

• I come from Uboldo, a little town about 30 minutes
from Milan.

• I am 17 years old and so I currently am in my fourth
year at Liceo Classico S.M. Legnani, and I mainly study
humanistic subjects such as Latin and Ancient Greek.

Despite I am not taught informatics at school, I was
introduced to the world of programming by my math teacher
Roberto Minervini.

During a year-long course I learnt more and more about
APL, (legrande’s book) until he proposed me to take part
into the competition.

• Of course, I was aware that a high
school student would stand little
chance against undergraduates...

…but, in my case,
something made the
difference…

It is important to mention how the first step to the solution
of each problem, apart from their most technical aspects, is
of course their abstract understanding, and discussions and
confrontations between me and my classmates were essential
to find ideas that were later translated into APL language.

Without those moments, I certainly would have never managed
to achieve the victory in this competition.

This is why I believe that working together can really help
reaching extraordinary results which could never be achieved by
yourself.

However even the help of
internet has been very useful ;)

The contest consisted of two phases:

Phase I had not very articulate problems that could each be solved with
a single line of APL code .

Phase II, on the other hand, consisted of three sets of problems
(Bioinformatics, Applications problems and Recreational and Game

problems) of varying complexity.

Here, I will take into consideration the problems of
both phases that I liked most and that I found most
interesting.

However, in some cases, I will explain functions a little
bit different from those I had sent for the contest, to
simplify the exposure.

PHASE I

UNLUCKY 13

We have to change every 13 in 12.99 into an array.

So the function is:

sol8←{⍵-0.01×13=⍵}

 I obtain a Boolean
vector in which 1
corresponds to 13

I multiply the
boolean vector
for 0.01

I subtract from
the starting
vector the
obtained vector

HE’S SO MEAN, HE HAS NO STANDARD DEVIATION
(phase I)

The standard deviation of a population is calculated by taking square
root of the average of the squared differences of the values from their
average value. The mathematical formula is

√∑(x-x) ₂
n

Write a dfn that returns the population standard deviation of its
numeric array left argument.

sol5←{a←,⍵ ⋄ ⊃0.5*⍨(⍴a)÷⍨+/2*⍨a-(⍴a)÷⍨+/a}

THE FUNCTION

X
X-X

(X-X)
2

∑

:n

√

√∑(x-x) /n 2

I’D LIKE MY SCRAMBLED PLEASE (phase I)

Write a dfn that takes a caracter vector as its left argument and returns
the word’s letters inverted two by two, except the first and the last
ones.

For example, ‘argument’ becomes ‘agrmunet’.

THE FUNCTION

 sol9←{⊃,/(1↑⍵),({⌽¨⍵⊂⍨1 0⍴⍨⍴⍵}1↓¯1↓⍵),¯1↑⍵}

I remove the first
and the last letters

I place the letters
two by two

I reverse the letters
of each couple

I take the
last letter

I take the first
letter

Find Locs
Bioinformatics Problem 2 (medium difficulty)

The problem is to write an Apl function which:

-takes an integer vector representing L L={l1, l2, l3, … , lx}

-returns an integer vector representing X

X contains numbers X={x1,x2,x3,x4…} and L is a collection of all possible
difference between all possible couple of X.

 Knowing L, we have to find X

PHASE II

We can see this example in order to have a graphical idea of what the
set of differences is:

This is the final function:

I take the first n
elements

I put a 0 before
because I suppose
 that the first element
is 0

Firstly, knowing L, we have to understand how many
elements X contains. If X contains n elements, then L
contains an element for each pair of elements of X, so that

I make the
cumulative
sum

Reversal Distance
Bioinformatics Problem 3 (high difficulty)

One of the most studied problems in the field of computational biology is the
string matching problem.

Why?

When trying to understand how genetic sequences mutate at the chromosome
level we need to consider more global operations, rather than the basic ones. One
of the most common global mutation is the reversing of a substring, operation
also known as a reversal.

In order to represent the sequence of genes on a chromosome, we are going to
use permutations. More clearly, we are given the order of n genes in two related
organisms; we only consider the genes that appear in both organisms. The order
of the genes are represented by a permutation σ = (σ1,σ2,···,σn), where by σi we
denote the position where the gene i appears.

A reversal of a permutation creates a new permutation by inverting some interval
of the permutation; (5,2,3,1,4) , (5,3,4,1,2) , and (4,1,2,3,5) are all reversal of
(5,3,2,1,4).

http://rosalind.info/glossary/reversal/

The first difficulty was understanding what a reversal is, in fact on Rosalind web site
there was not a definition but an example. So I have examined the document ‘Sorting by
reversals’ by Bogdan Pa¸saniuc.
A Reversal is a transformation that, taken a vector of ten elements from 1 to 10, creates
a second permutation according to the following criterion:

3 10 8 2 5 4 7 1 6 9
1 2 3 4 5 6 7 8 9 10

i=4 j=9

3 10 8 6 1 7 4 5 2 9

g

1 2 3 4 5 6 7 8 9 10

A Reversal of [i,j] interval
g(i, … , j-1, j)=(j, j-1, … , i)
With g(k)=k for k ∉ [i,j]

The function that makes the reversal is:

reversal←{i←(¯1+⍵[1])↓⍳⍵[2] ⋄ a←⍺ ⋄ a[i]←a[⌽i] ⋄ a}

Here we are using the Apl function ‘reverse’ ⌽

So, applied to our example, it is
 3 10 8 2 5 4 7 1 6 9 reversal 4 9

This is the part
that I want to
modify (i)

Here I modify i (the interested part)
with his reverse

3 10 8 6 1 7 4 5 2 9
4 9

Let’s talk about the problem:

The problem is to find the minimum number of reversals needed to
transform one string into another, so the distance between two
permutations.

In fact, the minimum number of reversals used to transform one string into
another has proven to be a very good estimate for the evolutionary distance
between organisms.

The first fundamenetal idea is that solving this problem

3 10 8 2 5 4 7 1 6 9 reversalDistance 5 2 3 1 7 4 10 8 6 9

Is exactly the same of solving this one

1 2 3 4 5 6 7 8 9 10 reversalDistance 5 4 1 8 7 6 2 3 9 10

This is helpful because now the left string is ordered and it is easier to
pass from one permutation to the other.

t←y⍳x

I put instead of x the positions that numbers of x have in y

Y 3 10 8 2 5 4 7 1 6 9
X 5 2 3 1 7 4 10 8 6 9
y⍳x 5 4 1 8 7 6 2 3 9 10

3 10 8 2 5 4 7 1 6 9

5 2 3 1 7 4 10 8 6 9 5 4 1 8 7 6 2 3 9 10

1 2 3 4 5 6 7 8 9 10

y

x

y

x

At this point, we have to understand how to solve the problem.

In other words we have to understand how to pass from a disordered
permutation like 5 4 1 8 7 6 2 3 9 10 to the ordered one.

First of all,

We add two fictitious numbers at the beginning and at the end so we force in
some way permutation to be increasing.

0 5 4 1 8 7 6 2 3 9 10 11

A breakpoint of a permutation σ is a pair of adjacent positions [i,i + 1] such that σ[i]
and σ[i+1] are consecutively decreasing or increasing.

The function that calculates the number of bk is:

bk←{+/1=|2-/0,⍵,1+⍴⍵}

5 4 1 8 7 6 2 3 9 10
These are all the
breakpoints, in total
they are 5 We have to use a

reversal that improves
the total number of bk

5 4 1 3 2 6 7 8 9 10
Now we have 6
breakpoints

It makes the module of the difference
between each number and his following

it counts the 1

It adds a number at the end

The idea is to improve each time the number of bk until we arrive to 10
(this is a greedy algorithm)

So, at each step we try to maximize the number of ‘’breakpoints’’.

0 1 2 3 4 5 6 7 8 9 10 11
bk=10

0 5 4 1 3 2 6 7 8 9 10 11

0 2 3 1 4 5 6 7 8 9 10 11

0 2 1 3 4 5 6 7 8 9 10 11

The final function:
z←y revd x;t;bk;r;all;newt
 t←y⍳x
 bk←{+/1=|2-/0,⍵,1+⍴⍵}
 r←{i←(¯1+⍵[1])↓⍳⍵[2] ⋄ a←⍺ ⋄ a[i]←a[⌽i] ⋄ a}
 all←{a←,(⍳⍵,⍵)×(⍳⍵)∘.<⍳⍵ ⋄ a/⍨0<+/¨a}⍴t

 z←0

 :Repeat
 newt←t∘r¨all

 t←⊃newt[⊃⍒bk¨newt]
 ⎕←t
 z←z+1
 :Until 10<bk t

It finds all the couples in which
the first element is lower than
the second

It takes these
couples

It makes all the possible reversal

It orders the reversals putting at the beginnig the
ones with the highest number of breakpoints, and
takes the first one

LONGEST SUBSEQUENCES
Bioinformatics Problem 3 (high difficulty)

Write an APL function, which:

-takes an integer permutation vector of lenght n

-returns a 2-element vector where:

• [1] is a longest increasing subsequence of the permutation vector

• [2] is a longest decreasing subsequence of the permutation vector

Example:

longestSubsequence 5 1 4 2 3

 1 2 3 5 4 2

So we have to find the increasing and the decreasing subsequences of
the permutation vector.

However finding the increasing one is the same of finding the
decreasing one, because if we change sign at each number and we
find the increasing subsequence, then we change again the sign we
find the decreasing subsequence.

How can I find the increasing subsequence?

We can focus on the last number (3) and search the subsequences that
contain 3 as the last element.

In this case 1-3 and 1-2-3, where the longest is the second one.

5 1 4 2 3

However it’s easier to start from the beginning and go ahead, with
dynamic programming, by searching for each number all the previous
numbers lower than the number itself.

Let’s see an example (5, 1, 4, 2, 3)

I take this one

i=2

i=3

i=4

i=5

THE FINAL FUNCTION

 z←lis x;LIS;j;i;lmax

LIS←{⍵,[1.1],¨⍵}x ⍝ initial matrix

 lmax←{⊃⍵[⊃⍒⊃¨⍴¨⍵]} ⍝ it finds the longest subsequence

 :For i :In 1↓⍳⍴x ⍝ I start from the second item

 j←(⍳⍴x)/⍨(i>⍳⍴x)∧x[i]>x ⍝ it finds all the indices lower than x[i]

 :If 0<⊃⍴j ⍝ if there is at least one j

 LIS[i;2]←⊂x[i],⍨lmax LIS[j;2] ⍝ it updates the matrix

 :EndIf

 :EndFor

z←lmax LIS[;2] ⍝ it takes the longest subsequence

HtmlTable
Applications Problem 1 (low difficulty)
The task is to write an Apl function that:

-takes a matrix of data as its right argument

-returns a character vector of HTML to render the matrix as an HTML
table

This
should be
the result:

The first operation we do is to put a ‘td’ before and ‘</td’ after each cell
of the matrix

Now we pack the lines, by putting a ‘tr’ before and a ‘</tr’ after

Then we pack the entire table

And finally we clean the nested data

And we obtain the final function

KENKEN
Recreation and Games Problem 3 (high difficulty)

Your task is to write a program which will solve a KenKen puzzle.
The program:
-takes a 3-column matrix right argument

•Column 1 contains the integer target number
•Column 2 contains a character scalar representing the
operation (one of + - x :)
•Column 3 contains a vector of cell coordinates that make up
the cage

-returns an integer matrix representing the solution to the
puzzle

Solving this problem consist in solving a sudoku, and the solution starts from
the tecnique thought by John Scholes, presented in the YouTube video “A
Sudoku Solver in APL”.

However this tecnique solves a generical sudoku, while we have to solve a
KenKen.

The problem of a KenKen is the fact that there is a strong condition on each
cage:

-there is a target number t=16

-there is an operation o=‘x’

-there are involved cells (1 1),(1 2),(2 2) that tell us the dimension of the cage
k=3

The first problem is: can I write a function, the FillCage, which tries to
fill with numbers the indicated cells so that they respect the
conditions?

So the embryonic function of this
solution is the FillCage which has:
-Input
 -n dimension of KenKen
 -t integer target number
 -o operation + - x :
 -v vector of cells coordinates
 that make up the cage

-Output:
 -the matrix filled only in the
 cells indicated by the Input

Let’s see the FillCage

Above it’s shown the structure of the argument, as you can see the third element of the vector is a vector that
contains the coordinates of the cells to fill. This makes the input a nested vector.
Also the output is a vector of matrices, so it’s nested too.

As you can see there are solutions
that are not correct, but we are
going to remove them with the
‘sum’ function in the kenken
function

I explore all the possible combinations

I check where the combinations are equal to the target number

I discover the coordinates of the cube where there is 16

In this way I find the sets of number whose product is 16

where←{(,0≠⍵)/,⍳⍴⍵}
It gives me the vector of all
the coordinates It takes all the 1 (searches

where ⍵ ≠0)

After we have found the possible solutions, we
can place them into the matrix, with the function

‘at’

at←{a←(n×n)⍴0 ⋄ a[(,⍳n n)⍳⍺]←⍵ ⋄ n n⍴a}

It makes the matrix
It places the numbers (⍵)
in the cells (⍺)

For example:

THIS IS THE FINAL FILLCAGE
Z←n fillcage x;t;o;c;k;f;m;at ⍝ we have to search and place the number

⍝ n dimension of kenken

 t o c←x

 f←{|⍎⍕⍺,o,⍵} ⍝ it executes char operation in a function

 at←{a←(n×n)⍴0 ⋄ a[(,⍳n n)⍳⍺]←⍵ ⋄ n n⍴a}

 k←⊃¯1+⍴c

 :If o=' '

 z←⊂c at t

 :Else

 m←(⍳n)({⍺∘.f ⍵}⍣k)⍳n ⍝ I make all the possible combinations

 z←c∘at¨(t=,m)/,⍳⍴m ⍝ I take the coordinates of the cells with numbers that make the target number

 :EndIf

Now I repeat this process for the second cage, and I obtain 8
possibilities, so in total they are 16, among which I can take only the
ones that don’t have the same number repeated on a row or a
column.

So I have to define a sum function that doesn’t accept repetitions.

sum←{a←,⍺∘.+⍵ ⋄ f←{∧/{{⍵≡∪⍵}⍵~0}¨↓⍵} ⋄ a/⍨(f¨⍉¨a)∧f¨a}

It makes all the
combinations of the sum
of two cages

it controls that there aren’t
two numbers repeated on
the same row

I repeat this process for each cage and i find the final solution.

It applies f on the transpose of a,
so makes the test also on the
columns

THIS IS THE FINAL FUNCTION

z←kenken x;n;sum

 n←0.5*⍨⊃⍴⊃,/x[;3] ⍝ dimension of the KenKen

 sum←{a←,⍺∘.+⍵ ⋄ f←{∧/{{⍵≡∪⍵}⍵~0}¨↓⍵} ⋄ a/⍨(f¨⍉¨a)∧f¨a}

 z←⊃⊃sum/n∘fillcage¨↓x

Identifying Maximal Repeats
Bioinformatics Problem 3 (high difficulty)

The task is to write an Apl function which:

-takes a character vector representing a DNA string

-returns a vector of character vectors containing all
maximalrepeats in the DNA string having a length greater
or equal to 20

In order to semplify the problem I considered a short string used as an
example by the Rosalind website.

So I took the DNA string 'TAGTTAGCGAGA‘, in which I have to find a 2-
long substring, not a 20-long one. This economizes everything

L←2 ⍝ minimum length of maximal repetition

The problem is divided in two points, in fact I have to find all the
substrings which:

1)repeat, so there must be at least two of them

2)are not extensible (so they can’t be done in a better way), because I
have to find the maximal substring, the longest repeated one

‘’For example, "AG" is a maximal repeat in "TAGTTAGCGAGA" because
even though the first two occurrences of "AG" can be extended left into
"TAG", the first and third occurrences differ on both sides of the repeat;
thus, we conclude that "AG" is a maximal repeat. Note that "TAG" is
also a maximal repeat of "TAGTTAGCGAGA", since its only two
occurrences do not still match if we extend them in either direction.’’

The idea I followed is the "Chrochemore algorithm" because it perfectly
combines with the Apl function ‘find’ (⍷). So:

•For each letter of the Dna I consider how it can be extended

•I obtain the substrings of length 2 and I try to extend them

•I go on with this process until I obtain the longest repeated substring

This algorithm seems slow, but it ‘s not like that.

A←M←(,¨'ACGT'),[1.1]x∘{(⍺=⍵)/⍳⍴⍺}¨'ACGT'

With this function I search where the letters ‘ACGT’ are in the dna
string, and at the beginning this is the result:

This is the first turn. Now
A and M coincide, but M
will remain the same,
while A will evolve

Now, I try to extend the substrings, by creating that of two elements in this way

A

C

G

T

 A C G T
A←((,a)/,K),[1.1]⍨A[b[;1];1],¨'ACGT'[b[;2]]

K←A[;2]∘.(d f)M[;2]

I find the positions of the
couples I find the repeated strings and their

positions

AG

GA

TA

 A C G T

AGA AGC

TAG

Only this survives because
we have found it twice

I go on with this process to find the
substrings of three letters

:Repeat

 d←d+1

 K←A[;2]∘.(d f)M[;2]

 b←↑{(,⍳⍴⍵)/⍨,⍵}a←1<⊃¨⍴¨K it finds the positions of the repeated substrings

 A←((,a)/,K),[1.1]⍨A[b[;1];1],¨'ACGT'[b[;2]] it finds the repeated substrings

 z←z g A it removes the shorter substrings that are contained in the longer substring that I have found

 z←z⍪A⌿⍨,⊃¨L≤⍴¨A[;1] it puts together the obtained results

 :Until 0=+/,a

 z←⌽z[;1] It reverses the results to put at the beginning the most repeated substring

z←maxR x;M;A;f;K;L;b;a;d;g
 L←20 ⍝ number of minimum occurrences
 f←{⍺/⍨(⍳⍴⍺)∊(⍺⍺=a)/(⍴a←,⍵∘.-⍺)⍴⍳⍴⍺}
g ←*next slide
A←M←(,¨'ACGT'),[1.1]x∘{(⍺=⍵)/⍳⍴⍺}¨'ACGT'
 d←0 ⍝ length of the string that I want to extend
 z←0 2⍴⍬

It will be used to search the positions in which the substrings can
be extended

FINAL FUNCTION

g←{

 a←{(⍴⍵)⍴∨/¨,⍵}⍺[;1]∘.⍷⍵[;1]

 b←↑,⍳n←(⊃⍴⍺),⊃⍴⍵

 b←n⍴,⊃¨(⍴¨⍺[b[;1];2])=⍴¨⍵[b[;2];2]

 ⍺⌿⍨~∨/b∧a

 }

It searches which substrings for example of 2
elements are contained in that of 3 elements

It controls if the shorter substring occurs the same number of times as
the longer substring in which it is contained

It removes the shorter substrings that are always contained
in the longer one

2048: Task 1 and 2
Recreation and Games Problem 2 (medium difficulty)

These problems are based on the game 2048, first implemented on the
web during March 2014 by Gabriele Cirulli.

At the start of the game, 2 random cells of 4x4 grid are assigned a value of
2; the user has to indicate a direction (up, down, left, right) to side the
cells an the cells slide as far as possible in the chosen direction until they
are stopped by another cell or the edge of the grid. If two cells of the
same number collide, they will merge into a cell with the total value of the
two cells that collied.
For example:

 This Sliding Becomes This

2 4 4 4

2 4 4 4 2 8 4 0

0 2 4 8

2048:Task 1 – Shifty Thinking
The task is to write a function, shift2048, which:
- takes a right argument which is a 4 element integer vector
representing 4 cells (0 indicates a blank cell)

 - takes a Boolean scalar left argument which indicates the direction to
shift (1 for shift to the right, 0 for shift to the left)

- returns a 4 element integer vector representing the result after the
shift.
Examples:
 1 shift2048 2 4 4 8

0 2 8 8
 0 shift2048 2 4 4 8

2 8 8 0

Our function will work this way:

1 shift2048 2 4 4 8

0 2 8 8 8

In fact not only it will return the vector, but also the sum 8 and this will
be useful for the second part of the problem.

The main idea of the function is that if I find the way to shift to the left,
I will be able to shift to the right,too. This semplifies everything
because I can do all the reasonings at once.

I will explain better

 x= 1 right shift

 I reverse the starting vector

 O x= o left shift

 I reverse again and the result is the same

2 4 4 8 0 2 8 8

0 2 8 8

8 4 4 2 8 8 2 0

Now let’s see the logic of the solution:

2 4 4 8 2 8 8 0

2 4 4 8

4 4 8 0

0 1 0 0

2 8 4 8

0 0 1 0

1 1 0 1

2 8 8

2 8 8 0

X

s0 (x)

a←{<\⍵=s0 ⍵}x

z← x + ax

b← s1 a

~ b

(~ b)/ x+ax

z ←(⍴x)↑(~b)/z

0 left shift

It takes the couple of equal numbers

It makes the sum of x and ax

It makes the shift to the right of a

It denies b

It adapts b on z

It adds a zero at the end

Finally I add the sum (8)
s←+/2×x×a

2 8 8 0 8

The final function is:

 z←y shift2048 x;s0;s1;a;b

 s0←{1↓⍵,0} ⍝ left shift (I remove the first number and I add a 0)

 s1←{¯1↓0,⍵} ⍝ right shift

 :If y=1 ⋄ x←⌽x ⋄ :EndIf

 a ←<\ x=s0 x ⍝ the result is 0 1 0 0 <\ takes only the 1 at left if there are more 1

• z←x+xxa ⍝ the result is 2 8 4 8

 b ←s1 a ⍝ the result is 0 0 1 0

• z ← (⍴x)↑(~b)/z ⍝ the result is 2 8 8 0

• z ← (⍴x)↑z/z ⍨z≠0 ⍝ if there are 0 at the beginning, in the middle or at the end I remove
them

 :If y=1 ⋄ z←⌽z ⋄ :EndIf

s←+/2×x×a ⍝ s is the sum

 z←z,⊂,s

2048:Task 2 – All a board

Now the problem becomes two-dimensional, because there is a Board,
but if we imagine the single rows of the board as vectors and we apply
the shift to each row, it is clear that applying the shift to the matrix is
equivalent to apply it to each row.

The two vertical shifts (up and down) added to the horizontal ones (left
and right)

Also, the vertical shifts can be traced to the horizontal shifts, after
rotating the matrix and the result

This is what happens graphically:

0 0 4 2
2 4 16 4
2 8 8 32
64 2 2 4

4 64 0 0
4 8 2 0
4 16 8 2
2 4 32 4

0 2 2 64
0 4 8 2
4 16 8 2
2 4 32 4

4 4 4 32
64 8 16 4
0 2 8 32
0 0 2 4

current
 2 up

 0
left shift

O current

0shift2048Ocurrent

4 4 4 32
64 8 16 4
0 2 8 32
0 0 2 4

O

z ←y board2048 x;s2;k;

⍝ 0 ←

⍝ 1 →

⍝ 2 ↑

⍝ 3 ↓

⍝ 0 ← 2 ↑

⍝ 1 → 3 ↓

k ←2|y ⍝ (2| calculates the residue) if y=1 it remains 1; if y=0 it remains 0; if y=2 it becomes 0; if y=3 it becomes 1

:If y>1 ⋄ x ← ⍉x ⋄ :EndIf

z ←↑k shift2048bis ¨↓x ⍝ I turn the matrix into a vector of rows,I apply shift2048, then I make the matrix again

:If y>1 ⍝ vertical shift

z ← ⍉z ⍝ I rotate the matrix

Z ←{(⁻ 1↓ω), ⁻ 1↑ ω}z ⍝ I put the sum next to the matrix , in fact when the matrix rotates, even the sums rotate

:EndIf

s ← +/, ⊃ ¨⁻1 ↑[2]z ⍝ sum of sums of all rows

z ←(⊂ ⁻ 1 ↓[2]z),s ⍝ I put the sum next to the matrix and I remove the last column

FINAL FUNCTION

Arrange Stars
Applications Problem 3 (high difficulty)
Imagine that a new state is admitted to United States. How could the
USA’s flag change?

Given a number of stars, we have to choose a new armonious
arrangement of the stars.

The problem is to understand what ‘armonious’ means.

To solve this problem we relied on the work of Skip Garibaldi, American
mathematician, who defined all the possible patterns to arrange the
stars.

Let’s see them:

• 1) Wyoming pattern single;

• 2) Wyoming pattern double;

• 3) Short-long pattern;

• 4) Long-short pattern;

• 5) Alternate long-short;

• 6) Equal.

 WYOMING PATTERN SINGLE

 With a single shorter line in the center

 WYOMING PATTERN DOUBLE
 With two shorter lines in the center

SHORT-LONG PATTERN
 With short and long lines alternated

LONG-SHORT PATTERN
 With long and short lines alternated

EQUAL

Another important resource to solve this problem is the widget
‘nextbigfuture’ that allows you to have a graphical image of the
modified flag.

This is useful, in particular, to control if the solution obtained is correct.

http://nextbigfuture.com/2010/06/51-to-100-states-of-america-flag.html

But let’s see the details of the problem.

The task is to write a function that :

-takes a right argument integer singleton representing the number of
stars to place

-returns a three items vector describing a ‘reasonable’ star
arrangement where

• The first item is a vector of the number of stars in each row

• The second item is the horizontal spacing between colums

of stars

• The third item is the vertical spacing in between rows of stars

We have to assume that the ratio of height to base is 1:1.4

#.Problems.arrangeStars 10

3 2 3 2│ 0.2333333333 0.2

Input: 10

Output: 3 2 3 2 number of stars in each row

 0.2333333333 horizontal spacing

 0.2. vertical spacing

However, the second and the third elements of the output are derivable
from the first one, and this can be easily understood by watching a
drawing.

 H H H H H H

 F

F

 F

F

F

1.4=6H
H=1.4/6

1=5F F=1/5

So, if my output is 3 2 3 2, the number of columns is c=3 and the
horizontal space is H=1.4/6=1.4/2c; while the number of rows is r=4
and the vertical space is F=1/5=1/r+1.

In this way we have found that H is always H=1.4/2c, and F is always
F=1/r+1.

So the function of the alternated long.short pattern is:

ls←{(⊂(⍺⍴⍵)-⍺⍴0 1),(1.4÷⍵×2),(1÷⍺+1)}

It gives me the first
element (so the

number of stars in
each row) where ⍺⍴⍵

is the long row and
⍺⍴⍵ -1 is the short

row.

It gives me the second
element (so the

horizontal spacing
between colums

of stars).

It gives me the third element (
so the vertical spacing

between rows of stars).

However our input is not a couple (r,c), but a number, for example 22.

By starting from 22, we can only say that r and c must be between 1 and
22, and that r must be even, so it could be:

2 4 6 8 10 12 14 16 18 20 22 (11 possibilities)

and c could be:

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 (22 possibilities)

We have to examine all the possible couple of r and c to reject those
that are not correct (for example (r,c)=(4,7), because it would be 7 6 7
6; but the sum of stars is not 22) and in this particular example the
only possible arrangement is 6 5 6 5.

However, we have considered only one pattern (alternate long-short)
and so we have to repeat the reasoning for the other pattern and see
if there are other possible arrangement.

In this case, there are 15 possible layouts, and these are some of them:

How can I decide which of them is the best?

The best is the one in which the difference between H anf F is minimal,
because in this way the stars will be bigger and the arrangement will
be armoniuos.

z←stars x;e;ls;sl;als;ws;wd;reven;rodd

 e←{(⊂⍺⍴⍵),(1.4÷⍵+1),1÷⍺+1} ⍝ r{}c

 ls←{(⊂(⍺⍴⍵)-⍺⍴0 1),(1.4÷⍵×2),(1÷⍺+1)}

 sl←{(⊂(⍺⍴⍵)-⍺⍴1 0),(1.4÷⍵×2),(1÷⍺+1)}

⍝ als←{} it is a particular case of ls with even rows

 ws←{(⊂(⍺⍴⍵)-{{⍵,1,⍵}⍵⍴0}(⍺-1)÷2),(1.4÷⍵+1),(1÷⍺+1)} ⍝ odd rows

 wd←{(⊂(⍺⍴⍵)-{{⍵,1,1,⍵}⍵⍴0}(⍺-2)÷2),(1.4÷⍵+1),(1÷⍺)} ⍝ even rows

 reven←(x⍴0 1)/⍳x

 rodd←(x⍴1 0)/⍳x
 z←,(⍳x)∘.e(⍳x)
 z,←,(⍳x)∘.ls(⍳x)
 z,←,(⍳x)∘.sl(⍳x)
 z,←,rodd∘.ws(⍳x)
 z,←,reven∘.wd(⍳x)
 z←↑z
 z←(x=+/¨z[;1])⌿z ⍝ I take all the patterns in which the sum of stars is equal to x
 z←⊃↓({⍵=⌊/⍵}|-/z[;2 3])⌿z ⍝ I take the one in which the difference between horizontal and vertical space is minimum

I apply all the patterns

THE FINAL FUNCTION

The End

ANY QUESTIONS?

	How I won the Dyalog programming contest
	About me�
	How I heard about APL
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	However even the help of internet has been very useful ;)�
	Slide Number 9
	Slide Number 10
	PHASE I
	HE’S SO MEAN, HE HAS NO STANDARD DEVIATION (phase I)
	Slide Number 13
	I’D LIKE MY SCRAMBLED PLEASE (phase I)
	THE FUNCTION
	Find Locs �Bioinformatics Problem 2 (medium difficulty)
	Slide Number 17
	Slide Number 18
	Reversal Distance �Bioinformatics Problem 3 (high difficulty)
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	LONGEST SUBSEQUENCES �Bioinformatics Problem 3 (high difficulty)
	Slide Number 29
	Slide Number 30
	THE FINAL FUNCTION
	HtmlTable �Applications Problem 1 (low difficulty)
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	KENKEN �Recreation and Games Problem 3 (high difficulty)
	Slide Number 38
	Slide Number 39
	Let’s see the FillCage
	I explore all the possible combinations
	I check where the combinations are equal to the target number
	I discover the coordinates of the cube where there is 16
	After we have found the possible solutions, we can place them into the matrix, with the function ‘at’
	THIS IS THE FINAL FILLCAGE
	Slide Number 46
	THIS IS THE FINAL FUNCTION
	Identifying Maximal Repeats �Bioinformatics Problem 3 (high difficulty)
	Slide Number 49
	Slide Number 50
	Slide Number 51
	Slide Number 52
	Slide Number 53
	Slide Number 54
	Slide Number 55
	2048: Task 1 and 2 �Recreation and Games Problem 2 (medium difficulty)
	2048:Task 1 – Shifty Thinking
	Slide Number 58
	Slide Number 59
	Slide Number 60
	Slide Number 61
	2048:Task 2 – All a board
	Slide Number 63
	Slide Number 64
	Arrange Stars �Applications Problem 3 (high difficulty)
	Slide Number 66
	Slide Number 67
	 WYOMING PATTERN DOUBLE
	SHORT-LONG PATTERN
	LONG-SHORT PATTERN�
	EQUAL
	Slide Number 72
	Slide Number 73
	Slide Number 74
	Slide Number 75
	Slide Number 76
	Slide Number 77
	Slide Number 78
	Slide Number 79
	Slide Number 80
	The End
	ANY QUESTIONS?

