
APL SIMD Boolean Array Algorithms

Robert Bernecky

Snake Island Research Inc, Canada

bernecky@snakeisland.com

October 5, 2016

Robert Bernecky APL SIMD Boolean Array Algorithms

Abstract

Abstract

Computation on large Boolean arrays is becoming more
prevalent, due to applications such as cryptography, data
compression, and image analysis and synthesis. The advent of
bit-oriented vector extensions for microprocessors and of GPUS
presents opportunities for signi�cant performance
improvements in such Boolean-dominated applications. Since
APL is one of the few computer languages that supports dense
(one bit per element, eight bits per byte), multi-dimensional
Boolean arrays as �rst-class objects, it has naturally attracted
research into optimizations for improved performance of
Boolean array operations. This paper presents some of the
Single Instruction, Multiple Data (SIMD) Boolean-related
optimizations that have appeared in APL implementations, and
suggests ways in which those optimizations might be exploited
using contemporary hardware.

Robert Bernecky APL SIMD Boolean Array Algorithms

A BIT of Introduction

▶ The bit: the fundamental unit of digital computing

▶ Yet, few computer languages treat bits as basic data types

▶ Fewer support multi-dimensional bit arrays (8 bits/byte)

▶ Fewer yet provide array operations on Boolean arrays

▶ Boolean arrays appear in image analysis, cryptography, data
compression. . .

▶ The burden of bit twiddling is left to the programmer

▶ APL, however, simply treats Booleans as the integers 0 and 1

▶ Boolean arrays are grist to APL's data-parallel, expressive mill!

Robert Bernecky APL SIMD Boolean Array Algorithms

Why Does APL have One-bit Booleans?

▶ Blame Larry Breed: while designing APL\360,
▶ Breed decided to store Booleans densely, eight bits/byte

▶ Booleans were stored in row-major order, as are other arrays

▶ This eased indexing, structural and selection verbs, etc.

▶ Single-bit indexing was more expensive than word indexing. . .

▶ But it opened the door to SIMD Boolean array optimizations

▶ Those optimizations are the subject of this talk

▶ Speedups were usually 8X or 32X, but sometimes even more

▶ A half century later, Breed's decision remains brilliant

▶ These optimizations are still important and relevant

▶ GPU and SIMD vector facilities can exploit them

Robert Bernecky APL SIMD Boolean Array Algorithms

Scalar Verbs

▶ Breed optimized many rank-0 (scalar) Boolean verbs e.g.

▶ Boolean verbs: ^,©,~,°,¹. . .
▶ Relational verbs: <,¤,=,¦,>,¨
▶ SIMD application, a word at a time (32 bits on S/360)

▶ One or more of us optimized scalar extension, e.g.

▶ 1^B would produce B,
▶ without doing any element-wise computations

Robert Bernecky APL SIMD Boolean Array Algorithms

Strength Reduction: a Classic Compiler Optimization

▶ Strength reduction: replace one operation by a cheaper one

▶ E.g., replace multiply by a power of two with a shift

▶ In APL, Boolean B1«B2 becomes B1^B2
▶ In APL, Boolean B1ÄB2 becomes B1^B2
▶ In APL, Boolean B1*B2 becomes B1¦B2
▶ Performance boosts: simpler verbs, SIMD operation, no

conditionals, stay in Boolean domain

▶ Performance boosts: In a compiler, opportunity for other
optimizations

Robert Bernecky APL SIMD Boolean Array Algorithms

Structural and Selection Verbs I

▶ catenate, laminate, rotate, reverse, rank, from,

▶ merge, take, drop. . .

▶ These verbs, e.g., 1 0 1, 0 1 1 0 have to handle array
indices that are not byte-aligned

▶ We would like these to run SIMD, word-at-a-time, on Booleans

▶ We introduced rbemove: generalized stride-1 (ravel order)
copier verb

▶ snk[sni+Ék]ûsrc[sri+Ék]
▶ Does not corrupt out-of-bounds array elements

▶ Operates in SIMD mode(s) whenever possible

▶ Supports all type conversions

Robert Bernecky APL SIMD Boolean Array Algorithms

Structural and Selection Verbs II

▶ Operation on non-trailing array axes:

▶ SIMD copy entire subarrays at once, e.g.
1á2 3 4ÒÉ24

▶ rbemove will copy 12 adjacent array elements at once

Robert Bernecky APL SIMD Boolean Array Algorithms

Structural and Selection Verbs III

▶ 2 3 4ÒÉ24
0 1 2 3
4 5 6 7
8 9 10 11

12 13 14 15
16 17 18 19
20 21 22 23

▶ 1á2 3 4ÒÉ24
12 13 14 15
16 17 18 19
20 21 22 23

0 1 2 3
4 5 6 7
8 9 10 11

Robert Bernecky APL SIMD Boolean Array Algorithms

Reverse and Rotate on Booleans

▶ Bernecky, 1979: fast algorithms for ÷× & Á÷×
▶ last-axis Boolean ÷× did a byte at a time, w/table lookup. . .

RevTab[uint8 ×]
▶ then byte-aligned the resulting vector, SIMD, a word at a time

▶ All non-last-axis operations copied entire cells at once, using
rbemove

Robert Bernecky APL SIMD Boolean Array Algorithms

Reverse and Rotate Performance on Booleans

Figure: Rotate Rewritten: 50 milliunits = 2.85msec
Robert Bernecky APL SIMD Boolean Array Algorithms

Reshape

▶ Reshape allows element reuse, e.g.:
8Ò1 0 0

1 0 0 1 0 0 1 0
▶ Breed optimized Boolean reshape this way:

▶ Copy the argument to the result

▶ Catenate the partial result to itself, doubling its length, until
its tail is byte-aligned.

▶ Do an overlapped move, or �smear" of the result to its tail

Robert Bernecky APL SIMD Boolean Array Algorithms

Transpose I

▶ An unlikely candidate for SIMD, it would seem. . .

▶ Áô× with unchanged trailing axes

▶ Tû2 2 2 3ÒÉ24
0 1 2
3 4 5

6 7 8
9 10 11

12 13 14
15 16 17

18 19 20
21 22 23

Robert Bernecky APL SIMD Boolean Array Algorithms

Transpose II

▶ Transpose with unchanged trailing axes

▶ SIMD copy six elements at once (rbemove)

▶ 1 0 2 3ôT
0 1 2
3 4 5

12 13 14
15 16 17

6 7 8
9 10 11

18 19 20
21 22 23

Robert Bernecky APL SIMD Boolean Array Algorithms

Boolean Transpose III

▶ Hacker's Delight: fast 8x8 Boolean matrix transpose

▶ Kernel: 16 logical & shift operations on 64-bit ravel

▶ Uses perfect shu�e (PDEP) on any power of two shape

▶ Dyalog APL (Foad): 10X speedup on large Boolean array
transpose

▶ Kernel generalizes to any power of two, e.g., 16x16, 32x32

Robert Bernecky APL SIMD Boolean Array Algorithms

Search Verbs

▶ Bernecky, 1971: fast indexof and set membership

▶ All data types except reals with Ìct¨0
▶ (ÁÉ0 1)[×]
▶ (ÁÉÌav)[×]
▶ Booleans: Vector search for �rst byte of interest

▶ Then, table lookup to get bit o�set

▶ Speedup: lots - linear time vs. quadratic time

▶ Created indexof kernel utility for interpreter use

Robert Bernecky APL SIMD Boolean Array Algorithms

Reduce

▶ Roger D. Moore, 1971: fast +/× Boolean vector

▶ Initial use was compress and expand setup:
+/Á was taking longer than compress/expand

▶ S/360 translate vector op: Boolean bytes into population
counts, SIMD 124 bytes per segment

▶ SIMD integer sum of 4-byte words gave 4-element partial sum

▶ Shift-and-add gave �nal result

▶ Segment size limited to prevent inter-byte carries

▶ Larry Breed haiku:
+/+¯4 resh PopcountTab[uint8 ×]

▶ Algorithm used brie�y for ©/× and ^/×

Robert Bernecky APL SIMD Boolean Array Algorithms

Reduce and Scan

▶ E.E. McDonnell, 1974: elegant APL models of Boolean scan

and reduction for relationals

▶ Result was catenation of pre�x, in�x, & su�x expressions

▶ Used Bernecky's fast indexof

▶ Result: linear-time, word-at-a-time, SIMD Boolean scan &
reduce

Robert Bernecky APL SIMD Boolean Array Algorithms

Scan

▶ John Heckman, 1970 or 1971: user-de�ned APL scan verbs

▶ Now widely used in GPUs

▶ Recursive doubling:
rûnescanall y;s;biw

ã Not-equal scan
rûy
biwûÓ2ð1ÓÒy
:For s :In 2*Ébiw ã Heckman
rûr¨(-Òr)Ù(-s)Õr

:EndFor
▶ SIMD, word-at-a-time algorithm for Boolean ¨\× and =\×

along last axis

▶ Bernecky's simple C Heckman implementation is about 3X
faster than Dyalog APL 15.0 (vector only)

▶ So far, no X86 vectorization; perhaps we can do even better

Robert Bernecky APL SIMD Boolean Array Algorithms

STAR Inner Product I

▶ IPSA, 1973: Boolean array inner products were painfully slow

▶ Control Data (CDC) wanted APL for their new STAR-100
vector supercomputer

▶ Group from Toronto I.P. Sharp Associates hired to work on the
interpreter

▶ Memory-to-memory vector instructions needed stride-1 access
for good performance

▶ Bernecky: heard about STAR APL stride-1 inner-product
algorithm;

▶ redesigned Boolean inner product to use STAR algorithm

Robert Bernecky APL SIMD Boolean Array Algorithms

Classic Inner Product Algorithm

ZûX ipclassic Y;RX;CX;CY;I;J;K
 RXû(ÒX)[0]
 CXû(ÒX)[1]
 CYû(ÒY)[1]
 Zû(RX,CY)Ò0.5
 :For I :In ÉRX
 :For J :In ÉCY
 Z[I;J]û0
 :For K :In ÉCX
 Z[I;J]ûZ[I;J]+X[I;K]«Y[K;J]
 :EndFor
 :EndFor
 :EndFor

Robert Bernecky APL SIMD Boolean Array Algorithms

STAR Inner Product Algorithm

ZûX ipstar Y;RX;CX;CY;I;J;Xel
 RXû(ÒX)[0]
 CXû(ÒX)[1]
 CYû(ÒY)[1]
 Zû(RX,CY)Ò0
 :For I :In ÉRX
 :For J :In ÉCX
 XelûX[I;J]
 Z[I;]ûZ[I;]+Xel«Y[J;]
 :EndFor
 :EndFor

Robert Bernecky APL SIMD Boolean Array Algorithms

STAR Inner Product II

▶ Inner product loops reordered; key bene�ts, for Á f.g ×
▶ Each Á element, Xel, fetched only once

▶ Type conversion of Xel no longer time-critical

▶ Xel analysis amortized over entire row: Y[J;]
▶ Scalar-vector application of g
tmpûXel g Y[J;]

▶ Vector-vector f-reduce into result row Z[I;]
Z[I;]ûZ[I;] f tmp

Robert Bernecky APL SIMD Boolean Array Algorithms

SIMD Boolean STAR Inner Product Basics

▶ Scalar-vector Xel g Y[J;] is word-at-a-time Boolean SIMD

▶ Vector-vector Z[I;]ûZ[I;] is word-at-a-time Boolean SIMD

▶ We are already a lot faster

▶ The STAR APL model does +.« 90X faster than the Classic
model, on 200x200 real matrices

▶ Unfortunately, the APL primitive is still 30X faster than the
APL model

Robert Bernecky APL SIMD Boolean Array Algorithms

Boolean STAR Inner Product Optimizations

▶ Consider tmpûXel ^ RO in Á©.^×
▶ If Xel is 0, then tmp is all zeros: no g computation

▶ If Xel is 1, then tmp is just RO: no g computation

▶ f is ©, so its identity element is 0
▶ Hence, if Xel is 0, we can skip the g-reduction
▶ Similarly, if Xel is 1, we can do the g-reduction using RO
▶ This gives us poor man's sparse arrays, which works on other

data types, too

▶ Final result: Boolean inner products on SHARP APL/PC ran
much faster than APL2 on huge mainframe

Robert Bernecky APL SIMD Boolean Array Algorithms

Control Flow Becomes Data Flow

▶ Booleans as arithmetic: replace control �ow by data �ow

▶ Conditionals can often be removed, e.g.:

▶ Give those with salary, S, less than Tiny a raise of R
SûS+R«S<Tiny

▶ Knuth calls this capability Iverson's convention for

characteristic functions

▶ See also the verb mqs, for �nding quoted text

▶ See also the Bernecky-Scholz PLDI2014 Arrays Workshop
paper: Abstract Expressionism

Robert Bernecky APL SIMD Boolean Array Algorithms

Boolean Sort

▶ Sort ascending for Booleans:
SortAscendingû{(-Ò×)Ù(+/×)Ò1}

▶ Boolean sort can use Moore's SIMD +/Boolean in its �rst
phase of execution

▶ Second phase can be performed in SIMD, e.g., by a single SAC
data-parallel with-loop.

Robert Bernecky APL SIMD Boolean Array Algorithms

Boolean Grade

▶ SIMD Boolean upgrade:
ugû{((~×)/ÉÒ×),×/ÉÒ×}

▶ Not stunningly SIMD, though.

Robert Bernecky APL SIMD Boolean Array Algorithms

Boolean Matrix Operations

▶ Shard: For byte-oriented algorithms, a possibly empty sub-byte
fragment of a matrix row, extending from the start of the row
to next byte, or from the last byte in the row to the end of the
row.

▶ Handling shards is a nuisance; it destroys algorithmic beauty

▶ Handling shards is also slower than beautiful algorithms

▶ Consider:
1 1 0 0, 0 0 0 0, 1 0 1 0, 1 1 1 0

▶ The vector 1 0 1 is a shard, because its elements start at a
byte boundary, but end in mid-byte.

▶ The vector 0 1 1 1 0 is a shard, because it starts in
mid-byte, and ends on a byte boundary.

▶ A similar de�nition holds for word-oriented algorithms

Robert Bernecky APL SIMD Boolean Array Algorithms

Acknowledgements

My sincere thanks to James A. Brown, Larry M. Breed, Walter Fil,
Jay Foad, Roger K.W. Hui, Roger D. Moore, and Bob Smith, for
their constructive suggestions and ideas regarding this paper.
The APL programs in this paper were executed on Dyalog APL
Version 15.0. Dyalog provides free downloads of their interpreters
for educational use; they also o�er a free download of their
Raspberry Pi edition, at www.dyalog.com.
The British APL Association (BAA) provided the author with
�nancial assistance for attending this conference; their
thoughtfulness and generosity is greatly appreciated.

Robert Bernecky APL SIMD Boolean Array Algorithms

