
1 © 2009 Fiserv. All Rights Reserved.

Optimizing APL Matrix Indexing
for Application Programmers

Eugene Ying
Software Development

Aug 8, 2011

2 © 2009 Fiserv. All Rights Reserved.

Introduction

In the business world where APL is being used to perform

large scale data processing, data matrices tend to be very

large, with millions of rows and thousands of columns of data.

When a very large matrix is manipulated thousands of times

inside a loop, optimizing matrix indexing is important in

reducing the function’s run time. There are many cases where

an application program’s run time can be significantly reduced

when data indexing has been optimized.

This paper talks about several techniques that can be used to

optimize APL matrix indexing. The CPU time shown in the

examples were based on Dyalog AIX V12.1 64-bit Classic

APL running on the IBM pSeries server.

3 © 2009 Fiserv. All Rights Reserved.

Indexing Optimization Techniques

The major topics to be discussed are:

Matrix Column Data Fragmentation

Progressive Indexing

Index Manipulation

Grade Up and Grade Down Indices

4 © 2009 Fiserv. All Rights Reserved.

Multidimenstional Array Storage

According to Wikipedia,

“For storing multidimensional arrays in linear memory,

row-major order is used in C;

column-major order is used in Fortran and MATLAB.”

We notice that APL also stores array items in row-major order.

5 © 2009 Fiserv. All Rights Reserved.

Matrix Column Data Fragmentation

1;1 1;2 1;3 1;4

2;1 2;2 2;3 2;4

3;1 3;2 3;3 3;4

4;1 4;2 4;3 4;4

1;1 1;2 1;3 1;4 2;1 2;2 2;3 2;4 3;1 3;2 3;3 3;4 4;1 4;2 4;3 4;4

1;1 1;2 1;3 1;4 2;1 2;2 2;3 2;4 3;1 3;2 3;3 3;4 4;1 4;2 4;3 4;4

Matrix[3;]

Matrix[;3]

Matrix

6 © 2009 Fiserv. All Rights Reserved.

A Wider Matrix

1;1 1;2 1;3 1;4 1;5 1;6 1;7 1;8

2;1 2;2 2;3 2;4 2;5 2;6 2;7 2;8

3;1 3;2 3;3 3;4 3;5 3;6 3;7 3;8

4;1 4;2 4;3 4;4 4;5 4;6 4;7 4;8

1;1 1;2 1;3 1;4 1;5 1;6 1;7 1;8 2;1 2;2 2;3 2;4 2;5 2;6 2;7 2;8 3;1 3;2 3;3 3;4 3;5 3;6 3;7 3;8 4;1 4;2 4;3 4;4 4;5 4;6 4;7 4;8

1;1 1;2 1;3 1;4 1;5 1;6 1;7 1;8 2;1 2;2 2;3 2;4 2;5 2;6 2;7 2;8 3;1 3;2 3;3 3;4 3;5 3;6 3;7 3;8 4;1 4;2 4;3 4;4 4;5 4;6 4;7 4;8

Matrix[;3]

Matrix[3;]

The wider the matrix, the more fragmented the data columns.

Matrix

7 © 2009 Fiserv. All Rights Reserved.

Virtual Memory

CACHE RAM Disk Swap

L1

L2

L3

Seek Time (tracks)

Rotational Latency (sectors)

Transfer Time

For a very large matrix

An APL data row is concentrated in the cache, or a few

pages of RAM, or perhaps a few sectors of disk.

An APL data column is scattered among a few

locations in the cache, and many pages of RAM, and

perhaps many sectors or tracks of disk.

8 © 2009 Fiserv. All Rights Reserved.

AIX APL Run Time

For a 1,000 by 1,000 character matrix, random row access is on

the average more than 10 times faster than random column

access.

9 © 2009 Fiserv. All Rights Reserved.

Another Column Data Fragmentation Example

10 © 2009 Fiserv. All Rights Reserved.

Platform & Version Dependency

Although these observations on CPU times are generally true

on all platforms, the exact performance varies depending on

the hardware configuration, especially the quantity and quality

of cache relative to the size of the arrays being manipulated.

The performance might vary in the future versions of APL.

11 © 2009 Fiserv. All Rights Reserved.

Matrix Organization Suggestion

When you design a large data matrix for an APL application,

always ask this question.

“Will I be accessing the data columns more frequently than

accessing the data rows?”

If the answer is yes, then you should consider redesigning your

data matrix such that it is in the transposed format so that you

will access consecutive memory more frequently.

If some of your virtual matrix data are on a disk, consecutive

disk sectors can greatly speed up your program.

12 © 2009 Fiserv. All Rights Reserved.

Marketing Data Example

Assuming we have the data of a million customers or prospects, and

each customer has 100 data attributes, the first 5 of which are customer

ID, country code, # of employees, industry code, and revenue.

13 © 2009 Fiserv. All Rights Reserved.

A Marketing Data Example
Company

ID

Country

Code

of

Employees

Industry

Code

Revenue … … …

1
 m

il
li

o
n

 r
o

w
s
 o

f
c
u

s
to

m
e
rs

14 © 2009 Fiserv. All Rights Reserved.

Marketing Data Selection Example

To select companies with more 1000 employees in the

manufacturing industry in country 85, most APL programmers

would use a one-liner Boolean logic to get the data indices.

15 © 2009 Fiserv. All Rights Reserved.

Marketing Transposed Data Example

Company ID

Country Code

of Employees

Industry Code

Revenue

…

…

…

Let us transpose the data matrix so that instead of 1 million

rows of data for the 1 million customers, we have 1 million

columns of data for the 1 million customers.

1 million columns of customers

16 © 2009 Fiserv. All Rights Reserved.

Marketing Data Selection Example

Data Organized by Columns

Data Organized by Rows

17 © 2009 Fiserv. All Rights Reserved.

Progressive Indexing

Data Organized by Rows

18 © 2009 Fiserv. All Rights Reserved.

Progressive Indexing Optimization

Suppose we know that there are not too many country 85

records in the data matrix, and there are hardly any big

companies in this country. A better filtering sequence would be:

19 © 2009 Fiserv. All Rights Reserved.

Marketing Data Selection Speed Comparisons

20 © 2009 Fiserv. All Rights Reserved.

Row Major Progressive Indexing

With proper arrangement of the Boolean statements such

that most of the unwanted data are filtered out by the first

and second statements, for very large matrices,

progressive indexing can be many times faster than the

single Boolean statement in performing data selection.

In the previous example, we see the function is 16 times

faster when progressive indexing is performed on row-

major data.

21 © 2009 Fiserv. All Rights Reserved.

Index Manipulaton

It is usually more efficient to manipulate a matrix

inside the square brackets [] than outside the [].

22 © 2009 Fiserv. All Rights Reserved.

Grade Up & Grade Down Index

It is usually more efficient to manipulate the grade up index

or the grade down index than to manipulate the sorted matrix.

23 © 2009 Fiserv. All Rights Reserved.

Speed and Space Comparisons

24 © 2009 Fiserv. All Rights Reserved.

Array Dimensions

25 © 2009 Fiserv. All Rights Reserved.

Conclusion

When you perform your data selection on a large matrix

using carefully constructed progressive indexing instead of

a simple APL one-liner Boolean logic, the run time can be

reduced significantly. If the data to be progressively

indexed are arranged in rows instead of in columns, the run

time can be reduced even more.

In optimizing matrix indexing, we need to pay special

attention to the ones that are in the innermost loop of a

function. Optimizing the matrix indexing deep inside an

intensive loop would give you the maximum benefits.

