SITY OF COPENHAGEN Department of Compu
- \

Faculty of Science

Segmented Scans and
Nested Data Parallelism

Andrzej Filinski
andrzej@diku.dk

Department of Computer Science (DIKU)
University of Copenhagen

Dyalog APL Conference
15 October 2012, Helsinggr, Denmark

UNIVERSITY OF COPENHAGEN Department of Computer Science

A bit of context

@ Andrzej Filinski, Associate Professor at UCPH.

@ Member of the APL Research Group ...

e Algorithms and Programming Languages

e But acronym clash not entirely coincidental.
@ ... & HIPERFIT Research Center

e "“Functional High-Performance Computing for Financial
Information Technology”

o Key interest: functional, array-oriented languages as high-level
programming paradigm for massively parallel computing
platforms (many-core, GPGPUs, FPGAs, ...)

o Working with Dyalog to do bring some of this technology to
the real world.

o Important disclaimer: | am not a real APL programmer!

o Dabbled a bit in APL/370 some 30 years ago.

o lIgnorant of many common idioms and Dyalog APL features

e Hopefully the underlying ideas will still come through, even if
less elegantly than what you are used to.

UNIVERSITY OF COPENHAGEN Department of Computer Science

Parallelism and concurrency

o Parallelism # concurrency

e Concurrency: explicitly dealing with things happening at once
(threads, synchronization, communication, etc.)

o Still relevant on single CPU with time slicing

o Parallelism: obtaining result faster (in wall-clock time) by
exploiting multiple computation units.

@ No need for exposing concurrency to programmer.
@ APL is not a parallel language.
o No parallel cost model/semantics
e But eminently suitable for parallel implementation.
o Especially data (as opposed to control) parallelism.
@ This talk: efficient nested data parallelism for array-oriented
languages
o Based on Guy Blelloch's work in early 1990s.

o Targeted the Connection Machine: decades ahead of its time.

e Same ideas now also being explored in, e.g., DP Haskell.

3 ®

UNIVERSITY OF COPENHAGEN Department of Computer Science

APL and data parallelism

@ APL has seemingly very parallel(izable) execution model.
Element-wise primitive operations: +, <, *, ...
Gather/scatter primitives (¢v[is], v[is]¢).

Uniform /regular bulk operations: 1, ®, ,, ...
“Embarrassingly parallel”

@ But some operations seem inherently sequential:
o Cumulative data dependencies: scan (+\), ...
o Cumulative index dependencies: compress (/), ...
e Even nominally independent computations (F™) have their
own challenges wrt. parallelism:
o Control flow (=, :) in F precludes SIMD-style parallelization
o Poor load balancing: {+/2w} "2 6 50 3 4 6
@ There is a magic bullet:

e “Swiss army chainsaw” of parallel algorithms: segmented
(aka. partitioned) scans.

UNIVERSITY OF COPENHAGEN

Department of Computer Science

Parallel prefix sums (+-scans)

e Paradigmatic parallel-computing problem: Given a long (say,
100 elts) numeric vector V, compute +\V,
o Note: how would want the APL system to implement +\V,
not how you'd want to re-express the scan in APL yourself.

@ Suppose one addition takes 1 ns; ignore memory access and
control overhead for now.

e Sequential algorithm (for/do-loop with accumulator in
C/Fortran, foldl in Haskell/ML): 10 x 1 ns = 1 ms.

@ Now suppose we have 1000 cores (e.g., large GPU). How fast
can we do it?

o Optimistic answer (lower bound): 1000 times faster, i.e., 1 us.

o Pessimistic answer (upper bound): data dependency creates
sequential bottleneck, so no speedup; still 1 ms.

e The true answer lies somewhere in between...

UNIVERSITY OF COPENHAGEN Department of Computer Science

A simple parallel scan algorithm

@ Exploits essentially that addition is associative.
e But not that commutative or invertible.

@ Three phases:
@ Partition vector into 1000 blocks of 1000 elements each.
Independently scan each block (1000 ns = 1 us, using all 1000
314 159 265
348 1615 2 813
@ Collect last elements of block scans, and scan them (1 us,
8 15 13
8 23 36
© Use each result to adjust next block's scans (1 us, using 999
348 1 615 2 813
processors): 8 8 8 2323 23
3 4 8 914 23 2531 36

processors):

using one processor):

o Total: 2 x 108 additions, ~ 3 us. Not too bad, but middle
phase is still disturbingly sequential...

UNIVERSITY OF COPENHAGEN Department of Computer Science

Unite-and-conquer scan

@ Practical and adaptive parallel algorithm
o Also useful in sequential settings: exploits vectorized primitives

@ Example, for power-of-two vector length:

v 31415 9 26
o + 1[I®((.5xpv),2)pv 3 4 5 2

e « 2[IR((.5xpv),2)pv 1 1 9 6
p ¢ ote 4 5 14 8
s+ Vp 4 9 23 31
r « (1fo),CC1is)+1do 3 8 14 25

w « ,r,[1.5]s 3 4 8 914232531

Total of log, n recursive calls for length-n vector.

Total of 25 + 27 + -+ +2 ~ 2n element additions.

For arbitrary operations and vector sizes (but still rank-1 only):

PSCAN « {(p,w)<1:w ¢ (o e) « IQ(([.5xpw),2)pw ¢
s ¢« Voar'e O r« (1flo),(C1is)aa"1lo ¢
(-2lpw)d,r, [1.5]s}

UNIVERSITY OF COPENHAGEN Department of Computer Science

Aside: Sequential performance of scans

e Common case: base operation also works vectorized (like +).
o Optimized VPSCAN: like PSCAN, but with aa in place of aa™.

@ APL’s native scan is right-too-left.
e Quadratic running time: prohibitively expensive for more than
a few thousand elements.
e Special case for + and other associative primitives, but doesn't
cover {o+wJ}, or more exotic, programmer-defined functions.

o A few quick performance tests on a small machine:

o {o+w} \ 21E6: near-infeasible (a few days, extrapolated).
o {o+w} PSCAN 21E6: takes about 1 second.

o {o+w} VPSCAN 21E6: takes about 60 ms.

o +\ 11E6: takes about 25 ms.

@ Reflects that parallel algorithm does twice as much work, but
most of it in huge chunks.

UNIVERSITY OF COPENHAGEN Department of Computer Science

Sequential performance, continued

@ From http://dfns.dyalog.com/c_ascan.htm:
ascan + {0ML<0 ¢ 2>01pw:w ¢
dtao{(COw)aa o) ,w}/d(Ced " lw), 14 lw}
o Repeatedly extends vector by one element: ultimately also
quadratic behavior, but hits the performance wall a bit later.
o {at+w} ascan 11E6: about 15 minutes (extrapolated).

@ Unlike the others, VPSCAN is also trivially parallelizable.
o Only needs efficient vector addition (+ some data movement).
@ In practice, parallel speedups are less than what algorithmic
complexity would suggest, but still worthwhile.

o Efficient, hand-tuned implementation of scans exist for CUDA
(NVIDIA GPUs), multiple HPC libraries.

o Use basically the unite-and-conquer algorithm above, though
hard to see from the C code.

http://dfns.dyalog.com/c_ascan.htm

UNIVERSITY OF COPENHAGEN Department of Computer Science

10

Why care so much about fast scans?
o Key to parallel implementation of lots of other primitives

o (Inside processor: look-ahead-carry adders do scans in
hardware.)
o Essential for, e.g., 64-bit arithmetic.
o Or for parallelizable bignum packages (RSA crypto, etc.)

@ Reduction: unite-and-conquer algorithm can be simplified a
bit if we only want the final result:

e Assumes non-empty vector:

PREDUCE « {(p,w)<1:2w ¢ (o e)«4R((L.5xpw),2)pw O
V (o o’ e),(-2]pw) Tw}

e VPREDUCE variant with just aa instead of aa™.

e Performs only as many basic operations as vector length.

o {o+w} VPREDUCE a bit faster than {o+w}/, but much slower
than simple +/.

@ But efficient scans are also the key to parallelizing lots of
other, seemingly sequential, tasks.

UNIVERSITY OF COPENHAGEN Department of Computer Science

Uses of scans Il: compress, flag-partition

e Given data vector v, flag vector £, with pv=pf;
compute w « (£/v), (~f)/v.

@ Example:
(index) 123456738
v 31415926
f 11001011
s « +\f 1222 3345
ns « (vpf)+slps]l-s 5567 7888
a + (sxf)+nsx~f 1267 3845
w & 7(pf)p42 77272277277
wlal « v 3152 6419

@ Only one scan; all other operations are trivially parallelizable
o If we only need £/v or (~f) /v, just take appropriate slice of w.
@ Replicate (/ with non-boolean flags): see later.

11

UNIVERSITY OF COPENHAGEN Department of Computer Science

Uses of scans lll: expand, flag-merge

o Flag vector £, data vectors v1 and v2, with (pv1)+pv2 = pf;
compute w « (£f\v1) + (~f)\v2

o (index) 12345678
vi 3152 6
v2 419
f 1100 1011
v + vl,v2 3152 6419
a « (from f as before) 1267 3845
w « v[al 3141 5926

@ Note: no actual addition; works for non-numeric data as well.

o f\v or (~£)\v by itself easily expressible as flag-merge with
zero or blank vector, as appropriate.

@ Permutation a depends only on f: Single +-scan of £ enables
all four functions: £/, (~f)/, £\, and (~f)\.

12

UNIVERSITY OF COPENHAGEN Department of Computer Science

What about parallelizing control flow, or recursion?

o First step: the vectorization transformation.

@ FACT « {w=0:1 ¢ wxV w-1} (like !, but w must be scalar)

o General pattern: F « {P w:B w ¢ w C (VR w},
where P={w=0}, B={1}, C={axw}, R={w-1}

@ Goal: define FACTV s.t. FACTV v < FACT 'v.

@ FACTV « {0=p,w:0 ¢ f+w=0 ¢ r«(~f)/w ¢
(£\1) + (vE)\rxV(z-1)}

o Note: total of [/w recursive calls.

@ Performance test: FACTV about 30 times faster than FACT"
on 71E5p100.

e Again, with parallel back end, should do even better.

@ Same transform works for all functions using that general
pattern.

13

UNIVERSITY OF COPENHAGEN Department of Computer Science

Eliminating redundant work

@ Can easily filter duplicate requests to vectorized functions.

o UMAP ¢ {urUw ¢ (aa w) [urwl}

e Invariant: FV UMAP v « FV v, but faster.
@ Not unlike memoization, dynamic programming, but in space

rather than time:

e Memoization: have | been asked this before?

e Duplicate trimming: am | being asked the same thing twice?
@ Performance note: algorithmically, this UMAP is a bit dubious.

e U is presumably implemented well, but the 4 could take
quadratic time, unless the interpreter is very clever.

e Proper solution would probably involve explicit sorting, or
hashing of w.

@ Can add UMAP outside, or inside, FACTV.

14

UNIVERSITY OF COPENHAGEN Department of Computer Science

Simple nested parallelism

@ FIB « {wt:w ¢ (V w-1)+(V w-2)}
o Pattern: {P w:Bw Ow C (VR w (VR w}

o Explicating potential for data parallelism:
FIBP « {w<il:w ¢ +/V7™(w-1) (w-2)}
e FIBV « {0=p,w:0 ¢ frwsl ¢ re(~f)/w ¢
(E\f/w) + (VE\+£(2,pr)p(V(r-1),(r-2))}
e Trading space for time: in recursive call, argument vector is
twice as long as input vector.
@ Vectorization exposes massive potential for speedup.
o Even if original argument vector is duplicate-free, vectorized
recursive calls create lot of redundancies:
e FIBVU « {0=p,w:0 ¢ frwsl ¢ re(~f)/w ¢
(F\f/w) + (~£)\+£(2,pr)p(V UMAP (r-1),(r-2))}
e Can now easily compute FIBVU 71000p1000.
e Space usage “only” quadratic, not exponential.

15

UNIVERSITY OF COPENHAGEN Department of Computer Science

16

Segmented scans

@ A harder challenge: Still 10° elts total, but partitioned into
nested vectors; compute scan independently for each segment:
+\7(314) (1592) (6) (564)«—

(348) (1615 17) (6) (5 9)

@ Some segments may be very long (e.g., 10° elements); a lot
may be very short (e.g., 10% length-10 segments), in an
unpredictable pattern.

@ Should work for any associative operation (e.g., [), not
necessarily invertible: can't just compute unsegmented scan,
then adjust by subtraction.

@ Straightforward sequential implementation: time proportional
to total length + number of segments.

@ How to implement efficiently in parallel on 1000 processors?

UNIVERSITY OF COPENHAGEN Department of Computer Science

Implementing segmented scans

@ Represent vector explicitly as data + leading partition flags
ve3141592654
ps1001000110
pCv«(314)(1592)(,6)(54)

b> — <a><E]+b

q pVq

@ Top row precisely expresses desired behavior of segmented

left-to-right +-scan:
o Either add to accumulator, or reset it, depending on flag.

o @ is associative: ((2) @ (D)) @ (€) = ((@x@rb)xitey _

o Consider operation: (7) & () (P is negation).

> e p/ ¥ \q i N (pvq)vr
ey = (e = e e ()

e So can use the parallel algorithm to compute @®-scan!
@ FPLUS « {(a p)ra ¢ (b @)rw ¢ ((ax~g)+b) (pvQ)}
@ FPLUSV « {(a p)+i&ta ¢ (b q)«i®tw ¢
1T ((ax~g)+b) (pvVa)}

17

UNIVERSITY OF COPENHAGEN Department of Computer Science

Implementing segmented scans |l

@ SPLUSSCAN + {D"FPLUSV VPSCAN l®tw}

e For illustration purposes only; want to keep data and flags as
separate vectors, rather than vector of pairs.

Invariant: +\ "pCv <> pCSPLUSSCAN (v p).

For any associative e, define (;’) ® <Z> - (((aobl)a,\ljzl[1+q]>

e Then @ also associative, though a bit harder to see.

Systematically obtain segmented versions of derived primitives
(reduce, compress, ...)

o Note: segmented e-reduce needs ®-scan, not just ®@-reduce.
Also: segmented v, p, etc.

o Example: replicate (/) can be expressed as segmented —-scan.

Can now efficiently parallelize, e.g, {+/ (2w)*2} " 2%7100p20

(Final ingredient: streaming; avoid materializing entire nested
vector at once, but compute in chunks.)

18

UNIVERSITY OF COPENHAGEN Department of Computer Science

General nested data parallelism

@ An actually useful recursive algorithm:
QSORT ¢« {(pw)<1l:w ¢ prwl[.5xpw] ¢
(V (w<p)/w), ((w=p)/w), (V (w>p)/w)}
@ Same recursion pattern as FIB, but with whole vectors as
data values; compress, concatenate, etc. instead of arithmetic.

@ Because all these primitives definable in terms of scan, they
work directly with segment flags, too.

@ Hand-vectorized version (QSORTV) quite messy, but whole
point is that the transformation can be automated.

o (Expected) log n recursive calls total.

o Global control flow still handled by interpreter
o All the actual work (<, /, ,) still done in bulk by vectorized
primitives.
o Possibly off-loaded to compute accelerator (GPU, etc).

19

UNIVERSITY OF COPENHAGEN Department of Computer Science

Parallel algorithms

@ APL like Perl: “There's more than one way to do it...”
e "... but most of them suck.”
o There's only so much a clever compiler can do with a
quadratic (or worse) computation specification.
o Even more insidious: algorithm (or idiom!) may behave fine
sequentially, but be fundamentally unparallelizable.

e "Functional [and APL] programmers know the value of
everything, bot the cost of nothing.”
o Need at least some cost awareness: understand both work and
depth complexity of chosen (sub)algorithm.

e Algorithms matter, even (especially?) in an array language.
e Exploit algebraic properties that are not apparent to compiler
(associativity of operations, sortedness of vectors, etc.)

o (Segmented) scans are not the only trick in the parallel
algorithms book!
e Mainly used to provide data-parallel substrate, to allow

" expression of data-parallel programs like QSORT.

UNIVERSITY OF COPENHAGEN Department of Computer Science

Summary and final remarks

o Parallel platforms are coming whether we want them or not.
e Processor speeds essentially stagnant, but core counts steadily
increasing.
o Element-wise processing becoming fundamentally untenable.

@ Goal of the language should be to support programmer in
expressing parallel computations naturally.
e APL is an excellent match, but with a few pitfalls.
o Compiler can do a lot, but program must be parallelism-aware.

Scans are cool. Really.

Basic data parallelism (vectorized primitives) good, nested
data parallelism better.

o Fine-grained “each” (F™) has lots of potential, but requires
considerable subtlety to implement effectively.
o We're working on it...
@ It's an exciting time to be an array programmer!

21

