
Rectangles All The Way Down

Martin Thompson - @mjpt777

“The most amazing achievement of the

computer software industry is its

continuing cancellation of the steady

and staggering gains made by the

computer hardware industry.”

- Henry Peteroski

Fundamental Laws

“Transistor density doubles every year”

- Gordon Moore

CPU Performance – Memory Lane

“Transistor density doubles every year”

- Gordon Moore

“Transistor density doubles every 2 years”

- Gordon Moore

CPU Performance – Memory Lane

“Transistor density doubles every year”

- Gordon Moore

“Transistor density doubles every 2 years”

- Gordon Moore

“CPUs double in speed every 18 months”

- David House

CPU Performance – Memory Lane

“Transistor density doubles every year”

- Gordon Moore

“Transistor density doubles every 2 years”

- Gordon Moore

“CPUs double in speed every 18 months”

- David House

“The free lunch is over:”

- Herb Sutter

CPU Performance – Memory Lane

“Transistor density doubles every year”

- Gordon Moore

“Transistor density doubles every 2 years”

- Gordon Moore

“CPUs double in speed every 18 months”

- David House

“The free lunch is over:”

- Herb Sutter

Retirement of Tick Tock

- Intel

CPU Performance – Memory Lane

“Transistor density doubles every year”

- Gordon Moore

“Transistor density doubles every 2 years”

- Gordon Moore

“CPUs double in speed every 18 months”

- David House

“The free lunch is over:”

- Herb Sutter

Retirement of Tick Tock

- Intel

Spectre & Meltdown

- Google

CPU Performance – Memory Lane

Concurrency & Parallelism

C(N) = N / (1 + α(N – 1) + ((β* N) * (N – 1)))

C = capacity or throughput

N = number of processors

α = contention penalty

β = coherence penalty

Universal Scalability Law (USL)

0

2

4

6

8

10

12

14

16

18

20

1 2 4 8 16 32 64 128 256 512 1024

S
p

e
e

d
u

p

Processors

Amdahl USL

Universal Scalability Law (USL)

If concurrency is so difficult then

what else can we do?

0.0

2.0

4.0

6.0

8.0

10.0

12.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

R
e

sp
o

n
se

 T
im

e

Utilisation

Queueing Theory

r = s(2 – ρ) / 2(1 – ρ)

r = mean response time

s = service time

ρ = utilisation

Note: ρ = λ * s

Queueing Theory

L = λW

WIP = Throughput * Cycle Time

Little’s Law

L = λW

WIP = Throughput * Cycle Time

Bandwidth Delay Product:

Bytes in flight = Bandwidth * Latency

Little’s Law

L = λW

WIP = Throughput * Cycle Time

Bandwidth Delay Product:

Bytes in flight = Bandwidth * Latency

80 bytes / 100ns = 800 MB/s :10 LFBs

Little’s Law

Memory

Are all memory

operations equal?

Sequential Access

-

Average time in ns/op to sum all

longs in a 1GB array?

Access Pattern Benchmark

 ~1 ns/op

Benchmark Score Error Units

==

sequential 0.832 ± 0.006 ns/op

Really???

Less than 1ns per operation?

Instruction Level Parallelism

Access Pattern Benchmark

Benchmark Score Error Units

==

sequential 0.832 ± 0.006 ns/op

randomPage 2.703 ± 0.025 ns/op

Access Pattern Benchmark

Benchmark Score Error Units

==

sequential 0.832 ± 0.006 ns/op

randomPage 2.703 ± 0.025 ns/op

dependentRandomPage 7.102 ± 0.326 ns/op

Access Pattern Benchmark

Benchmark Score Error Units

==

sequential 0.832 ± 0.006 ns/op

randomPage 2.703 ± 0.025 ns/op

dependentRandomPage 7.102 ± 0.326 ns/op

randomHeap 19.896 ± 3.110 ns/op

Access Pattern Benchmark

Benchmark Score Error Units

==

sequential 0.832 ± 0.006 ns/op

randomPage 2.703 ± 0.025 ns/op

dependentRandomPage 7.102 ± 0.326 ns/op

randomHeap 19.896 ± 3.110 ns/op

dependentRandomHeap 89.516 ± 4.573 ns/op

Access Pattern Benchmark

Benchmark Score Error Units

==

sequential 0.832 ± 0.006 ns/op

randomPage 2.703 ± 0.025 ns/op

dependentRandomPage 7.102 ± 0.326 ns/op

randomHeap 19.896 ± 3.110 ns/op

dependentRandomHeap 89.516 ± 4.573 ns/op

 ~90 ns/op

A 100ns cache-miss is a

lost opportunity to execute

~1000 instructions on CPU

Algorithms &

Data Structures

L = λW

Bandwidth Delay Product:

Bytes in flight = Bandwidth * Latency

80 bytes / 100ns = 800 MB/s :10 LFBs

Little’s Law

L = λW

Bandwidth Delay Product:

Bytes in flight = Bandwidth * Latency

80 bytes / 100ns = 800 MB/s :10 LFBs

80 bytes / 15ns = 5.3 GB/s :prefectch

Little’s Law

L = λW

Bandwidth Delay Product:

Bytes in flight = Bandwidth * Latency

80 bytes / 100ns = 800 MB/s :10 LFBs

80 bytes / 15ns = 5.3 GB/s :prefectch

640 bytes / 15ns = 42.6 GB/s :cachelines

Little’s Law

Arrays are the most efficient

data structure to traverse

Functional data structures

 are like sausages,

the more you see them being

made, the less well you will sleep

Branches

Branch Benchmark

Benchmark Score Error Units

===

baseline 585.600 ± 4.469 us/op

Branch Benchmark

Benchmark Score Error Units

===

baseline 585.600 ± 4.469 us/op

predictable 578.364 ± 10.906 us/op

Branch Benchmark

Benchmark Score Error Units

===

baseline 585.600 ± 4.469 us/op

predictable 578.364 ± 10.906 us/op

unPredictable 2234.414 ± 564.472 us/op

What can we do?

Count bits as Booleans

Wide Registers

Math, Data Dependencies, and

Instruction Level Parallelism

Consider Sorting Arrays

https://lamport.azurewebsites.net/pubs/multiple-byte.pdf

“It’s a neat hack, and it’s more useful

now than it was then for two reasons.”

- Leslie Lamport (2011)

“The obvious reason is that word size is

larger now, with many computers

 having 64-bit words.”

- Leslie Lamport (2011)

“The less obvious reason is that

conditional operations are implemented

with masking rather than branching.”

- Leslie Lamport (2011)

“Branching is more costly on modern

multi-issue computers than it was on the

computers of the 70s.”

- Leslie Lamport (2011)

https://www.inf.ed.ac.uk/teaching/courses/exc/reading/morris.pdf

Work with your CPU caches

Memory Access Considerations

1. Temporal: group accesses in time

Memory Access Considerations

1. Temporal: group accesses in time

2. Spatial: group access in space

Memory Access Considerations

1. Temporal: group accesses in time

2. Spatial: group access in space

3. Pattern: create predictable patterns

Batching

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 5 10 15 20

Average overhead

per item, or operation,

in a batch

Batching – Amortising Costs

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 5 10 15 20

Words, Cachelines,

Pages, Blocks,

Frames, etc.

Batching – Amortising Costs

In closing…

Profile, profile, profile...

Eliminate Waste

Batch to Amortise

Access Memory in Patterns

Favour Math over Branches

Favour Predictable Branches

Consider Parallelism

-

ILP & Task

Is it really “Turtles all the way down”?

Is it really “Turtles all the way down”?

• Networks: Frames

• Operating Systems: Pages

• File systems and storage: Blocks

• DRAM memory: Banks and Row Buffers

• CPU cache subsystems: Cache Lines

• Applications use Arrays plus and interesting
data structures are made up of small Arrays

Rectangles all the way down…

“I don’t care what data structure you

use, nothing beats an array”

- a HFT Programmer

Twitter: @mjpt777

“Travel is fatal to prejudice, bigotry, and

narrow-mindedness, and many of our

people need it sorely on these accounts.

Broad, wholesome, charitable views of

men and things cannot be acquired by

vegetating in one little corner of the earth

all one's lifetime.”

- Mark Twain

Questions?

