
APL# Core language

Presented at Dyalog 2011 on 3rd October 2011

The core language described in this document is partially implemented in APL#/Silverlight 0.3.0.627

that will be made available to attendees at Dyalog 2011. The interpreter is built primarily for testing

the language design, and as such has been engineered for internal flexibility rather than

performance. As a result the interpreter should only be used on small arrays of data (up to a couple

of hundred items), when experimenting with the language. It is expected that a new version of the

interpreter will be made available approximately every 3-6 months during the next year. These

updates will implement more language features, and have better tool support (for example

debugging support), as well as improving the performance of the parts of the language that have

stabilised.

Please note that some of the language features described in this document are not available in the

0.3.0.627 build. These will be noted in the relevant sections of the document. The final page

provides a summary of the features that are implemented in 0.3.0.627.

If you would like to be informed when an updated interpreter is available, or have any thoughts on

the design outlined here, please let us know by emailing aplsharp@dyalog.com.

Introduction
Dyalog APL is already a fast and efficient APL system which we will continue to support and improve

for the foreseeable future, so one question which is often asked is why are we working on APL# as

well, rather than concentrating purely on Dyalog APL?

To answer that question we can consider the different strengths of Dyalog APL and APL#. Firstly

Dyalog APL is a full rich APL dialect with a very fast implementation and comprehensive tool support

(code editing, debugging, GUI frameworks etc.) that runs on a number of platforms. It is a proven

APL platform for high performance computing, and fast program development. As a result it is an

ideal tool for APL centred development.

APL# is being designed as a lightweight APL engine that can be used on different development

platforms in systems where very tight integration with other programming languages or frameworks

is needed. We aim to provide good tool support for code writing & debugging, but expect that the

tools provided by 3rd parties (such as platform vendors) would be used, in conjunction with APL# and

other languages, for specialised application areas such as user interface design.

So whilst APL# will be a different APL dialect to Dyalog APL they will be highly compatible at the

source code level, share tooling and be able to interoperate at the binary level both when run on the

same platform (such as Windows with .Net) and across platforms, such as an APL# Silverlight

application calling a Dyalog APL web service hosted on an AIX server.

P a g e 2 o f 18

Using the two complementary APL systems APL developers will be able to write systems that run in

many more places, work on a range of device devices, and developer platforms, and interoperate

with code written in other languages, better than would be possible with either tool on it’s own.

The rest of this document describes the current design of the core APL# language. It does not cover

how the core language maps to particular platforms, such as Silverlight or WinRT (Windows 8

Metro). Nor does it cover tooling.

Some of the major aims of the APL# language design are:

 Keep the language small, simple and composable.

o Don’t introduce any more concepts than absolutely necessary for clear concise

general purpose code.

o Keep the expressiveness of traditional APL dialects.

o The language should be simple to learn for new users.

 Familiar APL.

o Writing APL# code should be familiar to anyone with previous APL experience.

 Flexible and platform agnostic.

o The core language must assume as little as possible about the underlying platform.

Modern software development platforms
Before looking at the details of the APL# language, it is important to consider the types of platform

that it is being designed for. An increasing trend in computer platform design, particularly on

Microsoft platforms, is to provide platform APIs (Application Programming Interfaces) in a format

that can be consumed equally easily, and naturally, by many different computer languages. When

writing applications for these platforms developers can choose the language and tools that they can

best express themselves or their problem in, yet still have access to all of the richness of the

platform. It then becomes easy to split an application into different sections and use different

languages for each area, with the different parts of the application able to communicate easily. For

example the user interface could be written in one language, and the business logic or domain

model in another.

This trend comes in response to traditional architectures, such as Win32 or UNIX where the platform

APIs favour one language, usually C, and different language implementations tend to develop

libraries of functions that can’t be shared between languages without a lot of complexity.

APL# is being designed as a modern, simple and elegant APL dialect that can be used on language

agnostic platforms such as .NET and WinRT without paying a heavy semantic or performance penalty

when dealing with the underlying platforms, or parts of an application written in other languages.

P a g e 3 o f 18

Core APL#
The core APL# language consists of the type system and syntax that are used in APL# applications.

These will be implemented on various flavours of APL# - for example APL#/Silverlight will implement

the core language on Silverlight, and provide interoperability with other code on the platform,

including the Silverlight .net framework. Similarly APL#/WinRT will implement the core language and

provide interoperability with the WinRT (Metro) runtime. Code written using only the features in the

Core APL# language will run unchanged in any APL# interpreter, and in many cases will be portable

to Dyalog APL with little or no change.

APL# Type system
Types are runtime objects that represent things that can be named and manipulated by APL#

programs. On multi-language platforms they can also be passed directly to, and used by, code

written in the other languages.

All of types in the APL# type system are either arrays or procedures. In any particular

implementation of APL# on a platform, the native types of that platform will be exposed by

presenting the native types as the APL# type where there is a very strong correspondence between

the two (for example a .net string and an APL# string), or by adding platform specific types as simple

scalar array types.

Arrays
Arrays are data structures that contain named members, members can be arrays or procedures. All

arrays contain at least 3 members, Shape Items and TypicalItem.

A
rr

ay
s

Array

Reference array

Simple scalars

Space

Number

Character

String

P
ro

ce
d

u
re

s Nilad

Function

Monadic operator

Dyadic operator

P a g e 4 o f 18

The Shape member is a vector (one dimensional array) whose length determines the number of axis

of the array, and whose items determine the length of each of the dimensions of the array. Once the

array has been created the Shape is read only.

The Items member is a vector containing the items in the various cells of the array, in ravel order.

The TypicalItem is an array that provides a default array item for primitive functions such as ↑ (Take)

that may require an element to pad the result array that matches the type of element of the array.

For example the array created by the statement:

 2 2 ⍴ 1 2 3 4

Would look like:

The following sections describe the various types of array in the APL# type system.

Array

An array is a general purpose container for other arrays. An array will only have the default 3

members Shape, Items and TypicalItem as described above.

Arrays are passed by value. In other words when an array is passed to a function, or named, the

function or name gets a copy of the array. For example:

 A ← 1 2 3
 B ← A
 A[0] ← 99
 A
99 2 3
 B
1 2 3

Note: Arrays are the familiar arrays used in other APL systems. This describes the semantics of how

arrays work. Implementations of APL# will be written to avoid this copying when not necessary, as is

the case for all commercial APL systems.

Reference array

It is sometimes useful to be able to share an updatable array between various parts of a program so

that its contents may be modified from various places. In Dyalog this can be accomplished using

memory mapped files.

Array

Shape => 2 2

Items => 1 2 3 4

TypicalItem => 0

P a g e 5 o f 18

Reference arrays have exactly the same members as arrays, the only difference is that naming, or

passing the array to a function, does not cause a copy of the array to be created.

Note: The syntax shown here is provisional and likely to change.

Reference arrays can only be created by using the new Reference primitive (see later) all other

primitive functions return standard arrays, regardless of whether they were called with a reference

array or a normal array.

A ← ⍈ 1 2 3 ⍝ A names a reference array containing 1 2 3
 B ← A ⍝ B names the same reference array as A
 C ← ⊢ A ⍝ C names a new array containing 1 2 3
 A[0] ← 99
 A
99 2 3
 B
99 2 3
 C
1 2 3

Note: reference arrays are not implemented in build 0.3.0.627.

Space

A space is a simple scalar (Rank 0, Depth 0 array) that contains names. The primitive constant #

refers to a single shared (or global) space that can be used to share named arrays and procedures

between different parts of the code.

Note: Unlike Dyalog namespaces APL# spaces don’t have an explicit parent/child hierarchy.

 S2←[[⍝ Create a new space
 x←10 ⍝ set local x in the space
 y←20 ⍝ set local y in the space
]]
 S2.(x + y) ⍝ Evaluate an expression in a space
30

Space
Shape => 0

Items => 0⍴0

TypicalItem => [[]]

Using => 0⍴[[]]

Names => Name/value pairs

P a g e 6 o f 18

All APL# code runs within a space. If a script, or the tools that run it, don’t specify a particular space

then the global space is used.

In addition to the standard members Space contains a Using member which is an array of spaces

used to resolve names if a name cannot be found in the space itself.

Assigning an array or procedure to a name that is unused within a space creates a new local value.

When a name is referred to it is resolved by looking in the following locations:

1. The space

2. Each item of the Using member (see below) in turn

3. The global space - #

For example:

 S1←[[x←99]]
 S2←[[]]
 S2`.Using←S1
 S2.(x)
99

Note: `. is used to access the members of an array, rather than it’s elements. For more information

see the Escape section later in this document.

Note: A syntax to refer to the current space will be provided, but this has not yet been agreed.

Note: The `. syntax is not implemented in build 0.3.0.627.

Number

A number is a simple scalar that represents any real number. It is expected that complex numbers

will be added in a future version of APL#.

The internal representation or representations of numbers are implementation dependent, but

implementations must give the illusion that only one, number representation is being used, at least

as effectively as traditional APL systems.

Therefore any implementation that uses binary floating point numbers internally must use the

standard APL tolerant comparison operations, as defined in the draft Extended ISO APL standard.

Character

A character is a simple scalar that represents any single Unicode character.

String

A string is a simple scalar that represents an ordered sequence of Unicode characters.

Error

It is likely that the error handling constructs will require a specific simple scalar type to hold the

information about, and identity of errors. If so this will be defined along with the error handling

code. (See later.)

Note: Error is not implemented in build 0.3.0.627.

P a g e 7 o f 18

Procedures

Nilad

A Nilad represents some code that takes no arguments and is evaluated as soon as it appears, unless

it is escaped.

 x←10
 y←{.→x) ⍝ The procedure is evaluated, and the result is named
y
 z←`{.→x} ⍝ The procedure is named z and evaluation is deferred
 x←20
 y
10
 z ⍝ The procedure referred to by z is now evaluated
20

Note: The procedure declaration and ` syntax will be detailed later in this document.

Function

A Function represents a block of code that takes one or two arrays and returns an array.

Note: Currently all APL# functions are ambivalent, that is any function F can be called either

monadically:

 F 1

Or dyadically:

 1 F 2

This is currently under review, and monadic user defined functions may be added back into the

language. See user defined procedures later.

Monadic operator

A monadic operator represents a block of code that takes one function or array as an operand and

returns a function.

Dyadic operator

A dyadic operator represents a block of code that takes one function or array as an operand and

returns a function.

Note: operators always return functions, never Nilads. However this may change if monadic user

defined functions are added back into the language. See user defined functions later in this

document.

P a g e 8 o f 18

APL# Syntax
An APL# script is a Unicode string containing valid APL# syntax. Typically this is either from a text file,

or code entered into a 6-space prompt. Scripts can be evaluated in any space, but the default is to

evaluate them in the global space.

Scripts can contain the following syntax:

Names
Any sequence of the characters A-Z,a-z,0-9,_,- that starts with either _ or a letter.

Constants
Numeric and character constants are declared using the same syntax as Dyalog APL. Additionally

string constants can be declared using double quotes.

 C←'Hello, world' ⍝ Character vector
 S←"Hello, world" ⍝ String
 N←99 ⍝ Number
 A←1.0 ¯2.5e100 1.2 ⍝ Numeric array

Primitive constants
Currently ⍬ (a 0 length numeric vector) and # (the global space) are the only available primitive

constants.

Note: The constant # is not implemented in build 0.3.0.627, as it is not useful without #.x and #`.x

which are also not implemented.

P a g e 9 o f 18

Primitive functions and operators
APL# will provide a full set of APL primitive functions as described in the table below. Unless

otherwise noted these will match the behaviour of Dyalog APL. The implemented column indicates

the primitives that are implemented in the conference version of APL#.

Note: APL# does not support variable index origin, comparison tolerance or migration level. When
comparing APL# to Dyalog it can be considered to have fixed ⎕IO=0, ⎕CT=1e¯14
 and ⎕ML=3.

 Monadic Dyadic Implemented in build 0.3.0.627

+ Conjugate Plus

- Negate Minus

× Direction Multiply

÷ Reciprocal Divide

= Equal

≠ Not equal

< Less than

≤ Less than or equal

> Greater than

≥ Greater than or equal

⊣ Same Left

⊢ Same Right

≡ Depth Match

≢ Not match

~ Not

⍳ Index generator Index of

∨ Or/GCD

∧ And/LCM

⍱ Nor

⍲ Nand

⍴ Shape Reshape

⍨ Commute/Duplicate

| Magnitude Residue

⌊ Floor Minimum

⌈ Ceiling Maximum

¨ Each

, Ravel Join

$ String

? Roll Deal

⍕ Format

⍎ Execute

¤ New space New

⍠ Variant

↑ First Take

↓ Split Drop

* Exponential Power

⍟ Natural logarithm Logarithm

⊃ Mix Pick

P a g e 10 o f 18

 Monadic Dyadic Implemented in build 0.3.0.627

! Factorial Binomial

○ PiTimes Circle

⍪ Table Join first

/ Reduce (operator) Replicate (function)

⌿ Reduce first (operator) Replicate first (function)

\ Scan (operator) Expand(function)

⍀ Scan first (operator) Expand first (function)

. Inner product

∘.g Outer product

∘ Compose

⍋ Character grade up Grade up

⍒ Character grade down Grade down

⌽ Reverse Rotate

⊖ Reverse first Rotate first

⍉ Transpose Transpose

⌹ Matrix inverse Matrix division

∪ Unique

∊ Enlist Member of

⍣ Power operator

⍤ Rank operator

⊥ Base value

⊤ Representation

⊂ Enclose Partition

⌷ Squad indexing

⍈ Reference

Note: $ is a primitive function for converting character arrays to strings. Format can be used to

convert a string to a character vector.

Note: The rank operator is modelled on that in J.

Note: The reference function is provisional. See the reference array section above for more

information.

Name scope separator
APL# uses . syntax, similar to Dyalog, to evaluate code within a space. When given a space on its left

and either a parenthesised expression, a name or an assignment on it’s right, the . evaluates the

expression or name within the space. For example:

 x←10
 s ← [[]]
 s.x←x ⍝ Evaluate x in the outer space, and
 ⍝ assign it's value to the name x within s
 s.(y←x) ⍝ Evaluate (y←x) within s
 s.y ⍝ Resolve the name y within s
10

P a g e 11 o f 18

As with Dyalog APL the . is applied pervasively to any array on its left. For example:

 spaces← [[x←10]] [[x←20]] [[x←30]]
 spaces.x
10 20 30

Note: The name scope separator is not implemented in build 0.3.0.627.

Escape
The escape character ` can be used to temporarily prevent evaluation of a procedure, or to access

the members of an array using . for example:

 x←10
 n←`{x} ⍝ Name a nilad by delaying its evaluation
 x←20
 n ⍝ Call the nilad
20
 a←1 2 3
 a`.Shape ⍝ Call the Shape member of the array
3
 m←2 2⍴1 2 3 4
 m`.Items ⍝ Call the items member of the array
1 2 3 4
 M
1 2
3 4

Note: Escape is not implemented in build 0.3.0.627.

P a g e 12 o f 18

Naming
APL# supports assignment to individual names or parenthesized name strands.

 a ← 1 2 3 ⍝ Name the array 1 2 3
 (a b c)←1 2 3 ⍝ a←1 ⋄ b←2 ⋄ c←3
 x y z←1 2 3 ⍝ names the array z, value error on y
Value error: y

Selective specification (see Dyalog APL) will be added later, but is not currently part of the APL#

language.

Indexing
 (a←1 2 3)[0 2] ⍝ Retrieve items from an array
1 3
 a←1 2 3
 a[2]←9 ⍝ Replace elements in a named array
 a
1 2 9
 m←2 2⍴1 2 3 4
 m[0;0]←9 ⍝ Replace elements in a matrix
 m
9 2
3 4

Expression seperators
Within a script APL# expressions are separated by any of the following:

 ⍝comment \n
 \n
 \r
 ⋄

Where \n is a newline character and \r is a carriage return character.

P a g e 13 o f 18

Precedence specification
Parts of APL# expressions may be parenthesised to control binding. For example:

 1 – 2 - 3
2
 (1 - 2) - 3
¯4

Note that any part of an expression may be parenthesised, in common with Dyalog APL.

However APL# also allows expression lists to be parenthesised, including guards and control

structures. Parenthesised expression lists may only return arrays, and unnamed values within the

parenthesised expression list are not echoed to the console. For example:

 x←20
 b←10 + (a←10 ⍝ Parentheses do not create a new scope,
 ⍝ so a is created in the containing scope
 99 ⍝ Not echoed to the console
 a+x) ⍝ return a+x from the parentheses
 a
10
 b
40

Space specification
A new space can be defined by wrapping an expression list (possibly empty) in double brackets:

 X←10
 S←[[Y←X]]
 S.Y
10

When a new space is created it’s Using statement is set to the containing space, to bring the

containing space into scope. After the initialisation expression list has been evaluated, if the space’s

Using statement has not been assigned to then the Using statement is cleared. This gives the

initialisation code for the new space access to members of the enclosing space during construction,

and a chance to capture a reference to the enclosing space if required.

Note: space specification is not implemented in build 0.3.0.627, as it is of little use without “a.b”

which is also not implemented.

P a g e 14 o f 18

Control structures
APL# will contain a set of control flow control structures that behave as per Dyalog APL, including:

:If :While :Repeat :For :Select :Else :ElseIf :AndIf :OrIf :Until :Case :CaseList :End :Leave :Continue

Note: Control structures are not implemented in build 0.3.0.627.

Goto
APL# does not support the branching arrow, or implied line numbers. Instead the :Label and :Goto

control structures are used. Note that the names of labels are completely separate from the names

of local values.

 F←{ x←⍵
 :Label start
 x←x+1
 x > 20 : :Goto end
 :Goto start
 :Label end
 x
 }
 F 2
21

Note: Unlike Dyalog D-Fns APL# functions can contain a mixture of guards and control structures.

Note: Unlike traditional APL “X⊃start end” is not valid as it uses label names in an expression.

Instead this should be written as “X : :Goto end ⋄ :Goto start”.

Note: :Goto and :Label not implemented in build 0.3.0.627.

Guards
 Condition : Expression

Guards are a lightweight control flow syntax. First the Condition is evaluated, and if the result of that

matches 1 then the Expression is evaluated and it’s result immediately returned as the result of the

enclosing function or script.

 F←{⍵>10 : "Big" ⋄ "Little"}
 F 2
Little
 F 100
Big

Error handling
Error handling is likely to be performed using control structures and an Error type with an exception

based error handling model. But this has not been designed yet, and therefore the final mechanism

may be completely different. It is certain, however, that the design team will aim to consolidate and

simplify the functionality of all the error handling mechanisms in Dyalog APL.

Note: error handling is not implemented in build 0.3.0.627.

P a g e 15 o f 18

Procedure specification
User defined procedures (or A-Fns) are an evolution of D-Fns, combining the best of D-Fns and

Traditional Functions from Dyalog APL.

A procedure definition begins with a { optionally followed by a header, then an expression list and

finally a } . Like D-Fns all A-Fns are declared anonymously, and may be named using the naming

arrow ←.

Unlike D-Fns A-Fns return the result of the last expression in their body, rather than that of the first

unnamed expression:

 f←{⍺ ⋄ ⍵}
 1 f 2 ⍝ Dyalog
1
 1 f 2 ⍝ APL#
2

When a user procedure is called a new space is created to run the body of the procedure in. This

space is initialised with various special read only names that can be used to access the arguments

and operands of the procedure, the procedure itself, and the space in which the procedure was

defined. Also the Using member of the space is set to the space in which the procedure was defined.

Additionally if any arguments or operands of the procedure are named in the header these are

initialised with the values passed in to the procedure, as illustrated by the operator below

⍝ User operator as defined in an APL# script:
{a {f g} (b c) →
 ((a b) f c) g (c f (a b))
}

{a {f g} (b c) →
⍝========= Initialised first
 ⍺ ⍝ left argument
 ⍵ ⍝ right argument
 ⍺⍺ ⍝ left operand
 ⍵⍵ ⍝ right operand
 ∇ ⍝ This (derived) function
 ∇∇ ⍝ This operator
 ## ⍝ Lexical parent space
 ∇`.Using←## ⍝ Initial using gives lexical name resolution.
⍝========== Then named arguments and operands are initialised
 a← ⍺
 f←⍺⍺
 g←⍵⍵
 (b c)←⍵
⍝========== Now the procedure body is evaluated

 ((a b) f c) g (c f (a b))
}

P a g e 16 o f 18

Note: Like traditional APLs when defining an operator, you provide the definition of the derived

function.

Note: If the header is omitted it defaults to {⍺ ⍵ → …} Therefore a header must be provided to

define either an operator or a nilad, unlike D-Fns.

The type of procedure specified by the user defined procedure is determined by the optional

header. Valid headers are of the following forms where a f g and b are each either names or name

strands, or the appropriate special name ⍺ ⍵ ⍺⍺ or ⍵⍵.

 {.→...} ⍝ Nilad
 {b→...} ⍝ function
 {a b→...} ⍝ function
 {{f} →...} ⍝ Monadic operator, derived function
 {{f} b→...} ⍝ Monadic operator, derived function
 {a {f} b→...} ⍝ Monadic operator, derived function
 {{f} →...} ⍝ Dyadic operator, derived function
 {{f} b→...} ⍝ Dyadic operator, derived function
 {a {f} b→...} ⍝ Dyadic operator, derived function

When a function is called monadicaly ⍺ is set to the default value of ⊣. For a nilad both ⍺ and ⍵

default to ⊣.

If separate Monadic and Dyadic functions are reinstated in the APL# core language then the possible

headers will become:

{→...} ⍝ Nilad
{b→...} ⍝ Monadic function
{a b→...} ⍝ Dyadic function
{{f} →...} ⍝ Monadic operator, derived nilad
{{f} b→...} ⍝ Monadic operator, derived monadic function
{a {f} b→...} ⍝ Monadic operator, derived dyadic function
{{f} →...} ⍝ Dyadic operator, derived nilad
{{f} b→...} ⍝ Dyadic operator, derived monadic function
{a {f} b→...} ⍝ Dyadic operator, derived dyadic function

For more information on A-Fns, including the reasoning behind using ⊣ as the default value for a

missing argument see the “Unifying T-Fns and D-Fns in APL#” paper presented at the APL 2010

conference in Berlin, and available from http://www.aplsharp.com/ .

http://www.aplsharp.com/

P a g e 17 o f 18

Binding strength
APL# follows the same binding rules as Dyalog APL, with the exception of strand assignment, which

binds stronger than arrays in APL#, but not in Dyalog:

 (a b c) ← 1 2 3 ⍝ Strand assignment in Both Dyalog & APL#
 a b c ← 10 20 30

⍝ In Dyalog
 a
10
 b
20
 c
30

⍝ In APL#
 a
1
 b
2
 c
10 20 30

For more details on APL# binding strengths see AplSharpDescription.pdf .

P a g e 18 o f 18

Summary of features implemented in V0.3.0.627

Syntax

 Constants

o Numeric

o Character

o String

 Names

 Naming

 Procedure definition

o Nilads

o Ambivalent functions

o Monadic operators

o Dyadic operators

 Primitives – most functions and operators

+ - × ÷ = ≠ < ≤ > ≥ ⊣ ⊢ ≡ ≢ ~ ⍳
∨ ∧ ⍱ ⍲ ⍴ ⍨ | ⌊ ⌈ ¨ , ↑ ↓ * ⍟ ⊃
! ○ ⍪ / ⌿ \ ⍀ . ∘.g ∘ ⌽ ⊖ ⍉ ∪ ∊
⍣ ⍤ ⊥ ⊤ ⊂ ⌷

 Fixed values instead of system variables, equivalent to
(⎕IO ⎕CT ⎕ML)←1 1e¯14 3

 ⍬
 Indexing

 Indexed assignment

 Statement separators, including comments

 Parenthesised expressions and expression lists

 Guards

