
Segmented Scans and
Nested Data Parallelism

Andrzej Filinski
andrzej@diku.dk

Department of Computer Science (DIKU)
University of Copenhagen

Dyalog APL Conference

15 October 2012, Helsingør, Denmark

A bit of context
Andrzej Filinski, Associate Professor at UCPH.

Member of the APL Research Group ...
Algorithms and Programming Languages
But acronym clash not entirely coincidental.

... & HIPERFIT Research Center
“Functional High-Performance Computing for Financial
Information Technology”
Key interest: functional, array-oriented languages as high-level
programming paradigm for massively parallel computing
platforms (many-core, GPGPUs, FPGAs, ...)
Working with Dyalog to do bring some of this technology to
the real world.

Important disclaimer: I am not a real APL programmer!
Dabbled a bit in APL/370 some 30 years ago.
Ignorant of many common idioms and Dyalog APL features
Hopefully the underlying ideas will still come through, even if
less elegantly than what you are used to.

2

Parallelism and concurrency

Parallelism 6= concurrency
Concurrency: explicitly dealing with things happening at once
(threads, synchronization, communication, etc.)

Still relevant on single CPU with time slicing

Parallelism: obtaining result faster (in wall-clock time) by
exploiting multiple computation units.

No need for exposing concurrency to programmer.

APL is not a parallel language.

No parallel cost model/semantics
But eminently suitable for parallel implementation.

Especially data (as opposed to control) parallelism.

This talk: efficient nested data parallelism for array-oriented
languages

Based on Guy Blelloch’s work in early 1990s.

Targeted the Connection Machine: decades ahead of its time.

Same ideas now also being explored in, e.g., DP Haskell.

3

APL and data parallelism

APL has seemingly very parallel(izable) execution model.

Element-wise primitive operations: +, <, *, ...
Gather/scatter primitives (_v[is], v[is]_).
Uniform/regular bulk operations:
, �\, ,, ...
“Embarrassingly parallel”

But some operations seem inherently sequential:

Cumulative data dependencies: scan (+\), ...
Cumulative index dependencies: compress (/), ...

Even nominally independent computations (F�) have their
own challenges wrt. parallelism:

Control flow (�, :) in F precludes SIMD-style parallelization
Poor load balancing: {+/
�}�2 6 50 3 4 6

There is a magic bullet:

“Swiss army chainsaw” of parallel algorithms: segmented
(aka. partitioned) scans.

4

Parallel prefix sums (+-scans)

Paradigmatic parallel-computing problem: Given a long (say,
106 elts) numeric vector V, compute +\V,

Note: how would want the APL system to implement +\V,
not how you’d want to re-express the scan in APL yourself.

Suppose one addition takes 1 ns; ignore memory access and
control overhead for now.

Sequential algorithm (for/do-loop with accumulator in
C/Fortran, foldl in Haskell/ML): 106 × 1 ns = 1 ms.

Now suppose we have 1000 cores (e.g., large GPU). How fast
can we do it?

Optimistic answer (lower bound): 1000 times faster, i.e., 1 µs.
Pessimistic answer (upper bound): data dependency creates
sequential bottleneck, so no speedup; still 1 ms.
The true answer lies somewhere in between...

5

A simple parallel scan algorithm
Exploits essentially that addition is associative.

But not that commutative or invertible.

Three phases:
1 Partition vector into 1000 blocks of 1000 elements each.

Independently scan each block (1000 ns = 1 µs, using all 1000

processors):
3 1 4 1 5 9 2 6 5
3 4 8 1 6 15 2 8 13

2 Collect last elements of block scans, and scan them (1 µs,

using one processor):
8 15 13
8 23 36

3 Use each result to adjust next block’s scans (1 µs, using 999

processors):
3 4 8 1 6 15 2 8 13

8 8 8 23 23 23
3 4 8 9 14 23 25 31 36

Total: 2× 106 additions, ∼ 3 µs. Not too bad, but middle
phase is still disturbingly sequential...

6

Unite-and-conquer scan
Practical and adaptive parallel algorithm

Also useful in sequential settings: exploits vectorized primitives

Example, for power-of-two vector length:
v 3 1 4 1 5 9 2 6
o _ 1[]�\((.5#�v),2)�v 3 4 5 2
e _ 2[]�\((.5#�v),2)�v 1 1 9 6
p _ o+e 4 5 14 8
s _ ∇ p 4 9 23 31
r _ (1[]o),(�1�s)+1�o 3 8 14 25
w _ ,r,[1.5]s 3 4 8 9 14 23 25 31

Total of log2 n recursive calls for length-n vector.

Total of 2n
2 + 2n

4 + · · ·+ 2 ' 2n element additions.

For arbitrary operations and vector sizes (but still rank-1 only):
PSCAN _ {(�,�)
1:� 	 (o e) _ ��\((�.5#��),2)�� 	

s _ ∇ o���e 	 r _ (1[]o),(�1�s)���1�o 	
(-2|��)�,r,[1.5]s}

7

Aside: Sequential performance of scans

Common case: base operation also works vectorized (like +).

Optimized VPSCAN: like PSCAN, but with �� in place of ���.

APL’s native scan is right-too-left.

Quadratic running time: prohibitively expensive for more than
a few thousand elements.
Special case for + and other associative primitives, but doesn’t
cover {�+�}, or more exotic, programmer-defined functions.

A few quick performance tests on a small machine:

{�+�} \
1E6: near-infeasible (a few days, extrapolated).
{�+�} PSCAN
1E6: takes about 1 second.
{�+�} VPSCAN
1E6: takes about 60 ms.
+\
1E6: takes about 25 ms.

Reflects that parallel algorithm does twice as much work, but
most of it in huge chunks.

8

Sequential performance, continued

From http://dfns.dyalog.com/c_ascan.htm:
ascan _ {�ML_0 	 2>0���:� 	

�|^��{(�(��)�� �),�}/�|(������),^1����}
Repeatedly extends vector by one element: ultimately also
quadratic behavior, but hits the performance wall a bit later.
{�+�} ascan
1E6: about 15 minutes (extrapolated).

Unlike the others, VPSCAN is also trivially parallelizable.

Only needs efficient vector addition (+ some data movement).

In practice, parallel speedups are less than what algorithmic
complexity would suggest, but still worthwhile.

Efficient, hand-tuned implementation of scans exist for CUDA
(NVIDIA GPUs), multiple HPC libraries.
Use basically the unite-and-conquer algorithm above, though
hard to see from the C code.

9

http://dfns.dyalog.com/c_ascan.htm

Why care so much about fast scans?
Key to parallel implementation of lots of other primitives

(Inside processor: look-ahead-carry adders do scans in
hardware.)

Essential for, e.g., 64-bit arithmetic.
Or for parallelizable bignum packages (RSA crypto, etc.)

Reduction: unite-and-conquer algorithm can be simplified a
bit if we only want the final result:

Assumes non-empty vector:
PREDUCE _ {(�,�)
1:�� 	 (o e)_��\((�.5#��),2)�� 	

∇ (o ��� e),(-2|��)^�}
VPREDUCE variant with just �� instead of ���.
Performs only as many basic operations as vector length.
{�+�} VPREDUCE a bit faster than {�+�}/, but much slower
than simple +/.

But efficient scans are also the key to parallelizing lots of
other, seemingly sequential, tasks.

10

Uses of scans II: compress, flag-partition

Given data vector v, flag vector f, with �v=�f;
compute w _ (f/v),(�f)/v.

Example:
(index) 1 2 3 4 5 6 7 8
v 3 1 4 1 5 9 2 6
f 1 1 0 0 1 0 1 1
s _ +\f 1 2 2 2 3 3 4 5
ns _ (
�f)+s[�s]-s 5 5 6 7 7 8 8 8
a _ (s#f)+ns#�f 1 2 6 7 3 8 4 5
w _ ?(�f)�42 ? ? ? ? ? ? ? ?
w[a] _ v 3 1 5 2 6 4 1 9

Only one scan; all other operations are trivially parallelizable

If we only need f/v or (�f)/v, just take appropriate slice of w.

Replicate (/ with non-boolean flags): see later.

11

Uses of scans III: expand, flag-merge

Flag vector f, data vectors v1 and v2, with (�v1)+�v2 = �f;
compute w _ (f\v1) + (�f)\v2

(index) 1 2 3 4 5 6 7 8
v1 3 1 5 2 6
v2 4 1 9
f 1 1 0 0 1 0 1 1
v _ v1,v2 3 1 5 2 6 4 1 9
a _ (from f as before) 1 2 6 7 3 8 4 5
w _ v[a] 3 1 4 1 5 9 2 6

Note: no actual addition; works for non-numeric data as well.

f\v or (�f)\v by itself easily expressible as flag-merge with
zero or blank vector, as appropriate.

Permutation a depends only on f: Single +-scan of f enables
all four functions: f/, (�f)/, f\, and (�f)\ .

12

What about parallelizing control flow, or recursion?

First step: the vectorization transformation.

FACT _ {�=0:1 	 �#∇ �-1} (like !, but � must be scalar)

General pattern: F _ {P �:B � 	 � C (∇ R �)},
where P={�=0}, B={1}, C={�#�}, R={�-1}

Goal: define FACTV s.t. FACTV v ↔ FACT�v.

FACTV _ {0=�,�:0� 	 f_�=0 	 r_(�f)/� 	
(f\1) + (�f)\r#∇(r-1)}

Note: total of �/� recursive calls.

Performance test: FACTV about 30 times faster than FACT�
on ?1E5�100.

Again, with parallel back end, should do even better.

Same transform works for all functions using that general
pattern.

13

Eliminating redundant work

Can easily filter duplicate requests to vectorized functions.

UMAP _ {u_�� 	 (�� u)[u
�]}
Invariant: FV UMAP v ↔ FV v, but faster.

Not unlike memoization, dynamic programming, but in space
rather than time:

Memoization: have I been asked this before?
Duplicate trimming: am I being asked the same thing twice?

Performance note: algorithmically, this UMAP is a bit dubious.

� is presumably implemented well, but the
 could take
quadratic time, unless the interpreter is very clever.
Proper solution would probably involve explicit sorting, or
hashing of �.

Can add UMAP outside, or inside, FACTV.

14

Simple nested parallelism

FIB _ {�
1:� 	 (∇ �-1)+(∇ �-2)}
Pattern: {P �:B � 	 � C (∇ R1 �) (∇ R2 �)}

Explicating potential for data parallelism:
FIBP _ {�
1:� 	 +/∇�(�-1) (�-2)}

FIBV _ {0=�,�:0� 	 f_�
1 	 r_(�f)/� 	
(f\f/�) + (�f)\+/-(2,�r)�(∇(r-1),(r-2))}

Trading space for time: in recursive call, argument vector is
twice as long as input vector.

Vectorization exposes massive potential for speedup.
Even if original argument vector is duplicate-free, vectorized
recursive calls create lot of redundancies:

FIBVU _ {0=�,�:0� 	 f_�
1 	 r_(�f)/� 	
(f\f/�) + (�f)\+/-(2,�r)�(∇ UMAP (r-1),(r-2))}

Can now easily compute FIBVU ?1000�1000.
Space usage “only” quadratic, not exponential.

15

Segmented scans

A harder challenge: Still 106 elts total, but partitioned into
nested vectors; compute scan independently for each segment:
+\�(3 1 4) (1 5 9 2) (6) (5 4) ↔

(3 4 8) (1 6 15 17) (6) (5 9)

Some segments may be very long (e.g., 105 elements); a lot
may be very short (e.g., 104 length-10 segments), in an
unpredictable pattern.

Should work for any associative operation (e.g., �), not
necessarily invertible: can’t just compute unsegmented scan,
then adjust by subtraction.

Straightforward sequential implementation: time proportional
to total length + number of segments.

How to implement efficiently in parallel on 1000 processors?

16

Implementing segmented scans

Represent vector explicitly as data + leading partition flags
v _ 3 1 4 1 5 9 2 6 5 4
p _ 1 0 0 1 0 0 0 1 1 0
p � v ↔ (3 1 4) (1 5 9 2) (,6) (5 4)

Consider operation: 〈 ap 〉 ⊕ 〈
b
q 〉 = 〈a×q̃+b

p∨q 〉 (p̃ is negation).

Top row precisely expresses desired behavior of segmented
left-to-right +-scan:

Either add to accumulator, or reset it, depending on flag.

⊕ is associative: (〈 ap 〉 ⊕ 〈
b
q 〉)⊕ 〈

c
r 〉 = 〈 (a×q̃+b)×r̃+c

(p∨q)∨r
〉 =

〈a×q̃×r̃+b×r̃+c
p∨q∨r 〉 = 〈a× (̃q∨r)+(b×r̃+c)

p∨(q∨r)
〉 = 〈 ap 〉 ⊕ (〈bq 〉 ⊕ 〈

c
r 〉)

So can use the parallel algorithm to compute ⊕-scan!

FPLUS _ {(a p)_� 	 (b q)_� 	 ((a#�q)+b) (p�q)}

FPLUSV _ {(a p)_��\^� 	 (b q)_��\^� 	
��\^((a#�q)+b) (p�q)}

17

Implementing segmented scans II

SPLUSSCAN _ {��FPLUSV VPSCAN ��\^�}
For illustration purposes only; want to keep data and flags as
separate vectors, rather than vector of pairs.

Invariant: +\�p�v ↔ p�SPLUSSCAN (v p).

For any associative •, define 〈 ap 〉 �• 〈
b
q 〉 = 〈 ((a•b),b)[1+q]

p∨q 〉
Then �• also associative, though a bit harder to see.

Systematically obtain segmented versions of derived primitives
(reduce, compress, ...)

Note: segmented •-reduce needs �• -scan, not just �• -reduce.

Also: segmented
, �, etc.
Example: replicate (/) can be expressed as segmented �-scan.

Can now efficiently parallelize, e.g, {+/(
�)*2}�2*?100�20

(Final ingredient: streaming; avoid materializing entire nested
vector at once, but compute in chunks.)

18

General nested data parallelism

An actually useful recursive algorithm:
QSORT _ {(��)
1:� 	 p_�[�.5#��] 	

(∇ (�<p)/�),((�=p)/�),(∇ (�>p)/�)}

Same recursion pattern as FIB, but with whole vectors as
data values; compress, concatenate, etc. instead of arithmetic.

Because all these primitives definable in terms of scan, they
work directly with segment flags, too.

Hand-vectorized version (QSORTV) quite messy, but whole
point is that the transformation can be automated.

(Expected) log n recursive calls total.

Global control flow still handled by interpreter
All the actual work (<, /, ,) still done in bulk by vectorized
primitives.

Possibly off-loaded to compute accelerator (GPU, etc).

19

Parallel algorithms
APL like Perl: “There’s more than one way to do it...”

”... but most of them suck.”
There’s only so much a clever compiler can do with a
quadratic (or worse) computation specification.
Even more insidious: algorithm (or idiom!) may behave fine
sequentially, but be fundamentally unparallelizable.

“Functional [and APL] programmers know the value of
everything, bot the cost of nothing.”

Need at least some cost awareness: understand both work and
depth complexity of chosen (sub)algorithm.

Algorithms matter, even (especially?) in an array language.
Exploit algebraic properties that are not apparent to compiler
(associativity of operations, sortedness of vectors, etc.)

(Segmented) scans are not the only trick in the parallel
algorithms book!

Mainly used to provide data-parallel substrate, to allow
expression of data-parallel programs like QSORT.

20

Summary and final remarks

Parallel platforms are coming whether we want them or not.
Processor speeds essentially stagnant, but core counts steadily
increasing.
Element-wise processing becoming fundamentally untenable.

Goal of the language should be to support programmer in
expressing parallel computations naturally.

APL is an excellent match, but with a few pitfalls.
Compiler can do a lot, but program must be parallelism-aware.

Scans are cool. Really.

Basic data parallelism (vectorized primitives) good, nested
data parallelism better.

Fine-grained “each” (F�) has lots of potential, but requires
considerable subtlety to implement effectively.
We’re working on it...

It’s an exciting time to be an array programmer!

21

