Pension Microsimulation Model ELSI

Heikki Tikanmäki 22.9.2014 Eastbourne, UK

Background

- In Finnish Centre for Pensions we have long tradition in doing long term pension projections with PTS macro model
 - Implemented using Dyalog APL
- The macro model gives good insight on pension expenditure and funding on system level
- No individual modeling
 - Not possible to get any distributional results on pension benefits

Hence, the need of microsimulation

Nice picture (PTS macro model)

Microsimulation

• (Harding & Gupta 2007):

- "The defining characteristic of microsimulation models is that they analyse the likely behaviour of and the impact of policy change upon **persons**"
- "the microdata usually contains thousands of individual or microunit records, with a host of variables describing the demographic, labour force, income and other characteristics of each individual"

• In dynamic microsimulation

- The persons get older
- Life events (death, working, retiring, education etc.) are simulated annually

Finnish pension system (the boring slide)

- Partially funded earnings related pension system (~90% of the pension expenditure)
- Pension accrues according to a fixed (age specific) percent of the earnings
 - Typically 1.5% of the earnings
 - No ceiling
- Various types of pension benefits:
 - Old age pension
 - Disability pension
 - Etc.
- Undergoing a major reform

ELSI model (1)

- A dynamic microsimulation model of the Finnish pension system
 - Based on register data
- Simulates 5% sample of the Finnish adult population 2009-2080
- 250 000 individuals in the starting year 2008
 - New eighteen-year-olds and immigrants added annually
 - Around 560 000 individuals in the whole simulation run
- Simulates working careers, earnings and finally pensions for each individuals
- One year time step

ELSI model (2)

- Results on pension benefits
 - Pension distributions
 - Replacement rates
 - Results on subpopulations

The model structure

Why APL?

Tradition

- Compatibility with
 - » The macro model
 - » Population projection
 - » Employment projection
- Flexibility
 - Modeling various proposals for a new pension scheme
 - Various results

On implementation

- The key modules are implemented using Dyalog APL
 12.1 and 14.0
- Some steps with start data and results also with SAS
 - SQAPL, ODBC
- The modules as independent as possible
- Macro results aligned to the PTS macro model
 - Micro-macro link

APL implementation (1)

- "module is implemented as a separate workspace
- The simulation data in compoment files
 - The output of a module is used as an input for the next module
 - No other links between the modules
- Each component file contains a component for each year (typically 77 years)
 - Each individual has 22 attributes each year
 - Alltogether more than 500 000 individuals in the simulation data
 - The size of a component file around 5GB
- The micro-macro link is also implemented using component files

APL implementation (2)

- Each module can be run separately
 - given the corresponding start data
- Each module run takes 10-40 mins (version 12.1)

Version 14.0

- Transition from 12.1 to 14.0
- Useful features
 - Compressing the components (to 16% of the original 5GB size)
 - Interpreter optimisation
 - Parallelisation (not yet implemented)

Examples of results

Replacement rate

68 year-olds pension distribution

In the near future

- Transition to version 14 completed
- Optimisation of the implementation
- Extending the model

Thanks for your attention!