
    
 
 
 

 
 
  



  
 

• I come from Uboldo, a little town about 30 minutes 
from Milan.  

 

• I am 17 years old and so I currently am in my fourth 
year at Liceo Classico S.M. Legnani, and I mainly study 
humanistic subjects such as Latin and Ancient Greek. 

 

 



     

Despite I am not taught informatics at school, I was 
introduced to the world of programming by my math teacher 
Roberto Minervini. 
 
 
 
During a year-long course I learnt more and more about 
APL, (legrande’s book) until he proposed me to take part 
into the competition. 
 



• Of  course, I was aware that a high 
school student would stand little 
chance against undergraduates... 

…but, in my case, 
something made the 
difference… 

 





It is important to mention how the first step to the solution 
of each problem, apart from their most technical aspects, is 
of course their abstract understanding, and discussions and 
confrontations between me and my classmates were essential 
to find ideas that were later translated into APL language. 
 



Without those moments, I certainly would have never managed 
to achieve the victory in this competition. 
 
 
 
This is why I believe that working together can really help 
reaching extraordinary results which could never be achieved by 
yourself. 
 
 
 
 
 



However even the help of  
internet has been very useful ;) 
 



The contest consisted of two phases: 
 

Phase I had not very articulate problems that could each be solved with 
a single line of APL code . 

 
 

Phase II, on the other hand, consisted of three sets of problems 
(Bioinformatics, Applications problems and Recreational and Game 

problems) of varying complexity. 
 

  



Here,  I will take into consideration the problems of  
both phases that I liked most and that I found most 
interesting. 

 

However, in some cases, I will explain functions a little 
bit different from those I had sent for the contest, to 
simplify the exposure. 

 



PHASE I 

UNLUCKY 13 

We have to change every 13 in 12.99 into an array. 

So the function is: 

sol8←{⍵-0.01×13=⍵} 

 I obtain a Boolean 
vector in which 1 
corresponds to 13 

I multiply the 
boolean vector 
for 0.01 

I subtract from 
the starting 
vector the 
obtained vector 



HE’S SO MEAN, HE HAS NO STANDARD DEVIATION 
(phase I) 

The standard deviation of a population is calculated by taking square 
root of the average of the squared differences of the values from their 
average value. The mathematical formula is  

√∑(x-x)     ₂ 
n 

Write a dfn that returns the population standard deviation of its 
numeric array left argument. 



sol5←{a←,⍵ ⋄ ⊃0.5*⍨(⍴a)÷⍨+/2*⍨a-(⍴a)÷⍨+/a} 

THE FUNCTION 

X 
X-X 

(X-X) 
2 

∑ 

:n 

√ 

√∑(x-x)   /n 2 



I’D LIKE MY SCRAMBLED PLEASE (phase I) 

Write a dfn that takes a caracter vector as its left argument and returns 
the word’s letters inverted two by two, except the first and the last 
ones. 

 

 

For example, ‘argument’ becomes ‘agrmunet’. 



THE FUNCTION 

 sol9←{⊃,/(1↑⍵),({⌽¨⍵⊂⍨1 0⍴⍨⍴⍵}1↓¯1↓⍵),¯1↑⍵} 

 

I remove the first 
and the last letters 

I place the letters 
two by two 

I reverse the letters 
of each couple 

I take the 
last letter 

I take the first 
letter 



Find Locs  
Bioinformatics Problem 2 (medium difficulty)  

The problem is to write an Apl function which: 

-takes an integer vector representing L  L={l1, l2, l3, … , lx} 

-returns an integer vector representing X 

X contains numbers X={x1,x2,x3,x4…} and L is a collection of all possible 
difference between all possible couple of X. 

 

 

 Knowing L, we have to find X 

 

PHASE II 



We can see this example in order to have a graphical idea of what the 
set of differences is: 



This is the final function: 

 

I take the first n 
elements 

I put a 0 before 
because I suppose 
 that the first element 
is 0 

Firstly, knowing L, we have to understand how many 
elements X contains. If X contains n elements, then L 
contains an element for each pair of elements of X, so that  
 

I make the 
cumulative 
sum 



Reversal Distance  
Bioinformatics Problem 3 (high difficulty)  

One of the most studied problems in the field of computational biology is the 
string matching problem. 

Why? 

When trying to understand how genetic sequences mutate at the chromosome 
level we need to consider more global operations, rather than the basic ones. One 
of the most common global mutation is the reversing of a substring, operation 
also known as a reversal.  

In order to represent the sequence of genes on a chromosome, we are going to 
use permutations. More clearly, we are given the order of n genes in two related 
organisms; we only consider the genes that appear in both organisms. The order 
of the genes are represented by a permutation σ = (σ1,σ2,···,σn), where by σi we 
denote the position where the gene i appears. 

 
A reversal of a permutation creates a new permutation by inverting some interval 
of the permutation; (5,2,3,1,4)  , (5,3,4,1,2)  , and (4,1,2,3,5) are all reversal of 
(5,3,2,1,4). 

http://rosalind.info/glossary/reversal/


The first difficulty was understanding what a reversal is, in fact on Rosalind web site 
there was not a definition but an example. So I have examined the document ‘Sorting by 
reversals’ by Bogdan Pa¸saniuc.                                                                                                                    
A Reversal is a transformation that, taken a vector of ten elements  from 1 to 10, creates 
a second permutation according to the following  criterion: 

  

3 10     8 2 5 4 7 1 6 9 
1          2          3          4           5          6          7          8            9        10 

i=4                                                         j=9 

3 10     8 6 1 7 4 5 2 9 

g 

1          2          3          4           5          6          7          8            9        10 

A Reversal of [i,j] interval 
g(i, … , j-1, j)=(j, j-1, … , i) 
With g(k)=k for k ∉ [i,j] 



The function that makes the reversal is: 

reversal←{i←(¯1+⍵[1])↓⍳⍵[2]  ⋄  a←⍺ ⋄ a[i]←a[⌽i] ⋄ a}     

 

 

 

Here we are using the Apl function ‘reverse’ ⌽ 

 

So, applied to our example, it is 
                                             3 10 8 2 5 4 7 1 6 9 reversal 4  9 

This is the part 
that I want to 
modify (i) 

Here I modify i  (the interested part) 
with his reverse 

3 10     8 6 1 7 4 5 2 9 
4                                                                9 



Let’s talk about the problem: 

 

The problem  is to find the minimum number of reversals needed to 
transform one string into another, so the distance between two 
permutations. 

 

In fact, the minimum number of reversals used to transform one string into 
another has proven to be a very good estimate for the evolutionary distance 
between organisms. 

 



The first fundamenetal idea is that solving this problem 

3 10 8 2 5 4 7 1 6 9 reversalDistance 5 2 3 1 7 4 10 8 6 9 

Is exactly the same of solving this one 

1 2 3 4 5 6 7 8 9 10 reversalDistance 5 4 1 8 7 6 2 3 9 10 

This is helpful because now the left string is ordered and it is easier to 
pass from one permutation to the other. 

t←y⍳x 

I put instead of x the positions that numbers of x have in y 
         

 

 

Y       3 10 8 2 5 4 7 1 6 9 
X       5 2 3 1 7 4 10 8 6 9 
y⍳x    5 4 1 8 7 6 2 3 9 10 
 

3 10 8 2 5 4 7 1 6 9 

5 2 3 1 7 4 10 8 6 9 5 4 1 8 7 6 2 3 9 10 

1 2 3 4 5 6 7 8 9 10 

 

y 

x 

y 

x 



 

At this point, we have to understand how to solve the problem. 

In other words we have to understand how to pass from a disordered 
permutation like 5 4 1 8 7 6 2 3 9 10 to the ordered one.  

 

First of all, 

We add two fictitious numbers at the beginning and at the end so we force in 
some way permutation to be increasing. 

 
 

 

 

0 5 4 1 8 7 6 2 3 9 10 11 



A breakpoint of a permutation σ is a pair of adjacent positions [i,i + 1] such that σ[i] 
and σ[i+1] are consecutively decreasing or increasing.  

The function that calculates the number of bk is: 

bk←{+/1=|2-/0,⍵,1+⍴⍵} 

      

 
 

5 4 1 8 7 6 2 3 9 10 
These are all the 
breakpoints, in total 
they are 5 We have to use a 

reversal that improves 
the total number of bk  

5 4 1 3 2 6 7 8 9 10 
Now we have 6 
breakpoints 

It makes the module of the difference 
between each number and his following 

it counts the 1 

It adds a number at the end 



The idea is to improve each time the number of bk until we arrive to 10 
(this is a greedy algorithm) 

 

 

 

 

 

 

 

 

So, at each step we try to maximize the number of ‘’breakpoints’’. 

0 1 2 3 4 5 6 7 8 9 10 11 
bk=10 

0 5 4 1 3 2 6 7 8 9 10 11 

0 2 3 1 4 5 6 7 8 9 10 11 

0 2 1 3 4 5 6 7 8 9 10 11 



The final function: 
z←y revd x;t;bk;r;all;newt 
 t←y⍳x 
 bk←{+/1=|2-/0,⍵,1+⍴⍵} 
 r←{i←(¯1+⍵[1])↓⍳⍵[2] ⋄ a←⍺ ⋄ a[i]←a[⌽i] ⋄ a} 
 all←{a←,(⍳⍵,⍵)×(⍳⍵)∘.<⍳⍵ ⋄ a/⍨0<+/¨a}⍴t 
 
 z←0 
 
 :Repeat 
     newt←t∘r¨all 
     
     t←⊃newt[⊃⍒bk¨newt] 
     ⎕←t 
     z←z+1 
 :Until 10<bk t 

It finds all the couples in which 
the first element is lower than 
the second  

It takes these 
couples 

It makes all the possible reversal 

It orders the reversals putting at the beginnig the 
ones with the highest number of breakpoints, and 
takes the first one 



LONGEST SUBSEQUENCES  
Bioinformatics Problem 3 (high difficulty) 

Write an APL function, which: 

-takes an integer permutation vector of  lenght n 

-returns a 2-element vector where: 

• [1] is a longest increasing subsequence of the permutation vector 

• [2] is a longest decreasing subsequence of the permutation vector 

Example: 

longestSubsequence 5 1 4 2 3 

     1   2   3   5   4   2 



So we have to find the increasing and the decreasing subsequences of 
the permutation vector.  

However finding the increasing one is the same of finding the 
decreasing one, because if we change sign at each number and we 
find the increasing subsequence, then we change again the sign we 
find the decreasing subsequence. 

How can I find the increasing subsequence? 

 

 

 

We can focus on the last number (3) and search the subsequences that 
contain 3 as the last element. 

In this case 1-3 and 1-2-3, where the longest is the second one. 

5 1 4 2 3 



However it’s easier to start from the beginning and go ahead, with 
dynamic programming, by searching for each number all the previous 
numbers lower than the number itself. 

Let’s see an example (5, 1, 4, 2, 3) 

 

I take this one 

i=2 

i=3 

i=4 

i=5 



THE FINAL FUNCTION 

 z←lis x;LIS;j;i;lmax  

LIS←{⍵,[1.1],¨⍵}x                                   ⍝ initial matrix 

 lmax←{⊃⍵[⊃⍒⊃¨⍴¨⍵]}                     ⍝ it finds the longest subsequence 

 :For i :In 1↓⍳⍴x                                            ⍝    I start from the second item 

     j←(⍳⍴x)/⍨(i>⍳⍴x)∧x[i]>x                     ⍝ it finds all the indices lower than x[i] 

     :If 0<⊃⍴j                                                    ⍝ if there is at least one j 

         LIS[i;2]←⊂x[i],⍨lmax LIS[j;2]     ⍝ it updates the matrix 

     :EndIf 

 :EndFor 

z←lmax  LIS[;2]                                         ⍝ it takes the longest subsequence 



HtmlTable  
Applications Problem 1 (low difficulty)  
The task is to write an Apl function that: 

-takes a matrix of data as its right argument 

-returns a character vector of HTML to render the matrix as an HTML 
table 

This 
should be 
the result: 



The first operation we do is to put a ‘td’ before and ‘</td’ after each cell 
of the matrix 



Now we pack the lines, by putting a ‘tr’ before and a ‘</tr’ after 



Then we pack the entire table 



And finally we clean the nested data 

 

 

 

And we obtain the final function 



KENKEN  
Recreation and Games Problem 3 (high difficulty)  

Your task is to write a program which will solve a KenKen puzzle. 
The program: 
-takes a 3-column matrix right argument 

•Column 1 contains the integer target number      
•Column 2 contains a character scalar representing the 
operation  (one of +  -  x  : ) 
•Column 3 contains a vector of cell coordinates that make up 
the cage 
 

-returns an integer matrix representing the solution to the 
puzzle 



Solving this problem consist in solving a sudoku, and the solution starts from 
the tecnique thought by John Scholes, presented in the YouTube video “A 
Sudoku Solver in APL”. 

However this tecnique solves a generical sudoku, while we have to solve a 
KenKen. 

The problem of a KenKen is the fact that there is a strong condition on each 
cage: 

-there is a target number  t=16 

-there is an operation  o=‘x’ 

-there are involved cells (1 1),(1 2),(2 2) that tell us the dimension of the cage  
k=3 

 



The first problem is: can I write a function, the FillCage, which tries to 
fill with numbers the indicated cells so that they respect the 
conditions? 

 

 
So the embryonic function of this 
solution is the FillCage which has: 
-Input 
       -n dimension of KenKen 
        -t integer target number 
        -o operation + - x : 
         -v vector of cells coordinates 
           that make up the cage 

-Output: 
     -the matrix filled only in the 
       cells indicated by the Input 



Let’s see the FillCage 

Above it’s shown the structure of the argument, as you can see the third element of the vector is a vector that 
contains the coordinates of the cells to fill. This makes the input a nested vector. 
Also the output is a vector of matrices, so it’s nested too. 

As you can see there are solutions 
that are not correct, but we are 
going to remove them with the 
‘sum’ function in the kenken 
function 



I explore all the possible combinations 



I check where the combinations are equal to the target number  



I discover the coordinates of the cube where there is 16 

In this way I find the sets of number whose product is 16 

where←{(,0≠⍵)/,⍳⍴⍵} 
It gives me the vector of all 
the coordinates It takes all the 1 (searches 

where ⍵ ≠0) 



After we have found the possible solutions, we 
can place them into the matrix, with the function 

‘at’ 

at←{a←(n×n)⍴0 ⋄ a[(,⍳n n)⍳⍺]←⍵ ⋄ n n⍴a} 

It makes the matrix 
It places the numbers (⍵) 
in the cells (⍺) 

For example: 



THIS IS THE FINAL FILLCAGE 
Z←n fillcage x;t;o;c;k;f;m;at  ⍝ we have to search and place the number 

⍝ n dimension of kenken 

 t o c←x 

 f←{|⍎⍕⍺,o,⍵}                        ⍝ it executes char operation in a function 

 at←{a←(n×n)⍴0 ⋄ a[(,⍳n n)⍳⍺]←⍵ ⋄ n n⍴a}    

 k←⊃¯1+⍴c 

 :If o=' ' 

     z←⊂c at t 

 :Else 

   m←(⍳n)({⍺∘.f ⍵}⍣k)⍳n       ⍝ I make all the possible combinations 

   z←c∘at¨(t=,m)/,⍳⍴m   ⍝ I take the coordinates of the cells with numbers that make the target number 

 :EndIf 



Now I repeat this process  for the second cage, and I obtain 8 
possibilities, so in total they are 16, among which I can take only the 
ones that don’t have the same number repeated on a row or a 
column. 

So I have to define a sum function that doesn’t accept repetitions. 

sum←{a←,⍺∘.+⍵ ⋄ f←{∧/{{⍵≡∪⍵}⍵~0}¨↓⍵} ⋄ a/⍨(f¨⍉¨a)∧f¨a} 

It makes all the 
combinations of the sum 
of two cages 

it controls that there aren’t 
two numbers repeated on 
the same row  

I repeat this process for each cage and i find the final solution. 

It applies f on the transpose of a, 
so makes the test also on the 
columns 



THIS IS THE FINAL FUNCTION 

z←kenken x;n;sum 

 n←0.5*⍨⊃⍴⊃,/x[;3]    ⍝ dimension of the KenKen 

 sum←{a←,⍺∘.+⍵ ⋄ f←{∧/{{⍵≡∪⍵}⍵~0}¨↓⍵} ⋄ a/⍨(f¨⍉¨a)∧f¨a} 

 z←⊃⊃sum/n∘fillcage¨↓x 

 



Identifying Maximal Repeats  
Bioinformatics Problem 3 (high difficulty) 

The task is to write an Apl function which: 

-takes a character vector representing a DNA string 

-returns a vector of character vectors containing all 
maximalrepeats in the DNA string having a length greater 
or equal to 20 



In order to semplify the problem I considered a short string used as an 
example by the Rosalind website. 

So I took the DNA string  'TAGTTAGCGAGA‘, in which I have to find a 2-
long substring, not a 20-long one. This economizes everything   

L←2 ⍝ minimum length of maximal repetition 

 

The problem is divided in two points, in fact I have to find all the 
substrings which: 

1)repeat, so there must be at least two of them 

2)are not extensible (so they can’t be done in a better way), because I 
have to find the maximal substring, the longest repeated one 

‘’For example, "AG" is a maximal repeat in "TAGTTAGCGAGA" because 
even though the first two occurrences of "AG" can be extended left into 
"TAG", the first and third occurrences differ on both sides of the repeat; 
thus, we conclude that "AG" is a maximal repeat. Note that "TAG" is 
also a maximal repeat of "TAGTTAGCGAGA", since its only two 
occurrences do not still match if we extend them in either direction.’’ 



The idea I followed is the "Chrochemore algorithm" because it perfectly 
combines with the Apl function ‘find’ ( ⍷). So: 

•For each letter of the Dna I consider how it can be extended 

•I obtain the substrings of length 2 and I try to extend them 

•I go on with this process until I obtain the longest repeated substring 

 

This algorithm seems slow, but it ‘s not like that.  



A←M←(,¨'ACGT'),[1.1]x∘{(⍺=⍵)/⍳⍴⍺}¨'ACGT' 

With this function I search where the letters ‘ACGT’ are in the dna 
string, and at the beginning this is the result: 

 

 

 

 

 

 

 

 

This is the first turn. Now 
A and M coincide, but M 
will remain the same, 
while A will evolve 
 



Now, I try to extend the substrings, by creating that of two elements in this way 
 

A 
 
 
C 
 
 
G 
 
 
T 
 
 

 A                C           G                  T  
A←((,a)/,K),[1.1]⍨A[b[;1];1],¨'ACGT'[b[;2]] 
 

K←A[;2]∘.(d f)M[;2] 
 

I find the positions of the 
couples I find the repeated strings and their 

positions 



AG  
 
 
GA 
 
 
 
TA 

      A                  C               G                              T 

AGA                AGC 

TAG 

Only this survives because 
we have found it twice 

I go on with this process to find the 
substrings of three letters 



:Repeat 

     d←d+1 

     K←A[;2]∘.(d f)M[;2] 

     b←↑{(,⍳⍴⍵)/⍨,⍵}a←1<⊃¨⍴¨K       it finds the positions of the repeated substrings 

     A←((,a)/,K),[1.1]⍨A[b[;1];1],¨'ACGT'[b[;2]]     it finds the repeated substrings 

     z←z g A     it removes the shorter substrings that are contained in the longer substring that I have found 

     z←z⍪A⌿⍨,⊃¨L≤⍴¨A[;1]      it puts together the obtained results 

 :Until 0=+/,a 

 z←⌽z[;1] It reverses the results to put at the beginning the most repeated substring 

z←maxR x;M;A;f;K;L;b;a;d;g 
 L←20 ⍝ number of minimum occurrences 
 f←{⍺/⍨(⍳⍴⍺)∊(⍺⍺=a)/(⍴a←,⍵∘.-⍺)⍴⍳⍴⍺} 
g ←*next slide 
A←M←(,¨'ACGT'),[1.1]x∘{(⍺=⍵)/⍳⍴⍺}¨'ACGT' 
 d←0 ⍝ length of the string that I want to extend 
 z←0 2⍴⍬ 
 

It will be used to search the positions in which the substrings can 
be extended 

FINAL FUNCTION 



g←{ 

     a←{(⍴⍵)⍴∨/¨,⍵}⍺[;1]∘.⍷⍵[;1] 

     b←↑,⍳n←(⊃⍴⍺),⊃⍴⍵ 

     b←n⍴,⊃¨(⍴¨⍺[b[;1];2])=⍴¨⍵[b[;2];2] 

     ⍺⌿⍨~∨/b∧a 

 } 

  

 
  

It searches which substrings for example of 2 
elements are contained in that of 3 elements 

It controls if the shorter substring occurs the same number of times as 
the longer substring in which it is contained 

It removes the shorter substrings that are always contained 
in the longer one 



2048: Task 1 and 2  
Recreation and Games Problem 2 (medium difficulty)  

These problems are based on the game 2048, first implemented  on the 
web during March 2014 by Gabriele Cirulli. 

At the start of the game, 2 random cells of 4x4 grid are assigned a value of 
2; the user has to indicate  a direction (up, down, left, right) to side the 
cells an the cells slide as far as possible in the chosen direction until they 
are stopped by another cell or the edge of the grid.  If two cells of the 
same number collide, they will merge into a cell with the total value of the 
two cells that collied.                                                                                                          
For example: 

                     This                                           Sliding                               Becomes This 

2 4 4 4 

2 4 4 4 2 8 4 0 

0 2 4 8 



2048:Task 1 – Shifty Thinking 
The task is to write a function, shift2048, which:  
- takes a right argument which is a 4 element integer vector 
representing 4 cells (0 indicates a blank cell)  

 - takes a Boolean scalar left argument which indicates the direction to 
shift (1 for shift to the right, 0 for shift to the left) 

- returns a 4 element integer vector representing the result after the 
shift.  
Examples:  
      1 shift2048 2 4 4 8 

0 2 8 8   
      0 shift2048 2 4 4 8 

2 8 8 0 

 



Our function will work this way: 

1 shift2048 2 4 4 8 

0 2 8 8   8 

 

In fact not only it will return the vector, but also the sum 8 and this will 
be useful for the second part of the problem. 

 

The main idea of the function is that if I find  the way to shift to the left, 
I will be able to shift to the right,too. This semplifies everything 
because I can do all the reasonings at once. 

   



I will explain better 

 

         x=                                                               1      right shift 

 

 

                   I reverse the starting vector 

      O x=                                                              o         left shift 

 

                                                                                                    I reverse again and the result is the same 

                                                                                                   

2 4 4 8 0 2 8 8 

0 2 8 8 

8 4 4 2 8 8 2 0 



Now let’s see the logic of the solution: 

2 4 4 8 2 8 8 0 

2 4 4 8 

4 4 8 0 

0 1 0 0 

2 8 4 8 

0 0 1 0 

1 1 0 1 

2 8 8 

2 8 8 0 

X 
 
 
s0 (x) 

a←{<\⍵=s0 ⍵}x 

z← x + ax 
 
 
b← s1 a 
 
 
~ b 
 
 
(~ b)/ x+ax 
 
 
z ←(⍴x)↑(~b)/z 
 
 
 

0          left shift 

It takes the couple of equal numbers 

It makes the sum of x and ax 

It makes the shift to the right of a 

It denies b 

It adapts b on z 

It adds a zero at the end 

Finally I add the sum (8) 
s←+/2×x×a 
 

2 8 8 0 8 



The final function is: 

  z←y shift2048 x;s0;s1;a;b  

  s0←{1↓⍵,0}                 ⍝ left shift (I remove the first number and I add a 0) 

   s1←{¯1↓0,⍵}               ⍝ right shift 

  :If y=1 ⋄ x←⌽x ⋄ :EndIf 

   a ←<\ x=s0  x               ⍝   the result is 0 1 0 0    <\ takes only the 1 at left if there are more 1 

• z←x+xxa                     ⍝  the result is 2 8 4 8 

   b ←s1 a                         ⍝   the result is 0 0 1 0  

• z ← (⍴x)↑(~b)/z          ⍝ the result is   2 8 8 0            

• z ← (⍴x)↑z/z ⍨z≠0   ⍝ if there are 0 at the beginning, in the middle or at the end I remove 
them 

  :If y=1 ⋄ z←⌽z ⋄ :EndIf 

s←+/2×x×a                      ⍝ s is the sum 

 z←z,⊂,s 



2048:Task 2 – All a board 

Now the problem becomes two-dimensional, because there is a Board, 
but if we imagine the single rows of the board as vectors and we apply 
the shift to each row, it is clear that applying the shift to the matrix  is 
equivalent to apply it to each row. 

 

The two vertical shifts (up and down) added to the horizontal ones (left 
and right) 

Also, the vertical shifts can be traced to the horizontal shifts, after 
rotating the matrix and the result 



This is what happens graphically: 

0 0 4 2 
2 4 16 4 
2 8 8 32 
64 2 2 4 

4 64 0 0 
4 8 2 0 
4 16 8 2 
2 4 32 4 

0 2 2 64 
0 4 8 2 
4 16 8 2 
2 4 32 4 

4 4 4 32 
64 8 16 4 
0 2 8 32 
0 0 2 4 

current 
 2 up 

  0  
left shift 

O current 

0shift2048Ocurrent 

4 4 4 32 
64 8 16 4 
0 2 8 32 
0 0 2 4 

O 



z ←y  board2048  x;s2;k; 

⍝ 0 ←  

⍝ 1  → 

⍝ 2 ↑  

⍝ 3 ↓ 

⍝ 0 ←     2 ↑ 

⍝ 1 →     3 ↓ 

k ←2|y ⍝ (2| calculates the residue) if y=1 it remains 1; if y=0 it remains 0; if y=2 it becomes 0; if y=3 it becomes 1 

:If y>1 ⋄   x ← ⍉x ⋄ :EndIf 

z ←↑k shift2048bis ¨↓x            ⍝ I turn the matrix into a vector of rows,I apply shift2048, then I make the matrix again 

:If y>1                                               ⍝ vertical shift  

z ← ⍉z                                           ⍝ I rotate the matrix  

Z ←{(⁻ 1↓ω), ⁻ 1↑ ω}z                 ⍝ I put the sum  next to the matrix , in fact when the matrix rotates, even the sums rotate  

:EndIf 

s ← +/, ⊃ ¨⁻1 ↑[2]z                       ⍝ sum of sums of all rows 

z ←(⊂ ⁻ 1 ↓[2]z),s                         ⍝  I put the sum next to the matrix and I remove the last column 

FINAL FUNCTION 



Arrange Stars  
Applications Problem 3 (high difficulty)  
Imagine that a new state is admitted to United States. How could the 
USA’s flag change? 

 

 

 

 

 

 

Given a number of stars, we have to choose a new armonious 
arrangement  of the stars. 



The problem is to understand what ‘armonious’ means. 

To solve this problem we relied on the work of Skip Garibaldi, American 
mathematician, who defined all the possible patterns to arrange the 
stars. 

Let’s see them: 

• 1) Wyoming pattern single;  

• 2) Wyoming pattern double; 

•  3) Short-long pattern;  

• 4) Long-short pattern; 

• 5) Alternate long-short; 

• 6) Equal. 

 



                                  WYOMING PATTERN SINGLE 

                            With a single shorter line in the center 



           WYOMING PATTERN DOUBLE 
                                   With two shorter lines in the center 



SHORT-LONG PATTERN 
  With short and long lines alternated 



LONG-SHORT PATTERN 
 With long and short lines alternated 



EQUAL 



Another important resource to solve this problem is the widget 
‘nextbigfuture’ that allows you to have a graphical image of the 
modified flag. 

 

 

 

This is useful, in particular, to control if the solution obtained is  correct. 

 

http://nextbigfuture.com/2010/06/51-to-100-states-of-america-flag.html


But let’s see the details of the problem. 

The task is to write a function that : 

-takes a right argument integer singleton representing the number of                             
stars to place 

-returns a three items vector describing a ‘reasonable’ star 
arrangement where 

• The first item is a vector of the number of stars in each row 

• The second item is the horizontal spacing  between colums  

of stars 

• The third item is the vertical spacing in between rows of stars 

 

We have to assume that the ratio of height to base is 1:1.4 

 



#.Problems.arrangeStars 10 

3 2 3 2│ 0.2333333333 0.2 

 

Input: 10 

Output: 3 2 3 2               number of stars in each row 

                 0.2333333333 horizontal spacing  

                 0.2.                     vertical spacing   

 

However, the second and the third elements of the output are derivable 
from the first one, and this can be easily understood by watching a 
drawing. 



          H             H            H            H           H             H 

 F 

F 

 F 

F 

F 

1.4=6H 
H=1.4/6 

1=5F     F=1/5 



So, if my output is 3 2 3 2, the number of columns is c=3 and the 
horizontal space is H=1.4/6=1.4/2c; while the number of rows is r=4 
and  the vertical space is F=1/5=1/r+1. 

In this way we have found that H is always H=1.4/2c, and F is always 
F=1/r+1. 

So the function of the alternated long.short pattern is: 

ls←{(⊂(⍺⍴⍵)-⍺⍴0 1),(1.4÷⍵×2),(1÷⍺+1)} 

It gives me the first 
element (so the 

number of stars in 
each row) where ⍺⍴⍵ 

is the long row and 
⍺⍴⍵ -1 is the short 

row. 

It gives me the second 
element (so the  

horizontal spacing  
between colums  

of stars). 
 

It gives me the third element ( 
so the vertical spacing  

between rows of stars).  



However our input is not a couple (r,c), but a number, for example 22. 

By starting from 22, we can only say that r and c must be between 1 and 
22, and that r must be even, so it could be: 

2 4 6 8 10 12 14 16 18 20 22 (11 possibilities) 

and c could be: 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 (22 possibilities) 

We have to examine all the possible couple of r and c to reject those 
that are not correct ( for example (r,c)=(4,7), because it would be 7 6 7 
6; but the sum of stars is not 22) and in this particular example the 
only possible arrangement is 6 5 6 5. 

 



However, we have considered only one pattern (alternate long-short) 
and so we have to repeat the reasoning for the other pattern and see 
if there are other possible arrangement.  

In this case, there are 15 possible layouts, and these are some of them: 

 



How can I decide which of them is the best? 

The best is the one in which the difference between H anf F is minimal, 
because in this way the stars will be bigger and the arrangement will 
be armoniuos. 

 



z←stars x;e;ls;sl;als;ws;wd;reven;rodd 

 e←{(⊂⍺⍴⍵),(1.4÷⍵+1),1÷⍺+1} ⍝ r{}c 

 ls←{(⊂(⍺⍴⍵)-⍺⍴0 1),(1.4÷⍵×2),(1÷⍺+1)} 

 sl←{(⊂(⍺⍴⍵)-⍺⍴1 0),(1.4÷⍵×2),(1÷⍺+1)} 

⍝ als←{} it is a particular case of ls with even rows 

 ws←{(⊂(⍺⍴⍵)-{{⍵,1,⍵}⍵⍴0}(⍺-1)÷2),(1.4÷⍵+1),(1÷⍺+1)} ⍝ odd rows 

 wd←{(⊂(⍺⍴⍵)-{{⍵,1,1,⍵}⍵⍴0}(⍺-2)÷2),(1.4÷⍵+1),(1÷⍺)} ⍝ even rows 

 reven←(x⍴0 1)/⍳x 

 rodd←(x⍴1 0)/⍳x 
 z←,(⍳x)∘.e(⍳x) 
 z,←,(⍳x)∘.ls(⍳x) 
 z,←,(⍳x)∘.sl(⍳x) 
 z,←,rodd∘.ws(⍳x) 
 z,←,reven∘.wd(⍳x) 
 z←↑z 
 z←(x=+/¨z[;1])⌿z ⍝ I take all the patterns in which the sum of stars is equal to x 
 z←⊃↓({⍵=⌊/⍵}|-/z[;2 3])⌿z ⍝ I take the one in which the difference between horizontal and vertical space is minimum 
 

I apply all the patterns 

THE FINAL FUNCTION 



The End 



ANY QUESTIONS? 
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