
APL on GPUs – A Progress Report
with a Touch of Machine Learning

Martin Elsman, DIKU, University of Copenhagen
Joined work with Troels Henriksen and Cosmin Oancea

@ Dyalog’17, Elsinore
1

Motivation
Goal:
High-performance at the fingertips of
domain experts.

Why APL:
APL provides a powerful and concise
notation for array operations.

APL programs are inherently parallel - not
just parallel, but data-parallel.

There is lots of APL code around - some of
which is looking to run faster!

2

Challenge:
APL is dynamically typed. To generate
efficient code, we need type inference:

● Functions are rank-polymorphic.
● Built-in operations are overloaded.
● Some subtyping is required (e.g., any

integer 0,1 is considered boolean).

Type inference algorithm compiles APL into
a typed array intermediate language called
TAIL (ARRAY’14).

APL TAIL Futhark

APL Supported Features
Dfns-syntax for functions and operators (incl. trains).

Dyalog APL compatible built-in operators and functions
(limitations apply).

Scalar extensions, identity item resolution, overloading
resolution.

Limitations:
● Static scoping and static rank inference
● Limited support for nested arrays
● Whole-program compilation
● No execute!

3

APL TAIL Futhark

TAIL - as an IL

4

APL TAIL Futhark

- Type system expressive enough for many APL
primitives.

- Simplify certain primitives into other constructs…
- Multiple backends...

TAIL Example

5

APL TAIL Futhark

APL: TAIL:

let v2:[int]1 = [54,44,47,53,51,48,52,53,52,49,48,52] in
let v1:[int]0 = 11 in
let v15:[double]1 = each(fn v14:[double]0 =>
subd(v14,divd(i2d(reduce(addi,0,v2)),i2d(v1))),each(i2d,v2)) in
let v17:[double]1 = each(fn v16:[double]0 => powd(v16,2.0),v15) in
let v21:[double]0 = divd(reduce(addd,0.0,v17),i2d(v1)) in
let v31:[double]1 = each(fn v30:[double]0 =>
subd(v30,divd(i2d(reduce(addi,0,v2)),i2d(v1))),each(i2d,v2)) in
let v33:[double]1 = each(fn v32:[double]0 => powd(v32,2.0),v31) in
let v41:[double]1 =
prArrD(cons(divd(i2d(reduce(addi,0,v2)),i2d(v1)),[divd(reduce(add
d,0.0,v33),i2d(v1)),powd(v21,0.5)])) in 0

Type check: Ok
Evaluation:
[3](50.0909,8.8099,2.9681)

Simple interpreter

Compiling Primitives

6

APL TAIL Futhark

APL: TAIL:

let v1:[int]2 = reshape([3,2],iotaV(5)) in
let v2:[int]2 = transp(v1) in
let v9:[int]3 = transp2([2,1,3],reshape([3,3,2],v1)) in
let v15:[int]3 = transp2([1,3,2],reshape([3,2,3],v2)) in
let v20:[int]2 = reduce(addi,0,zipWith(muli,v9,v15)) in
let v25:[int]0 = reduce(muli,1,reduce(addi,0,v20)) in
i2d(v25)

Evaluating
Result is [](65780.0)

Notice: Quite a few simplifications
happen at TAIL level..

Guibas and Wyatt, POPL’78

Futhark
Pure eager functional language with
second-order parallel array constructs.

Support for “imperative-like” language
constructs for iterative computations (i.e.,
graph shortest path).

A sequentialising compiler...

Close to performance obtained with hand-
written OpenCL GPU code.

7

APL TAIL Futhark

Performs general optimisations
- Constant folding. E.g., remove branch

inside code for take(n,a) if n ≤ ⊃⍴a.
- Loop fusion. E.g., fuse the many small

“vectorised” loops in idiomatic APL code.

Attempts at flattening nested parallelism
- E.g., reduction (/) inside each (¨).

Allows for indexing and sequential loops
- Needed for indirect indexing and ⍣.

Performs low-level GPU optimisations
- E.g., optimise for coalesced memory

accesses.

let addTwo (a:[]i32) : []i32 = map (+2) a
let sum (a:[]i32) : i32 = reduce (+) 0 a
let sumrows(a:[][]i32) : []i32 = map sum a
let main(n:i32) : i32 =
 loop x=1 for i < n do x * (i+1)

An Example

8

APL TAIL Futhark

APL:

TAIL:

let domain:<double>1000000 =
 eachV(fn v4:[double]0 => muld(10.0,v4),
 eachV(fn v3:[double]0 => divd(v3,1000000.0),
 eachV(i2d,iotaV(1000000)))) in
let integral:[double]0 =
 reduce(addd,0.0,
 eachV(fn v9:[double]0 => divd(v9,1000000.0),
 eachV(fn v7:[double]0 => divd(2.0,addd(v7,2.0)),
 domain))) in
integral

Futhark - before optimisation:

let domain =
 map (\ (t_v4: f64): f64 -> 10.0f64*t_v4)
 (map (\ (t_v3: f64): f64 -> t_v3/1000000.0f64)
 (map i2d (map (\ (x: int): int -> x+1)
 (iota 1000000))))
let integral =
 reduce (+) 0.0f64
 (map (\ (t_v9: f64): f64 -> t_v9/1000000.0f64)
 (map (\ (t_v7: f64): f64 -> 2.0f64/(t_v7+2.0f64))
 domain))
In integralNotice: TAIL2Futhark compiler

is quite straightforward...

Performance Compute-bound Examples

9

Integral benchmark:
OpenCL runtimes from an NVIDIA GTX 780
CPU runtimes from a Xeon E5-2650 @ 2.6GHz

Performance Stencils

10

Life benchmark:

Performance Mandelbrot

11

New Features Since Dyalog’16

12

Efficient parallel segmented reductions (Troels’ + Rasmus’ FHPC’17 paper).
- A special segmented reduction form is possible in APL:

 +/20000 10⍴⍳200000 +/100 2000⍴⍳200000

Futhark components (library routines).
- Linear algebra routines, sobol sequences, sorting, random numbers, ...

Many Futhark internal optimisations.

Complex number support:

Neural Network for Digit Recognition

13

Task: Train a 3-layer neural network using back-propagation.

MNIST data set:

- Training set size: 50,000 classified images
(28x28 pixel intensities; floats)

- Test set size: 10,000 classified images

Network:

 Input layer Layer 2 (Hidden) Layer 3 (Output)

 784 (28x28) 30 sigmoid neurons 10 sigmoid neurons

weights:
 30x784 matrix
biases: 30 vector

weights: 10x30 matrix
biases: 10 vector

Some APL NN Snippets

14

0 0.23

1 0.32

2 0.03

3 0.45

: :

9 1.25

9

NN Implementation in Futhark
Original in Python - neuralnetworksanddeeplearning.com

Back-propagation algorithm based on stochastic gradient descent:

15

Futhark supports arrays of ‘pairs of arrays’,
which can be processed in parallel using the
generic Futhark map function.

The argument function to map may itself
return structured values.

http://neuralnetworksanddeeplearning.com/

NN Implementation in APL
20x slowdown with respect to native
Futhark.

More investigations are needed to
identify the performance issues.

400 lines of APL code.

How does Dyalog APL perform on this
benchmark?

How should it be written in Dyalog APL
for it to hit peak performance?

16
See https://github.com/melsman/neural-networks-and-deep-learning

https://github.com/melsman/neural-networks-and-deep-learning

Interoperability Demos
Mandelbrot, Life, AplCam

17

With Futhark, we can generate reusable
modules in various languages (e.g, Python) that
internally execute on the GPU using OpenCL.

Related Work
APL Compilers

- Co-dfns compiler by Aaron Hsu. Papers in
ARRAY’14 and ARRAY’16.

- C. Grelck and S.B. Scholz. Accelerating APL
programs with SAC. APL’99.

- R. Bernecky. APEX: The APL parallel executor.
MSc Thesis. University of Toronto. 1997.

- L.J. Guibas and D.K. Wyatt. Compilation and
delayed evaluation in APL. POPL’78.

Type Systems for APL like Languages
- K. Trojahner and C. Grelck. Dependently typed

array programs don’t go wrong. NWPT’07.
- J. Slepak, O. Shivers, and P. Manolios. An

array-oriented language with static rank
polymorphism. ESOP’14.

18

Futhark work
- Papers on language and optimisations

available from hiperfit.dk.
- Futhark available from futhark-lang.org.

Other functional languages for GPUs
- Accelerate. Haskell library/embedded DSL.
- Obsidian. Haskell embedded DSL.
- FCL. Low-level functional GPU programming.

FHPC’16.

Libraries for GPU Execution
- Thrust, cuBLAS, cuSPARSE, ...

http://hiperfit.dk
http://futhark-lang.org

Conclusions

19

Future Work

We have managed to get a (small) subset of APL to run
efficiently on GPUs.

- https://github.com/HIPERFIT/futhark-fhpc16
- https://github.com/henrikurms/tail2futhark
- https://github.com/melsman/apltail

- More real-world benchmarks.
- Support a wider subset of APL.
- Improve interoperability...
- Add support for APL “type annotations”

for specifying programmer intentions...

HIPERFIT

https://github.com/HIPERFIT/futhark-fhpc16
https://github.com/henrikurms/tail2futhark
https://github.com/melsman/apltail

Different Mandelbrot Implementations

20

Parallel inner loop:
mandelbrot1.apl

 seq for i < depth:
 par for j < n:
 points[j] = f(points[j])

Parallel outer loop:
mandelbrot2.apl

par for j < n:
 p = points[j]
 seq for i < depth:
 p = f(p)
 points[j] = p

Memory bound Compute bound

mandelbrot1.apl and mandelbrot2.apl

21

