 With wordRng

 .Font.Bold = True
 .Font.Italic = True
 .Font.Size = 16
 .InsertAfter "Running Word Using Automation"
 .InsertParagraphAfter

 ' insert a blank paragraph between the two paragraphs
 .InsertParagraphAfter

 End With

 Set wordPara = wordRng.Paragraphs(3)

 With wordPara.Range

 .Bold = True
 .Italic = False
 .Font.Size = 12
 .InsertAfter "Report Created: "
 .Collapse Direction:=wdCollapseEnd
 .InsertDateTime DateTimeFormat:="MM-DD-YY HH:MM:SS"

 End With

 .ActiveDocument.SaveAs "c:\My Documents\createDoc.Doc"
 .Quit

 End With

 Set wordPara = Nothing
 Set wordRng = Nothing
 Set wordDoc = Nothing
 Set wordApp = Nothing

End Sub

Microsoft Office 2000 Automation

Page 65

Closing the Microsoft Word Document

Through Automation, it is possible to close the files you are working with using the Close method. In

order to destroy the Automation object variable and close the instance of the application, use the Quit

method and set the object variable to the keyword Nothing.

When the Automation object variable goes out of scope, the instance of Microsoft Word is unloaded

unless the object was created from a previous instance. It is possible to set the object to a static or public

variable so it does not lose scope until the application is closed.

Sub CloseWordDoc()

 Dim WordApp As Word.Application
 Dim WordDoc As Word.Document

 'Open an instance of Word
 Set WordApp = CreateObject("Word.Application")

 With WordApp
 Set WordDoc = .Documents.Open("C:\My Documents\Test.Doc")
 'Selects the entire document and makes it Bold

 With WordDoc
 .Range.Font.Bold = True
 'Closes the Document and saves changes
 .Close (wdSaveChanges)
 End With

 .Quit
 End With

 Set WordDoc = Nothing
 Set WordApp = Nothing

End Sub

Access a Word Document

This function opens the document created with the Create a Document example, counts the words and

returns the word count and document name.

Function accessWordDoc(docName)

 Dim wordApp As Word.Application
 Dim wordDoc As Word.Document

 ' Create new hidden instance of Word.
 Set wordApp = New Word.Application

 Set wordDoc = wordApp.Documents.Open(FileName:=docName)

 ' Display document name and count of words, and then close
 ' document without saving changes.
 With wordDoc
 accessWordDoc = "'" & .Name & "' contains " & .Words.Count & " words."

Microsoft Office 2000 Automation

Page 66

 .Close wdDoNotSaveChanges
 End With

 wordApp.Quit
 Set wordApp = Nothing

End Function

Run this example by entering the following line in the Immediate window:

 ?accessWordDoc("c:\My Documents\createDoc.Doc")

and press Enter.

Inserting Data into a Microsoft Word Document

With Automation code, you can open a Microsoft Word 2000 document and move to a bookmark location

in the document. The following example opens a Microsoft Word document and inserts text after a

bookmark.

This example assumes that you have Microsoft Word 2000 on your computer, that you have an existing

document called C:\My Documents\WordTest.doc, and that the document contains a pre-defined

bookmark named City.

Sub FindBMark()

 Dim wordApp As Word.Application
 Dim wordDoc As Word.Document
 Dim wordRange As Word.Range

 Set wordApp = CreateObject("Word.Application")
 Set wordDoc = wordApp.Documents.Open("C:\My Documents\Wordtest.doc")

 wordApp.Visible = True

 ' go to the bookmark named "City."
 Set wordRange = wordDoc.Goto(What:=wdGoToBookmark, Name:="City")
 wordRange.InsertAfter "Los Angeles"

 ' print the document.
 wordDoc.PrintOut Background:=False

 ' save the modified document.
 wordDoc.Save

 ' quit Word without saving changes to the document.
 wordApp.Quit SaveChanges:=wdDoNotSaveChanges

 Set wordApp = Nothing

End Sub

Microsoft Office 2000 Automation

Page 67

Find a Bookmark in an Embedded Microsoft Word Document

By using Automation code in Microsoft Access, you can open a Microsoft Word 2000 document and move

to a bookmark location in the document.

The following example opens a document that is embedded in a Microsoft Access form.

This example assumes that you have Microsoft Word 2000 set up on your computer, that you have a

document called C:\My Documents\WordTest.doc, and that the document contains a pre-defined

bookmark called City.

1. Open the sample database Northwind.mdb.

2. Open any module in Design view.

3. On the Tools menu, click References.

4. Click Microsoft Word 2000 Object Library in the Available References box. If that selection does

not appear, click the Browse button and look for a file called Msword9.olb, which is installed in

the C:\Program Files\Microsoft Office\Office folder by default.

5. Click OK in the References dialog box.

6. Create a new form not based on any table or query in Design view.

7. Add an unbound object frame control to the detail section of the form.

8. When the Insert Object dialog box appears, click Create From File, and then click the Browse

button to select your C:\My Documents\WordTest.doc file.

9. Click Open in the Browse dialog box, and then click OK in the Insert Object dialog box.

10. Set the following properties for the unbound object frame control:

11.
12. Unbound Object Frame
13. Name: UnboundObj
14. Locked: No
15. Add a command button to the form; set its Name property to EditWordDoc and set its OnClick

property to the following event procedure:

16.
17. Private Sub EditWordDoc_Click()
18.
19. Dim wordApp As Word.Application
20. Dim wordDoc As Word.Document
21. Dim wordRange As Word.Range
22.
23. ' Open Microsoft Word 2000 in place and activate it.
24. Me![UnboundObj].Verb = -4
25. Me![UnboundObj].Action = 7
26.
27. Set wordApp = Me![UnboundObj].Object.Application
28. Set wordDoc = wordApp.ActiveDocument
29. Set wordRange = wordDoc.Goto(What:=wdGoToBookmark, Name:="City")
30. wordRange.InsertAfter "Los Angeles"
31. wordApp.Quit
32. Set wordApp = Nothing
33.
34. End Sub
35. Save the form as frmBookmark, and then open it in Form view.

36. Click the command button on the form and note that the document is edited in place on the

form, and that the words Los Angeles are inserted after the City bookmark.

Microsoft Office 2000 Automation

Page 68

Sending the Current Record to Word.

The following example uses bookmarks in a Microsoft Word document to mark the locations where you

want to place data from a record on a Microsoft Access form.

Creating a Microsoft Word Document

1. Start Microsoft Word and create the following new document:

First Last

Address

City, Region, PostalCode

Dear Greeting,

Northwind Traders would like to thank you for your employment during the past year. Below you

will find your photo. If this is not your most current picture, please let us know.

Photo

Sincerely,

Northwind Traders

2. Create a bookmark in Microsoft Word for the words "First," "Last," "Address," "City," "Region,"

"PostalCode," "Greeting," and "Photo":

a. Select the word "First."

b. On the Insert menu, click Bookmark

c. In the Bookmark Name box, type "First," (without the quotation marks) and then click

Add.

d. Repeat steps 2a through 2c for each of the remaining words, substituting that word for

the word "First" in steps 2a and 2c.

3. Save the document as C:\My Documents\MyMerge.doc, and then quit Microsoft Word.

Sending Data to Microsoft Word from a Microsoft Access Form

1. Start Microsoft Access and open the sample database Northwind.mdb.

2. Set a reference to the Microsoft Word 9.0 Object Library. To do so, follow these steps:

a. Open any module in Design view.

b. On the Tools menu, click References.

c. Click Microsoft Word 9.0 Object Library in the Available References box. If that selection

does not appear, browse for Msword9.olb, which installs by default in the C:\Program

Files\Microsoft Office\Office folder.

d. Click OK.

e. Close the module.

3. Open the Employees form in Design view.

4. Add a command button to the form and set the following properties:

5.
6. Command Button:
7. Name: MergeButton
8. Caption: Send to Word
9. OnClick: [Event Procedure]
10. Set the OnClick property of the command button to the following event procedure.

11.
12. Private Sub MergeButton_Click()
13.

Microsoft Office 2000 Automation

Page 69

14. On Error GoTo MergeButton_Err
15. Dim wordApp As Word.Application
16.
17. ' copy the Photo control on the Employees form.
18. DoCmd.GoToControl "Photo"
19. DoCmd.RunCommand acCmdCopy
20.
21. ' start Microsoft Word.
22. Set wordApp = CreateObject("Word.Application")
23.
24. With wordApp
25.
26. ' Make the application visible.
27. .Visible = True
28. ' Open the document.
29. .Documents.Open ("c:\My Documents\myMerge.doc")
30. ' Move to each bookmark and insert text from the form.
31. .ActiveDocument.Bookmarks("First").Select
32. .Selection.Text = (CStr(Forms!Employees!FirstName))
33. .ActiveDocument.Bookmarks("Last").Select
34. .Selection.Text = (CStr(Forms!Employees!LastName))
35. .ActiveDocument.Bookmarks("Address").Select
36. .Selection.Text = (CStr(Forms!Employees!Address))
37. .ActiveDocument.Bookmarks("City").Select
38. .Selection.Text = (CStr(Forms!Employees!City))
39. .ActiveDocument.Bookmarks("Region").Select
40. .Selection.Text = (CStr(Forms!Employees!Region))
41. .ActiveDocument.Bookmarks("PostalCode").Select
42. .Selection.Text = (CStr(Forms!Employees!PostalCode))
43. .ActiveDocument.Bookmarks("Greeting").Select
44. .Selection.Text = (CStr(Forms!Employees!FirstName))
45. ' Paste the photo.
46. .ActiveDocument.Bookmarks("Photo").Select
47. .Selection.Paste
48.
49. End With
50.
51. ' print the document in the foreground so Word
52. ' will not close until the document finishes printing.
53. objWord.ActiveDocument.PrintOut Background:=False
54.
55. ' Close the document without saving changes.
56. objWord.ActiveDocument.Close SaveChanges:=wdDoNotSaveChanges
57.
58. ' Quit Microsoft Word and release the object variable.
59. wordApp.Quit
60. Set wordApp = Nothing
61. Exit Sub
62.
63. MergeButton_Err:
64. ' If a field on the form is empty
65. ' remove the bookmark text and continue.

Microsoft Office 2000 Automation

Page 70

66. If Err.Number = 94 Then
67. objWord.Selection.Text = ""
68. Resume Next
69. ' If the Photo field is empty.
70. ElseIf Err.Number = 2046 Then
71. MsgBox "Please add a photo to this record and try again."
72. Else
73. MsgBox Err.Number & vbCr & Err.Description
74. End If
75. Exit Sub
76. End Sub
77. Save the Employees form and open it in Form view.

78. Click the Send To Word button to start Microsoft Word, merge data from the current record on

the form into MyMerge.doc, print the document, and then close Microsoft Word.

NOTE: When you use this method of inserting text into a Word Document, you are deleting the bookmark

when you insert the record field content. If you need to reference the text that you entered into the

document, you must bookmark it. You can use the following sample to add the bookmark "Last" to the

text inserted from record field "LastName."

 .ActiveDocument.Bookmarks("Last").Select
 .Selection.Text = (CStr(Forms!Employees!LastName))

 ' add this line to reapply the bookmark name to the selection
 .ActiveDocument.Bookmarks.Add Name:="Last",Range:=Selection.Range

