
 ⍝ ⍝⍝⍝⍝⍝⍝⍝⍝⍝⍝⍝⍝⍝⍝⍝⍝⍝⍝⍝⍝⍝⍝⍝ ⊆

 ⍝ Monadic form: ⊆ ⍵

 ⍝ Frequently occurring pattern: enclose-if-simple

 process 'red' 'green' 'blue' ⍝ process several items

 process 'purple' ⍝ or single item

 ∇ process items;item
[1]
[2] :If 1=≡items
[3] items←⊂items
[4] :EndIf
[5]
[6] :For item :In items
[7] ⍝⍝⍝ do stuff
[8] :EndFor
 ∇

becomes:

 ∇ process items;item
[1] :For item :In ⊆items
[2] ⍝⍝⍝ do stuff
[3] :EndFor
 ∇

 ⍝ definition: ⊆ ←→ {⊂⍣(1=≡⍵) ⊢⍵}

 ⍝ Ex: think of an example from your own work.

 ⍝ Dyadic form: ⍺ ⊆ ⍵ ⍝⍝⍝⍝⍝⍝⍝⍝⍝⍝⍝⍝⍝⍝⍝⍝⍝⍝⍝⍝⍝⍝⍝⍝⍝⍝⍝

 ⍝ definition: ⊆ ←→ {⎕ml←3 ⋄ ⍺⊂⍵} ⍝ APL2-style partition
 ⍝ (may be applied under axis)

 ⍝ ⊂ Dyalog default (⎕ml←1) partitioned enclose:
 ⍝ left argument must be boolean vector or scalar
 ⍝ new partition at _each_ 1
 ⍝ leading 0s omit items

 1 0 1 0 ⊂ 3 4 5 6
┌───┬───┐
│3 4│5 6│
└───┴───┘

 0 1 0 1 ⊂ 3 4 5 6
┌───┬─┐
│4 5│6│
└───┴─┘
 text
some of your purple berries

 ⍝ ⊆ Partition:
 ⍝ left argument must be non-negative integer vector
 ⍝ new partition when item > previous one (1,2</⍺)
 ⍝ all 0s omit items

 1 1 2 2 ⊆ 3 4 5 6
┌───┬───┐
│3 4│5 6│
└───┴───┘

 1 0 2 2 ⊆ 3 4 5 6
┌─┬───┐
│3│5 6│
└─┴───┘

 split←{(⍺≠⍵)⊆⍵} ⍝ ⍺-split of ⍵

 ' ' split text
┌────┬──┬────┬──────┬───────┐
│some│of│your│purple│berries│
└────┴──┴────┴──────┴───────┘

 split ← ≠⊆⊢ ⍝ coded as a fork

 ' ' split text
┌────┬──┬────┬──────┬───────┐
│some│of│your│purple│berries│
└────┴──┴────┴──────┴───────┘

 ⍝ Ex: Write ⊂ in terms of ⊆
 ⍝ Ex: Discover something interesting to share

 ⍝⍝⍝⍝⍝⍝⍝⍝⍝⍝⍝⍝⍝⍝⍝⍝⍝⍝⍝⍝⍝⍝⍝⍝ @

 ⍝ {val} (mod @ sel) array

 ⍝ Sub-array selection:
 ⍝ numeric indexing
 ⍝ boolean mask
 ⍝ ...

 ⍝ Right operand: [sel]ection:

 ⍝ array:
 ⍝ simple : major cell selection
 ⍝ nested : choose / reach

 ⍝ function: returns boolean mask

 ⍝ Items of [array] are replaced with {val} mod sub,
 ⍝ where [sub] is the sub-array of [sel]ected items.

 ⍝ One last thing: this commonly occurring form:
 ⍝ val (⊣ @ sel) array
 ⍝ can be shortened to:
 ⍝ (val @ sel) array

 ⍝ Ex: write expressions for:
 ⍝ vector ⍵ with 0s at alternate positions
 ⍝ Sentence ⍵ with first letter of each word capital
 ⍝ Exchanging rows p and q in matrix ⍵
 ⍝ FizzBuzz
 ⍝ Ex: Discover something interesting to share

 ⍝ Implementation:
 ⍝ 0. Monitor usage in "real" apps.

 ⍝ Performance improvements:
 ⍝ Phase 1 (done): split single MAGIC fn into sub-cases so
 ⍝ that case-selection occurs in C rather than APL.
 ⍝ Phase 2 (done): process _function_ right operand in C-
 ⍝ code to produce index array.
 ⍝ Phase 3: Recode popular sub-cases into C to avoid inter-
 ⍝ pretative overhead, and Unsharing() where possible.
 ⍝ Phase 4: Further reduce Unsharing() by overwriting
 ⍝ "garbage" right argument in-situ.
 ⍝ Identifying the right argument as garbage might require
 ⍝ some help from the compiler.

 ⍝ In-situ substitution:
 ⍝ 0@1⍳⍵ ⍝ OK, because ⍳⍵ is not shared
 ⍝ 0@1⊢⍵ ⍝ OK, iff ⍵ has low refcount
 ⍝ ⍵+0@1⊢⍵ ⍝ NOT OK
 ⍝ v←0@1⊢⍵ ⍝ NOT OK if ⍵ is referenced downstream.
 ⍝ 1+0@1⊢⍵ ⍝ NOT OK if a local error-guard references ⍵
 ⍝ ... etc

