Taming Statistics with TamStat

Stephen Mansour, PhD
University of Scranton
Dyalog 18 Belfast, October 29, 2018

Statistical Tables are inconsistent

Z	0.01	0.02	0.03	0.04	D.F	. 10	. 05	. 025	. 01	. 005
0.0	0.500	0.504	0.508	0.512	1	3.08	6.31	12.71	31.82	63.66
					2	1.89	2.92	4.30	6.96	9.92
0.1	0.540	0.544	0.548	0.552	3	1.64	2.35	3.18	4.54	5.84
					4	1.53	2.13	2.78	3.75	4.60
0.2	0.579	0.583	0.587	0.591	5	1.48	2.02	2.57	3.36	4.03
0.3	0.618	0.622	0.626	0.629	6	1.44	1.94	2.45	3.14	3.71
					7	1.41	1.89	2.36	3.00	3.50
0.4	0.655	0.659	0.663	0.666	8	1.40	1.86	2.31	2.9	3.36
0.5	0.691	0.695	0.698	0.702	9	1.38	1.83	2.26	2.82	3.25
					10	1.37	1.81	2.23	2.76	3.17

Proliferation of Statistical Functions in Software

- Excel (4)
- NORM.DIST,
- NORM.INV,
- NORMS.DIST,
- NORMS.INV
- $\mathrm{R}(4)$
- dnorm,
- pnorm,
- qnorm,
- rnorm
- TamStat(1)
- normal
- Excel (6)
T.DIST T.INV
T.DIST.RT T.INV.2T
- $R(6)$
- dt
- pt,
- qt,
- rt,
- t.test
- pairwise.t.test
- TamStat(1)
- tDist

Normal Distribution

Student t Distribution

Data representation

- Raw Data
- Numeric vector
- Character
- Vector of character vectors
- Comma delimited vector
- Character matrix
- Frequency form - 2-column Matrix
- $1^{\text {st }}$ column: Value or midpoint
- $2^{\text {nd }}$ Column: integer
- Probability form - 2 - column Matrix
- $1^{\text {st }}$ column: Value or midpoint
- $2^{\text {nd }}$ Column: fraction
- Summary form - Namespace
- Count, mean, sdev

Statistics deals primarily with four types of functions:
 - Summary Functions
 - Descriptive Statistics
 - Probability Distributions

- Theoretical Models
- Relations
- Logic

Summary Functions

- Summary functions are of the form:

$$
y=f\left(x_{1}, x_{2}, \ldots x_{n}\right)
$$

- They produce a single value from a vector; similar to $+/$ (but not on higher order arrays)
- A statistic is a summary function of a sample; a parameter is a summary function of a population.
- Summary functions are all structurally equivalent
, Example: $\bar{x}=\frac{\sum_{i=1}^{n} x_{i}}{n}$

Examples of Summary Functions

- Measures of Quantity
- count, sum, sumSquares
- Measures of Center
- mean, median, mode
- Measures of Spread
- range, variance, sdev, iqr
- Measures of Position
- percentile, quartile, percentileRange, zscore
- Measures of Shape
- skewness, kurtosis

Probability Distributions

- Two types of distributions
- Discrete
- Continuous
- Discrete distributions are defined by the probability mass function
- Continuous distributions are defined by the density function
- The right argument is a Random Variable
- The left argument is a parameter list

Discrete Distributions

- A B uniform X
- N P binomial X
- P geometric X
- N P negativeBinomial X
- M poisson X
- K M N hyperGeometric X

Operators

- Operators modify or combine functions to do useful things.
- Some examples from mathematics:
- Monadic:

Dyadic:

- Derivative: $f^{\prime}(x)$
- Inverse $f^{-1}(x)$

Composition $f \circ g$
Inner Product $\langle f, g\rangle$

- Using this concept, we define a probability operator to combine a distribution function with a relational function.

Let's look at an example:

What is the probability that you get at least 3 heads in seven coin tosses?

R: pbinom(2,7,0.5,lower.tail=FALSE)
APL/TamStat:

$$
\begin{array}{rlll}
70.5 & \text { binomial probability } & >= & 3 \\
---- & ------ & ------ & - \\
\downarrow & \downarrow & \downarrow & \\
\text { Left } & \text { Left } & \text { Operator } & \text { Right } \\
\text { Arg } & \text { Operand } & & \text { Oper Arg }
\end{array}
$$

A "Real-World" Reliability Example

- The failure rate for lightbulbs is 0.2% per hour.
, What is the mean time to fail?
- What is the probability that a lightbulb will last at least 750 hours?
- After how many hours will 90% of all light bulbs burn out?

Simulation

Generate random data from any distribution Dyalog generates data from:

Uniform (Discrete):
Rectangular(0,1) Continuous:
? 0
TamStat generates random data from all other distributions including normal, binomial, hypergeometric, etc.

Inferential Statistics

, Confidence Intervals

- Average height - point estimate, probably wrong
- Height is somewhere between A and B
- Hypothesis tests
- I think average height is x
- Do the data support this?

Planning a Wedding

Planning a Wedding

- You are planning a wedding. Costs are - \$500 to rent the hall $\$ 100$ per guest

1. You have 35 guests. What is the final cost?
2. You have a budget of $\$ 8000$. How many guests can you invite?
3. Suppose the reception hall charges $\$ 3000$ for 25 guests and $\$ 5500$ for 50 guests. What are the fixed and variable costs?

Model:

$$
\begin{gathered}
f(x)=b_{0}+b_{1} x \\
f(x)=500+100 x
\end{gathered}
$$

1. $f(35)=\$ 4000$

Arithmetic: $y=f(x)$
2. $f^{-1}(8000)=75$

Algebra: $\quad y=f(x)$
3. $3000=b_{0}+b_{1} 25$

$$
\begin{aligned}
& 5500=b_{0}+b_{1} 50 \\
& b_{0}=500 \quad b_{1}=100
\end{aligned}
$$

3 or more equations: best fit
Regression: $y=f(x)$

CSI Scranton

You are investigating a murder. You find a bloody footprint size 9-1/2 near the body. What is the height of the suspect? If the suspect was known to be male, would that change anything?

Regression

```
    D<import,', A Import database as namespace
    D.Height a Vector of Heights
    D.ShoeSize a Vector of ShoeSizes
    MODEL<regress D.Height D.ShoeSize a Simple Regression
    MODEL.B & Intercept and Slope
50.77060572 1.771435553
            MODEL.RSq
68.37440979
MODEL.
    MODEL.f 9.5 1
68.54922102
    MODEL.RSq
    MODEL.f confInt 9.5 1
67.45313462 69.64530743
    MODEL.f predInt 9.5 1
63.62800866 73.47043339
    .99 MODEL.f confInt 9.5 1
67.0785966 70.01984545
    .99 MODEL.f predInt 9.5 1
61.94640662 75.15203542
```


Weight Guesser

- The weight guesser at the county fair will give away a prize if his guess is more than 10 lbs. away from the customer's true weight.
- He observes that the customer's height is 6 feet and that his shoe size is $10-1 / 2$. What is his best guess for the customer's weight?

Graphical User Interface

- Primarily for students of statistics
- Not designed for APL users
- Expression Builders
- Summary Wizard
- Distribution Wizard
- Regression Wizard

Conclusion

- This is more about design and syntax, and less about implementation
- Most functions and operators can easily be written in APL.
- Internals not important to user
- R interface can be used if necessary for statistical calculations.
Correct nomenclature and ease of use is critical.

Stephen M. Mansour, Ph.D.

- Adjunct Professor

Operations and Information Management
Kania School of Management

- Email:
stephen.mansour@scranton.edu
, Website: www.tamstat.com
- Tel: (570)941-6278
- Address:

University of Scranton
Loyola Science Center 311D Monroe Ave and Linden St.
Scranton, PA 18510

