
Exercise 2 
Michael has sent Richard a list of PC components and their prices in a CSV file. 

1. Richard cannot import this file into Excel because it was created on a European PC where the 

convention for separators and decimal markers is different from that on a UK or US PC. 

Convert it so that he can – that is, recreate it with separators changed from ‘;’ to ‘,’ and the 

decimal markers changed from ‘,’ to ‘.’. 

2. Richard would like the prices in the file to be specified in pounds rather than euros. Convert 

them, assuming £1 = €1.10. 

The CSV file is Exercise2.csv. 

This exercise requires Dyalog 16.0. 

Hints 
⎕CSV can be used to read the file into the workspace and write it out again formatted differently. 

By default, ⎕CSV expects ‘,’ separators and ‘.’ decimal markers in the file it reads so it won’t be able 

to process it without overriding these using variant options. 

By default, ⎕CSV will assume all fields in a CSV file contain character data and won’t convert to 

numeric data without specifying the column data types in the right argument. 

The manual pages are attached. 

Once the data has been read in, writing the new file out again will be trivial. If the data is read into d 

then the following will write it out in the expected format: 

d ⎕CSV 'new.csv' 

⎕CSV will not overwrite an existing file by default. If it already exists, either use ⎕NDELETE to erase 

it first, or: 

d (⎕CSV⍠'Overwrite' 1) 'new.csv' 



Chapter 4: System Functions 297

Comma Separated Values {R}←{X} ⎕CSV Y

This function imports and exports Comma Separated Value (CSV) data.

Monadic ⎕CSV imports data from a CSV file or converts data from CSV format to an
internal format. Dyadic ⎕CSV exports data to a CSV file or converts data from
internal format to a CSV format.

Internal Format
Arrays that result from importing CSV data or arrays that are suitable for exporting as
CSV data are represented by 3 possible structures:

l A table (a matrix whose elements are character vectors or scalars, or
numbers).

l A vector, each of whose items contain field (column) values. Character field
values are character matrices; numeric field values are numeric vectors.

l A vector, each of whose items contain field (column) values. Character field
values are vectors of character vectors; numeric field values are numeric
vectors.

Note that when importing CSV data, all fields are assumed to be character fields
unless otherwise specified (see Column Types below). A field that contains only
"numbers" will not be converted to numeric data unless specified as being numeric.

Monadic ⎕CSV
R←⎕CSV Y

Y is an array that specifies just the source of the CSV data (see below) or a 1,2,3 or 4-
element vector containing:

[1] Source of CSV Data (see below)

[2] Description of the CSV data (see below)

[3] Column Types (see below)

[4] Boolean header row indicator (see below)

The first record in a CSV file is often a list of column labels. If present this header
row is treated differently from other records. It is assumed to contain character data
(labels) regardless of Y[3] and is returned separately in the result.



Chapter 4: System Functions 298

Source - may be one of:

l a character vector or scalar containing a file name
l a native tie number
l a character vector or scalar containing CSV data with embedded newline
characters1

l a vector of character vectors and/or scalars containing CSV data with
implicit newlines after each character vector or scalar

Description may be one of:

l a character vector specifying the file encoding such as 'UTF-8' (see File
Encodings on page 442). This applies when Y[1] is a file name or tie
number. If omitted or empty, the file encoding is deduced (see below).

l a character scalar 'S' (simple) or 'N' (nested). This applies when Y[1] is
a character array containing CSV data. The default is 'N'.

Column Types

This is a scalar numeric code or vector of numeric codes that specifies the field types
from the list below. IfColumn Types is zilde or omitted, the default is 1 (all fields are
character).

0 The field is ignored.

1 The field contains character data.

2
The field is to be interpreted as being numeric. Empty cells and cells
which cannot be converted to numeric values are not tolerated and cause
an error to be signalled.

3
The field is to be interpreted as being numeric but invalid numeric vales
are tolerated. Empty fields and fields which cannot be converted to
numeric values are replaced with the Fill variant option (default 0).

4

The field is to be interpreted numeric data but invalid numeric data is
tolerated. Empty fields and fields which cannot be converted to numeric
values are returned instead as character data; this type is disallowed when
variant option Invert is set to 1.

Note that ifColumn Types is specified by a scalar 4, all numeric data in all fields will
be converted to numbers.

1Note that when the Y[1] is a character vector or scalar containing CSV data, Y[2] must be
specified as 'S'. Otherwise Y[1] will be interpreted as a file name.



Chapter 4: System Functions 299

Variant options
The following variant options are accepted:

Name Meaning Default

Invert 0, 1 or 2 (see below) 0

Separator the field separator, any single character. If Widths is
other than ⍬, Separator is ignored. ','

Widths
a vector of numeric values describing the width (in
characters) of the corresponding columns in the CSV
source, or ⍬ for variable width delimited fields

⍬

Decimal the decimal mark in numeric fields - one of '.' or ',' '.'

Thousands
the thousands separator in numeric fields, which may be
specified as an empty character vector (meaning no
separator is defined) or a character scalar

''

Trim
a Boolean specifying whether undelimited/unescaped
whitespace is trimmed at the beginning and end of
fields

1

Ragged a Boolean specifying whether records with varying
numbers of fields are allowed; see notes below 0

Fill the numeric value substituted for invalid numeric data
in columns of type 3 0

Records the maximum number of records to process or 0 for no
limit 0

Other options defined for export are also accepted but ignored.



Chapter 4: System Functions 300

Invert
This option specifies how the CSV data should be returned as follows:

0
A table (a matrix whose elements are character vectors or scalars or
numbers).

1
A vector, each of whose items contain field (column) values. Character
field values are character matrices; numeric field values are numeric
vectors.

2
A vector, each of whose items contain field (column) values. Character
field values are vectors of character vectors; numeric field values are
numeric vectors.

The result R contains the imported data.

If Y[4] does not specify that the data contains a header then R contains the entire
data in the form specified by the Invert variant option.

If Y[4] does specify that the data contains a header then R is a 2-element vector
where:

l R[1] is the imported data excluding the header.
l R[2] is a vector of character vectors containing the header record.

Examples



Chapter 4: System Functions 301

⊃⎕NGET CSVFile←'c:\Dyalog16.0\sales.csv'
┌→───────────────────────────────────────────────┐
│Product,Sales │
│ Widgets,1912 │
│ Gimlets,205 │
│ Dingbats,189│
│ │
└────────────────────────────────────────────────┘

⎕CSV CSVFile
┌→───────────────────┐
↓ ┌→──────┐ ┌→────┐ │
│ │Product│ │Sales│ │
│ └───────┘ └─────┘ │
│ ┌→──────┐ ┌→───┐ │
│ │Widgets│ │1912│ │
│ └───────┘ └────┘ │
│ ┌→──────┐ ┌→──┐ │
│ │Gimlets│ │205│ │
│ └───────┘ └───┘ │
│ ┌→───────┐ ┌→──┐ │
│ │Dingbats│ │189│ │
│ └────────┘ └───┘ │
└∊───────────────────┘

⎕CSV CSVFile'' ⍬ 1 ⍝ Header row
┌→────────────────────────────────────────────┐
│ ┌→──────────────────┐ ┌→──────────────────┐ │
│ ↓ ┌→──────┐ ┌→───┐ │ │ ┌→──────┐ ┌→────┐ │ │
│ │ │Widgets│ │1912│ │ │ │Product│ │Sales│ │ │
│ │ └───────┘ └────┘ │ │ └───────┘ └─────┘ │ │
│ │ ┌→──────┐ ┌→──┐ │ └∊──────────────────┘ │
│ │ │Gimlets│ │205│ │ │
│ │ └───────┘ └───┘ │ │
│ │ ┌→───────┐ ┌→──┐ │ │
│ │ │Dingbats│ │189│ │ │
│ │ └────────┘ └───┘ │ │
│ └∊──────────────────┘ │
└∊────────────────────────────────────────────┘



Chapter 4: System Functions 302

⎕CSV CSVFile''(1 2)1 ⍝ Fields are Char,Num
┌→──────────────────────────────────────────┐
│ ┌→────────────────┐ ┌→──────────────────┐ │
│ ↓ ┌→──────┐ │ │ ┌→──────┐ ┌→────┐ │ │
│ │ │Widgets│ 1912 │ │ │Product│ │Sales│ │ │
│ │ └───────┘ │ │ └───────┘ └─────┘ │ │
│ │ ┌→──────┐ │ └∊──────────────────┘ │
│ │ │Gimlets│ 205 │ │
│ │ └───────┘ │ │
│ │ ┌→───────┐ │ │
│ │ │Dingbats│ 189 │ │
│ │ └────────┘ │ │
│ └∊────────────────┘ │
└∊──────────────────────────────────────────┘

(⎕CSV⍠'Invert' 1)CSVFile'' (1 2) 1 ⍝ Invert 1
┌→────────────────────────────────────────────────────┐
│ ┌→──────────────────────────┐ ┌→──────────────────┐ │
│ │ ┌→───────┐ ┌→───────────┐ │ │ ┌→──────┐ ┌→────┐ │ │
│ │ ↓Widgets │ │1912 205 189│ │ │ │Product│ │Sales│ │ │
│ │ │Gimlets │ └~───────────┘ │ │ └───────┘ └─────┘ │ │
│ │ │Dingbats│ │ └∊──────────────────┘ │
│ │ └────────┘ │ │
│ └∊──────────────────────────┘ │
└∊────────────────────────────────────────────────────┘

⊃(⎕CSV⍠'Invert' 2)CSVFile'' (1 2) 1 ⍝ Invert 2
┌→──────────────────────────────────────────────────┐
│ ┌→───────────────────────────────┐ ┌→───────────┐ │
│ │ ┌→──────┐ ┌→──────┐ ┌→───────┐ │ │1912 205 189│ │
│ │ │Widgets│ │Gimlets│ │Dingbats│ │ └~───────────┘ │
│ │ └───────┘ └───────┘ └────────┘ │ │
│ └∊───────────────────────────────┘ │
└∊──────────────────────────────────────────────────┘

Notes
l When Y specifies just the source of the CSV data, it does not need to be
enclosed or ravelled to create a 1-element vector.

l Y[2], the description of the source, distinguishes an otherwise ambiguous
character vector source (which could contain either CSV data or a file
name). The other source forms are unambiguous but the description, when
given, must still match the given source type.

l Tab-separated fields may be imported by specifying 'Separator'
(⎕UCS 9).

l Fields containing embedded new lines are supported (they must, of course,
appear in quotes). On import, line endings are always converted to a single
line feed character.



Chapter 4: System Functions 303

l If Ragged is not set then all records must have the same number of fields
(character delimited format) or same number of characters (fixed width field
format).

l If Ragged is set:
o The expected number of columns must be specified using the Widths

variant option and/or the column types in Y[3].
o In character delimited format, all processed records are implicitly

extended or truncated as required so that they contain the expected
number of fields; implicitly added fields will be empty.

o In fixed width format, all processed records are implicitly extended
with spaces or truncated as required so that they contain as many
characters as are specified in the Widths option declaration.

File handling
Data may be read from a named file or a tied native file. A tied native files may be
read in sections by repeatedly invoking ⎕CSV for a specified maximum number of
records (specified by the Records variant) until no more data is read.

In all cases the files must contain text using one of the supported encodings. See File
Encodings on page 442. The method used to determine the file encoding is as
follows:

l If a Byte Order Mark (BOM) is encountered at the start of the file, it is used
regardless of Y[2] (if specified). Note, however, that the BOM can only be
encountered if the file is read from the start - specifically, if a native file is
read in sections, any BOM present will only be encountered when the first
section is read.

l Otherwise, the file will be read and decoded according to the file encoding
in Y[2] if specified.

l Otherwise:
o Native files will be decoded as if 'UTF-8' had been specified.
o Files specified by name will be examined and the likely file encoding

will be deduced using the same heuristics performed by ⎕NGET.

Note also:
l Native files are read from the current file position. On successful
completion, the file position will be at the first unprocessed character (end
of file if the Records variant option is not specified). If an error is signalled
the file position is undefined.

l The result does not report the file encoding or line ending type as it does
with ⎕NGET. If this information is required then it must be obtained by
other means.



Chapter 4: System Functions 304

Dyadic ⎕CSV
{R}←X ⎕CSV Y

The left argument X is either:

l a matrix or a vector of vectors/matrices containing the data to be converted
to CSV format.

l or a 2-element vector containing a matrix or vector of vectors/matrices
containing the data to be converted to CSV format, and a vector of character
vectors containing the header record.

Y is a 1 or 2-element vector containing:

[1] Destination of CSV Data (see below)

[2] Description of the CSV data (see below)

Destination - may be one of:

l a character vector or scalar containing a file name
l a native tie number
l an empty character vector, indicating that the CSV data is to be returned in
the result R

Description may be:

l a character vector specifying the file encoding such as 'UTF-8' (see File
Encodings on page 442). This applies when Y[1] is a file name or tie
number. If omitted or empty, the file encoding defaults to 'UTF-8'.

l a character scalar 'S' (simple) or 'N' (nested). This applies when Y[1] is
empty. The default is 'S'.



Chapter 4: System Functions 305

Variant options
The following variant options are accepted:

Name Meaning Default

Overwrite
a Boolean which specifies, when creating a
named file which already exists, whether to
overwrite it (1) or signal an error (0)

0

Separator the field separator, any single character. If
Widths is other than ⍬, Separator is ignored. ','

Widths

a vector of numeric values describing the width
(in characters) of the corresponding columns in
the CSV source, or ⍬ for variable width
delimited fields

⍬

Decimal the decimal mark in numeric fields - one of '.'
or ',' '.'

Thousands

the thousands separator in numeric fields, which
may be specified as an empty character vector
(meaning no separator is defined) or a character
scalar

''

Trim
a Boolean specifying whether whitespace is
trimmed at the beginning and end of character
fields

1

LineEnding the line ending sequence - see Line separators:
on page 443

(13 10) on
Windows; 10
on other
platforms

Other options defined for import are also accepted but ignored.

If Y specifies that the CSV data is written to a file then R is the number of bytes (not
characters) written, and is shy.

Otherwise, R is the CSV data in the format specified in Y, and is not shy.



Chapter 4: System Functions 306

Examples
CSVFile←'c:\Dyalog16.0\sales.csv'
⎕←DATA HDR←⎕CSV CSVFile''(1 2)1

┌→──────────────────────────────────────────┐
│ ┌→────────────────┐ ┌→──────────────────┐ │
│ ↓ ┌→──────┐ │ │ ┌→──────┐ ┌→────┐ │ │
│ │ │Widgets│ 1912 │ │ │Product│ │Sales│ │ │
│ │ └───────┘ │ │ └───────┘ └─────┘ │ │
│ │ ┌→──────┐ │ └∊──────────────────┘ │
│ │ │Gimlets│ 205 │ │
│ │ └───────┘ │ │
│ │ ┌→───────┐ │ │
│ │ │Dingbats│ 189 │ │
│ │ └────────┘ │ │
│ └∊────────────────┘ │
└∊──────────────────────────────────────────┘

DATA⍪←'Gizmos' 23
DATA HDR ⎕CSV''

┌→────────────┐
│Product,Sales│
│ │
│Widgets,1912 │
│ │
│Gimlets,205 │
│ │
│Dingbats,189 │
│ │
│Gizmos,23 │
│ │
│ │
└─────────────┘

CSVFile1←'c:\Dyalog16.0\sales1.csv'
⎕←DATA HDR ⎕CSV CSVFile1

67
DATA⍪←'Gimbals' 123
⎕←DATA HDR ⎕CSV CSVFile1

FILE NAME ERROR: Unable to create file ("The file
exists.")

⎕←DATA HDR ⎕CSV CSVFile1
∧
⎕←DATA HDR(⎕CSV⍠'Overwrite' 1)CSVFile1

80



Chapter 4: System Functions 307

Notes
l When Y contains only the destination of the CSV data (i.e. omits the
description in its second element) it does not have to be enclosed to form a
single element vector.

l Native files are written from the current file position. On successful
completion, the file position will be at the end of the written data. If an
error is signalled the amount of data written is undefined.

l If the file encoding specifies that a BOM is required and output is to a
native file, it will only be written if the file position is initially at 0 - that
is, the start of the file is being written.

l When fixed width fields are written, character data shorter than the specified
width is padded with spaces to the right and character data longer than the
specified width signals an error. Numeric data is converted to character data
as far as possible so that it fits into the specified width. If this is not
possible, an error is signalled.

l Tab-separated fields may be exported by specifying 'Separator'
(⎕UCS 9).

l Fields containing a single embedded new line are supported. On export, line
feed characters are mapped back to the defined line ending sequence.


