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Motivation
Goal: 
High-performance at the fingertips of 
domain experts.

Why APL: 
APL provides a powerful and concise 
notation for array operations.

APL programs are inherently parallel - not 
just parallel, but data-parallel.

There is lots of APL code around - some of 
which is looking to run faster! 
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Challenge: 
APL is dynamically typed. To generate 
efficient code, we need type inference:

● Functions are rank-polymorphic.
● Built-in operations are overloaded.
● Some subtyping is required (e.g., any 

integer 0,1 is considered boolean).

Type inference algorithm compiles APL into 
a typed array intermediate language called 
TAIL (ARRAY’14). 

 

APL TAIL Futhark



APL Supported Features
Dfns-syntax for functions and operators (incl. trains).

Dyalog APL compatible built-in operators and functions 
(limitations apply).

Scalar extensions, identity item resolution, overloading 
resolution.  

Limitations:
● Static scoping and static rank inference
● Limited support for nested arrays
● Whole-program compilation
● No execute!
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APL TAIL Futhark



TAIL - as an IL
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APL TAIL Futhark

- Type system expressive enough for many APL 
primitives.

- Simplify certain primitives into other constructs…
- Multiple backends...



TAIL Example
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APL TAIL Futhark

APL: TAIL:

let v2:[int]1 = [54,44,47,53,51,48,52,53,52,49,48,52] in
let v1:[int]0 = 11 in
let v15:[double]1 = each(fn v14:[double]0 => 
subd(v14,divd(i2d(reduce(addi,0,v2)),i2d(v1))),each(i2d,v2)) in
let v17:[double]1 = each(fn v16:[double]0 => powd(v16,2.0),v15) in
let v21:[double]0 = divd(reduce(addd,0.0,v17),i2d(v1)) in
let v31:[double]1 = each(fn v30:[double]0 => 
subd(v30,divd(i2d(reduce(addi,0,v2)),i2d(v1))),each(i2d,v2)) in
let v33:[double]1 = each(fn v32:[double]0 => powd(v32,2.0),v31) in
let v41:[double]1 = 
prArrD(cons(divd(i2d(reduce(addi,0,v2)),i2d(v1)),[divd(reduce(add
d,0.0,v33),i2d(v1)),powd(v21,0.5)])) in 0

Type check: Ok
Evaluation: 
[3](50.0909,8.8099,2.9681)

Simple interpreter



Compiling Primitives
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APL TAIL Futhark

APL: TAIL:

let v1:[int]2 = reshape([3,2],iotaV(5)) in
let v2:[int]2 = transp(v1) in
let v9:[int]3 = transp2([2,1,3],reshape([3,3,2],v1)) in
let v15:[int]3 = transp2([1,3,2],reshape([3,2,3],v2)) in
let v20:[int]2 = reduce(addi,0,zipWith(muli,v9,v15)) in
let v25:[int]0 = reduce(muli,1,reduce(addi,0,v20)) in
i2d(v25)

Evaluating
Result is [](65780.0)

Notice: Quite a few simplifications 
happen at TAIL level..

Guibas and Wyatt, POPL’78



Futhark
Pure eager functional language with 
second-order parallel array constructs.

Support for “imperative-like” language 
constructs for iterative computations (i.e., 
graph shortest path).

A sequentialising compiler...

Close to performance obtained with hand- 
written OpenCL GPU code.
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APL TAIL Futhark

Performs general optimisations
- Constant folding. E.g., remove branch 

inside code for take(n,a) if n ≤ ⊃⍴a.
- Loop fusion. E.g., fuse the many small 

“vectorised” loops in idiomatic APL code.

Attempts at flattening nested parallelism
- E.g., reduction (/) inside each (¨).

Allows for indexing and sequential loops
- Needed for indirect indexing and ⍣. 

Performs low-level GPU optimisations
- E.g., optimise for coalesced memory 

accesses. 

let addTwo (a:[]i32) : []i32 = map (+2) a
let sum (a:[]i32) : i32 = reduce (+) 0 a
let sumrows(a:[][]i32) : []i32 = map sum a
let main(n:i32) : i32 =
  loop x=1 for i < n do x * (i+1)



An Example 
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APL TAIL Futhark

APL:

TAIL:

let domain:<double>1000000 =
  eachV(fn v4:[double]0 => muld(10.0,v4),
   eachV(fn v3:[double]0 => divd(v3,1000000.0),
    eachV(i2d,iotaV(1000000)))) in
let integral:[double]0 =
  reduce(addd,0.0,
   eachV(fn v9:[double]0 => divd(v9,1000000.0),
    eachV(fn v7:[double]0 => divd(2.0,addd(v7,2.0)),
     domain))) in
integral

Futhark - before optimisation:

let domain =
 map (\ (t_v4: f64): f64 -> 10.0f64*t_v4)
  (map (\ (t_v3: f64): f64 -> t_v3/1000000.0f64)
   (map i2d (map (\ (x: int): int -> x+1)
    (iota 1000000))))
let integral =
 reduce (+) 0.0f64
  (map (\ (t_v9: f64): f64 -> t_v9/1000000.0f64)
   (map (\ (t_v7: f64): f64 -> 2.0f64/(t_v7+2.0f64))
    domain)) 
In integralNotice: TAIL2Futhark compiler 

is quite straightforward...



Performance Compute-bound Examples
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Integral benchmark:
OpenCL runtimes from an NVIDIA GTX 780
CPU runtimes from a Xeon E5-2650 @ 2.6GHz



Performance Stencils
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Life benchmark:



Performance Mandelbrot
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New Features Since Dyalog’16
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Efficient parallel segmented reductions (Troels’ + Rasmus’ FHPC’17 paper).
- A special segmented reduction form is possible in APL:  

                 +/20000 10⍴⍳200000               +/100 2000⍴⍳200000

Futhark components (library routines).
- Linear algebra routines, sobol sequences, sorting, random numbers, ...

Many Futhark internal optimisations.

Complex number support:



Neural Network for Digit Recognition
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Task: Train a 3-layer neural network using back-propagation.

MNIST data set:

- Training set size: 50,000 classified images 
(28x28 pixel intensities; floats)

- Test set size: 10,000 classified images

Network:

 Input layer Layer 2 (Hidden) Layer 3 (Output)

 784 (28x28)  30 sigmoid neurons 10 sigmoid neurons

weights: 
  30x784 matrix
biases: 30 vector 

weights: 10x30 matrix
biases: 10 vector 



Some APL NN Snippets
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0 0.23

1 0.32

2 0.03

3 0.45

: :

9 1.25

9



NN Implementation in Futhark
Original in Python - neuralnetworksanddeeplearning.com

Back-propagation algorithm based on stochastic gradient descent:
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Futhark supports arrays of ‘pairs of arrays’, 
which can be processed in parallel using the 
generic Futhark map function.

The argument function to map may itself 
return structured values.

http://neuralnetworksanddeeplearning.com/


NN Implementation in APL
20x slowdown with respect to native 
Futhark.

More investigations are needed to 
identify the performance issues.

400 lines of APL code.

How does Dyalog APL perform on this 
benchmark?

How should it be written in Dyalog APL 
for it to hit peak performance?
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See https://github.com/melsman/neural-networks-and-deep-learning

https://github.com/melsman/neural-networks-and-deep-learning


Interoperability Demos
Mandelbrot, Life, AplCam
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With Futhark, we can generate reusable 
modules in various languages (e.g, Python) that 
internally execute on the GPU using OpenCL.



Related Work
APL Compilers

- Co-dfns compiler by Aaron Hsu. Papers in 
ARRAY’14 and ARRAY’16.

- C. Grelck and S.B. Scholz. Accelerating APL 
programs with SAC. APL’99.

- R. Bernecky. APEX: The APL parallel executor. 
MSc Thesis. University of Toronto. 1997.

- L.J. Guibas and D.K. Wyatt. Compilation and 
delayed evaluation in APL. POPL’78.

Type Systems for APL like Languages
- K. Trojahner and C. Grelck. Dependently typed 

array programs don’t go wrong. NWPT’07.
- J. Slepak, O. Shivers, and P. Manolios. An 

array-oriented language with static rank 
polymorphism. ESOP’14.
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Futhark work
- Papers on language and optimisations 

available from hiperfit.dk.
- Futhark available from futhark-lang.org.

Other functional languages for GPUs
- Accelerate. Haskell library/embedded DSL.
- Obsidian. Haskell embedded DSL.
- FCL. Low-level functional GPU programming. 

FHPC’16.

Libraries for GPU Execution
- Thrust, cuBLAS, cuSPARSE, ... 

http://hiperfit.dk
http://futhark-lang.org


Conclusions
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Future Work

We have managed to get a (small) subset of APL to run 
efficiently on GPUs.

- https://github.com/HIPERFIT/futhark-fhpc16
- https://github.com/henrikurms/tail2futhark
- https://github.com/melsman/apltail

- More real-world benchmarks.
- Support a wider subset of APL.
- Improve interoperability...
- Add support for APL “type annotations” 

for specifying programmer intentions...

HIPERFIT

https://github.com/HIPERFIT/futhark-fhpc16
https://github.com/henrikurms/tail2futhark
https://github.com/melsman/apltail


Different Mandelbrot Implementations
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Parallel inner loop:
mandelbrot1.apl

 seq for i < depth:
   par for j < n:
     points[j] = f(points[j])

Parallel outer loop:
mandelbrot2.apl

par for j < n:
  p = points[j]
  seq for i < depth:
    p = f(p)
  points[j] = p

Memory bound Compute bound



mandelbrot1.apl and mandelbrot2.apl
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