Using APL in Physics

 $\bullet \bullet \bullet$

Kostas Blekos, University of Patras

Polarization-entangled photon generation ...

"Polarization-entangled photon generation in a semiconductor quantum dot coupled to a cavity interacting with external fields." - Quantum Information Processing (13) 12.

WHY use APL?

WHAT we did.

WHAT we learned.

Why try something new?

Why use APL?

WHY change?

Why change?

Physicists + programming = disaster

BUT

Physics needs lots of programming

Better prototyping.

WHY pick APL?

MATRICES

Terse expressions

WHAT we did.

Math model \rightarrow matrix equations \rightarrow APL numerical solution

Equations Operators \rightarrow APL Matrices

Interactively trying solutions

Automating solutions

WHAT we learned.

What we learned.

APL is great

APL is suitable for

fast physics prototyping.

APL is suitable for fast physics prototyping: IDE

APL is suitable for fast physics prototyping: terse expressions

What we learned.

Still a lot to learn.

WHAT we learned: downsides?

What we learned.

Can't convince people to use it.

What we learned.

Efficiency might be a concern.