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Abstract

Abstract

Computation on large Boolean arrays is becoming more
prevalent, due to applications such as cryptography, data
compression, and image analysis and synthesis. The advent of
bit-oriented vector extensions for microprocessors and of GPUS
presents opportunities for signi�cant performance
improvements in such Boolean-dominated applications. Since
APL is one of the few computer languages that supports dense
(one bit per element, eight bits per byte), multi-dimensional
Boolean arrays as �rst-class objects, it has naturally attracted
research into optimizations for improved performance of
Boolean array operations. This paper presents some of the
Single Instruction, Multiple Data (SIMD) Boolean-related
optimizations that have appeared in APL implementations, and
suggests ways in which those optimizations might be exploited
using contemporary hardware.
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A BIT of Introduction

▶ The bit: the fundamental unit of digital computing

▶ Yet, few computer languages treat bits as basic data types

▶ Fewer support multi-dimensional bit arrays (8 bits/byte)

▶ Fewer yet provide array operations on Boolean arrays

▶ Boolean arrays appear in image analysis, cryptography, data
compression. . .

▶ The burden of bit twiddling is left to the programmer

▶ APL, however, simply treats Booleans as the integers 0 and 1

▶ Boolean arrays are grist to APL's data-parallel, expressive mill!
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Why Does APL have One-bit Booleans?

▶ Blame Larry Breed: while designing APL\360,
▶ Breed decided to store Booleans densely, eight bits/byte

▶ Booleans were stored in row-major order, as are other arrays

▶ This eased indexing, structural and selection verbs, etc.

▶ Single-bit indexing was more expensive than word indexing. . .

▶ But it opened the door to SIMD Boolean array optimizations

▶ Those optimizations are the subject of this talk

▶ Speedups were usually 8X or 32X, but sometimes even more

▶ A half century later, Breed's decision remains brilliant

▶ These optimizations are still important and relevant

▶ GPU and SIMD vector facilities can exploit them
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Scalar Verbs

▶ Breed optimized many rank-0 (scalar) Boolean verbs e.g.

▶ Boolean verbs: ^,©,~,°,¹. . .
▶ Relational verbs: <,¤,=,¦,>,¨
▶ SIMD application, a word at a time (32 bits on S/360)

▶ One or more of us optimized scalar extension, e.g.

▶ 1^B would produce B,
▶ without doing any element-wise computations
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Strength Reduction: a Classic Compiler Optimization

▶ Strength reduction: replace one operation by a cheaper one

▶ E.g., replace multiply by a power of two with a shift

▶ In APL, Boolean B1«B2 becomes B1^B2
▶ In APL, Boolean B1ÄB2 becomes B1^B2
▶ In APL, Boolean B1*B2 becomes B1¦B2
▶ Performance boosts: simpler verbs, SIMD operation, no

conditionals, stay in Boolean domain

▶ Performance boosts: In a compiler, opportunity for other
optimizations
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Structural and Selection Verbs I

▶ catenate, laminate, rotate, reverse, rank, from,

▶ merge, take, drop. . .

▶ These verbs, e.g., 1 0 1, 0 1 1 0 have to handle array
indices that are not byte-aligned

▶ We would like these to run SIMD, word-at-a-time, on Booleans

▶ We introduced rbemove: generalized stride-1 (ravel order)
copier verb

▶ snk[sni+Ék]ûsrc[sri+Ék]
▶ Does not corrupt out-of-bounds array elements

▶ Operates in SIMD mode(s) whenever possible

▶ Supports all type conversions
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Structural and Selection Verbs II

▶ Operation on non-trailing array axes:

▶ SIMD copy entire subarrays at once, e.g.
1á2 3 4ÒÉ24

▶ rbemove will copy 12 adjacent array elements at once
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Structural and Selection Verbs III

▶ 2 3 4ÒÉ24
0 1 2 3
4 5 6 7
8 9 10 11

12 13 14 15
16 17 18 19
20 21 22 23

▶ 1á2 3 4ÒÉ24
12 13 14 15
16 17 18 19
20 21 22 23

0 1 2 3
4 5 6 7
8 9 10 11
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Reverse and Rotate on Booleans

▶ Bernecky, 1979: fast algorithms for ÷× & Á÷×
▶ last-axis Boolean ÷× did a byte at a time, w/table lookup. . .

RevTab[uint8 ×]
▶ then byte-aligned the resulting vector, SIMD, a word at a time

▶ All non-last-axis operations copied entire cells at once, using
rbemove
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Reverse and Rotate Performance on Booleans

Figure: Rotate Rewritten: 50 milliunits = 2.85msec
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Reshape

▶ Reshape allows element reuse, e.g.:
8Ò1 0 0

1 0 0 1 0 0 1 0
▶ Breed optimized Boolean reshape this way:

▶ Copy the argument to the result

▶ Catenate the partial result to itself, doubling its length, until
its tail is byte-aligned.

▶ Do an overlapped move, or �smear" of the result to its tail
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Transpose I

▶ An unlikely candidate for SIMD, it would seem. . .

▶ Áô× with unchanged trailing axes

▶ Tû2 2 2 3ÒÉ24
0 1 2
3 4 5

6 7 8
9 10 11

12 13 14
15 16 17

18 19 20
21 22 23
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Transpose II

▶ Transpose with unchanged trailing axes

▶ SIMD copy six elements at once (rbemove)

▶ 1 0 2 3ôT
0 1 2
3 4 5

12 13 14
15 16 17

6 7 8
9 10 11

18 19 20
21 22 23
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Boolean Transpose III

▶ Hacker's Delight: fast 8x8 Boolean matrix transpose

▶ Kernel: 16 logical & shift operations on 64-bit ravel

▶ Uses perfect shu�e (PDEP) on any power of two shape

▶ Dyalog APL (Foad): 10X speedup on large Boolean array
transpose

▶ Kernel generalizes to any power of two, e.g., 16x16, 32x32
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Search Verbs

▶ Bernecky, 1971: fast indexof and set membership

▶ All data types except reals with Ìct¨0
▶ (ÁÉ0 1)[×]
▶ (ÁÉÌav)[×]
▶ Booleans: Vector search for �rst byte of interest

▶ Then, table lookup to get bit o�set

▶ Speedup: lots - linear time vs. quadratic time

▶ Created indexof kernel utility for interpreter use
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Reduce

▶ Roger D. Moore, 1971: fast +/× Boolean vector

▶ Initial use was compress and expand setup:
+/Á was taking longer than compress/expand

▶ S/360 translate vector op: Boolean bytes into population
counts, SIMD 124 bytes per segment

▶ SIMD integer sum of 4-byte words gave 4-element partial sum

▶ Shift-and-add gave �nal result

▶ Segment size limited to prevent inter-byte carries

▶ Larry Breed haiku:
+/+¯4 resh PopcountTab[uint8 ×]

▶ Algorithm used brie�y for ©/× and ^/×
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Reduce and Scan

▶ E.E. McDonnell, 1974: elegant APL models of Boolean scan

and reduction for relationals

▶ Result was catenation of pre�x, in�x, & su�x expressions

▶ Used Bernecky's fast indexof

▶ Result: linear-time, word-at-a-time, SIMD Boolean scan &
reduce
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Scan

▶ John Heckman, 1970 or 1971: user-de�ned APL scan verbs

▶ Now widely used in GPUs

▶ Recursive doubling:
rûnescanall y;s;biw

ã Not-equal scan
rûy
biwûÓ2ð1ÓÒy
:For s :In 2*Ébiw ã Heckman
rûr¨(-Òr)Ù(-s)Õr

:EndFor
▶ SIMD, word-at-a-time algorithm for Boolean ¨\× and =\×

along last axis

▶ Bernecky's simple C Heckman implementation is about 3X
faster than Dyalog APL 15.0 (vector only)

▶ So far, no X86 vectorization; perhaps we can do even better
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STAR Inner Product I

▶ IPSA, 1973: Boolean array inner products were painfully slow

▶ Control Data (CDC) wanted APL for their new STAR-100
vector supercomputer

▶ Group from Toronto I.P. Sharp Associates hired to work on the
interpreter

▶ Memory-to-memory vector instructions needed stride-1 access
for good performance

▶ Bernecky: heard about STAR APL stride-1 inner-product
algorithm;

▶ redesigned Boolean inner product to use STAR algorithm
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Classic Inner Product Algorithm

ZûX ipclassic Y;RX;CX;CY;I;J;K         
 RXû(ÒX)[0]                             
 CXû(ÒX)[1]                             
 CYû(ÒY)[1]                             
 Zû(RX,CY)Ò0.5                          
 :For I :In ÉRX                         
  :For J :In ÉCY                     
   Z[I;J]û0                       
   :For K :In ÉCX                 
    Z[I;J]ûZ[I;J]+X[I;K]«Y[K;J]
   :EndFor                        
  :EndFor                            
 :EndFor                                
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STAR Inner Product Algorithm

ZûX ipstar Y;RX;CX;CY;I;J;Xel    
 RXû(ÒX)[0]                       
 CXû(ÒX)[1]                       
 CYû(ÒY)[1]                       
 Zû(RX,CY)Ò0                      
 :For I :In ÉRX                   
  :For J :In ÉCX               
   XelûX[I;J]               
   Z[I;]ûZ[I;]+Xel«Y[J;]    
  :EndFor                      
 :EndFor                          
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STAR Inner Product II

▶ Inner product loops reordered; key bene�ts, for Á f.g ×
▶ Each Á element, Xel, fetched only once

▶ Type conversion of Xel no longer time-critical

▶ Xel analysis amortized over entire row: Y[J;]
▶ Scalar-vector application of g
tmpûXel g Y[J;]

▶ Vector-vector f-reduce into result row Z[I;]
Z[I;]ûZ[I;] f tmp
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SIMD Boolean STAR Inner Product Basics

▶ Scalar-vector Xel g Y[J;] is word-at-a-time Boolean SIMD

▶ Vector-vector Z[I;]ûZ[I;] is word-at-a-time Boolean SIMD

▶ We are already a lot faster

▶ The STAR APL model does +.« 90X faster than the Classic
model, on 200x200 real matrices

▶ Unfortunately, the APL primitive is still 30X faster than the
APL model
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Boolean STAR Inner Product Optimizations

▶ Consider tmpûXel ^ RO in Á©.^×
▶ If Xel is 0, then tmp is all zeros: no g computation

▶ If Xel is 1, then tmp is just RO: no g computation

▶ f is ©, so its identity element is 0
▶ Hence, if Xel is 0, we can skip the g-reduction
▶ Similarly, if Xel is 1, we can do the g-reduction using RO
▶ This gives us poor man's sparse arrays, which works on other

data types, too

▶ Final result: Boolean inner products on SHARP APL/PC ran
much faster than APL2 on huge mainframe
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Control Flow Becomes Data Flow

▶ Booleans as arithmetic: replace control �ow by data �ow

▶ Conditionals can often be removed, e.g.:

▶ Give those with salary, S, less than Tiny a raise of R
SûS+R«S<Tiny

▶ Knuth calls this capability Iverson's convention for

characteristic functions

▶ See also the verb mqs, for �nding quoted text

▶ See also the Bernecky-Scholz PLDI2014 Arrays Workshop
paper: Abstract Expressionism
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Boolean Sort

▶ Sort ascending for Booleans:
SortAscendingû{(-Ò×)Ù(+/×)Ò1}

▶ Boolean sort can use Moore's SIMD +/Boolean in its �rst
phase of execution

▶ Second phase can be performed in SIMD, e.g., by a single SAC
data-parallel with-loop.

Robert Bernecky APL SIMD Boolean Array Algorithms

Boolean Grade

▶ SIMD Boolean upgrade:
ugû{((~×)/ÉÒ×),×/ÉÒ×}

▶ Not stunningly SIMD, though.
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Boolean Matrix Operations

▶ Shard: For byte-oriented algorithms, a possibly empty sub-byte
fragment of a matrix row, extending from the start of the row
to next byte, or from the last byte in the row to the end of the
row.

▶ Handling shards is a nuisance; it destroys algorithmic beauty

▶ Handling shards is also slower than beautiful algorithms

▶ Consider:
1 1 0 0, 0 0 0 0, 1 0 1 0, 1 1 1 0

▶ The vector 1 0 1 is a shard, because its elements start at a
byte boundary, but end in mid-byte.

▶ The vector 0 1 1 1 0 is a shard, because it starts in
mid-byte, and ends on a byte boundary.

▶ A similar de�nition holds for word-oriented algorithms
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