Premium Capping Schemes in German Health Insurance

Dr. Markos Mitsos
markos.mitsos@ergo.de

Deutsche Krankenversicherung AG DKV - ERGO, Actuarial Department

Dyalog 2015 — Sicily
Type of presentation:
- important practical application
- straightforward problem, ideal for APL
Type of presentation:
- important practical application
- straightforward problem, ideal for APL
Type of presentation:
- important practical application
- straightforward problem, ideal for APL
Type of presentation:
- important practical application
- straightforward problem, ideal for APL

What about:
- big chunks of surplus
- one of only a few steering mechanisms in German health insurance
Type of presentation:
- important practical application
- straightforward problem, ideal for APL

What about:
- **big** chunks of surplus
- one of only a few steering mechanisms in German health insurance
Type of presentation:
- important practical application
- straightforward problem, ideal for APL

What about:
- big chunks of surplus
- one of only a few steering mechanisms in German health insurance
Outline

1. Introduction to the (re)calculation of premiums in German health insurance
2. Some remarks on the business model and the surplus (usage)
3. An overview of the implemented process for pricing and checking capping schemes
4. Creating and pricing capping schemes
Outline

1. Introduction to the (re)calculation of premiums in German health insurance

2. Some remarks on the business model and the surplus (usage)

3. An overview of the implemented process for pricing and checking capping schemes

4. Creating and pricing capping schemes
Outline

1. Introduction to the (re)calculation of premiums in German health insurance
2. Some remarks on the business model and the surplus (usage)
3. An overview of the implemented process for pricing and checking capping schemes
4. Creating and pricing capping schemes
1. Introduction to the (re)calculation of premiums in German health insurance

2. Some remarks on the business model and the surplus (usage)

3. An overview of the implemented process for pricing and checking capping schemes

4. Creating and pricing capping schemes
In this section we give some brief information about:

- **Premium calculation**: how actuarial assumptions are used for calculating premiums
- **Premium recalculation**: how (individual) premiums are adjusted to new actuarial assumptions
In this section we give some brief information about:

premium calculation how actuarial assumptions are used for calculating premiums

premium recalculation how (individual) premiums are adjusted to new actuarial assumptions
Outline of section on (re)calculation

In this section we give some brief information about:

- **premium calculation**: how actuarial assumptions are used for calculating premiums
- **premium recalculation**: how (individual) premiums are adjusted to new actuarial assumptions
In this section we give some brief information about:

- **premium calculation**: how actuarial assumptions are used for calculating premiums
- **premium recalculation**: how (individual) premiums are adjusted to new actuarial assumptions

Objective: show how tightly regulated German health insurance is.
In this section we give some brief information about:

premium calculation how actuarial assumptions are used for calculating premiums

premium recalculation how (individual) premiums are adjusted to new actuarial assumptions

Objective: show how tightly regulated German health insurance is. **All processes presented** after agreement and/or supervised by independent trustee / BAFin / auditors!
Calculation of premiums in German health insurance based on:

- mortality rate q_x
- lapse rate w_x

Both probabilities depend on gender, but get "unisex-ified" for newer tariffs. They depend on age (but not birth year) and are annually revised and contain securities.
Calculation of premiums in German health insurance based on:

- mortality rate q_x
- lapse rate w_x
Probabilities used for premium calculation

Calculation of premiums in German health insurance based on:

- mortality rate q_x
- lapse rate w_x

Both probabilities:
- depend on gender, but get “unisex-ified” for newer tariffs
- depend on age (but not birth year)
- are annually revised and contain securities
Calculation of premiums in German health insurance based on:

- mortality rate q_x
- lapse rate w_x

Both probabilities:

- depend on gender, but get “unisex-ified” for newer tariffs
- depend on age (but not birth year)
- are annually revised and contain securities
Calculation of premiums in German health insurance based on:

- mortality rate q_x
- lapse rate w_x

Both probabilities:

- depend on gender, but get “unisex-ified” for newer tariffs
- depend on age (but not birth year)
- are annually revised and contain securities
Probabilities used for premium calculation

Calculation of premiums in German health insurance based on:

- mortality rate \(q_x \)
- lapse rate \(w_x \)

Both probabilities:

- depend on gender, but get “unisex-ified” for newer tariffs
- depend on age (but not birth year)
- are annually revised and contain securities
Probabilities used for premium calculation

Calculation of premiums in German health insurance based on:

- mortality rate q_x
- lapse rate w_x

Both probabilities:

- depend on gender, but get “unisex-ified” for newer tariffs
- depend on age (but not birth year)
- are annually revised and contain securities
Furthermore the calculation of premiums uses:

- claims per capita and year K_x
- technical interest rate i
Furthermore the calculation of premiums uses:

- claims per capita and year K_x
- technical interest rate i

These actuarial assumptions are revised on (re)calculation: claims depend on gender, but get “unisex-ified” for newer tariffs, depend on age (but not birth year), contain securities. The interest rate is “company constant” (up to 2012 3.5% for all insurers).
Furthermore the calculation of premiums uses:

- claims per capita and year K_x
- technical interest rate i

These actuarial assumptions are revised on (re)calculation:

- claims depend on gender, but get “unisex-ified” for newer tariffs
- depend on age (but not birth year)
- contain securities
- interest rate is “company constant” (up to 2012 3.5% for all insurers)
Furthermore the calculation of premiums uses:

- claims per capita and year K_x
- technical interest rate i

These actuarial assumptions are revised on (re)calculation:

- claims
 - depend on gender, but get “unisex-ified” for newer tariffs
 - depend on age (but not birth year)
 - contain securities
- interest rate is “company constant” (up to 2012 3.5% for all insurers)
Claims and interest rate for premium calculation

Furthermore the calculation of premiums uses:
- claims per capita and year K_x
- technical interest rate i

These actuarial assumptions are revised on (re)calculation:
- claims
 - depend on gender, but get “unisex-ified” for newer tariffs
 - depend on age (but not birth year)
 - contain securities
- interest rate is “company constant” (up to 2012 3.5% for all insurers)
Furthermore the calculation of premiums uses:

- claims per capita and year \(K_x \)
- technical interest rate \(i \)

These actuarial assumptions are revised on (re)calculation:

- claims
 - depend on gender, but get “unisex-ified” for newer tariffs
 - depend on age (but not birth year)
 - contain securities
 - interest rate is “company constant” (up to 2012 3.5% for all insurers)
Claims and interest rate for premium calculation

Furthermore the calculation of premiums uses:

- claims per capita and year K_x
- technical interest rate i

These actuarial assumptions are revised on (re)calculation:

- claims
 - depend on gender, but get “unisex-ified” for newer tariffs
 - depend on age (but not birth year)
 - contain securities
- interest rate is “company constant” (up to 2012 3.5% for all insurers)
Furthermore the calculation of premiums uses:

- claims per capita and year K_x
- technical interest rate i

These actuarial assumptions are revised on (re)calculation:

- claims
 - depend on gender, but get “unisex-ified” for newer tariffs
 - depend on age (but not birth year)
 - contain securities
- interest rate is “company constant” (up to 2012 3.5% for all insurers)
Furthermore the calculation of premiums uses:
- claims per capita and year K_x
- technical interest rate i

These actuarial assumptions are revised on (re)calculation:
- claims
 - depend on gender, but get “unisex-ified” for newer tariffs
 - depend on age (but not birth year)
 - contain securities
- interest rate is “company constant” (up to 2012 3.5% for all insurers)
Net premium calculation

The basic premise of premium calculation is:

- premiums shall depend on [gender (for tariffs introduced up to 2012) and] age at contract
- premiums shall not depend on aging as such
The basic premise of premium calculation is:

- premiums shall depend on [gender (for tariffs introduced up to 2012) and] age at contract.
- premiums shall not depend on aging as such.
Net premium calculation

The basic premise of premium calculation is:

- premiums shall depend on [gender (for tariffs introduced up to 2012) and] age at contract
- premiums shall not depend on aging as such
Net premium calculation

The basic premise of premium calculation is:

- premiums shall depend on [gender (for tariffs introduced up to 2012) and] age at contract
- premiums shall not depend on aging as such

That fore use the so called “equivalence principle”.
The basic premise of premium calculation is:

- premiums shall depend on [gender (for tariffs introduced up to 2012) and] age at contract
- premiums shall not depend on aging as such

That fore use the so called “equivalence principle”. Calculate premiums so that the (accumulated, discounted, expected) income from a lifelong constant premium equals the (accumulated, discounted, expected) claims.
Gross premium calculation

Based on net premiums:

- add security margin $\sigma_x \geq 5\%$
- add costs (claim regulation costs ρ_x, \ldots)
- subtract discount on costs if objective reasons
Gross premium calculation

Based on net premiums:

- add security margin $\sigma_x \geq 5\%$
- add costs (claim regulation costs ρ_x, ...)
- subtract discount on costs if objective reasons
Gross premium calculation

Based on net premiums:

1. add security margin $\sigma_x \geq 5\%$
2. add costs (claim regulation costs ρ_x, ...)
3. subtract discount on costs if objective reasons

That's that: no (individual) changes allowed.
Gross premium calculation

Based on net premiums:
- add security margin $\sigma_x \geq 5$
- add costs (claim regulation costs ρ_x, \ldots)
- subtract discount on costs if objective reasons
Gross premium calculation

Based on net premiums:

- add security margin $\sigma_x \geq 5\%$
- add costs (claim regulation costs ρ_x, ...)
- subtract discount on costs if objective reasons

The result is the monthly premium b_x for contract age x.

Gross premium calculation

Based on net premiums:

- add security margin $\sigma_x \geq 5\%$
- add costs (claim regulation costs ρ_x, …)
- subtract discount on costs if objective reasons

The result is the monthly premium b_x for contract age x. That’s that: no (individual) changes allowed.
Build up und usage of benefit reserves

Due to German laws and calculation principles:

- young people pay more than necessary
 - "flat" P_x example
 - "steep" P_x example

- benefit reserve V_x accumulated in young years and used up in high age
 - "flat" V_x examples
 - "steep" V_x examples

- total reserve encompasses many kinds besides the benefit reserve

- reserve is a calculated quantity

- reserve is only meaningful applied to a collective and does belong to the latter (not the insurer or individual insureds)
Due to German laws and calculation principles:

- young people pay more than necessary
 - "flat" P_x example
 - "steep" P_x example

- benefit reserve V_x accumulated in young years and used up in high age
 - "flat" V_x examples
 - "steep" V_x examples

- total reserve encompasses many kinds besides the benefit reserve

- reserve is a calculated quantity

- reserve is only meaningful applied to a collective and does belong to the latter (not the insurer or individual insureds)
Due to German laws and calculation principles:

- young people pay more than necessary
 - “flat” P_x example
 - “steep” P_x example

- benefit reserve mV_x accumulated in young years and used up in high age
 - “flat” mV_x examples
 - “steep” mV_x examples

- total reserve encompasses many kinds besides the benefit reserve

- reserve is a calculated quantity

- reserve is only meaningful applied to a collective and does belong to the latter (not the insurer or individual insureds)
Due to German laws and calculation principles:

- young people pay more than necessary
 - "flat" P_x example
 - "steep" P_x example

- benefit reserve $m V_x$ accumulated in young years and used up in high age
 - "flat" $m V_x$ examples
 - "steep" $m V_x$ examples

- total reserve encompasses many kinds besides the benefit reserve
 - reserve is a calculated quantity
 - reserve is only meaningful applied to a collective and does belong to the latter (not the insurer or individual insureds)
Due to German laws and calculation principles:

- young people pay more than necessary
 - "flat" P_x example
 - "steep" P_x example

- benefit reserve $m V_x$ accumulated in young years and used up in high age
 - "flat" $m V_x$ examples
 - "steep" $m V_x$ examples

- total reserve encompasses many kinds besides the benefit reserve

- reserve is a calculated quantity
 - reserve is only meaningful applied to a collective and does belong to the latter (not the insurer or individual insureds)
Build up and usage of benefit reserves

Due to German laws and calculation principles:

- young people pay more than necessary
 - "flat" P_x example
 - "steep" P_x example

- benefit reserve $m V_x$ accumulated in young years and used up in high age
 - "flat" $m V_x$ examples
 - "steep" $m V_x$ examples

- total reserve encompasses many kinds besides the benefit reserve

- reserve is a calculated quantity

- reserve is only meaningful applied to a collective and does belong to the latter (not the insurer or individual insureds)
Rules for adjustment of actuarial assumptions

Are premiums forever?

- each year compulsory check of K_x versus real claims (not identical to calculation...)
- if results are within $\pm 5\%$ of each other no recalculation, outside $\pm 10\%$ compulsory recalculation
- another (more recent) check on mortality rates q_x, outside $\pm 5\%$ compulsory recalculation
- no check on lapse rates w_x or interest rate i, company risk
Rules for adjustment of actuarial assumptions

Are premiums forever?

- each year compulsory check of K_x versus real claims (not identical to calculation...)
- if results are within $\pm 5\%$ of each other no recalculation, outside $\pm 10\%$ compulsory recalculation
- another (more recent) check on mortality rates q_x, outside $\pm 5\%$ compulsory recalculation
- no check on lapse rates w_x or interest rate i, company risk
Rules for adjustment of actuarial assumptions

Are premiums forever?

- each year compulsory check of K_x versus real claims (not identical to calculation...)
- if results are within $\pm 5\%$ of each other no recalculation, outside $\pm 10\%$ compulsory recalculation
- another (more recent) check on mortality rates q_x, outside $\pm 5\%$ compulsory recalculation
- no check on lapse rates w_x or interest rate i, company risk
Rules for adjustment of actuarial assumptions

Are premiums forever?

- each year compulsory check of K_x versus real claims (not identical to calculation...)
- if results are within $±5\%$ of each other no recalculation, outside $±10\%$ compulsory recalculation
- another (more recent) check on mortality rates q_x, outside $±5\%$ compulsory recalculation
- no check on lapse rates w_x or interest rate i, company risk
Rules for adjustment of actuarial assumptions

Are premiums forever?

- each year compulsory check of K_x versus real claims (not identical to calculation...)
- if results are within $±5\%$ of each other no recalculation, outside $±10\%$ compulsory recalculation
- another (more recent) check on mortality rates q_x, outside $±5\%$ compulsory recalculation
- no check on lapse rates w_x or interest rate i, company risk
Are premiums forever?

- each year compulsory check of K_x versus real claims (not identical to calculation...)
- if results are within ±5% of each other no recalculation, outside ±10% compulsory recalculation
- another (more recent) check on mortality rates q_x, outside ±5% compulsory recalculation
- no check on lapse rates w_x or interest rate i, company risk

The recalculation of premiums is done the same way as the original calculation. New premiums are to be used for all subsequently signed contracts.
Recalculation of individual premiums

What do new premiums mean for business in force?

- principle is that (benefit) reserve V defines everything
- calculate $m V_x$ accumulated in the m years passed since contract time
- fix sum, it encapsulates the “rights” of the insured person
- use new annuities to define an individual, permanent discount h financed by reserve
- define new individual premium as $b = b_{x+m} - h$
Recalculation of individual premiums

What do new premiums mean for business in force?

- principle is that (benefit) reserve V defines everything
- calculate $m \times V_x$ accumulated in the m years passed since contract time
- fix sum, it encapsulates the “rights” of the insured person
- use new annuities to define an individual, permanent discount h financed by reserve
- define new individual premium as $b = b_{x+m} - h$
Recalculation of individual premiums

What do new premiums mean for business in force?

- principle is that (benefit) reserve V defines everything
- calculate $m \cdot V_x$ accumulated in the m years passed since contract time
 - fix sum, it encapsulates the “rights” of the insured person
 - use new annuities to define an individual, permanent discount
 h financed by reserve
- define new individual premium as $b = b_{x+m} - h$
Recalculation of individual premiums

What do new premiums mean for business in force?

- principle is that (benefit) reserve V defines everything
- calculate $m \cdot V_x$ accumulated in the m years passed since contract time
- fix sum, it encapsulates the “rights” of the insured person
- use new annuities to define an individual, permanent discount h financed by reserve
- define new individual premium as $b = b_{x+m} - h$
Recalculation of individual premiums

What do new premiums mean for business in force?

- principle is that (benefit) reserve V defines everything
- calculate $m V_x$ accumulated in the m years passed since contract time
- fix sum, it encapsulates the “rights” of the insured person
- use new annuities to define an individual, permanent discount h financed by reserve

- define new individual premium as $b = b_{x+m} - h$
Recalculation of individual premiums

What do new premiums mean for business in force?

- principle is that (benefit) reserve V defines everything
- calculate $m V_x$ accumulated in the m years passed since contract time
- fix sum, it encapsulates the “rights” of the insured person
- use new annuities to define an individual, permanent discount h financed by reserve
- define new individual premium as $b = b_{x+m} - h$
Recalculation of individual premiums

What do new premiums mean for business in force?

- principle is that (benefit) reserve V defines everything
- calculate $m V_x$ accumulated in the m years passed since contract time
- fix sum, it encapsulates the “rights” of the insured person
- use new annuities to define an individual, permanent discount h financed by reserve

- define new individual premium as $b = b_{x+m} - h$

That process is a so called “technical start”. Afterwards the insured person is not distinct from one with contract age $x + m$ and an (individual) discount on the premium.
In this section we give some brief information about:

- Business model where the surplus comes from in German health insurance
- Premium capping schemes how surplus is used for premium capping schemes
In this section we give some brief information about:

business model where the surplus comes from in German health insurance

premium capping schemes how surplus is used for premium capping schemes
Outline of section on business model

In this section we give some brief information about:

- **business model** where the surplus comes from in German health insurance
- **premium capping schemes** how surplus is used for premium capping schemes
In this section we give some brief information about:

business model where the surplus comes from in German health insurance

premium capping schemes how surplus is used for premium capping schemes

Objective: show that capping schemes are one of a few steering opportunities.
Concerning premiums we have seen:

- arbitrary (re)calculation not possible
- explicit profit margins not allowed
Concerning premiums we have seen:

- arbitrary (re)calculation not possible
- explicit profit margins not allowed
Concerning premiums we have seen:

- arbitrary (re)calculation not possible
- explicit profit margins not allowed
Concerning premiums we have seen:

- arbitrary (re)calculation not possible
- explicit profit margins not allowed

So where is the surplus?

- security margins in tables
- explicit security margin in net premiums
- reserve, interest above technical rate
- additionally not-regulated add-on tariffs, occasionally costs
Concerning premiums we have seen:
- arbitrary (re)calculation not possible
- explicit profit margins not allowed

So where is the surplus?
- security margins in tables
- explicit security margin in net premiums
- reserve, interest above technical rate
- additionally not-regulated add-on tariffs, occasionally costs
Concerning premiums we have seen:
- arbitrary (re)calculation not possible
- explicit profit margins not allowed

So where is the surplus?
- security margins in tables
- explicit security margin in net premiums
- reserve, interest above technical rate
- additionally not-regulated add-on tariffs, occasionally costs
Concerning premiums we have seen:

- arbitrary (re)calculation not possible
- explicit profit margins not allowed

So where is the surplus?

- security margins in tables
- explicit security margin in net premiums
- reserve, interest above technical rate
- additionally not-regulated add-on tariffs, occasionally costs
Concerning premiums we have seen:
- arbitrary (re)calculation not possible
- explicit profit margins not allowed

So where is the surplus?
- security margins in tables
- explicit security margin in net premiums
- reserve, interest above technical rate
- additionally not-regulated add-on tariffs, occasionally costs
Importand surplus source: (benefit) reserve

Reserve:

- is part of liabilities and (in older companies) completely dominates assets and liabilities in the balance sheet
 - liabilities (older)
 - liabilities
- can run into the tens of thousands for single contracts
 - "flat" \(V_x \) examples
 - "steep" \(V_x \) examples
Reserve:

- is part of liabilities and (in older companies) completely dominates assets and liabilities in the balance sheet
 - liabilities (older) liabilities
- can run into the tens of thousands for single contracts
 - “flat” \(V_x \) examples “steep” \(V_x \) examples
Important surplus source: (benefit) reserve

Reserve:

- is part of liabilities and (in older companies) completely dominates assets and liabilities in the balance sheet
 - liabilities (older)
 - liabilities

- can run into the tens of thousands for single contracts
 - “flat” \(mV_x \) examples
 - “steep” \(mV_x \) examples
Importand surplus source: (benefit) reserve

Reserve:
- is part of liabilities and (in older companies) completely dominates assets and liabilities in the balance sheet
- can run into the tens of thousands for single contracts

Possible sources of surplus:
- earned interest just 0.5% above average technical rate means over 150 million euros
- mortality or lapse a bit higher than assumed means high sums
Importand surplus source: (benefit) reserve

Reserve:

- is part of liabilities and (in older companies) completely dominates assets and liabilities in the balance sheet

- can run into the tens of thousands for single contracts

Possible sources of surplus:

- earned interest just 0.5% above average technical rate means over 150 million euros

- mortality or lapse a bit higher than assumed means high sums
Import and surplus source: (benefit) reserve

Reserve:
- is part of liabilities and (in older companies) completely dominates assets and liabilities in the balance sheet
 - liabilities (older)
 - liabilities
- can run into the tens of thousands for single contracts
 - “flat” mV_x examples
 - “steep” mV_x examples

Possible sources of surplus:
- earned interest just 0.5% above average technical rate means over 150 million euros
- mortality or lapse a bit higher than assumed means high sums
Are security margins in truth **huge profit margins**?

- No, because:
 - at least 90% of extra interest
 - at least 80% of surplus regardless of origin

must be returned to policy holders within 3 years

- funds cumulated in “war chest” (called “RfB”)
- usage only in agreement with independent trustee (capping, premium refunding)
Surplus earned and the policy holders

Are security margins in truth **huge profit margins**?

- **No**, because:
 - at least 90% of extra interest
 - at least 80% of surplus regardless of origin

must be **returned to policy holders within 3 years**

- funds cumulated in “war chest” (called “RfB”)
- usage only in agreement with independent trustee (capping, premium refunding)
Are security margins in truth huge profit margins?

- No, because:
 - at least 90% of extra interest
 - at least 80% of surplus regardless of origin

must be returned to policy holders within 3 years

- funds cumulated in “war chest” (called “RfB”)
- usage only in agreement with independent trustee (capping, premium refunding)
Are security margins in truth huge profit margins?

- No, because:
 - at least 90% of extra interest
 - at least 80% of surplus regardless of origin

must be returned to policy holders within 3 years

- funds cumulated in “war chest” (called “RfB”)
- usage only in agreement with independent trustee (capping, premium refunding)
Are security margins in truth huge profit margins?

- **No**, because:
 - at least 90% of extra interest
 - at least 80% of surplus regardless of origin

must be **returned to policy holders within 3 years**

- funds cumulated in “war chest” (called “RfB”)
 - usage only in agreement with independent trustee (capping, premium refunding)
Surplus earned and the policy holders

Are security margins in truth huge profit margins?

- No, because:
 - at least 90% of extra interest
 - at least 80% of surplus regardless of origin

must be returned to policy holders within 3 years

- funds cumulated in “war chest” (called “RfB”)
- usage only in agreement with independent trustee (capping, premium refunding)
The idea of capping premium increases

We know that premium increases Δb during (individual) recalculation:

- depend on plan, gender, age, but also accumulated reserve
- are highly individual
- cannot be directly correlated with increases in premiums at contract time b_x
The idea of capping premium increases

We know that premium increases Δb during (individual) recalculation:

- depend on plan, gender, age, but also accumulated reserve
- are highly individual
- cannot be directly correlated with increases in premiums at contract time b_x
The idea of capping premium increases

We know that premium increases Δb during (individual) recalculation:
- depend on plan, gender, age, but also accumulated reserve
- are that fore highly individual
- cannot be directly correlated with increases in premiums at contract time b_x
The idea of capping premium increases

We know that premium increases Δb during (individual) recalculation:

- depend on plan, gender, age, but also accumulated reserve
- are that fore highly individual
- cannot be directly correlated with increases in premiums at contract time b_x
The idea of capping premium increases

We know that premium increases Δb during (individual) recalculation:

- depend on plan, gender, age, but also accumulated reserve
- are inherently highly individual
- cannot be directly correlated with increases in premiums at contract time b_x

As a result, some individuals may have huge increases Δb.

> illustration
The idea of capping premium increases

We know that premium increases Δb during (individual) recalculation:

- depend on plan, gender, age, but also accumulated reserve
- are that fore highly individual
- cannot be directly correlated with increases in premiums at contract time b_x

As a result some individuals may have huge increases Δb.

The idea is to avoid financial hardship by capping increases.
Premium discounts are equivalent to reserve, so

- fix a desired (new) discount Δh
- price it to ΔV (using standard actuarial formula)
- inject ΔV into the reserve
Premium discounts are equivalent to reserve, so

- fix a desired (new) discount Δh
- price it to ΔV (using standard actuarial formula)
- inject ΔV into the reserve
Pricing the capping of individual premium increases

Premium discounts are equivalent to reserve, so
- fix a desired (new) discount Δh
- price it to ΔV (using standard actuarial formula)
- inject ΔV into the reserve
Premium discounts are equivalent to reserve, so

- fix a desired (new) discount Δh
- price it to ΔV (using standard actuarial formula)
- inject ΔV into the reserve

The only problem remaining is where to find the necessary money!
Premium discounts are equivalent to reserve, so

- fix a desired (new) discount Δh
- price it to ΔV (using standard actuarial formula)
- inject ΔV into the reserve

Then the premium will be permanently reduced by $\Delta b = \Delta h$ — without subsequent effects on the balance sheet.
Premium discounts are equivalent to reserve, so

- fix a desired (new) discount Δh
- price it to ΔV (using standard actuarial formula)
- inject ΔV into the reserve

Then the premium will be permanently reduced by $\Delta b = \Delta h$ — without subsequent effects on the balance sheet.

The only problem remaining is were to find the necessary money!
We want to use surplus, more specifically RfB, for capping. We must

- create some objective capping rules (depending on tariff, gender, age, ...)
- persuade the independent trustee that the resulting benefits are fairly distributed
- price the costs
- reach agreement with the trustee and implement the rules

Such a set of rules is called capping scheme or model.

The problem (but not for APL!): the costs are part of the agreement and must be based on (afore hand) simulation.
We want to use surplus, more specifically RfB, for capping. We must

- create some objective capping rules (depending on tariff, gender, age, ...)
- persuade the independent trustee that the resulting benefits are fairly distributed
- price the costs
- reach agreement with the trustee and implement the rules

Such a set of rules is called capping scheme or model.

The problem (but not for APL!): the costs are part of the agreement and must be based on (aforehand) simulation.
Financing capping schemes

We want to use surplus, more specifically RfB, for capping. We must:

- create some objective capping rules (depending on tariff, gender, age, ...)
- persuade the independent trustee that the resulting benefits are fairly distributed
- price the costs
- reach agreement with the trustee and implement the rules

Such a set of rules is called capping scheme or model.

The problem (but not for APL!): the costs are part of the agreement and must be based on (afore hand) simulation.
We want to use surplus, more specifically RfB, for capping. We must

- create some objective capping rules (depending on tariff, gender, age, ...)
- persuade the independent trustee that the resulting benefits are fairly distributed
- price the costs
- reach agreement with the trustee and implement the rules

Such a set of rules is called capping scheme or model.

The problem (but not for APL!): the costs are part of the agreement and must be based on (afore hand) simulation.
We want to use surplus, more specifically RfB, for capping. We must:

- create some objective capping rules (depending on tariff, gender, age, ...)
- persuade the independent trustee that the resulting benefits are fairly distributed
- price the costs
- reach agreement with the trustee and implement the rules

Such a set of rules is called capping scheme or model.

The problem (but not for APL!): the costs are part of the agreement and must be based on (afore hand) simulation.
Financing capping schemes

We want to use surplus, more specifically RfB, for capping. We must

- create some objective capping rules (depending on tariff, gender, age, ...)
- persuade the independent trustee that the resulting benefits are fairly distributed
- price the costs
- reach agreement with the trustee and implement the rules

Such a set of rules is called capping scheme or model.

The problem (but not for APL!): the costs are part of the agreement and must be based on (afore hand) simulation.
We want to use surplus, more specifically RfB, for capping. We must

- create some objective capping rules (depending on tariff, gender, age, ...)
- persuade the independent trustee that the resulting benefits are fairly distributed
- price the costs
- reach agreement with the trustee and implement the rules

Such a set of rules is called capping scheme or model.

The problem (but not for APL!): the costs are part of the agreement and must be based on (afore hand) simulation.
Outline of workspace overview section

In this section we give an overview of the implemented process:

- the used workspace
- what the workspace used for capping contains and what dependencies there are
- data basis
- how an appropriate data basis is provided
- premium recalculation
- how the premium recalculation is simulated
Outline of workspace overview section

In this section we give an overview of the implemented process:

- **the used workspace** what the workspace used for capping contains and what dependencies there are
- **data basis** how an appropriate data basis is provided
- **premium recalculation** how the premium recalculation is simulated
In this section we give an overview of the implemented process:

- **the used workspace** what the workspace used for capping contains and what dependencies there are
- **data basis** how an appropriate data basis is provided
- **premium recalculation** how the premium recalculation is simulated
In this section we give an overview of the implemented process:

- **the used workspace** what the workspace used for capping contains and what dependencies there are
- **data basis** how an appropriate data basis is provided
- **premium recalculation** how the premium recalculation is simulated
In this section we give an overview of the implemented process:

- **the used workspace**: what the workspace used for capping contains and what dependencies there are
- **data basis**: how an appropriate data basis is provided
- **premium recalculation**: how the premium recalculation is simulated

Objective: separate technically necessary preparations from capping proper.
Overview of the overall capping process

The overall capping process consists of

1. design and pricing of a capping scheme as well as further usage of the results
2. check of capping effects using comparisons on productive databases
3. import of the official results of capping and quality control
The overall capping process consists of:

1. design and pricing of a capping scheme as well as further usage of the results
2. check of capping effects using comparisons on productive databases
3. import of the official results of capping and quality control

The two last points are (important but) not part of this presentation.
The overall capping process consists of:

1. design and pricing of a capping scheme as well as further usage of the results
2. check of capping effects using comparisons on productive databases
3. import of the official results of capping and quality control
Overview of the overall capping process

The overall capping process consists of:

1. design and pricing of a capping scheme as well as further usage of the results
2. check of capping effects using comparisons on productive databases
3. import of the official results of capping and quality control
The overall capping process consists of

1. design and pricing of a capping scheme as well as further usage of the results
2. check of capping effects using comparisons on productive databases
3. import of the official results of capping and quality control

The two last points are (important but) not part of this presentation.
Overview of the capping process proper

The capping process proper encompasses

- extracting a suitable data basis from DB2
- simulating the premium recalculation
- and then
 - pricing of a capping model or
 - agglomerating data in a special way and estimating the cost of a model
- as well as
 - presenting capping results graphically
 - using individual results for the determination of special test cases
 - ...

The last points are not part of this presentation.
The capping process proper encompasses:

- extracting a suitable data basis from DB2
- simulating the premium recalculation
- and then
 - pricing of a capping model or
 - agglomerating data in a special way and estimating the cost of a model
- as well as
 - presenting capping results graphically
 - using individual results for the determination of special test cases
 - ...

The last points are not part of this presentation.
The capping process proper encompasses:

- Extracting a suitable data basis from DB2
- Simulating the premium recalculation

And then:

- Pricing of a capping model or
- Agglomerating data in a special way and estimating the cost of a model

As well as:

- Presenting capping results graphically
- Using individual results for the determination of special test cases

...
Overview of the capping process proper

The capping process proper encompasses

- extracting a suitable data basis from DB2
- simulating the premium recalculation
- and then
 - pricing of a capping model or
 - agglomerating data in a special way and estimating the cost of a model
- as well as
 - presenting capping results graphically
 - using individual results for the determination of special test cases
 - ...

The last points are not part of this presentation.
Overview of the capping process proper

The capping process proper encompasses

- extracting a suitable data basis from DB2
- simulating the premium recalculation
- and then
 - pricing of a capping model or
 - agglomerating data in a special way and estimating the cost of a model
- as well as
 - presenting capping results graphically
 - using individual results for the determination of special test cases
 - ...

The last points are not part of this presentation.
Overview of the capping process proper

The capping process proper encompasses

- extracting a suitable data basis from DB2
- simulating the premium recalculation
- and then
 - pricing of a capping model or
 - agglomerating data in a special way and estimating the cost of a model
- as well as
 - presenting capping results graphically
 - using individual results for the determination of special test cases
 - ...

The last points are not part of this presentation.
The capping process proper encompasses

- extracting a suitable data basis from DB2
- simulating the premium recalculation
- and then
 - pricing of a capping model or
 - agglomerating data in a special way and estimating the cost of a model
- as well as
 - presenting capping results graphically
 - using individual results for the determination of special test cases
 - ...

The last points are not part of this presentation.
Overview of the capping process proper

The capping process proper encompasses

- extracting a suitable data basis from DB2
- simulating the premium recalculation
- and then
 - pricing of a capping model or
 - agglomerating data in a special way and estimating the cost of a model
- as well as
 - presenting capping results graphically
 - using individual results for the determination of special test cases
 - ...

The last points are not part of this presentation.
Overview of the capping process proper

The capping process proper encompasses

- extracting a suitable data basis from DB2
- simulating the premium recalculation
- and then
 - pricing of a capping model or
 - agglomerating data in a special way and estimating the cost of a model
- as well as
 - presenting capping results graphically
 - using individual results for the determination of special test cases
 - ...

The last points are not part of this presentation.
Overview of the capping process proper

The capping process proper encompasses

- extracting a suitable data basis from DB2
- simulating the premium recalculation
- and then
 - pricing of a capping model or
 - agglomerating data in a special way and estimating the cost of a model
- as well as
 - presenting capping results graphically
 - using individual results for the determination of special test cases
 - ...

The last points are not part of this presentation.
Overview of the capping process proper

The capping process proper encompasses
- extracting a suitable data basis from DB2
- simulating the premium recalculation
- and then
 - pricing of a capping model or
 - agglomerating data in a special way and estimating the cost of a model
- as well as
 - presenting capping results graphically
 - using individual results for the determination of special test cases
 - ...

The last points are not part of this presentation.
Workspace structure

On the technical side:

- workspace is simply structured and not very deep, measured in calls nesting
- each main step a go-through-once-and-you-are-done process
- very low degree of interactivity (except estimation of costs)
Workspace structure

On the technical side:

- workspace is simply structured and not very deep, measured in calls nesting
- each main step a go-through-once-and-you-are-done process
- very low degree of interactivity (except estimation of costs)
Workspace structure

On the technical side:

- workspace is simply structured and not very deep, measured in calls nesting
- each main step a go-through-once-and-you-are-done process
- very low degree of interactivity (except estimation of costs)
Workspace structure

On the technical side:

- workspace is simply structured and not very deep, measured in calls nesting
- each main step a go-through-once-and-you-are-done process
- very low degree of interactivity (except estimation of costs)
Workspace structure

On the technical side:

- workspace is simply structured and not very deep, measured in calls nesting
- each main step a go-through-once-and-you-are-done process
- very low degree of interactivity (except estimation of costs)

Three simple GUIs (necessary and) provided for:

1. starting the main tasks
2. determining the parameters of the main tasks
3. creating capping schemes and estimating their costs (a bit more complicated)
Workspace structure

On the technical side:

- workspace is simply structured and not very deep, measured in calls nesting
- each main step a go-through-once-and-you-are-done process
- very low degree of interactivity (except estimation of costs)

Three simple GUIs (necessary and) provided for:

1. starting the main tasks
2. determining the parameters of the main tasks
3. creating capping schemes and estimating their costs (a bit more complicated)
Workspace structure

On the technical side:

- workspace is simply structured and not very deep, measured in calls nesting
- each main step a go-through-once-and-you-are-done process
- very low degree of interactivity (except estimation of costs)

Three simple GUIs (necessary and) provided for:

1. starting the main tasks
2. determining the parameters of the main tasks
3. creating capping schemes and estimating their costs (a bit more complicated)
Workspace structure

On the technical side:

- workspace is simply structured and not very deep, measured in calls nesting
- each main step a go-through-once-and-you-are-done process
- very low degree of interactivity (except estimation of costs)

Three simple GUIs (necessary and) provided for:

1. starting the main tasks
2. determining the parameters of the main tasks
3. creating capping schemes and estimating their costs (a bit more complicated)
Some functions and/or functionalities are imported from and/or provided by other workspaces, for example:

- optimized basic algorithms for hardcore data processing
- basic functions which implement (grouped) application of operators on equivalence classes of rows of multicolumn arrays (primitive in Dyalog 14.0?)
- auxiliary functions for using component files
- auxiliary functions for presenting results in Excel (Synfusion libraries?)
- auxiliary functions for communicating with IBM DB2 on the mainframe, Access and SQL Server (SQAPL?)
- APL-optimized sets of actuarial data

All those are of course taken for granted — in the workspace and the presentation...
Dependencies and technical prerequisites

Some functions and/or functionalities are imported from and/or provided by other workspaces, for example:

- optimized basic algorithms for hardcore data processing
- basic functions which implement (grouped) application of operators on equivalence classes of rows of multicolumn arrays (primitive in Dyalog 14.0?)
- auxiliary functions for using component files
- auxiliary functions for presenting results in Excel (Synfusion libraries?)
- auxiliary functions for communicating with IBM DB2 on the mainframe, Access and SQL Server (SQAPL?)
- APL-optimized sets of actuarial data
Dependencies and technical prerequisites

Some functions and/or functionalities are imported from and/or provided by other workspaces, for example:

- optimized basic algorithms for hardcore data processing
- basic functions which implement (grouped) application of operators on equivalence classes of rows of multicolour arrays (primitive in Dyalog 14.0?)
- auxiliary functions for using component files
- auxiliary functions for presenting results in Excel (Synfusion libraries?)
- auxiliary functions for communicating with IBM DB2 on the mainframe, Access and SQL Server (SQAPL?)
- APL-optimized sets of actuarial data
Some functions and/or functionalities are imported from and/or provided by other workspaces, for example:

- optimized basic algorithms for hardcore data processing
- basic functions which implement (grouped) application of operators on equivalence classes of rows of multicolumn arrays (primitive in Dyalog 14.0?)
- auxiliary functions for using component files
- auxiliary functions for presenting results in Excel (Synfusion libraries?)
- auxiliary functions for communicating with IBM DB2 on the mainframe, Access and SQL Server (SQAPL?)
- APL-optimized sets of actuarial data
Dependencies and technical prerequisites

Some functions and/or functionalities are imported from and/or provided by other workspaces, for example:

- optimized basic algorithms for hardcore data processing
- basic functions which implement (grouped) application of operators on equivalence classes of rows of multicolumn arrays (*primitive in Dyalog 14.0?*)
- auxiliary functions for using component files
- auxiliary functions for presenting results in Excel (*Synfusion libraries?*)
- auxiliary functions for communicating with IBM DB2 on the mainframe, Access and SQL Server (*SQAPL?*)
- APL-optimized sets of actuarial data
Dependencies and technical prerequisites

Some functions and/or functionalities are imported from and/or provided by other workspaces, for example:

- optimized basic algorithms for hardcore data processing
- basic functions which implement (grouped) application of operators on equivalence classes of rows of multicolumn arrays (primitive in Dyalog 14.0?)
- auxiliary functions for using component files
- auxiliary functions for presenting results in Excel (Synfusion libraries?)
- auxiliary functions for communicating with IBM DB2 on the mainframe, Access and SQL Server (SQAPL?)
- APL-optimized sets of actuarial data
Dependencies and technical prerequisites

Some functions and/or functionalities are imported from and/or provided by other workspaces, for example:

- optimized basic algorithms for hardcore data processing
- basic functions which implement (grouped) application of operators on equivalence classes of rows of multicolour arrays (primitive in Dyalog 14.0?)
- auxiliary functions for using component files
- auxiliary functions for presenting results in Excel (Synfusion libraries?)
- auxiliary functions for communicating with IBM DB2 on the mainframe, Access and SQL Server (SQAPL?)
- APL-optimized sets of actuarial data
Some functions and/or functionalities are imported from and/or provided by other workspaces, for example:

- optimized basic algorithms for hardcore data processing
- basic functions which implement (grouped) application of operators on equivalence classes of rows of multicolour arrays (primitive in Dyalog 14.0?)
- auxiliary functions for using component files
- auxiliary functions for presenting results in Excel (Synfusion libraries?)
- auxiliary functions for communicating with IBM DB2 on the mainframe, Access and SQL Server (SQAPL?)
- APL-optimized sets of actuarial data

All those are of course taken for granted — in the workspace and the presentation...
Why save extract and save the data basis in component files?

- response times of the DB2 vary wildly (DB2 main purpose: IMS transactions)
- SELECT privileges on productive databases severely restricted
- data basis much less volatile than the premium recalculation or the capping schemes
Data import as a (separate) task

Why save extract and save the data basis in component files?

- response times of the DB2 vary wildly (DB2 main purpose: IMS transactions)
- SELECT privileges on productive databases severely restricted
- data basis much less volatile than the premium recalculation or the capping schemes
Data import as a (separate) task

- Why save extract and save the data basis in component files?
 - response times of the DB2 vary wildly (DB2 main purpose: IMS transactions)
 - SELECT privileges on productive databases severely restricted
 - data basis much less volatile than the premium recalculation or the capping schemes
Why save extract and save the data basis in component files?

- response times of the DB2 vary wildly (DB2 main purpose: IMS transactions)
- SELECT privileges on productive databases severely restricted
- data basis much less volatile than the premium recalculation or the capping schemes
Contents of the data basis

The necessary data extracted:

- can be test or production, explicit list of contract or whole business in force ("whole production" being the standard)
- represents one point in business and system time (therefore reproducible)
- contains key fields (contract and tariff number), properties (gender, age, entitlement), actuarial data (reserves, discounts)
The necessary data extracted:

- can be test or production, explicit list of contract or whole business in force ("whole production" being the standard)
- represents one point in business and system time (therefore reproducible)
- contains key fields (contract and tariff number), properties (gender, age, entitlement), actuarial data (reserves, discounts)
Contents of the data basis

The necessary data extracted:

- can be test or production, explicit list of contract or whole business in force ("whole production" being the standard)
- represents one point in business and system time (therefore reproducible)
- contains key fields (contract and tariff number), properties (gender, age, entitlement), actuarial data (reserves, discounts)
Contents of the data basis

The necessary data extracted:

- can be test or production, explicit list of contract or whole business in force ("whole production" being the standard)
- represents one point in business and system time (therefore reproducible)
- contains key fields (contract and tariff number), properties (gender, age, entitlement), actuarial data (reserves, discounts)
Processing the data basis

In the function acquiring the data basis:

- import of data per ado, provider MSDASQL
- some processing done (combinations of plans, partition)
- data type 4 byte integer enforced
 - possible (few alphanumerical values, small numeric precision)
 - significant performance improvement (memory use, I/O, primitives)
 - necessary rounding easier and faster
- result saved in component files • runtime
In the function acquiring the data basis:

- import of data per ado, provider MSDASQL
- some processing done (combinations of plans, partition)
- data type 4 byte integer enforced
 - possible (few alphanumerical values, small numeric precision)
 - significant performance improvement (memory use, I/O, primitives)
 - necessary rounding easier and faster
- result saved in component files
Processing the data basis

In the function acquiring the data basis:

- import of data per ado, provider MSDASQL
- some processing done (combinations of plans, partition)
 - data type 4 byte integer enforced
 - possible (few alphanumerical values, small numeric precision)
 - significant performance improvement (memory use, I/O, primitives)
 - necessary rounding easier and faster
- result saved in component files

Mitsos
Premium Capping Schemes in German Health Insurance
In the function acquiring the data basis:

- import of data per ado, provider MSDASQL
- some processing done (combinations of plans, partition)
- data type 4 byte integer enforced
 - possible (few alphanumerical values, small numeric precision)
 - significant performance improvement (memory use, I/O, primitives)
 - necessary rounding easier and faster
- result saved in component files
In the function acquiring the data basis:

- import of data per ado, provider MSDASQL
- some processing done (combinations of plans, partition)
- data type 4 byte integer enforced
 - possible (few alphanumerical values, small numeric precision)
 - significant performance improvement (memory use, I/O, primitives)
 - necessary rounding easier and faster
- result saved in component files
Processing the data basis

In the function acquiring the data basis:

- import of data per ado, provider MSDASQL
- some processing done (combinations of plans, partition)
- data type 4 byte integer enforced
 - possible (few alphanumerical values, small numeric precision)
 - significant performance improvement (memory use, I/O, primitives)
 - necessary rounding easier and faster
- result saved in component files
In the function acquiring the data basis:

- import of data per ado, provider MSDASQL
- some processing done (combinations of plans, partition)
- data type 4 byte integer enforced
 - possible (few alphanumerical values, small numeric precision)
 - significant performance improvement (memory use, I/O, primitives)
 - necessary rounding easier and faster

- result saved in component files
In the function acquiring the data basis:

- import of data per ado, provider MSDASQL
- some processing done (combinations of plans, partition)
- data type 4 byte integer enforced
 - possible (few alphanumerical values, small numeric precision)
 - significant performance improvement (memory use, I/O, primitives)
 - necessary rounding easier and faster
- result saved in component files

runtime
Premium recalculation as a (separate) task

Why simulate premium recalculation and save results in component files?

- runtime would be added to the pricing of each capping model
- actuarial tables come from another workspace (practical problems with privileges and usage)
- refreshing of actuarial data basis (based on independent calculation program dART) must be on decision (small deviations confusing)
- necessary for interactively estimating the costs of models
Why simulate premium recalculation and save results in component files?

- runtime would be added to the pricing of each capping model
- actuarial tables come from another workspace (practical problems with privileges and usage)
- refreshing of actuarial data basis (based on independent calculation program dART) must be on decision (small deviations confusing)
- necessary for interactively estimating the costs of models
Premium recalculation as a (separate) task

Why simulate premium recalculation and save results in component files?

- runtime would be added to the pricing of each capping model
- actuarial tables come from another workspace (practical problems with privileges and usage)
- refreshing of actuarial data basis (based on independent calculation program dART) must be on decision (small deviations confusing)
- necessary for interactively estimating the costs of models
Why simulate premium recalculation and save results in component files?

- runtime would be added to the pricing of each capping model
- actuarial tables come from another workspace (practical problems with privileges and usage)
- refreshing of actuarial data basis (based on independent calculation program dART) must be on decision (small deviations confusing)
- necessary for interactively estimating the costs of models
Why simulate premium recalculation and save results in component files?

- runtime would be added to the pricing of each capping model
- actuarial tables come from another workspace (practical problems with privileges and usage)
- refreshing of actuarial data basis (based on independent calculation program dART) must be on decision (small deviations confusing)
- necessary for interactively estimating the costs of models
The overall layout of the premium recalculation simulation is the following:

- Import actuarial tables (annuities, tariff premiums) and other necessary information once
- Data read from and results written to component files
- Simulation proper done in a loop over one-million-tariffs-matrices (depending on workspace available)
- "Recalculation light" in comparison to its recalculation reference system (precision, special cases, columns)
The overall layout of the premium recalculation simulation is the following:

- Import actuarial tables (annuities, tariff premiums) and other necessary information once.
- Data read from and results written to component files.
- Simulation proper done in a loop over one-million-tariffs-matrices (depending on workspace available).
- "Recalculation light" in comparison to its recalculation reference system (precision, special cases, columns).
The overall layout of the premium recalculation simulation is the following:

- import actuarial tables (annuities, tariff premiums) and other necessary information once
- data read from and results written to component files
- simulation proper done in a loop over one-million-tariffs-matrices (depending on workspace available)
- “recalculation light” in comparison to its recalculation reference system (precision, special cases, columns)
Layout of premium recalculation simulation

The overall layout of the premium recalculation simulation is the following:

- Import actuarial tables (annuities, tariff premiums) and other necessary information once
- Data read from and results written to component files
- Simulation proper done in a loop over one-million-tariffs-matrices (depending on workspace available)
- “Recalculation light” in comparison to its recalculation reference system (precision, special cases, columns)
The overall layout of the premium recalculation simulation is the following:

- import actuarial tables (annuities, tariff premiums) and other necessary information once
- data read from and results written to component files
- simulation proper done in a loop over one-million-tariffs-matrices (depending on workspace available)
- “recalculation light” in comparison to its recalculation reference system (precision, special cases, columns)
The overall layout of the premium recalculation simulation is the following:

- Import actuarial tables (annuities, tariff premiums) and other necessary information once.
- Data read from and results written to component files.
- Simulation proper done in a loop over one-million-tariffs-matrices (depending on workspace available).
- "Recalculation light" in comparison to its recalculation reference system (precision, special cases, columns).

The costs of the simulation are CPU and I/O (including problems with network).
Recalcualtion proper

In the main loop the recalculation is simulated:

- new values of individual reserves calculated (using actuarial tables)
- new values of individual discounts derived (using actuarial tables — some work to be done, presently process “old style”)
- effects on premiums as well as on premium increases determined
- all steps of capping not depending on capping scheme prepared (§12a(2), §12a(3), §12a(4))
Recalculation proper

In the main loop the recalculation is simulated:

- new values of individual reserves calculated (using actuarial tables)
- new values of individual discounts derived (using actuarial tables — some work to be done, presently process “old style”)
- effects on premiums as well as on premium increases determined
- all steps of capping not depending on capping scheme prepared (§12a(2), §12a(3), §12a(4))
Recalculation proper

In the main loop the recalculation is simulated:

- new values of individual reserves calculated (using actuarial tables)
- new values of individual discounts derived (using actuarial tables — some work to be done, presently process “old style”)
- effects on premiums as well as on premium increases determined
- all steps of capping not depending on capping scheme prepared (§12a(2), §12a(3), §12a(4))
Recalculation proper

In the main loop the recalculation is simulated:

- new values of individual reserves calculated (using actuarial tables)
- new values of individual discounts derived (using actuarial tables — some work to be done, presently process “old style”)
- effects on premiums as well as on premium increases determined
- all steps of capping not depending on capping scheme prepared (§12a(2), §12a(3), §12a(4))
Recalculation proper

In the main loop the recalculation is simulated:

- new values of individual reserves calculated (using actuarial tables)
- new values of individual discounts derived (using actuarial tables — *some work to be done, presently process “old style”*)
- effects on premiums as well as on premium increases determined
- all steps of capping not depending on capping scheme prepared (§12a(2), §12a(3), §12a(4))
In this section we describe the capping proper:

- Pricing a model: how to price a capping model and create (readable and usable) results
- Estimating costs: how to create a model and estimate its costs
Outline of capping section

In this section we describe the capping proper:

- **pricing a model** how to price a capping model and create (readable and usable) results
- **estimating costs** how to create a model and estimate its costs
In this section we describe the capping proper:

pricing a model how to price a capping model and create (readable and usable) results

estimating costs how to create a model and estimate its costs
Outline of capping section

In this section we describe the capping proper:

* **pricing a model** how to price a capping model and create (readable and usable) results

* **estimating costs** how to create a model and estimate its costs

Objective: finally do some capping!
Main purpose and results of capping simulation

The capping simulation is build for two main purposes:

1. enable a decision of the board of executives
2. achieve the consent of the independent trustee
Main purpose and results of capping simulation

The capping simulation is built for two main purposes:

1. enable a decision of the board of executives
2. achieve the consent of the independent trustee
Main purpose and results of capping simulation

1. enable a decision of the board of executives
2. achieve the consent of the independent trustee
Main purpose and results of capping simulation

The capping simulation is build for two main purposes:

1. enable a decision of the board of executives
2. achieve the consent of the independent trustee

The following results are (usually) needed for each tariff system:

- price ("costs" for the board, "funds" for the trustee)
- premium increase ("additional income" for the board)
- premium increase distribution in matrix form ("the insureds's hardship" for the trustee)
Main purpose and results of capping simulation

The capping simulation is built for two main purposes:

1. enable a decision of the board of executives
2. achieve the consent of the independent trustee

The following results are (usually) needed for each tariff system:

- price ("costs" for the board, "funds" for the trustee)
- premium increase ("additional income" for the board)
- premium increase distribution in matrix form ("the insureds's hardship" for the trustee)
Main purpose and results of capping simulation

GUI

The capping simulation is build for two main purposes:

1. enable a decision of the board of executives
2. achieve the consent of the independent trustee

The following results are (usually) needed for each tariff system:

- price ("costs" for the board, "funds" for the trustee)
- premium increase ("additional income" for the board)
- premium increase distribution in matrix form ("the insureds’s hardship" for the trustee)
Main purpose and results of capping simulation

The capping simulation is build for two main purposes:

1. enable a decision of the board of executives
2. achieve the consent of the independent trustee

The following results are (usually) needed for each tariff system:

- price ("costs" for the board, "funds" for the trustee)
- premium increase ("additional income" for the board)
- premium increase distribution in matrix form ("the insured's hardship" for the trustee)
Main purpose and results of capping simulation

The capping simulation is built for two main purposes:

1. enable a decision of the board of executives
2. achieve the consent of the independent trustee

The following results are (usually) needed for each tariff system:

- price ("costs" for the board, "funds" for the trustee)
- premium increase ("additional income" for the board)
- premium increase distribution in matrix form ("the insureds’s hardship" for the trustee)

That’s simple, the results are no big deal!
Main purpose and results of capping simulation

GUI

The capping simulation is build for two main purposes:

1. **enable a decision of the board of executives**
2. **achieve the consent of the independent trustee**

The following results are (usually) needed for each tariff system:

- price ("costs" for the board, "funds" for the trustee)
- premium increase ("additional income" for the board)
- premium increase distribution in matrix form ("the insureds’s hardship" for the trustee)

That’s simple, the results are no big deal!

Many more results are demanded more or less frequently, all of them agglomerated on various levels:

Mitsos Premium Capping Schemes in German Health Insurance
Main purpose and results of capping simulation

The capping simulation is build for two main purposes:

1. enable a decision of the board of executives
2. achieve the consent of the independent trustee

The following results are (usually) needed for each tariff system:

- price ("costs" for the board, "funds" for the trustee)
- premium increase ("additional income" for the board)
- premium increase distribution in matrix form ("the insureds’s hardship" for the trustee)

That’s simple, the results are no big deal!
Many more results are demanded more or less frequently, all of them agglomerated on various levels:

That’s much more data and data processing needed...
The workspace is however not only used for the regular recalculation process:

- prepare for new processes (capping individual risk loadings)
- test new ideas (finance capping to maximum premium regardless of increase?)
- answer questions of supervising authority (capping of 10 year average premium increases)
- react to (proposed) law changes (unisex premiums and redistribution of reserve)
The workspace is however not only used for the regular recalculation process:

- prepare for new processes (capping individual risk loadings)
- test new ideas (finance capping to maximum premium regardless of increase?)
- answer questions of supervising authority (capping of 10 year average premium increases)
- react to (proposed) law changes (unisex premiums and redistribution of reserve)
The workspace is however not only used for the regular recalculation process:

- prepare for new processes (capping individual risk loadings)
- test new ideas (finance capping to maximum premium regardless of increase?)
- answer questions of supervising authority (capping of 10 year average premium increases)
- react to (proposed) law changes (unisex premiums and redistribution of reserve)
Additional purposes (occasionally) served

The workspace is however not only used for the regular recalculation process:

- prepare for new processes (capping individual risk loadings)
- test new ideas (finance capping to maximum premium regardless of increase?)
- answer questions of supervising authority (capping of 10 year average premium increases)
- react to (proposed) law changes (unisex premiums and redistribution of reserve)
The workspace is however not only used for the regular recalculation process:

- prepare for new processes (capping individual risk loadings)
- test new ideas (finance capping to maximum premium regardless of increase?)
- answer questions of supervising authority (capping of 10 year average premium increases)
- react to (proposed) law changes (unisex premiums and redistribution of reserve)
Additional purposes (occasionally) served

The workspace is however not only used for the regular recalculation process:

- prepare for new processes (capping individual risk loadings)
- test new ideas (finance capping to maximum premium regardless of increase?)
- answer questions of supervising authority (capping of 10 year average premium increases)
- react to (proposed) law changes (unisex premiums and redistribution of reserve)

The result is high data volume and complexity, many parameters (to be used occasionally).
The function implementing the capping process itself is simple:

- **Initialization**
 - get previous statistics and model(s)
 - bind excel book(s)

- **Main loop**
 - price one million tariffs
 - save (part of) data
 - prepare divers agglomerations (for Excel)

- **Finish**
 - save agglomerated data in component files
 - present results in Excel
The function implementing the capping process itself is simple:

- **Initialization**
 - get previous statistics and model(s)
 - bind excel book(s)
- **Main loop**
 - price one million tariffs
 - save (part of) data
 - prepare divers agglomerations (for Excel)
- **Finish**
 - save agglomerated data in component files
 - present results in Excel
The function implementing the capping process itself is simple:

- **Initialization**
 - get previous statistics and model(s)
 - bind excel book(s)
- **Main loop**
 - price one million tariffs
 - save (part of) data
 - prepare divers agglomerations (for Excel)
- **Finish**
 - save agglomerated data in component files
 - present results in Excel
The function implementing the capping process itself is simple:

- **Initialization**
 - get previous statistics and model(s)
 - bind excel book(s)
- **Main loop**
 - price one million tariffs
 - save (part of) data
 - prepare divers agglomerations (for Excel)
- **Finish**
 - save agglomerated data in component files
 - present results in Excel
The function implementing the capping process itself is simple:

- **Initialization**
 - get previous statistics and model(s)
 - bind excel book(s)
- **Main loop**
 - price one million tariffs
 - save (part of) data
 - prepare divers agglomerations (for Excel)
- **Finish**
 - save agglomerated data in component files
 - present results in Excel
Layout of the capping process proper

The function implementing the capping process itself is simple:

- **initialization**
 - get previous statistics and model(s)
 - bind excel book(s)

- **main loop**
 - price one million tariffs
 - save (part of) data
 - prepare divers agglomerations (for Excel)

- **finish**
 - save agglomerated data in component files
 - present results in Excel
The function implementing the capping process itself is simple:

- initialization
 - get previous statistics and model(s)
 - bind excel book(s)

- main loop
 - price one million tariffs
 - save (part of) data
 - prepare divers agglomerations (for Excel)

- finish
 - save agglomerated data in component files
 - present results in Excel
The function implementing the capping process itself is simple:

- **Initialization**
 - get previous statistics and model(s)
 - bind excel book(s)
- **Main loop**
 - price one million tariffs
 - save (part of) data
 - prepare divers agglomerations (for Excel)
- **Finish**
 - save agglomerated data in component files
 - present results in Excel
The function implementing the capping process itself is simple:

- **Initialization**
 - get previous statistics and model(s)
 - bind excel book(s)

- **Main loop**
 - price one million tariffs
 - save (part of) data
 - prepare divers agglomerations (for Excel)

- **Finish**
 - save agglomerated data in component files
 - present results in Excel
Layout of the capping process proper

The function implementing the capping process itself is simple:

- **initialization**
 - get previous statistics and model(s)
 - bind excel book(s)

- **main loop**
 - price one million tariffs
 - save (part of) data
 - prepare divers agglomerations (for Excel)

- **finish**
 - save agglomerated data in component files
 - present results in Excel
The function implementing the capping process itself is simple:

- **initialization**
 - get previous statistics and model(s)
 - bind excel book(s)

- **main loop**
 - price one million tariffs
 - save (part of) data
 - prepare divers agglomerations (for Excel)

- **finish**
 - save agglomerated data in component files
 - present results in Excel

It is possible to just do the pricing or the result presentation.
The function implementing the capping process itself is simple:

- initialization
 - get previous statistics and model(s)
 - bind excel book(s)
- main loop
 - price one million tariffs
 - save (part of) data
 - prepare divers agglomerations (for Excel)
- finish
 - save agglomerated data in component files
 - present results in Excel

It is possible to just do the pricing or the result presentation.
Pricing the model on a part of business in force

Kernel function takes a part of business in force as argument and prices model on it:

- takes certain individual kinds of reserve into account (§12a(2), §12a(3))
- calls a kernel-kernel-capping-function several times
 - many kinds of capping (tariff, combination, ...)
 - special capping rules for special plans (conflict with another kind of capping!)
 - different interpretation of rules
- takes the rest of individual kinds of reserve into account (§12a(4))
- determines further effects (premiums, risk loadings)
Pricing the model on a part of business in force

Kernel function takes a part of business in force as argument and prices model on it:

- takes certain individual kinds of reserve into account (§12a(2), §12a(3))
- calls a kernel-kernel-capping-function several times
 - many kinds of capping (tariff, combination, . . .)
 - special capping rules for special plans (conflict with another kind of capping!)
 - different interpretation of rules
- takes the rest of individual kinds of reserve into account (§12a(4))
- determines further effects (premiums, risk loadings)
Pricing the model on a part of business in force

Kernel function takes a part of business in force as argument and prices model on it:

- takes certain individual kinds of reserve into account (§12a(2), §12a(3))
- calls a kernel-kernel-capping-function several times
 - many kinds of capping (tariff, combination, …)
 - special capping rules for special plans (conflict with another kind of capping!)
 - different interpretation of rules
- takes the rest of individual kinds of reserve into account (§12a(4))
- determines further effects (premiums, risk loadings)
Pricing the model on a part of business in force

Kernel function takes a part of business in force as argument and prices model on it:

- takes certain individual kinds of reserve into account (§12a(2), §12a(3))
- calls a kernel-kernel-capping-function several times
 - many kinds of capping (tariff, combination, ...)
 - special capping rules for special plans (conflict with another kind of capping!)
 - different interpretation of rules
- takes the rest of individual kinds of reserve into account (§12a(4))
- determines further effects (premiums, risk loadings)
Pricing the model on a part of business in force

Kernel function takes a part of business in force as argument and prices model on it:

- takes certain individual kinds of reserve into account (§12a(2), §12a(3))
- calls a kernel-kernel-capping-function several times
 - many kinds of capping (tariff, combination, ...)
 - special capping rules for special plans (conflict with another kind of capping!)
 - different interpretation of rules
- takes the rest of individual kinds of reserve into account (§12a(4))
- determines further effects (premiums, risk loadings)
Kernel function takes a part of business in force as argument and prices model on it:

- takes certain individual kinds of reserve into account (§12a(2), §12a(3))
- calls a kernel-kernel-capping-function several times
 - many kinds of capping (tariff, combination, ...)
 - special capping rules for special plans (conflict with another kind of capping!)
 - different interpretation of rules
- takes the rest of individual kinds of reserve into account (§12a(4))
- determines further effects (premiums, risk loadings)
Pricing the model on a part of business in force

Kernel function takes a part of business in force as argument and prices model on it:

- takes certain individual kinds of reserve into account (§12a(2), §12a(3))
- calls a kernel-kernel-capping-function several times
 - many kinds of capping (tariff, combination, ...)
 - special capping rules for special plans (conflict with another kind of capping!)
 - different interpretation of rules
- takes the rest of individual kinds of reserve into account (§12a(4))
- determines further effects (premiums, risk loadings)
Kernel function takes a part of business in force as argument and prices model on it:

- takes certain individual kinds of reserve into account (§12a(2), §12a(3))
- calls a kernel-kernel-capping-function several times
 - many kinds of capping (tariff, combination, ...)
 - special capping rules for special plans (conflict with another kind of capping!)
 - different interpretation of rules
- takes the rest of individual kinds of reserve into account (§12a(4))
- determines further effects (premiums, risk loadings)
Many kinds of results are exported, all of them agglomerated on various levels:

- technical statistics for internal checks (including runtime and parameters)
- various person counts, premium (increases) and changes in reserve (including minimum necessary for board / trustee)
- various mean values
- various percentile values
- various distributions in matrix form (including minimum necessary for trustee)
- special information (§12a(3), letters)
Many kinds of results are exported, all of them agglomerated on various levels:

- technical statistics for internal checks (including runtime and parameters)
- various person counts, premium (increases) and changes in reserve (including minimum necessary for board / trustee)
- various mean values
- various percentile values
- various distributions in matrix form (including minimum necessary for trustee)
- special information (§12a(3), letters)
Many kinds of results are exported, all of them agglomerated on various levels:

- technical statistics for internal checks (including runtime and parameters)
- various person counts, premium (increases) and changes in reserve (including minimum necessary for board / trustee)
- various mean values
- various percentile values
- various distributions in matrix form (including minimum necessary for trustee)
- special information (§12a(3), letters)
Many kinds of results are exported, all of them agglomerated on various levels:

- technical statistics for internal checks (including runtime and parameters)
- various person counts, premium (increases) and changes in reserve (including minimum necessary for board / trustee)
- various mean values
- various percentile values
- various distributions in matrix form (including minimum necessary for trustee)
- special information (§12a(3), letters)
Results presented in Excel

Many kinds of results are exported, all of them agglomerated on various levels:

- technical statistics for internal checks (including runtime and parameters)
- various person counts, premium (increases) and changes in reserve (including minimum necessary for board / trustee)
- various mean values
- various percentile values
- various distributions in matrix form (including minimum necessary for trustee)
- special information (§12a(3), letters)

The export of the results takes longer than the pricing itself...
Results presented in Excel

Many kinds of results are exported, all of them agglomerated on various levels:

- technical statistics for internal checks (including runtime and parameters)
- various person counts, premium (increases) and changes in reserve (including minimum necessary for board / trustee)
- various mean values
- various percentile values
- various distributions in matrix form (including minimum necessary for trustee)
- special information (§12a(3), letters)
Results presented in Excel

Many kinds of results are exported, all of them agglomerated on various levels:

- technical statistics for internal checks (including runtime and parameters)
- various person counts, premium (increases) and changes in reserve (including minimum necessary for board / trustee)
- various mean values
- various percentile values
- various distributions in matrix form (including minimum necessary for trustee)
- special information (§12a(3), letters)

The export of the results takes longer than the pricing itself...
Results presented in Excel

Many kinds of results are exported, all of them agglomerated on various levels:

- technical statistics for internal checks (including runtime and parameters)
- various person counts, premium (increases) and changes in reserve (including minimum necessary for board / trustee)
- various mean values
- various percentile values
- various distributions in matrix form (including minimum necessary for trustee)
- special information (§12a(3), letters)

The export of the results takes longer than the pricing itself...
Pricing a model is fast and flexible:

- a matter of minutes rather than hours — but how to go down to seconds?
- good information on one model — but comparison of similar models cumbersome
- create appropriate agglomeration and price it:
 - similar premium and premium increase lead to similar behavior under capping scheme
 - additionally defining keys of the scheme must be included
 - some details (social capping) must be ignored or handled across-the-board beforehand
How to be faster and even more flexible?

Pricing of a model is fast and flexible:
- a matter of minutes rather than hours — but how to go down to seconds?
- good information on one model — but comparison of similar models cumbersome
- create appropriate agglomeration and price it:
 - similar premium and premium increase lead to similar behavior under capping scheme
 - additionally defining keys of the scheme must be included
 - some details (social capping) must be ignored or handled across-the-board beforehand
How to be faster and even more flexible?

Pricing of a model is fast and flexible:

- a matter of minutes rather than hours — but how to go down to seconds?
- good information on one model — but comparison of similar models cumbersome

- create appropriate agglomeration and price it:
 - similar premium and premium increase lead to similar behavior under capping scheme
 - additionally defining keys of the scheme must be included
 - some details (social capping) must be ignored or handled across-the-board beforehand
How to be faster and even more flexible?

Pricing of a model is fast and flexible:
- a matter of minutes rather than hours — but how to go down to seconds?
- good information on one model — but comparison of similar models cumbersome
- create appropriate agglomeration and price it:
 - similar premium and premium increase lead to similar behavior under capping scheme
 - additionally defining keys of the scheme must be included
 - some details (social capping) must be ignored or handled across-the-board beforehand
How to be faster and even more flexible?

Pricing of a model is fast and flexible:
- a matter of minutes rather than hours — but how to go down to seconds?
- good information on one model — but comparison of similar models cumbersome
- create appropriate agglomeration and price it:
 - similar premium and premium increase lead to similar behavior under capping scheme
 - additionally defining keys of the scheme must be included
 - some details (social capping) must be ignored or handled across-the-board beforehand
How to be faster and even more flexible?

Pricing of a model is fast and flexible:

- a matter of minutes rather than hours — but how to go down to seconds?
- good information on one model — but comparison of similar models cumbersome
- create appropriate agglomeration and price it:
 - similar premium and premium increase lead to similar behavior under capping scheme
 - additionally defining keys of the scheme must be included
 - some details (social capping) must be ignored or handled across-the-board beforehand
How to be faster and even more flexible?

Pricing of a model is fast and flexible:

- a matter of minutes rather than hours — but how to go down to seconds?
- good information on one model — but comparison of similar models cumbersome
- create appropriate agglomeration and price it:
 - similar premium and premium increase lead to similar behavior under capping scheme
 - additionally defining keys of the scheme must be included
 - some details (social capping) must be ignored or handled across-the-board beforehand
Creating a “capping agglomeration”

- GUI

Separate function implements the agglomeration:

- Group premium (increase) in 1€-intervals and compress to midpoint
- Use annuities as individual “weight”
- Sum matrix up after keys and grouped premium (increases), get agglomerated weight and error margin
- For error on absolute limits compare compressed value with original ones
- Error on relative limits similar but more complicated

[Illustration]
Creating a “capping agglomeration”

Separate function implements the agglomeration:

- group premium (increase) in 1€-intervals and compress to midpoint
- use annuities as individual “weight”
- sum matrix up after keys and grouped premium (increases), get agglomerated weight and error margin
- for error on absolute limits compare compressed value with original ones
- error on relative limits similar but more complicated

in formulas

illustration
Separate function implements the agglomeration:

- Group premium (increase) in 1€-intervals and compress to midpoint.
- Use annuities as individual "weight".
- Sum matrix up after keys and grouped premium (increases), get agglomerated weight and error margin in formulas.
- For error on absolute limits compare compressed value with original ones in formulas.
- Error on relative limits similar but more complicated.
Creating a “capping agglomeration”

GUI

Separate function implements the agglomeration:

- group premium (increase) in 1€-intervals and compress to midpoint
- use annuities as individual “weight”
- sum matrix up after keys and grouped premium (increases), get agglomerated weight and error margin

- for error on absolute limits compare compressed value with original ones
- error on relative limits similar but more complicated

in formulas

illustration
Creating a “capping agglomeration”

Separate function implements the agglomeration:

- group premium (increase) in 1€-intervals and compress to midpoint
- use annuities as individual “weight”
- sum matrix up after keys and grouped premium (increases), get agglomerated weight and error margin
- for error on absolute limits compare compressed value with original ones
- error on relative limits similar but more complicated
Creating a “capping agglomeration”

- Separate function implements the agglomeration:
 - group premium (increase) in 1€-intervals and compress to midpoint
 - use annuities as individual “weight”
 - sum matrix up after keys and grouped premium (increases), get agglomerated weight and error margin
 - for error on absolute limits compare compressed value with original ones
 - error on relative limits similar but more complicated
Creating a “capping agglomeration”

GUI

Separate function implements the agglomeration:

- group premium (increase) in 1€-intervals and compress to midpoint
- use annuities as individual “weight”
- sum matrix up after keys and grouped premium (increases), get agglomerated weight and error margin
- for error on absolute limits compare compressed value with original ones
- error on relative limits similar but more complicated
Creating capping schemes and estimating their cost

Capping models:
- technically simple numeric matrices
- GUI (needed and) used (by non-APL-ers) to create them

The same GUI is used to estimate their costs:
- load desired capping agglomeration
- load / create / modify / save model
- estimate costs of model
- estimate costs of perturbations on selected plan groups
Creating capping schemes and estimating their cost

Capping models:
- technically simple numeric matrices
- GUI (needed and) used (by non-APL-ers) to create them
Creating capping schemes and estimating their cost

Capping models:
- technically simple numeric matrices
- GUI (needed and) used (by non-APL-ers) to create them
Creating capping schemes and estimating their cost

Capping models:
- technically simple numeric matrices
- GUI (needed and) used (by non-APL-ers) to create them

The same GUI is used to estimate their costs:
- load desired capping agglomeration
- load / create / modify / save model
- estimate costs of model
- estimate costs of perturbations on selected plan groups
Creating capping schemes and estimating their cost

Capping models:
- technically simple numeric matrices
- GUI (needed and) used (by non-APL-ers) to create them

The same GUI is used to estimate their costs:
- load desired capping agglomeration
- load / create / modify / save model
- estimate costs of model
- estimate costs of perturbations on selected plan groups
Creating capping schemes and estimating their cost

Capping models:
- technically simple numeric matrices
- GUI (needed and) used (by non-APL-ers) to create them

The same GUI is used to estimate their costs:
- load desired capping agglomeration
- load / create / modify / save model
- estimate costs of model
- estimate costs of perturbations on selected plan groups
Creating capping schemes and estimating their cost

Capping models:
- technically simple numeric matrices
- GUI (needed and) used (by non-APL-ers) to create them

The same GUI is used to estimate their costs:
- load desired capping agglomeration
- load / create / modify / save model
- estimate costs of model
- estimate costs of perturbations on selected plan groups
Creating capping schemes and estimating their cost

Capping models:
- technically simple numeric matrices
- GUI (needed and) used (by non-APL-ers) to create them

The same GUI is used to estimate their costs:
- load desired capping agglomeration
- load / create / modify / save model
- estimate costs of model
- estimate costs of perturbations on selected plan groups
Conclusion

Pricing of premium capping schemes:
- moderately demanding software architecture
- many details
- much serious work to ensure performance and reliability
- extremely important for German health insurers
Conclusion

Pricing of premium capping schemes:
- moderately demanding software architecture
- many details
- much serious work to ensure performance and reliability
- extremely important for German health insurers
Pricing of premium capping schemes:

- moderately demanding software architecture
- many details
- much serious work to ensure performance and reliability
- extremely important for German health insurers
Conclusion

Pricing of premium capping schemes:

- moderately demanding software architecture
- many details
- much serious work to ensure performance and reliability
- extremely important for German health insurers
Conclusion

Pricing of premium capping schemes:
- moderately demanding software architecture
- many details
- much serious work to ensure performance and reliability
- extremely important for German health insurers
Pricing of premium capping schemes:
- moderately demanding software architecture
- many details
- much serious work to ensure performance and reliability
- extremely important for German health insurers
Overview of examples and illustrations

- q_x and w_x
- K_x
- Net premiums
- Consequences
- Gross premiums
- "Flat" P_x
- "Steep" P_x
- "Flat" V_x
- "Steep" V_x
- Recalculation
- Liabilities (older)
- Liabilities
- "Flat" V_x
- "Steep" V_x
- Surplus (older)
- Surplus
- Increase
- Price
- Surplus (older)
- Surplus
- Main
- After-capping
- Parameter
- Estimator
- Data
- Runtime data
- Recalculation
- Runtime recalculation
- Pricing
- Results
- Scheme
- With decrease
- Without decrease
- Runtime pricing
- Price
- Estimation
- Estimating
- Agglomeration
- Error
- Estimator
Typical examples of q_x and w_x.

q_x or w_x [%] x_0

0 10 20 30 40 50 60 70 80 90 100 110 120

Typical examples of mortality rates q_x and lapse rates w_x.

[Graph showing typical mortality rates q_x and lapse rates w_x.]
Typical examples of K_x

Typical examples of claims per capita and year K_x for substitutive health coverage.
Net premium calculation in formulas

Annuities calculated after

\[\ddot{a}_x = \frac{N_x}{D_x} = \frac{\sum_{m=x}^{\omega} D_m}{D_x} = \sum_{m=0}^{\omega-x} \left(\prod_{n=0}^{m-1} (1 - q_{x+n} - w_{x+n}) \right) \cdot (1 + i)^{-m} \]

Present value of claims calculated after

\[A_x = \frac{U_x}{O_x} = \frac{\sum_{m=x}^{\omega} O_m}{O_x} = \sum_{m=0}^{\omega-x} \left(\prod_{n=0}^{m-1} (1 - q_{x+n} - w_{x+n}) \right) \cdot K_m \cdot (1 + i)^{-m} \]

Defining equation for net premiums \(\ddot{a}_x \cdot P_x = A_x \).
A different formulation of the equivalence principle

Equivalence principle is transitive and defines reserve

\[m \, V_x = A_{x+m} - \dot{a}_x \cdot P_x \]

It is the same as demanding that retrospectively accumulated premiums surpassing claims (the reserve) will equal prospectively accumulated claims surpassing premiums

\[
m \, V_x = \sum_{n=0}^{m} \frac{(P_x - K_{x+n}) \cdot (1 + i)^{m-n}}{\prod_{k=n}^{m-1} (1 - q_{x+k} - w_{x+k})} \]

\[
= \sum_{n=m+1}^{\omega-x} (K_{x+n} - P_x) \cdot \left(\prod_{k=m}^{n-1} (1 - q_{x+k} - w_{x+k}) \right) \cdot (1 + i)^{m-n}
\]
Most of gross premiums calculated after

\[b_x = \frac{P_x + \gamma_x}{12 \cdot (1 - (\Delta_x + \frac{\alpha_x}{12 \cdot \bar{a}_x}))} \]

where \(\gamma_x \) contains most of the costs, \(\Delta_x \) the security margin and \(\alpha_x \) defers direct acquisition costs (provisions) to a negative reserve.
Typical example of P_x (flat K_x)

Typical example of (annual) net premiums P_x in high end tariff compared with claims K_x.

"steep" P_x
Typical example of P_x (flat K_x)

Typical example of (annual) net premiums P_x in high end tariff compared with claims K_x.

K_x or P_x [K€]

$\Delta P \approx +1.500$€

$x = 35$

$x + m \approx 57$

$\Delta P \approx -9.600$€
Typical example of P_x (steep K_x)

Typical example of (annual) net premiums P_x in high end tariff compared with claims K_x.
Typical example of P_x (steep K_x)

Typical example of (annual) net premiums P_x in high end tariff compared with claims K_x.

$$\Delta P \approx +2,400\,\text{€}$$

$$\Delta P \approx -11,900\,\text{€}$$

$x = 35$

$x + m \approx 55.5$

[Diagram showing the relationship between P_x and K_x]
Typical examples of the (huge!) $m \cdot V_x$

P_x or $m \cdot V_x$ [K€]

Typical examples of $m \cdot V_x$ in high end tariff for different contract ages x compared with (annual) net premiums P_x.

$V_{\text{max}} \approx 31 \cdot P_x$
Typical examples of the (huge!) $m \, V_x$

Typical examples of $m \, V_x$ in high end tariff for different contract ages x compared with (annual) net premiums P_x.

\[V_{\max} \approx 16 \cdot P_x \]
Typical examples of the (huge!) $m V_x$

Typical examples of $m V_x$ in high end tariff for different contract ages x compared with (annual) net premiums P_x.

$V_{max} \approx 4 \cdot P_x$

$x = 60$

$V_{max} \approx 4 \cdot P_x$

$V_{max} \approx 4 \cdot P_x$

Typical examples of $m V_x$ in high end tariff for different contract ages x compared with (annual) net premiums P_x.

reulalcation *business* *“steep”* $m V_x$
Typical examples of the (huge!) $m V_x$

$$P_x \text{ or } m V_x \quad [\text{K\\euro}]$$

$$m V_x, \text{ contract age } x = 20$$

$$x = 40$$

$$x = 60$$

$$P_x$$

Typical examples of $m V_x$ in high end tariff for different contract ages x compared with (annual) net premiums P_x.
Typical examples of the (huge!) mV_x in high end tariff for different contract ages x compared with (annual) net premiums P_x.

$$V_{\max} \approx 40 \cdot P_x$$

Typical examples of mV_x compared to P_x. The graph illustrates how mV_x varies with different contract ages (x) and how it relates to the net premiums (P_x) in a typical high end tariff scenario.
Typical examples of the (huge!) $m V_x$

P_x or $m V_x$ [K€]

$V_{max} \approx 18 \cdot P_x$

Typical examples of $m V_x$ in high end tariff for different contract ages x compared with (annual) net premiums P_x.

“flat” $m V_x$
Typical examples of the (huge!) $m V_x$ in high end tariff for different contract ages x compared with (annual) net premiums P_x.

$V^{\text{max}} \approx 4 \cdot P_x$
Typical examples of the (huge!) $m V_x$

P_x or $m V_x$ [K€]

$m V_x$, contract age $x = 20$

$x = 40$

$x = 60$

Typical examples of $m V_x$ in high end tariff for different contract ages x compared with (annual) net premiums P_x.

"flat" $m V_x$
Recalculation of individual premiums in formulas

Calculate reserve based on old discount \(^0h \) and the old individual net premium \(^0P \)

\[
V = mnV_x = ^0A_{x+m} - ^0\ddot{a}_{x+m} \cdot ^0P - ^0b_x \cdot ^0\alpha_x
\]

\[
= ^0A_{x+m} - ^0\ddot{a}_{x+m} \cdot \left(^0P_x - 12 \cdot (1 - ^0\Delta_x) \cdot ^0h \right) - ^0b_x \cdot ^0\alpha_x
\]

\[
= ^0\ddot{a}_{x+m} \cdot \left((^0P_{x+m} - ^0P_x) + 12 \cdot (1 - ^0\Delta_x) \cdot ^0h \right) - ^0b_x \cdot ^0\alpha_x
\]

Define new discount

\[
nh = \frac{V + nb_{x+m} \cdot n\alpha_{x+m}}{12 \cdot (1 - n\Delta_{x+m}) \cdot n\ddot{a}_{x+m}}
\]
Liabilities of DKV (older years)

Liabilities of DKV as shown in the balance sheet (in millions of euros):

<table>
<thead>
<tr>
<th>year</th>
<th>total</th>
<th>equity</th>
<th>(of total)</th>
<th>reserve</th>
<th>(of total)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2005</td>
<td>19,107</td>
<td>466</td>
<td>2.44%</td>
<td>18,007</td>
<td>94.24%</td>
</tr>
<tr>
<td>2006</td>
<td>20,835</td>
<td>467</td>
<td>2.24%</td>
<td>19,765</td>
<td>94.86%</td>
</tr>
<tr>
<td>2007</td>
<td>22,268</td>
<td>467</td>
<td>2.10%</td>
<td>21,269</td>
<td>95.51%</td>
</tr>
<tr>
<td>2008</td>
<td>23,079</td>
<td>467</td>
<td>2.02%</td>
<td>22,173</td>
<td>96.07%</td>
</tr>
<tr>
<td>2009</td>
<td>24,539</td>
<td>466</td>
<td>1.90%</td>
<td>23,537</td>
<td>95.92%</td>
</tr>
</tbody>
</table>
Liabilities of DKV as shown in the balance sheet (in millions of euros):

<table>
<thead>
<tr>
<th>year</th>
<th>total</th>
<th>equity</th>
<th>(of total)</th>
<th>reserve</th>
<th>(of total)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2009</td>
<td>27,833</td>
<td>512</td>
<td>1.84%</td>
<td>26,732</td>
<td>96.04%</td>
</tr>
<tr>
<td>2010</td>
<td>29,416</td>
<td>509</td>
<td>1.73%</td>
<td>28,411</td>
<td>96.58%</td>
</tr>
<tr>
<td>2011</td>
<td>31,249</td>
<td>508</td>
<td>1.63%</td>
<td>30,216</td>
<td>96.69%</td>
</tr>
<tr>
<td>2012</td>
<td>33,066</td>
<td>507</td>
<td>1.53%</td>
<td>32,075</td>
<td>97.00%</td>
</tr>
<tr>
<td>2013</td>
<td>34,885</td>
<td>505</td>
<td>1.45%</td>
<td>33,853</td>
<td>97.04%</td>
</tr>
<tr>
<td>2014</td>
<td>36,680</td>
<td>505</td>
<td>1.38%</td>
<td>35,762</td>
<td>97.50%</td>
</tr>
</tbody>
</table>

The year 2009 has been adjusted retroactively to reflect the merge with VICTORIA Kranken per 01.01.2010.
Surplus of DKV and its use (older years)

Using surplus for capping scheme and premium refunding by DKV as shown in the balance sheet (in millions of euros):

<table>
<thead>
<tr>
<th>Year</th>
<th>Capping Scheme</th>
<th>Premium Refunding</th>
<th>Added Surplus</th>
</tr>
</thead>
<tbody>
<tr>
<td>2005</td>
<td>217</td>
<td>95</td>
<td>506</td>
</tr>
<tr>
<td>2006</td>
<td>137</td>
<td>100</td>
<td>515</td>
</tr>
<tr>
<td>2007</td>
<td>188</td>
<td>104</td>
<td>432</td>
</tr>
<tr>
<td>2008</td>
<td>314</td>
<td>112</td>
<td>52</td>
</tr>
<tr>
<td>2009</td>
<td>229</td>
<td>114</td>
<td>302</td>
</tr>
</tbody>
</table>
Using surplus for capping scheme and premium refunding by DKV as shown in the balance sheet (in millions of euros):

<table>
<thead>
<tr>
<th>year</th>
<th>capping scheme</th>
<th>premium refunding</th>
<th>added surplus</th>
</tr>
</thead>
<tbody>
<tr>
<td>2009</td>
<td>229</td>
<td>114</td>
<td>302</td>
</tr>
<tr>
<td>2010</td>
<td>295</td>
<td>174</td>
<td>546</td>
</tr>
<tr>
<td>2011</td>
<td>309</td>
<td>150</td>
<td>541</td>
</tr>
<tr>
<td>2012</td>
<td>217</td>
<td>160</td>
<td>735</td>
</tr>
<tr>
<td>2013</td>
<td>645</td>
<td>157</td>
<td>561</td>
</tr>
<tr>
<td>2014</td>
<td>331</td>
<td>167</td>
<td>836</td>
</tr>
</tbody>
</table>

The year 2009 is not directly comparable to the rest as it does not reflect the merge with VICTORIA Kranken per 01.01.2010.
Components of individual premium increase

\[\circ b = \circ b_x \]
Components of individual premium increase

\[\Delta b_{x+\Delta x} - \Delta b_{x+\Delta x} - 40\% \Delta b_{x+\Delta x} + 110\% b \]
Components of individual premium increase

- $b_x = b_x$
- $b_{x+m} = b_{x+m}$
- $+15\% b_x$
- $+20\% b_{x+m}$
Components of individual premium increase

- \(+15\% \, b_x \)
- \(+20\% \, b_{x+m} \)
- \(-40\% \, h \)
- \(\Delta b \)
- \(\Delta h \)

\[\begin{align*}
\Delta b &= \Delta b \\
\Delta h &= \Delta h
\end{align*} \]
Components of individual premium increase

- **+15% \(b_x \)**
- **+20% \(b_{x+m} \)**
- **-40% \(h \)**

Equations:

\[
\begin{align*}
\Delta b &= b_{x+m} \\
\Delta h &= h \\
\Delta b &= b \times 40\% \\
\Delta b &= b \times 20\% \\
\Delta b &= b \times 15\% \\
\end{align*}
\]
Components of individual premium increase

\[o b = o b_x + 110\% \times b! \]
Pricing the capping of individual premium increases in formulas

Define desired maximal premium, for example

\[b^{\text{max}} = b^{\text{max}}(o\ b) \]
\[= \max\{o\ b + \lim^{\text{low},\text{abs}}; \min\{\lim^{\text{upp},\text{rel}} \cdot o\ b; \ o\ b + \lim^{\text{upp},\text{abs}}\}\} \]

Define desired new discount

\[\Delta h = (i\ b - b^{\text{max}})_+ \quad (\text{achieving} \quad n\ b = i\ b - \Delta h) \]

Price new discount

\[\Delta V = 12 \cdot (1 - n\Delta_{x+m}) \cdot n\dot{a}_{x+m} \cdot \Delta h \]
Main GUI snapshot
Main GUI after-capping-snapshot

A.10. Übersicht über "alle" Limitierungmodelle einer Beitragsanpassung bilden

A.11. Interaktive Übersicht über "alle" Limitierungmodelle einer Beitragsanpassung öffnen

A.9. Limitierungsmodule interaktiv erstellen und die benötigten RfB-Mittel schätzen

A.3. Limitierungsmodell auf erstellten Limitierungsdaten bewerten

B.1. Vollständige abziehen

A.4. Limitierungsergebnisse interaktiv grafisch darstellen

A.5. Vergleiche von Limitierungsergebnissen in Excel präsentieren

A.6. Ergebnis (Beiträge) eines Limitierungsmodells auf den Grossrechner (DB2) exportieren

A.7. Testbestand für den BAP-Lauf mit Hilfe eines Limitierungsergebnisses auswählen
Parameters GUI snapshot

- **Parameter zur Bewertung von Limitierungsmodellen auf Limitierungsdaten**

 - **Hauptparameter**
 - durchzuführende Aktionen: vollständige Bewertung
 - zusätzliche Tarif-Limitierungsmode: akzeptieren
 - Nummer des ersten Modells: 12
 - Soziallimitierungs-Pauschale: 600
 - Finanzierungsdauer: 0
 - Nummer des zweiten Modells: 559
 - Soziallimitierungs-Pauschale: 5555,99
 - Finanzierungsdauer: 0

 - **Nebenparameter**
 - Modell-Interpretation
 - akzept. limitiert: nein
 - bei PKV-Tarif limitiert: nur nicht pauschal gekapselte Personen
 - negative AB abfangen: nein
 - PVN limitieren bis Priorität: 0
 - PVG limitieren bis Priorität: 0
 - allgemeine prozentuale Obergrenze (%): 20
 - allgemeine absolute Obergrenze (€): 50
Examples and illustrations

Premiums in German health insurance
- Business model and surplus
- Overview of the implementation
- Capping schemes

Cost estimation GUI snapshot

![Cost estimation GUI snapshot](image.png)

Table: Limitation models and related RB Mittel schätzen

<table>
<thead>
<tr>
<th>MODKLPT</th>
<th>AVGS-SL</th>
<th>Auswertungsgruppe</th>
<th>Geschlecht</th>
<th>Alter</th>
<th>pr. UG</th>
<th>abs. UG</th>
<th>pr. OG</th>
<th>abs. OG</th>
<th>Sché-G</th>
<th>Erstbau</th>
<th>Beltr-G</th>
<th>benötigte Mittel</th>
<th>RBD mindestens</th>
<th>RBD geschätzt</th>
<th>RBD maximal</th>
<th>erste Limitierungsmode</th>
<th>zweites Limitierungsmode</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>männlich</td>
<td>0-14</td>
<td>0 %</td>
<td>0.00</td>
<td>0.00</td>
<td>0 %</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>männlich</td>
<td>15-19</td>
<td>0 %</td>
<td>0.00</td>
<td>0.00</td>
<td>0 %</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>männlich</td>
<td>20-59</td>
<td>0 %</td>
<td>0.00</td>
<td>0.00</td>
<td>0 %</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>männlich</td>
<td>60-64</td>
<td>0 %</td>
<td>0.00</td>
<td>0.00</td>
<td>0 %</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>männlich</td>
<td>65-79</td>
<td>0 %</td>
<td>0.00</td>
<td>0.00</td>
<td>0 %</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>männlich</td>
<td>80-120</td>
<td>0 %</td>
<td>0.00</td>
<td>0.00</td>
<td>0 %</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>weiblich</td>
<td>0-14</td>
<td>0 %</td>
<td>0.00</td>
<td>0.00</td>
<td>0 %</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>weiblich</td>
<td>15-19</td>
<td>0 %</td>
<td>0.00</td>
<td>0.00</td>
<td>0 %</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>weiblich</td>
<td>20-59</td>
<td>0 %</td>
<td>0.00</td>
<td>0.00</td>
<td>0 %</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>weiblich</td>
<td>60-64</td>
<td>0 %</td>
<td>0.00</td>
<td>0.00</td>
<td>0 %</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>weiblich</td>
<td>65-79</td>
<td>0 %</td>
<td>0.00</td>
<td>0.00</td>
<td>0 %</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>weiblich</td>
<td>80-120</td>
<td>0 %</td>
<td>0.00</td>
<td>0.00</td>
<td>0 %</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>weiblich</td>
<td>0-14</td>
<td>0 %</td>
<td>0.00</td>
<td>0.00</td>
<td>0 %</td>
<td>0.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>

Notes
- The table shows the estimated costs for different age groups and genders.
- The estimated costs are calculated based on the initial data provided.
Main GUI capping-snapshot

A.1. Vollständigen Limitierungsbestand abziehen

A.2. Beitragsanpassung auf abgezogenem Limitierungsbestand simulieren

A.8. Abgezogenen Limitierungsbestand, erstellte Limitierungsdaten oder simuliertes Limitierungsergebnis bearbeiten

A.9. Limitierungsmodelle interaktiv erstellen und die benötigten RfB-Mittel schätzen

A.3. Limitierungsmodell auf erstellten Limitierungsdaten bewerten

data basis premium recalculation scheme pricing estimating costs
Example of data basis runtime

Runtime of data base extraction (complete business in force) in seconds

<table>
<thead>
<tr>
<th>part</th>
<th>start</th>
<th>main</th>
<th>end</th>
</tr>
</thead>
<tbody>
<tr>
<td>sum</td>
<td>15.04</td>
<td>1,928.27</td>
<td>20.73</td>
</tr>
<tr>
<td>simulation</td>
<td>0.11</td>
<td>166.28</td>
<td>0.02</td>
</tr>
<tr>
<td>agglomeration</td>
<td>0.00</td>
<td>232.44</td>
<td>1.05</td>
</tr>
<tr>
<td>input</td>
<td>9.06</td>
<td>1,446.89</td>
<td>0.00</td>
</tr>
<tr>
<td>output</td>
<td>0.00</td>
<td>82.67</td>
<td>15.47</td>
</tr>
<tr>
<td>Excel</td>
<td>5.87</td>
<td>0.00</td>
<td>4.20</td>
</tr>
</tbody>
</table>
Example of premium recalculation runtime

Runtime of recalculation in individual premiums (complete business in force) in seconds

<table>
<thead>
<tr>
<th>part</th>
<th>sum</th>
<th>simulation</th>
<th>aggregation</th>
<th>input</th>
<th>output</th>
<th>Excel</th>
</tr>
</thead>
<tbody>
<tr>
<td>start</td>
<td>13.29</td>
<td>1.09</td>
<td>0.00</td>
<td>11.67</td>
<td>0.00</td>
<td>0.53</td>
</tr>
<tr>
<td>main</td>
<td>657.35</td>
<td>212.39</td>
<td>212.21</td>
<td>33.17</td>
<td>199.58</td>
<td>0.00</td>
</tr>
<tr>
<td>end</td>
<td>12.93</td>
<td>0.00</td>
<td>1.73</td>
<td>0.00</td>
<td>6.37</td>
<td>4.84</td>
</tr>
</tbody>
</table>
List of results snapshot

<table>
<thead>
<tr>
<th>Name</th>
<th>Größe</th>
<th>Änderungsdatum</th>
<th>Typ</th>
</tr>
</thead>
<tbody>
<tr>
<td>ERGO-Beitragspercentile nach Auswertungsgruppe (Modell 77 (650,LIM)) CORE+KALK_201...</td>
<td>497 KB</td>
<td>15.01.2013 09:15</td>
<td>Micro</td>
</tr>
<tr>
<td>ERGO-Beitragspercentile nach Position (Modell 77 (650,LIM)) CORE+KALK_2013-01-14.xls</td>
<td>52 KB</td>
<td>15.01.2013 09:14</td>
<td>Micro</td>
</tr>
<tr>
<td>ERGO-Beitragspercentile nach Versicherungsart (Modell 77 (650,LIM)) CORE+KALK_2013-01-14.xls</td>
<td>212 KB</td>
<td>15.01.2013 09:15</td>
<td>Micro</td>
</tr>
<tr>
<td>ERGO-Bewertung nach Auswertungsgruppe (Modell 77 (650,LIM)) CORE+KALK_2013-01-14.xls</td>
<td>21 KB</td>
<td>15.01.2013 09:14</td>
<td>Micro</td>
</tr>
<tr>
<td>ERGO-Bewertung nach Versicherungsnummer (Modell 77 (650,LIM)) CORE+KALK_2013-01-14.xls</td>
<td>21 KB</td>
<td>15.01.2013 09:14</td>
<td>Micro</td>
</tr>
<tr>
<td>ERGO-Bewertung nach Auswertungsgruppe (Modell 77 (650,LIM)) CORE+KALK_2013-01-14.xls</td>
<td>1.130 KB</td>
<td>15.01.2013 08:58</td>
<td>Micro</td>
</tr>
<tr>
<td>ERGO-Bewertung nach Modellpunkt (Modell 77 (650,LIM)) CORE+KALK_2013-01-14.xls</td>
<td>164 KB</td>
<td>15.01.2013 08:58</td>
<td>Micro</td>
</tr>
<tr>
<td>ERGO-Bewertung nach Tarif (Modell 77 (650,LIM)) CORE+KALK_2013-01-14.xls</td>
<td>7.526 KB</td>
<td>15.01.2013 09:05</td>
<td>Micro</td>
</tr>
<tr>
<td>ERGO-Bewertung nach Versicherungsart (Modell 77 (650,LIM)) CORE+KALK_2013-01-14.xls</td>
<td>334 KB</td>
<td>15.01.2013 08:57</td>
<td>Micro</td>
</tr>
<tr>
<td>ERGO-Bewertungs-Übersicht (Modell 77 (650,LIM)) CORE+KALK_2013-01-14.xls</td>
<td>514 KB</td>
<td>15.01.2013 08:57</td>
<td>Micro</td>
</tr>
<tr>
<td>ERGO-Durchschnittlicher Mehrbeitrag der Auswertungsgruppen (Modell 77 (650,LIM)) CORE+KALK_2013-01-14.xls</td>
<td>348 KB</td>
<td>15.01.2013 09:14</td>
<td>Micro</td>
</tr>
<tr>
<td>ERGO-Durchschnittlicher Mehrbeitrag der Modellpunkte (Modell 77 (650,LIM)) CORE+KALK_2013-01-14.xls</td>
<td>85 KB</td>
<td>15.01.2013 09:14</td>
<td>Micro</td>
</tr>
<tr>
<td>ERGO-Durchschnittlicher Mehrbeitrag der Tarife (Modell 77 (650,LIM)) CORE+KALK_2013-01-14.xls</td>
<td>1.934 KB</td>
<td>15.01.2013 09:14</td>
<td>Micro</td>
</tr>
<tr>
<td>ERGO-Durchschnittlicher Mehrbeitrag der Versicherungsarten (Modell 77 (650,LIM)) CORE+KALK_2013-01-14.xls</td>
<td>147 KB</td>
<td>15.01.2013 09:14</td>
<td>Micro</td>
</tr>
<tr>
<td>ERGO-Limitierungsergebnis (Modell 77 (650,LIM)) CORE+KALK_2013-01-14.sf</td>
<td>1.296.494 KB</td>
<td>15.01.2013 08:55</td>
<td>AP</td>
</tr>
<tr>
<td>ERGO-Statistiken und Hinweise (Modell 77 (650,LIM)) CORE+KALK_2013-01-14.sf</td>
<td>134.817 KB</td>
<td>17.01.2013 08:22</td>
<td>AP</td>
</tr>
<tr>
<td>ERGO-Statistiken und Hinweise (Modell 77 (650,LIM)) CORE+KALK_2013-01-14.xls</td>
<td>3.352 KB</td>
<td>15.01.2013 09:15</td>
<td>Micro</td>
</tr>
<tr>
<td>ERGO-Verteilung nach Auswertungsgruppe (Modell 77 (650,LIM)) CORE+KALK_2013-01-14.xls</td>
<td>837 KB</td>
<td>15.01.2013 09:07</td>
<td>Micro</td>
</tr>
<tr>
<td>ERGO-Verteilung nach Modellpunkt (Modell 77 (650,LIM)) CORE+KALK_2013-01-14.xls</td>
<td>117 KB</td>
<td>15.01.2013 09:07</td>
<td>Micro</td>
</tr>
<tr>
<td>ERGO-Verteilung nach Tarif (Modell 77 (650,LIM)) CORE+KALK_2013-01-14.xls</td>
<td>5.257 KB</td>
<td>15.01.2013 09:14</td>
<td>Micro</td>
</tr>
<tr>
<td>ERGO-Verteilung nach Versicherungsart (Modell 77 (650,LIM)) CORE+KALK_2013-01-14.xls</td>
<td>227 KB</td>
<td>15.01.2013 09:06</td>
<td>Micro</td>
</tr>
</tbody>
</table>
Illustration of simple capping scheme

\[\Delta b \ [\text{€}] \]

\[\frac{3}{4} \ 400 \ 800 \ \frac{3}{3} \]

15%

\[\begin{align*}
0 & \quad 75 & \quad 150 & \quad 225 & \quad 300 & \quad 375 & \quad 450 & \quad 525 & \quad 600 \\
0 & \quad 10 & \quad 20 & \quad 30 & \quad 40 & \quad 50 \\
\end{align*} \]
Illustration of simple capping scheme

\[\Delta b \ [\€] \]

\[\frac{400}{3} \]
\[\frac{800}{3} \]
\[460 \]

15%

social capping

\[\circ \ b \ [\€] \]
Illustration of simple capping scheme

- Social capping
- Capping schemes
Illustration of simple capping scheme

\[
\Delta b \ [\€] \quad \begin{array}{c}
400 \\
800 \\
460
\end{array}
\]

\[
\begin{array}{c}
0 \quad 75 \quad 150 \quad 225 \quad 300 \quad 375 \quad 450 \quad 525 \quad 600
\end{array}
\]

social capping

15%
Illustration of capping scheme with premium decrease

\[
\Delta b \ [\text{\euro}] \quad \frac{400}{3} \quad \frac{800}{3}
\]

-30 -20 -10 0 10 20 30 40 50

75 150 225 300 375 450 525 600

°b \ [\text{\euro}]
Illustration of capping scheme with premium decrease

\[\Delta b \ [\text{\euro}] \]

\[\frac{400}{3} \quad \frac{800}{3} \]

15%

\[75 \quad 150 \quad 225 \quad 300 \quad 375 \quad 450 \quad 525 \quad 600 \]

\[\circ b \ [\text{\euro}] \]

-30 -20 -10 0 10 20 30 40 50

ERGO

Mitsos

Premium Capping Schemes in German Health Insurance 27/32
Illustration of capping scheme with premium decrease

Δb [€] 400 800 460

0 10 20 30 40 50

75 150 225 300 375 450 525 600

15%

social capping

Premium Capping Schemes in German Health Insurance
Illustration of capping scheme with premium decrease

- Δb [€]
 - 400/3
 - 800/3
 - 460

- OBJ [€]
 - 75 150 225 300 375 450 525 600

- 15%

- Social capping
Illustration of capping scheme with premium decrease

- $\Delta b \ [\text{€}]$
- $\frac{400}{3}$
- $\frac{800}{3}$
- 460

Social capping
Illustration of capping scheme without premium decrease

Δb [€]

400/3

800/3

15%

75 150 225 300 375 450 525 600

°b [€]

Mitsos

Premium Capping Schemes in German Health Insurance
Illustration of capping scheme without premium decrease

\[\Delta b \text{ [€]} \]

- 75
- 150
- 225
- 300
- 375
- 450
- 525
- 600

-30
-20
-10
0
10
20
30
40
50

15%

400/3
800/3
460

Social capping

Premium Capping Schemes in German Health Insurance

Mitsos
Illustration of capping scheme **without premium decrease**
Illustration of capping scheme **without premium decrease**

- **Δb [€]**
- **b [€]**

- **400/3**
- **800/3**
- **460**

- **15%**

- **Social capping**

- **0**
- **10**
- **20**
- **30**
- **40**
- **50**

- **75**
- **150**
- **225**
- **300**
- **375**
- **450**
- **525**
- **600**

- **-30**
- **-20**
- **-10**
- **0**
- **10**
- **20**
- **30**
- **40**

- **ERGO**

Mitsos

Premium Capping Schemes in German Health Insurance 28/32
Illustration of capping scheme *without premium decrease*

- Δb [€]
- \(\frac{400}{3} \)
- \(\frac{800}{3} \)
- 460

- 15%
- Social capping

- 0
- 10
- 20
- 30
- 40
- 50

- 75
- 150
- 225
- 300
- 375
- 450
- 525
- 600

- -30
- -20
- -10
- 0
- 10
- 20
- 30

- 460
- 3
- 800
- 3

- Mitsos
- Premium Capping Schemes in German Health Insurance

28/32
Example of capping scheme pricing runtime

Runtime of capping scheme pricing (complete business in force) in seconds

<table>
<thead>
<tr>
<th>part</th>
<th>sum</th>
<th>simulation</th>
<th>agglomeration</th>
<th>input</th>
<th>output</th>
<th>Excel</th>
</tr>
</thead>
<tbody>
<tr>
<td>start</td>
<td>10.56</td>
<td>0.00</td>
<td>0.00</td>
<td>10.13</td>
<td>0.00</td>
<td>0.44</td>
</tr>
<tr>
<td>main</td>
<td>762.65</td>
<td>218.39</td>
<td>421.74</td>
<td>40.62</td>
<td>81.89</td>
<td>0.00</td>
</tr>
<tr>
<td>end</td>
<td>1,149.68</td>
<td>0.52</td>
<td>0.97</td>
<td>0.00</td>
<td>3.65</td>
<td>1,144.55</td>
</tr>
</tbody>
</table>
Illustration of capping agglomeration and associated error

The agglomeration error with respect to absolute limits is demonstrated.
The agglomeration error with respect to absolute limits is demonstrated.
Illustration of capping agglomeration and associated error

The agglomeration error with respect to absolute limits is demonstrated.
The agglomeration error with respect to absolute limits is demonstrated.
The agglomeration error with respect to absolute limits is demonstrated.
The agglomeration error with respect to absolute limits is demonstrated.
The agglomeration error with respect to absolute limits is demonstrated.

\[\Delta b \, [\text{€}] \]

\begin{align*}
300 & \quad 300.5 & \quad 301 \\
39.5 & \quad 40 & \quad 40.5 & \quad 41 & \quad 41.5
\end{align*}

\(\text{lim}^{\text{abs}}_{\text{min}} \): assumed for upper bound

\(\text{lim}^{\text{abs}}_{\text{max}} \): assumed for lower bound

\(\text{high} \) lim\(^{\text{abs}} \): no capping, no error

\(\text{low} \) lim\(^{\text{abs}} \): error exact

\(\text{critical} \) lim\(^{\text{abs}} \): error information agglomerated
Illustration of capping agglomeration and associated error

The agglomeration error with respect to absolute limits is demonstrated.

(higher) \(\text{lim}_{\text{max}}^{\text{abs}} \): assumed for lower bound

\(\text{lim}_{\text{abs}}^{\text{est}} \): assumed for upper bound

\(\text{lim}_{\text{abs}}^{\text{min}} \): assumed for lower bound

\(\Delta b \) [€]
Group premiums and premium increases after

\[b_j^{gr} = 0.5 + \lfloor b_j \rfloor \quad \text{and} \quad \Delta b_j^{gr} = 0.5 + \lfloor \Delta b_j \rfloor \]

This leads to weighted errors with respect to absolute limits

\[\Delta V_{j, abs}^{err} = g_j^{\Delta V} \cdot (\Delta b_j^{gr} - \Delta b_j) \]

\[\Delta V_{bas}^{err, abs} = \sum_j \Delta V_j^{err, abs} \]

\[\Delta V_{min}^{err, abs} = \sum_j \left(\Delta V_j^{err, abs} \right)_- \quad \text{and} \quad \Delta V_{max}^{err, abs} = \sum_j \left(\Delta V_j^{err, abs} \right)_+ \]

Relative limits similar but more complicated.
Error margin of capping agglomeration in formulas

Error interval in capping cost estimation due to agglomeration

- for arbitrary absolute limits \(\text{lim}^{abs} \)
- for (each) cohort with arbitrary but fixed \(\Delta b^{gr} \)

given by

\[
\Delta V^{ex} \in \Delta V^{est} \oplus \\
\begin{cases}
\left[\left(\Delta V_{bas}^{err,abs} \right)_-, \left(\Delta V_{bas}^{err,abs} \right)_+ \right] & \text{for } \text{lim}^{abs} < \Delta b^{gr} - .5 \\
\left[\Delta V_{min}^{err,abs}, \Delta V_{max}^{err,abs} \right] & \text{for } \text{lim}^{abs} \in \Delta b^{gr} \oplus [-.5,+.5) \\
[0,0] & \text{for } \text{lim}^{abs} \geq \Delta b^{gr} + .5
\end{cases}
\]