

Faculty of Science

Segmented Scans and Nested Data Parallelism

Andrzej Filinski andrzej@diku.dk

Department of Computer Science (DIKU) University of Copenhagen

Dyalog APL Conference 15 October 2012, Helsingør, Denmark

A bit of context

- Andrzej Filinski, Associate Professor at UCPH.
- Member of the APL Research Group ...
 - Algorithms and Programming Languages
 - But acronym clash not entirely coincidental.
- ... & HIPERFIT Research Center
 - "Functional High-Performance Computing for Financial Information Technology"
 - Key interest: functional, array-oriented languages as high-level programming paradigm for massively parallel computing platforms (many-core, GPGPUs, FPGAs, ...)
 - Working with Dyalog to do bring some of this technology to the real world.
- Important disclaimer: I am not a real APL programmer!
 - Dabbled a bit in APL/370 some 30 years ago.
 - Ignorant of many common idioms and Dyalog APL features
 - Hopefully the underlying ideas will still come through, even if less elegantly than what you are used to.

Parallelism and concurrency

- Parallelism \neq concurrency
 - Concurrency: explicitly dealing with things happening at once (threads, synchronization, communication, etc.)
 - Still relevant on single CPU with time slicing
 - **Parallelism**: obtaining result faster (in wall-clock time) by exploiting multiple computation units.
 - No need for exposing concurrency to programmer.
- APL is not a parallel language.
 - No parallel cost model/semantics
 - But eminently suitable for parallel *implementation*.
 - Especially data (as opposed to control) parallelism.
- This talk: efficient *nested* data parallelism for array-oriented languages
 - Based on Guy Blelloch's work in early 1990s.
 - Targeted the Connection Machine: decades ahead of its time.
 - Same ideas now also being explored in, e.g., DP Haskell.

APL and data parallelism

- APL has seemingly very parallel(izable) execution model.
 - Element-wise primitive operations: +, <, *, ...
 - Gather/scatter primitives (←v[is], v[is]←).
 - Uniform/regular bulk operations: ι , \Diamond , ,, ...
 - "Embarrassingly parallel"
- But some operations seem inherently sequential:
 - Cumulative *data* dependencies: scan (+\), ...
 - Cumulative index dependencies: compress (/), ...
- Even nominally independent computations (*F*") have their own challenges wrt. parallelism:
 - Control flow (\rightarrow , :) in F precludes SIMD-style parallelization
 - Poor load balancing: {+/ $\imath\omega$ } 2 6 50 3 4 6
- There *is* a magic bullet:
 - "Swiss army chainsaw" of parallel algorithms: segmented (aka. partitioned) scans.

Parallel prefix sums (+-scans)

- Paradigmatic parallel-computing problem: Given a long (say, 10⁶ elts) numeric vector V, compute +\V,
 - Note: how would want the APL system to implement +\V, not how you'd want to re-express the scan in APL yourself.
- Suppose one addition takes 1 ns; ignore memory access and control overhead for now.
- Sequential algorithm (for/do-loop with accumulator in C/Fortran, foldl in Haskell/ML): $10^6 \times 1 \text{ ns} = 1 \text{ ms}.$
- Now suppose we have 1000 cores (e.g., large GPU). How fast can we do it?
 - Optimistic answer (lower bound): 1000 times faster, i.e., 1 μ s.
 - Pessimistic answer (upper bound): data dependency creates sequential bottleneck, so no speedup; still 1 ms.
 - The true answer lies somewhere in between...

A simple parallel scan algorithm

- Exploits essentially that addition is associative.
 - But not that commutative or invertible.
- Three phases:
 - Partition vector into 1000 blocks of 1000 elements each. Independently scan each block (1000 ns = 1 μ s, using all 1000 3 1 4 1 5 9 2 6 5 3 4 8 1 6 15 2 8 13 processors): 2 Collect last elements of block scans, and scan them (1 μ s, 8 15 13 using one processor): 23 36 If μ Use each result to adjust next block's scans (1 μ s, using 999 3 4 8 1 6 15 2 8 13 8 8 8 23 23 23 processors): 3 4 8 9 14 23 25 31 36
- Total: 2×10^6 additions, $\sim 3 \ \mu$ s. Not too bad, but middle phase is still disturbingly sequential...

Unite-and-conquer scan

- Practical and adaptive parallel algorithm
 - Also useful in sequential settings: exploits vectorized primitives
- Example, for power-of-two vector length:

V	3	1	4	1	5	9	2	6
o ← 1[]◊((.5×ρv),2)ρv	3		4		5		2	
e ← 2[]&((.5×pv),2)pv		1		1		9		6
p ← o+e		4		5		14		8
s ← ∇ p		4		9		23		31
r ← (1[]o),(⁻ 1↓s)+1↓o	3		8		14		25	
w ← ,r,[1.5]s	3	4	8	9	14	23	25	31

- Total of log₂ *n* recursive calls for length-*n* vector.
- Total of $2\frac{n}{2} + 2\frac{n}{4} + \cdots + 2 \simeq 2n$ element additions.
- For arbitrary operations and vector sizes (but still rank-1 only): PSCAN ← {(ρ,ω)≤1:ω ◊ (ο e) ← ↓◊(([.5×ρω),2)ρω ◊ s ← ∇ οαα¨e ◊ r ← (1[]ο),(-1↓s)αα¨1↓ο ◊ (-2|ρω)↓,r,[1.5]s}

Aside: Sequential performance of scans

- Common case: base operation also works vectorized (like +).
 - Optimized VPSCAN: like PSCAN, but with $\alpha\alpha$ in place of $\alpha\alpha\ddot{}$.
- APL's native scan is right-too-left.
 - Quadratic running time: prohibitively expensive for more than a few thousand elements.
 - Special case for + and other associative primitives, but doesn't cover $\{\alpha+\omega\}$, or more exotic, programmer-defined functions.
- A few quick performance tests on a small machine:
 - $\{\alpha+\omega\} \setminus \iota 1E6$: near-infeasible (a few days, extrapolated).
 - { $\alpha+\omega$ } PSCAN *i*1E6: takes about 1 second.
 - { $\alpha+\omega$ } VPSCAN 11E6: takes about 60 ms.
 - +\ 1E6: takes about 25 ms.
- Reflects that parallel algorithm does twice as much work, but most of it in huge chunks.

Sequential performance, continued

- From http://dfns.dyalog.com/c_ascan.htm: ascan ← {□ML←0 ◊ 2>0⊥ρω:ω ◊ φ↑αα{(C(⊃ω)αα α),ω}/Φ(C∘⊃¨↓ω),↑1↓¨↓ω}
 - Repeatedly extends vector by one element: ultimately also quadratic behavior, but hits the performance wall a bit later.
 - $\{\alpha+\omega\}$ ascan *i*1E6: about 15 minutes (extrapolated).
- Unlike the others, VPSCAN is also trivially parallelizable.
 - Only needs efficient vector addition (+ some data movement).
- In practice, parallel speedups are less than what algorithmic complexity would suggest, but still worthwhile.
 - Efficient, hand-tuned implementation of scans exist for CUDA (NVIDIA GPUs), multiple HPC libraries.
 - Use basically the unite-and-conquer algorithm above, though hard to see from the C code.

Why care so much about fast scans?

- Key to parallel implementation of lots of other primitives
- (Inside processor: look-ahead-carry adders do scans in hardware.)
 - Essential for, e.g., 64-bit arithmetic.
 - Or for parallelizable bignum packages (RSA crypto, etc.)
- Reduction: unite-and-conquer algorithm can be simplified a bit if we only want the final result:
 - Assumes non-empty vector: PREDUCE $\leftarrow \{(\rho, \omega) \le 1: \supset \omega \land (o e) \leftarrow \downarrow \Diamond ((\lfloor .5 \times \rho \omega), 2) \rho \omega \land \nabla (o \alpha \alpha \ddot{\ } e), (-2 | \rho \omega) \uparrow \omega \}$
 - VPREDUCE variant with just $\alpha \alpha$ instead of $\alpha \alpha$.
 - Performs only as many basic operations as vector length.
 - { $\alpha+\omega$ } VPREDUCE a bit faster than { $\alpha+\omega$ }/, but much slower than simple +/.
- But efficient scans are also the key to parallelizing lots of other, seemingly sequential, tasks.

Uses of scans II: compress, flag-partition

- Given data vector v, flag vector f, with pv=pf; compute w ← (f/v), (~f)/v.
- Example:

(index)	1234 5678
v	3141 5926
f	1 1 0 0 1 0 1 1
s ← +\f	1 2 2 2 3 3 4 5
ns ← (ıpf)+s[ps]-s	55 <mark>67</mark> 7888
a ← (s×f)+ns×~f	1 2 6 7 3 8 4 5
w ← ?(ρf)ρ42	?????????
w[a] ← v	3152 6419

- Only one scan; all other operations are trivially parallelizable
- If we only need f/v or (~f)/v, just take appropriate slice of w.
- Replicate (/ with non-boolean flags): see later.

Uses of scans III: expand, flag-merge

- Flag vector f, data vectors v1 and v2, with (ρv1)+ρv2 = ρf; compute w ← (f\v1) + (~f)\v2
- (index) 1 2 3 4 5 6 7 8 v1 3 1 5 2 6 v2 4 1 9 f 11 0 0 1 0 1 1 v ← v1,v2 3 1 5 2 6 4 1 9 a ← (from f as before) 1 2 6 7 3 8 4 5 w ← v[a] 3 1 4 1 5 9 2 6
- Note: no actual addition; works for non-numeric data as well.
 - f\v or (~f)\v by itself easily expressible as flag-merge with zero or blank vector, as appropriate.
- Permutation a depends only on f: Single +-scan of f enables all four functions: f/, (~f)/, f\, and (~f)\.

What about parallelizing control flow, or recursion?

- First step: the vectorization transformation.
- FACT \leftarrow { ω =0:1 $\diamond \omega \times \nabla \omega$ -1} (like !, but ω must be scalar)
 - General pattern: $F \leftarrow \{P \ \omega:B \ \omega \ \delta \ \omega \ C \ (\nabla \ R \ \omega)\}$, where $P = \{\omega=0\}$, $B = \{1\}$, $C = \{\alpha \times \omega\}$, $R = \{\omega-1\}$
- Goal: define FACTV s.t. FACTV $v \leftrightarrow$ FACT"v.

• FACTV
$$\leftarrow$$
 {0=p, ω :0 \Diamond f \leftarrow ω =0 \Diamond r \leftarrow (\sim f)/ ω \Diamond
(f\1) + (\sim f)\r \times ∇ (r-1)}

- **Note**: *total* of $\lceil / \omega \rceil$ recursive calls.
- Performance test: FACTV about 30 times faster than FACT" on ?1E5p100.
 - Again, with parallel back end, should do even better.
- Same transform works for all functions using that general pattern.

Eliminating redundant work

- Can easily filter duplicate requests to vectorized functions.
 - UMAP $\leftarrow \{u \leftarrow \cup \omega \diamond (\alpha \alpha u) [u \iota \omega]\}$
 - Invariant: FV UMAP $\mathtt{v} \leftrightarrow \mathtt{FV}$ v, but faster.
- Not unlike memoization, dynamic programming, but in space rather than time:
 - Memoization: have I been asked this before?
 - Duplicate trimming: am I being asked the same thing twice?
- Performance note: algorithmically, this UMAP is a bit dubious.
 - U is presumably implemented well, but the ι could take quadratic time, unless the interpreter is very clever.
 - $\bullet\,$ Proper solution would probably involve explicit sorting, or hashing of $\omega.$
- Can add UMAP outside, or inside, FACTV.

Simple nested parallelism

- FIB $\leftarrow \{ \omega \leq 1 : \omega \diamond (\nabla \omega 1) + (\nabla \omega 2) \}$
 - Pattern: { $P \ \omega: B \ \omega \ \Diamond \ \omega \ C \ (\nabla \ R_1 \ \omega) \ (\nabla \ R_2 \ \omega)$ }
- Explicating potential for data parallelism:
 FIBP ← {ω≤1:ω ◊ +/∇¨(ω−1) (ω−2)}
- FIBV $\leftarrow \{0=\rho, \omega: 0 \diamond f \leftarrow \omega \le 1 \diamond r \leftarrow (\sim f)/\omega \diamond (f \land f/\omega) + (\sim f) \land + \neq (2, \rho r) \rho (\nabla (r-1), (r-2)) \}$
 - Trading space for time: in recursive call, argument vector is twice as long as input vector.
- Vectorization exposes massive potential for speedup.
 - Even if original argument vector is duplicate-free, vectorized recursive calls create lot of redundancies:
- FIBVU ← {0=ρ,ω:0 ◊ f←ω≤1 ◊ r←(~f)/ω ◊ (f\f/ω) + (~f)\+≠(2,ρr)ρ(∇ UMAP (r-1),(r-2))}
 - Can now easily compute FIBVU ?1000p1000.
 - Space usage "only" quadratic, not exponential.

Segmented scans

- A harder challenge: Still 10⁶ elts total, but partitioned into nested vectors; compute scan independently for each segment:
 +\"(3 1 4) (1 5 9 2) (6) (5 4) ↔
 (3 4 8) (1 6 15 17) (6) (5 9)
- Some segments may be very long (e.g., 10⁵ elements); a lot may be very short (e.g., 10⁴ length-10 segments), in an unpredictable pattern.
- Should work for any associative operation (e.g., 「), not necessarily invertible: can't just compute unsegmented scan, then adjust by subtraction.
- Straightforward sequential implementation: time proportional to total length + number of segments.
- How to implement efficiently in parallel on 1000 processors?

Implementing segmented scans

- Represent vector explicitly as data + leading partition flags
 v ← 3 1 4 1 5 9 2 6 5 4
 - $p \leftarrow 1 \ 0 \ 0 \ 1 \ 0 \ 0 \ 1 \ 1 \ 0$
 - $p \subseteq v \leftrightarrow (3 \ 1 \ 4) \ (1 \ 5 \ 9 \ 2) \ (,6) \ (5 \ 4)$
- Consider operation: $\langle {}^{a}_{p} \rangle \oplus \langle {}^{b}_{q} \rangle = \langle {}^{a \times \tilde{q} + b}_{p \vee q} \rangle$ (\tilde{p} is negation).
- Top row precisely expresses desired behavior of segmented left-to-right +-scan:
 - Either add to accumulator, or reset it, depending on flag.

•
$$\oplus$$
 is associative: $\left(\left\langle \substack{a\\p}\right\rangle \oplus \left\langle \substack{b\\q}\right\rangle\right) \oplus \left\langle \substack{c\\q}\right\rangle = \left\langle \substack{(a \times \tilde{q} + b) \times \tilde{r} + c\\(p \lor q) \lor r}\right\rangle = \left\langle \substack{a \times \tilde{r}(q \lor r) + (b \times \tilde{r} + c)\\p \lor q \lor r}\right\rangle = \left\langle \substack{a \times \tilde{r}(q \lor r) + (b \times \tilde{r} + c)\\p \lor q(q \lor r)}\right\rangle = \left\langle \substack{a\\p}\right\rangle \oplus \left(\left\langle \substack{b\\q}\right\rangle \oplus \left\langle \substack{c\\q}\right\rangle\right)$

 $\bullet\,$ So can use the parallel algorithm to compute $\oplus\mbox{-scan}!$

• FPLUS $\leftarrow \{(a p) \leftarrow \alpha \Diamond (b q) \leftarrow \omega \Diamond ((a \times \sim q) + b) (p \lor q)\}$

Implementing segmented scans II

- SPLUSSCAN $\leftarrow \{ \supset FPLUSV VPSCAN \downarrow \Diamond \uparrow \omega \}$
 - For illustration purposes only; want to keep data and flags as separate vectors, rather than vector of pairs.
- Invariant: +\"pCv \leftrightarrow pCSPLUSSCAN (v p).
- For any associative ●, define \$\langle^a_p\$\overline\$ \$\langle^b_q\$\overline\$ \$\langle^b
- Systematically obtain segmented versions of derived primitives (reduce, compress, ...)
 - \bullet Note: segmented $\bullet\mbox{-reduce}$ needs $\odot\mbox{-scan},$ not just $\odot\mbox{-reduce}.$
- Also: segmented ι , ρ , etc.
 - Example: replicate (/) can be expressed as segmented \dashv -scan.
- Can now efficiently parallelize, e.g, {+/($\iota \omega$)*2}"2*?100p20
- (Final ingredient: *streaming*; avoid materializing entire nested vector at once, but compute in chunks.)

General nested data parallelism

- An actually useful recursive algorithm: QSORT $\leftarrow \{(\rho\omega) \le 1: \omega \diamond p \leftarrow \omega [[.5 \times \rho\omega] \diamond (\nabla (\omega < p) / \omega), ((\omega = p) / \omega), (\nabla (\omega > p) / \omega) \}$
- Same recursion pattern as FIB, but with whole vectors as data values; compress, concatenate, etc. instead of arithmetic.
- Because all these primitives definable in terms of scan, they work directly with segment flags, too.
- Hand-vectorized version (QSORTV) quite messy, but whole point is that the transformation can be automated.
- (Expected) log n recursive calls total.
 - Global control flow still handled by interpreter
 - All the actual work (<, /, ,) still done in bulk by vectorized primitives.
 - Possibly off-loaded to compute accelerator (GPU, etc).

Parallel algorithms

- APL like Perl: "There's more than one way to do it..."
 - "... but most of them suck."
 - There's only so much a clever compiler can do with a quadratic (or worse) computation specification.
 - Even more insidious: algorithm (or idiom!) may behave fine sequentially, but be fundamentally unparallelizable.
- "Functional [and APL] programmers know the value of everything, bot the cost of nothing."
 - Need at least some cost awareness: understand both *work* and *depth* complexity of chosen (sub)algorithm.
- Algorithms matter, even (especially?) in an array language.
 - Exploit algebraic properties that are not apparent to compiler (associativity of operations, sortedness of vectors, etc.)
- (Segmented) scans are not the only trick in the parallel algorithms book!
 - Mainly used to provide data-parallel substrate, to allow expression of data-parallel programs like QSORT.

Summary and final remarks

- Parallel platforms are coming whether we want them or not.
 - Processor speeds essentially stagnant, but core counts steadily increasing.
 - Element-wise processing becoming fundamentally untenable.
- Goal of the language should be to support programmer in expressing parallel computations *naturally*.
 - APL is an excellent match, but with a few pitfalls.
 - Compiler can do a lot, but program must be parallelism-aware.
- Scans are cool. Really.
- Basic data parallelism (vectorized primitives) good, nested data parallelism better.
 - Fine-grained "each" (*F*") has lots of potential, but requires considerable subtlety to implement effectively.
 - We're working on it...
- It's an exciting time to be an array programmer!