
A "merge" operator for Dyalog

Motivation

Tool-of-thought:

Array Languages

let us think about aggregates rather than items.

Functional Languages

let us think about expressions rather than state.

Currently, Dyalog lacks an expression for the "triadic" operation:

THAT array but with THESE items at THOSE positions.

Instead, it employs a 3-step procedure:

 TMP←... ⍝ name the array to form a variable

 TMP[X]←Y ⍝ mutate the variable

 ...TMP ⍝ dereference the name to extract the

 ⍝ new value

WIBNI we could embed some <<mechanism>> within an expression :

... <<Y X>> ...

(both J and K have such constructs)

and, while we're at it, replace "modified indexed assignment":

TMP←... ⋄ TMP[X] F← Y ⋄ ...TMP

with:

... <<Y F X>> ...

See also "mesh" and "mask" (KEI 1962)

x ≡ p (b mesh) q ←→ p≡(~b)⌿x ⋄ q≡b⌿x

x ≡ p (b mask) q ←→ (b⌿x)≡b⌿q ⋄ ((~b)⌿x)≡(~b)⌿q

 'sek' (0 1 0 1 0 mesh) 'ta'

steak

 'abcde' (0 1 0 1 0 mask) 'ABCDE'

aBcDe

(see also select function in dfns.dws: Google[dyalog select])

Nomenclature

Nouns make better names for functions than do transitive verbs: sqrt, succ,

merge(n)

amend(vt) - J, K

mask(n) - KEI

fuse[ion] - Olympus bar FP session, Monday night.

Design Considerations

• The most frequent cases should have the simplest expression

• Don't overload one operator with too many cases but avoid using

separate glyphs for strongly related operations

• Minimise the requirement for (especially adjacent) parentheses

John'S 2p

• "Fuse" is a dyadic operator, as opposed to, say, special new syntax.

• The selector is on the right, to reduce parentheses.

• The selector is a Boolean value or function, as opposed to an index.

• The selection operates on major cells (along the leading axis)

Glyph

How about → ?

- Quiet

- Easy to type

- No confusion with branching / suspension clearing

Examples

spec: Deal of an ⍵-deck (?⍨⍵), with alternate items zapped to 0.

eg: ⎕io=1 ⋄ ⍵=5 : 2 3 4 1 5 : 0 3 0 1 0

f ← {2|⍳≢⍵}

bool-returning function: "alternate"

b ← f ⍳⍵

pre-computed Boolean selection vector

T←?⍨⍵ ⋄ (b/T)←0 ⋄ T

selective assignment using vector b ─┐ cf: │

 0 ⊣→b ?⍨5

fuse operator using vector b

70%

0 ⊣→b ⊢5?5

⊢ to prevent binding of b with 5

 T←?⍨⍵ ⋄ ((f T)/T)←0 ⋄ T ⍝ selection function

cf:

0 ⊣→f ?⍨5

selection function

0 ⊣→f 5?5

no need for ⊢

A static analysis of a customer's application showed that 70% of selective

assignments were simple Boolean selection, as above.

Deal of an ⍵-deck, with alternate items incremented.

T←5?5 ⋄ (b/T)+←1 ⋄ T

modified, selective assignment"

T←5?5 ⋄ ((f T)/T)+←1 ⋄ T

cf:

 1 +→b ⊢5?5

 1 +→f 5?5

Model

 {A←⍵

 2=⎕nc'⍵⍵': A⊣(⍵⍵ ⌿A)⍺⍺⍨←⍺ ⍝ ⍵⍵ is bool vec

 A⊣((⍵⍵ ⍵)⌿A)⍺⍺⍨←⍺ ⍝ ⍵⍵ is bool fn

 }

What next?

• Hoping for some discussion in the Dyalog forum or email to

john@dyalog.com

• JS to explore opportunities for → in "real" application code.

mailto:john@dyalog.com

	{A←⍵

