

Taming Statistics with TamStat

Stephen Mansour, PhD University of Scranton Dyalog 18 Belfast, October 29, 2018

Statistical Tables are inconsistent

Ζ	0.01	0.02	0.03	0.04	D.F	.10	.05	.025	.01	.005
0.0					1	3.08	6.31	12.71	31.82	63.66
0.0	0.500	0.504	0.508	0.512	2	1.89	2.92	4.30	6.96	9.92
0.1	0 5 4 0		0 5 4 0	0 5 5 2	3	1.64	2.35	3.18	4.54	5.84
0.2	0.540	0.544	0.548	0.552	4	1.53	2.13	2.78	3.75	4.60
0.2	0.579	0.583	0.587	0.591	5	1.48	2.02	2.57	3.36	4.03
0.3	0.64.0	0.000	0.000	0.000	6	1.44	1.94	2.45	3.14	3.71
0.4	0.618	0.622	0.626	0.629	7	1.41	1.89	2.36	3.00	3.50
0.4	0.655	0.659	0.663	0.666	8	1.40	1.86	2.31	2.9	3.36
0.5					9	1.38	1.83	2.26	2.82	3.25
	0.691	0.695	0.698	0.702	10	1.37	1.81	2.23	2.76	3.17
Normal Table					Student t Table					

Proliferation of Statistical **Functions in Software**

- Excel (4)
 - NORM.DIST,
 - NORM.INV,
 - NORMS.DIST,
 - NORMS.INV
- ▶ R(4)
 - dnorm,
 - pnorm,
 - qnorm, 0
 - rnorm
- TamStat(1)
 - normal

- Excel (6) T.DIST T.INV
 - T.DIST.RT T.INV.2T T.DIST.2T T.TEST

- ► R(6)
 - dt
 - pt,
 - qt,
 - rt,
 - t.test
 - pairwise.t.test
- TamStat(1) • tDist

Normal Distribution

Student t Distribution

Data representation

- Raw Data
 - Numeric vector
 - Character
 - Vector of character vectors
 - Comma delimited vector
 - Character matrix
- Frequency form 2–column Matrix
 - 1st column: Value or midpoint
 - 2nd Column: integer
- Probability form 2 column Matrix
 - 1st column: Value or midpoint
 - 2nd Column: fraction
- Summary form Namespace
 - Count, mean, sdev

Statistics deals primarily with four types of functions:

- Summary Functions
 - Descriptive Statistics
- Probability Distributions
 - Theoretical Models

B

- Relations
- Logic

A

Summary Functions

Summary functions are of the form:

 $y = f(x_1, x_2, \dots x_n)$

- They produce a single value from a vector; similar to +/ (but not on higher order arrays)
- A statistic is a summary function of a sample; a parameter is a summary function of a population.
- Summary functions are all structurally equivalent

• Example:
$$\bar{x} = \frac{\sum_{i=1}^{n} x_i}{n}$$

Examples of Summary Functions

- Measures of Quantity
 - count, sum, sumSquares
- Measures of Center
 - $^{\circ}$ mean, median, mode
- Measures of Spread
 - o range, variance, sdev, iqr
- Measures of Position
 - percentile, quartile, percentileRange, zscore
- Measures of Shape
 - skewness, kurtosis

Probability Distributions

- Two types of distributions
 - Discrete
 - Continuous
- Discrete distributions are defined by the probability mass function
- Continuous distributions are defined by the density function
- The right argument is a Random Variable
- The left argument is a parameter list

Discrete Distributions

- ► A B uniform X
- N P binomial X
- P geometric X
- N P negativeBinomial X
- M poisson X
- K M N hyperGeometric X

Operators

- Operators modify or combine functions to do useful things.
- Some examples from mathematics:
- Monadic:

Dyadic:

- Derivative: f'(x) Composition $\mathbf{f} \circ \mathbf{g}$
- Inverse $f^{-1}(x)$ Inner Product $\langle f, g \rangle$
- Using this concept, we define a probability operator to combine a distribution function with a relational function.

Let's look at an example:

What is the probability that you get at least 3 heads in seven coin tosses?

R: pbinom(2,7,0.5,lower.tail=FALSE)

APL/TamStat:

7	0.5	binomial	probability	>=	3
					-
	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow
Ι	Left	Left	Operator	Right	Right
	Arg	Operand		Oper	Arg

A "Real-World" Reliability Example

- The failure rate for lightbulbs is 0.2% per hour.
- What is the mean time to fail?
- What is the probability that a lightbulb will last at least 750 hours?
- After how many hours will 90% of all light bulbs burn out?

Simulation

Generate random data from any distribution Dyalog generates data from: Uniform (Discrete): ?N Rectangular(0,1) Continuous: ?0

TamStat generates random data from all other distributions including normal, binomial, hypergeometric, etc.

Inferential Statistics

- Confidence Intervals
 - Average height point estimate, probably wrong
 - Height is somewhere between A and B
- Hypothesis tests
 - I think average height is x
 - Do the data support this?

Planning a Wedding

Planning a Wedding

- You are planning a wedding. Costs are
 - \$500 to rent the hall
 - \$100 per guest
- 1. You have 35 guests. What is the final cost?
- 2. You have a budget of \$8000 . How many guests can you invite?
- 3. Suppose the reception hall charges \$3000 for 25 guests and \$5500 for 50 guests. What are the fixed and variable costs?

Model: $f(x) = b_0 + b_1 x$ f(x) = 500 + 100x

1. f(35) = \$4000Arithmetic: y = f(x)2. $f^{-1}(8000) = 75$ Algebra: y = f(x)3. $3000 = b_0 + b_1 25$ $5500 = b_0 + b_1 50$ $b_0 = 500$ $b_1 = 100$ 3 or more equations: best fit Regression: y = f(x)

CSI Scranton

You are investigating a murder. You find a bloody footprint size 9-1/2 near the body. What is the height of the suspect? If the suspect was known to be male, would that change anything?

Regression

- ▶ D←import'' A Import database as namespace
- D.Height A Vector of Heights
- D.ShoeSize A Vector of ShoeSizes
- MODEL←regress D.Height D.ShoeSize A Simple Regression
- MODEL.B A Intercept and Slope
- 50.77060572 1.771435553
- MODEL.RSq
- 68.37440979
- MODEL.
- MODEL.f 9.5 1
- 68.54922102
- MODEL.RSq
- MODEL.f confInt 9.5 1
- 67.45313462 69.64530743
- MODEL.f predInt 9.5 1
- 63.62800866 73.47043339
- .99 MODEL.f confInt 9.5 1
- 67.0785966 70.01984545
 - .99 MODEL.f predInt 9.5 1
- 61.94640662 75.15203542

Weight Guesser

- The weight guesser at the county fair will give away a prize if his guess is more than 10 lbs. away from the customer's true weight.
- He observes that the customer's height is 6 feet and that his shoe size is 10–1/2. What is his best guess for the customer's weight?

Graphical User Interface

- Primarily for students of statistics
- Not designed for APL users
- Expression Builders
 - Summary Wizard
 - Distribution Wizard
 - Regression Wizard

Conclusion

- This is more about design and syntax, and less about implementation
- Most functions and operators can easily be written in APL.
- Internals not important to user
- R interface can be used if necessary for statistical calculations.
- Correct nomenclature and ease of use is critical.

Stephen M. Mansour, Ph.D.

- Adjunct Professor
 - Operations and Information Management Kania School of Management
- Email:
 - stephen.mansour@scranton.edu
- Website: www.tamstat.com

- ► Tel: (570)941-6278
- Address:

University of Scranton Loyola Science Center 311D Monroe Ave and Linden St. Scranton, PA 18510

