
1

#dyalog17

The Future of
Dyalog APL
Performance Marshall Lochbaum

2

#dyalog17 Code Golf Hackathon

Improvements in version 16

 dyalog.com/dyalog/dyalog-versions/160/performance.htm

 Many structural functions are much faster
 Enlist and set functions on nested arrays are

about twice as fast
 Base encoding/decoding and equals/not-equals

scan sped up

3

#dyalog17 Code Golf Hackathon

“Latency” and Throughput
 Most functions are faster, relative to array size, on

large arguments
 A typical APL primitive takes constant time for each

element, but also has a small delay (20-100ns) for
each overall invocation

 Most of the speedups in 16.0 target throughput,
although reshape and transpose have a reduced
constant cost. Monad -×÷|○~ and dyad ⌈⌊⍱⍲ are
faster on simple scalar arguments.

4

#dyalog17 Code Golf Hackathon

Optimising for small operations

 Try to run operations on large arguments to reduce
function overhead whenever possible

 Most primitives cost the same on small arguments,
but operators take around 10x as long

 Simple statements and dfns with few operators will
run the fastest when function overhead is a factor

 Make sure your problem is really function overhead
before trying to optimise this way!

5

#dyalog17 Code Golf Hackathon

Optimising for large operations
 Know how fast each function is, and profile to find

expensive functions in your application
 Try to fit intermediate results in the smallest

datatype possible (e.g. multiply prices by 100 and
store as integers instead of using floats)

 Apply functions to smaller arrays when possible
(when multiplying by both a matrix and a scalar,
multiply the two together first)

 Never optimise without testing!

6

#dyalog17 Code Golf Hackathon

Instruction set extensions

 Extensions to x86 and other architectures allow the
CPU to do some operations much more quickly

 Historically Dyalog has used these in only a few
cases, but they are used for more, and more
important, operations in versions 16.0 and 17.0

7

#dyalog17 Code Golf Hackathon

x86 instruction sets used by Dyalog APL

 SSE2 (2001): operations on 128 bits at a time
 SSE4.1 (2007): adds max and min to SSE2
 POPCNT (2008): count the number of bits in a word
 BMI2 (2013): compress and expand for booleans
 AVX2 (2013): operations on 256 bits at a time
 AVX-512 (2018): basically all of APL in hardware

8

#dyalog17 Code Golf Hackathon

x86 instruction sets used by Dyalog APL
 Version 15.0:

 SSE2 for vector-vector +-×÷
 POPCNT for +/ and +.f with boolean functions f
 CRC32 (SSE4.2) for hashing in some cases
 SSE4.1 for ⌈/ and ⌊/
 BMI2 for faster 8x8 boolean transpose

 Version 16.0:
 BMI2 for boolean ,⍉↑/\

 Version 17.0 (so far):
 AVX2 for scalar dyadics
 BMI2 for scalar replicate boolean (used in index/outer product)

9

#dyalog17 Code Golf Hackathon

Checking for instruction set support

 The processor provides a list of which instruction sets
it supports (CPUID flags)

 Dyalog checks these when it runs to determine which
code to use

 On Windows, use CPU-Z to check flags
 On Linux, use grep flags /proc/cpuinfo
 On macOS, use sysctl -n machdep.cpu

10

#dyalog17 Code Golf Hackathon

Which processors to use?

 For 15.0, instruction support doesn’t matter much—
processors too old for SSE4.1 will be very slow
anyway

 For 16.0 and 17.0, a Haswell or newer processor is
recommended for BMI2 (16.0) and AVX2 (17.0)

 Version 17.0 will make use of AVX-512, which will be
supported in all Cannonlake processors if Intel ever
decides to release those (early 2018, we hope)

11

#dyalog17 Code Golf Hackathon

Version 17.0 improvements

 SSE2 or AVX2 will be used for +-×÷⌈⌊<≤=≥>≠ when
available

 Integer comparisons are 6-8x faster with SSE2 and
10-16x faster with AVX2 (about 2x and 4x for floats)

 Tolerant comparison with a scalar is converted to
intolerant comparison and is 5x or 10x faster

 Altivec (for POWER architecture) and NEON (for ARM)
will most likely be supported, as well as AVX-512

12

#dyalog17 Code Golf Hackathon

Ways to move forward

 Improve the performance of primitives on large
arguments (in progress)

 Reduce function overhead
 Optimised parsing; pre-parsing
 Better allocation and garbage collection

 JIT compilation (generate machine code at runtime)
 Perform multiple operations in one pass
 Compile simple functions if they are used a lot

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12

