
Managing Projects That Never End
Alexey Miroshnikov, InfoStroy Ltd.

Dyalog 2017, Elsinore, September 10-14

The Subject. The Project.

A particular complexity of that kind of projects is that it does not
have a clear finish . At a glance it might looks as like we are in an
infinite loop of patches like that donkey walking around the water
pump.
For the last 25 years, we’ve had to deal with at least one of that. It
is a portfolio management software solution.
Financial market is evolving so fast that a software company
entering the market actually start a project that never end.
Many traditional values and parameters does not work for endless
projects. Most painful are the project goal and the team
motivation.

The Subject. The Project.

 The team motivation is a real problem as the motivation is
closely related to an achievement, and what would be
achieved at the finish line that doesn’t exist??
When we started our endless project in the beginning of 90s
the motivation at the top. Then the things started to
change…
We’ve entered the race: version 1, 2, 3, … 7, 8,… 13, 14, …

Perfect Strangers

Orthodox top to bottom
Each developer reported straight to me and in a way did not
see the entire project. All control was concentrated in one
hands…

In a way that looked like …

Perfect Strangers

• We did collaborate but that was mostly on the
purely technical issues.

• In a way no one knew what his colleagues are
working on.

• And everyone was so busy…

Victims of MS Project

On Microsoft Project for many years.
The problem was that any new high priority task destroyed the
initial version. Diseases, days off, delays made the planning
hopeless.
Automatic scheduling could not count particular person skills,
area of his best expertise. At the end there were always manual
adjustments… and that kept going on, over and over again.
At some moment Microsoft added the MS Project Server and
new pricing scheme. After that a good MS Project installation
became way too expensive.

Victims of MS Project

We’ve moved to MS Project 365, a light cloud based version
of the “big” MS Project. Here the disaster came…
And what is the most important that planning did not make
much sense. Due to constant changes, after 3 months, the
plan had very little to do with the initial one.
At the end our plan has become just a long backlog of our
tasks, and the project management “downgraded” to manual
appointment of a person to a particular task based on his/her
experience and a common sense.

Perfect Strangers II

 Would you be able to compare performance of 10 tennis
players placed on 10 separated tennis courts to play against a
wall?
It was exactly our case. Usually one person worked on one
task. As all tasks were different your estimation of the
developer performance should be very subjective.
In a situation without real collaboration and healthy
competition a manager has a good chance to find him in a
situation like that:
.

Perfect Strangers II
It actually affects many things: task deployment,
performance assessment, bonus calculations,
sometimes even personal relationships…

Sometimes it looked like as the tail wags the dog.

By the beginning of the year 2016 we became 12 APL
developers plus other staff, number one in the
portfolio management software in Russia owning
some visible part of the Russian financial software
market.
We realized a need for growth…
But the things started to go out of control…

We may not continue to work as before.

Face The Reality

Maybe not me personally, but the structure of the
development and my role in the structure, which I was very
much responsible for creating.

 That all must be changed and the sooner the better!
.

It had just happened. Suddenly, one day, late spring of 2016,
I’d realized that the fundamental problem was …

me (!)

The change

Cutting Ropes

The first move was the most
challenging – “…let you people go…”.

The orthodox top to bottom
management does not sit well with a
free initiative.

Though it was not very clear
what the change should look like...

A Chain of Synchronicities. Project Agile.

It started with a book Scrum written by Jeff Sutherland…
We’ve never tried to implement a classic scram stuff as is. We
simply borrowed everything we found applicable and useful.
The centralized planning and management has been buried.
What was “the plan” before has become the scrum backlog.
Today every release cycle, the sprit in the scrum terminology,
starts with developers planning meeting. They select tasks to
be included into the sprint. The tasks are picked from the top
of the backlog. I don’t participate in this kind of meetings.

Project Agile

Business meeting before each developers sprint meeting. I
represent the product owners being in charge of the overall
value of the project, our marketing director represents the
market, and our head of the Support departments represent
our customers.
Our most experienced developer has become the sprint
master. Various short meetings weekly…
We switched to 1-1.5 month releases, and a major version
once a year. So we usually have 4 weeks of development and
1 week of tests.

Project Agile

Later it was updated to 1st sprint planning meeting, 1 week of
working with specs and implementation ideas, 2nd sprint re-
planning meeting, 3 weeks of development, 1 week of tests.
Finishing a task a developer “leaves a trace” – a chapter in the
technical documentation and a chapter in the user manual.
Our tests split to 2 parts. The first is performed by developers
themselves provided that the author never tests his own
code. The second part of test is performed by the Support
department. Their goal is to check if the developed stuff really
solves the problem it intended to. They also check docs.

Project Agile

What we’ve actually done is we broke down our
endless project into multiple small projects with
quite definable goals and clear deadlines.
That was a big change...

Project JIRA

 Why JIRA is good for the never ending projects? Initially it was
a bug tracker! Bugs fixing is the perfect never-ending project!
Atlassian has another product – the JIRA Service Desk. The
support is indeed the ultimate never-ending project!
Both JIRA Software and Service Desk are integrated. Third major
product - Confluence – a wiki , which is also well integrated into
the family.
Implementation of the new software (Software+Service
Desk+Wiki) took us 1 month including migration of the MS
Project to JIRA.

Planning

In our business, the time estimation is possible when the job
is 80% complete.
In our case, the time estimation for a task was made like that:
(1) how long would it take for a reference developer to
complete the task, roughly;
(2) what is the performance difference between the reference
developer and the one in question (from 2 to 10 times!);
(3) multiply – got the estimate!
“The plan” has been replaced by the monthly backlog revision
meetings.

Traps: Roles Hell.

After years of working with the same small team on the same
projects every person got a “preferable specialization”.
One person always rides the donkey, another one always
looks after the water pump, another one always…

To build a perfect scram team either you should, in a way,
sacrifice the personal skills for increase the team level or you
doomed to switch back to a “manual control”.

Traps: Specification Hell

No people dedicated to work on specs.
It is the developer himself who should understand the
problem, suggest an approach to implementation, provide
the complexity and time estimation.
That means that when the team meet to make a sprint no
one really knows what are those tasks in the backlog are
about – the backlog has been reshuffled a day before!
We appointed a person who’s job was to collect all related
information and help with the task understanding… Did not
work!

Traps

Tradition Hell
In any stress situation the team tends to fall into the mode
they used to.
Ambitions Hell
Relatively short release cycle and a rise of productivity made
possible some things not imaginable before. We decided to
start sending our customers an announcement with what is
coming in the next release and when… Don’t do that !!!

Problems

No complexity/time estimation
It is the biggest one. So far we have not been able to find a
reasonable method to measure complexity and duration of a
task. Without that any reward upon effort is difficult to
achieve.

Problems

Client Support Department Crisis
One version/release per year scheme assumed that quite a
few patches ordered by customers as well as and bug fixes on
the course of a year. That means it was constant flaw of
software updates and tens variations of the same product…
Switching to 1-1.5 months we releases we decided to kill that
chaotic procedure.
1 month term looked as short enough for almost any
customer to wait for almost any patch (but the critical bug
fixes, of course).

Problems

We completely missed the point that while any single
customer had had fewer updates during a year he had his
own patch much faster than 1-1.5 month. We effectively
broke a traditional problem solving service cycle of our QA…
So we got an opposition in our Support. An effect of that was
very depressing – not only they became too slow, softly
speaking, adjusting to the new situation, they also in a way
“sabotaged” implementation of the JIRA Service Desk
software, wrongly assuming that it would make their live even
harder.

Problems

The situation was finally resolved when we parted with the
head of the Support team, and I de facto had to become a
crisis administrator for it. It was a time for a change there,
too! It started a month ago and now we have a much more
positive team, the JIRA Service Desks running full scale,
slightly relaxed customers, measurable statistics of the team
activity… that’s another story.

BTW I have not been able to find any reasonable publications
on the “Agile products” maintenance and support so far.

Problems

Responsibility
Ups and downs. I’m not sure Agile (and JIRA in a way) have
anything to do with responsibility. People who were already
very responsible got even better. Those who didn’t really care
have not shown much change so far…

Timing
1 month
Overwhelming enthusiasm!
3 months
Impressive success. Productivity 2 times up.
6 months
Reasonable enthusiasm…
9 months
First ambitious tasks. Stress. First wounds. Annoying capacity
overestimation and broken deadlines.

Timing

1 year
They started to help each other and pick tasks that other
developers might not complete in time themselves!

The team started to behave as one self-sufficient organism!

Time to take off…

Some Takeaways. Learning to fly.

Agile is not a religion. Nor is it the Aladdin lamp – if one
rubbed it long enough the Ginny would appear imminently...
The team, its managers and the whole situation in the
company should “mature”.
Agile is not LEGOLAND. No standard blocks!
There could be unlimited variations of it – find your own
unique way in the agile development.
It takes time and patience…

Thank you

	Managing Projects That Never End
	The Subject. The Project.
	The Subject. The Project.
	Perfect Strangers
	Perfect Strangers
	Victims of MS Project
	Victims of MS Project
	Perfect Strangers II
	Slide Number 9
	Slide Number 10
	Face The Reality
	Slide Number 12
	A Chain of Synchronicities. Project Agile.
	Project Agile
	Project Agile
	Project Agile
	Project JIRA
	Planning
	Traps: Roles Hell.
	Traps: Specification Hell
	Traps
	Problems
	Problems
	Problems
	Problems
	Problems
	Timing
	Timing
	Some Takeaways. Learning to fly.
	Slide Number 30

